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Abstract—
We propose a prediction of the worst-case noise area of

the supply voltage on the power distribution network (PDN).
Previous works focus on the worst-peak droop to sign off PDN.
In this work, we (1) study the behavior of circuit delay over the
worst-area noise (2) study the worst-case noise area of a lumped
PDN model (3) develop an algorithm to generate the worst-case
current for general PDN cases (4) predict the longest delay of a
datapath due to power integrity. Experimental results show that
the worst-area noise induces additional delay than that of the
worst-peak noise.

I. INTRODUCTION

The aggressive advances in process technology increase the
current demand and tighten the design rules. Such variation
causes transistor delay [1], clock jitter [2] and many other
negative effects, which degrade the overall performance [3].
As a result, PDN analysis becomes an important research
topic [4]. PDN noise comes from the DC resistance and loop
inductance of power/ground lines, which results in IR drop
and inductive noise (L di

dt ) at the load [5].
Figure 1 shows a typical PDN that consists of a voltage

regulator module (VRM), PCB/package loop parasitics and on-
die power grid with decoupling capacitors. A successful PDN
design requires the power/ground loops presenting acceptable
impedances at all frequencies of interest.
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Fig. 1. A typical circuit diagram characterizing the impedance of PDN.

Many previous works focused on the worst voltage drop
in time- [6], [7], [8] and in frequency-domain [9], [10], [11]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SLIP ’14, June 01 - 02 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-3053-4/14/06 $15.00.
http://dx.doi.org/10.1145/2633948.2633950

PDN analysis. Kouroussis et al. [12] proposed a vectorless
approach for PDN integrity verification. This was later ex-
tended by Ferzli et al. [13] to a geometric approach for
early estimation. Smith et al. [4] developed a method to
systematically characterize the PDN noise. Ketkar et al. [14]
studied micro-architecture based framework for PDN analysis.
Chiprout [15] discussed pre-silicon stimulus and post-silicon
activity generation to excite the worst-case voltage drop. Abdul
Ghani et al. [16] verified the PDN using node and branch
dominance. Swaminathan et al. [17] used power transmission
line to reduce the PDN noise.

Traditional PDN analysis concentrates on limiting the peak
voltage drop. By applying constant supply voltage minus peak
voltage on slow-slow(ss) corner transistors, designers may
figure out the maximum drop that the critical path can tolerate
to close the timing. However, this leads to an over-design as
the duration of the peak drop of supply noise may be very
short in real applications. Figure 2 shows two periodic supply
voltage noise patterns applied to a datapath. The nominal delay
of the circuit under Vdd = 1V is D0

1. The dash curve has a
peak voltage drop of 0.25V and noise area of 0.025T , which
induces 1.11D0 signal delay. The dot curve has a peak voltage
drop of 0.2V and noise area of 0.066T , which induces 1.23D0

signal delay. Due to larger noise area, the dot curve induces
11% larger delay, despite its 20% smaller peak noise.
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Fig. 2. A datapath of inverter chain under two supply patterns. The dash
curve induces larger delay despite smaller peak noise.(period T = T1 − T0)

In this paper, we focus on the prediction of the worst-
area noise of a PDN under a certain time window and the
worst-case load current profile which generates the worst-
area noise. We then predict the maximum circuit delay under
such voltage noise profile. The importance of the noise area
estimation on PDN analysis have been proposed and discussed
by Intel [1] and Hashimoto’s group on device level [19].
However, to the best of our knowledge, none of prior works

1D0 ≈ 100ps according to our HSPICE simulation with 45nm PTM HP
model [18].



provides quantitative analysis on the impact of noise area over
the performance. Moreover, there is no prediction about the
worst-case noise area. Our major contributions are as follows.

• We discuss the impact of the voltage noise area on the
circuit performance and compare it with that of the peak
voltage noise.

• We study the closed-form expression of the worst noise
area of a RLC tank case.

• We develop an algorithm to generate the worst-case
current stimulus for general PDN systems in O(n) time2.

• We investigate the circuit delay under a complete PDN
path and design experiments to validate our methods.

The remainder of the paper is organized as follows. In
Section II, we propose the formulation of our problem. In
Section III, we study the upper-bound of the voltage noise
area for a RLC tank case. As real PDN systems consist of
uncertain frequency components, we develop an algorithm to
handle the general cases in Section IV. It creates the current
stimulus to maximize the voltage noise area in linear time.
The experimental results are discussed in Section V. Finally,
we conclude the paper in Section VI.

II. PROBLEM FORMULATION

We formulate the problem as maximizing the voltage noise
area by designing current wave. A general PDN system, as
Figure 1 shown, is characterized by the impulse response on
the load node, i.e. h(t) (Figure 3(a)). Based on h(t) and a
window size T , we design the current stimulus such that the
voltage response has the maximum noise integral (area) within
all possible intervals of length T on the time domain.

Current stimuli ik(t) at node k are caused by circuit activ-
ities. We lumped all the on-die load into a single load current
i(t) for our analysis. As part of transistors are active at each
time, the magnitude of i(t) varies within a range. The range
is application dependent and can be approximated through
the system-level simulation or post-silicon measurement. The
assumptions of current constraints and zero transition time
are used in many previous works [12], [13]. We follow the
assumption of zero transition time and bound the total current
demand by i(t) ∈ [0, 1] in the rest of the paper.

The voltage noise v(i, t) of the PDN system is the convo-
lution of i(t) and h(t) as Eq. 1.

v(i, t) =

∫ +∞

0

h(τ)i(t − τ)dτ s.t. i(t) ∈ [0, 1], t ≥ 0 (1)

Note that we can scale v(i, t) accordingly once the upper
bound of ik(t) is obtained.

The window size T is a constant, which refers to one clock
cycle or other critical time period, in order to correlate with
overall system performance. We slide the window along the
timing-axis of v(i, t). The area of noise at each time t is
defined as A(i, t), which is the integral of v(i, t) in [t− T, t].

A(i, t) =

∫ t

t−T

v(i, t)dt =

∫ t

t−T

∫ +∞

0

h(t− τ)i(τ)dτdt (2)

2Here n refers to the vector length of the discretized impulse response
of the PDN system. Full worst-case voltage waveform requires additional
convolution of system impulse response and worst-case current, for which
the total time complexity is O(nlog(n)).

The maximum voltage noise area of A(i, t) under window
size T is defined as Aw. Current stimuli and time causing
Aw are defined as iw(t) and tw, respectively. Similarly, we
define the worst-case voltage response as vw(t), on which Aw

is obtained at tw.

Aw = max
i,t

A(i, t) = A(iw, tw) =

∫ tw

tw−T

vw(t)dt (3)

We can develop an algorithm to solve the above problem in
linear time, based on the simplifications as below.

Fig. 3. An example of PDN system with (a) the impulse response h(t), (b)
the step response Vs(t), (c) the ramp response Rs(t) (integral of Vs(t) and
(d) the noise area function As(t).

• Binary-Valued Worst Current: We set iw(t) as a
binary-valued function (0 ∨ 1).

• Current Decomposition: For each load current, iw(t)
can be decomposed into a series of step inputs s(t− tk)
with constant amplitude (±1) and monotonically in-
creased phase delay. Here s(t) is a step input and tk
is the phase delay of the kth step input. Without loss of
generality, suppose that {t0, t1, . . .} is in ascending order.

iw(t) =
∑
k=0

(−1)ks(t− tk) =
∑
k=0

(−1)ksk(t) (4)

To generate iw(t), we need to calculate the phase delay
(tk) of every step input (sk).

• Voltage Area Responses of Single Step Input As(t):
Figure 3(b) shows an example of the voltage response
Vs(t) with a single input sk(t). We observe that the
integral within window size T on the step response can
be formulated as a ramp response Rs(t) =

∫ t

0 Vs(t)dt, as
shown in Figure 3(c). We substitute Eq. 4 into Eq. 2 and
define Ask(t) = A(sk(t), t) as follows.

Ask(t) =

∫ t

t−T

∫ +∞

0

h(t− τ )(−1)ks(τ − tk)dτdt

=

∫ t

t−T

(−1)kVs(t− tk)dt

=(−1)k(Rs(t− tk)−Rs(t− T − tk))

(5)
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From Eq. 5, we can derive As(t) by setting tk = 0 thus
Ask(t) = As(t−tk), which is illustrated in Figure 3(d). It
corresponds to the definite integral of Vs(t) in [t−T, t], as
shown by the shaded area of Figure 3(b). Based on the
definition of As(t), the optimum phase delay sequence
{t0, t1, . . .}, and the optimum window location tw, we
can obtain the worst-case noise area Aw as follows.

Aw =
∑
k=0

Ask(tw) =
∑
k=0

As(tw − tk) (6)

Based on all the above definitions and simplifications, we
formulate our problem as a linear-constrained linear optimiza-
tion, which is concisely defined as below.

• Input:h(t) and window size T .
• Output:{t0, t1, . . .} and tw, calculate iw(t) by Eq. 4.
• Objective:A(iw, tw) = Aw.
• Constraint:iw(t) ∈ [0, 1], ∀t ∈ [0,+∞).

III. WORST NOISE AREA PREDICTION OF RLC TANK:
ANALYTICAL SOLUTION

A typical PDN is a complex circuit model which can be
approximated as the cascaded RLC tank models [9], [20]. We
study the worst-case voltage noise area of an RLC tank model.
We derive the closed-form expressions of the noise area from
the ramp response of the model. The relations among noise
area, quality factor, decaps C and it ESR R2 are studied.

Let A(s), H(s) and I(s) denote the Laplace transform of
A(i, t), h(t) and i(t), respectively. Eq. 2 can be written as

A(i, t) =

∫ t+T

t

v(i, t)dt
Laplace−−−−→ A(s) =

H(s)I(s)

s
(7)

Fig. 4. A standard RLC tank model

Figure 4 shows a standard RLC tank. R1 and L are used
to model the parasitic resistance and inductance of the PDN
interconnects. C and R2 represent a decap with ESRc.

The impedance profile of Figure 4 can be written as

Z(s) =
s2LCR2 + s(R1R2C + L) +R1

s2LC + s(R1 +R2)C + 1
(8)

The quality factor, Q, and the resonant frequency, ω 0, are

Q =
1

R1 +R2

√
L

C
, ω0 =

1√
LC

(9)

For a normal PDN design with limited cost budge, Q ≥ 0.5
and the RLC tank is underdamped. In the case of Q < 0.5,
the PDN is over-designed with excessive decoupling capacitors
which is not the scope of this paper.

To derive the expressions for the worst-case noise area, we
first study the step and ramp response of the model.

Lemma 1. The step response of an underdamped RLC tank
is

Vs(t) = R1 + 2e−αt[Acos(βt) −Bsin(βt)] (10)

where α = ω0

2Q , β =
√
ω2
0 − ( ω0

2Q )2, A = 1
2 (R2 − R1), B =

R2

1
2Q (1+

Q2
Q1

)−(Q2+
1

Q1
)

2
√

1− 1
4Q2

, Q1 = 1
R1

√
L
C , Q2 = 1

R2

√
L
C .

Lemma 2. The ramp response of an underdamped RLC tank
is,

Rs(t) =

∫ t

0

Vs(t)dt = R1t+
1

β
[K1cos(βt) +K2sin(βt)]e

−αt

(11)

where K1 =
R1(Q

2Q2
2−Q2+2QQ2−Q2

2)
QQ2(Q−Q2)

√
1− 1

4Q2 , K2 =

−R1(4Q
3Q2−3Q2Q2

2+Q2−2QQ2+Q2
2)

2Q2Q2(Q−Q2)
.

The ramp response Rs is derived from the integral of Vs.
Based on Rs, the results lead to the following theorem.

Theorem 1. Given a window size T , the worst-case voltage
noise area Aw of an underdamped RLC tank is,

Aw =

n∑
k=0

Ask(tw) =

n∑
k=0

As(tw − tk) (12)

where tw is set to a relatively large value where h(t) ≈ 0 and
tk is the time(phase delay) where local peaks/valleys of As

occur, solved by equating the derivatives of As to zero. As

can be expressed as follows

As(t) =

{
Rs(t)−Rs(t− T ) : t > T,

Rs(t) : t ≤ T.
(13)

Since As(t) is a piecewise-defined function upon the region
of t (Eq. (13)), we can derive the results of tk from the
following two cases, (1) t > T and (2) t ≤ T .

(1) For t > T , local peaks/valleys tk are

tk =

{
1
β (arctan(

A−X
B−Y ) + kπ) : A−X

B−Y ≥ 0
1
β (arctan(

A−X
B−Y ) + (k + 1)π) : A−X

B−Y < 0
(14)

where k = 0, 1, ...., n, tk > T , X = eαT (Acos(βT ) +
Bsin(βT )), Y = eαT (Asin(βT ) +Bcos(βT )).

(2) For t ≤ T , local peaks and valleys tk occur at
R′

s(t) = Vs(t) = 0, which are the solutions of a transcendental
equation,

R1 + 2e−αt[Acos(βt)−Bsin(βt)] = 0. (15)

Because α > 0, tk occurs limited times when t ≤ T .
Plugging the results of Eq. (14), (15) back into Eq. (12), Aw

can be derived.

IV. WORST NOISE AREA PREDICTION FOR GENERAL PDN
CASES: ALGORITHMIC SOLUTION

We propose an algorithm to find the worst-case noise area
for a general PDN profile extracted from the commercial tools.
The pseudo-code of our method is presented in Algorithm 1.
We use Figure 3 to illustrate each intermediate signal during
the optimization. From the load current assumption in Sec-
tion II, we can decompose i(t) into n step inputs with constant
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amplitude ±1.0. To calculate iw(t) we only need to determine
the phase delay of each step input. Given arbitrary impulse
response h(t) and window size T , our algorithm is able to
output tw and all tk such that Aw is achieved.

Algorithm 1 [iw, tw, Aw] = GetWorstCase (h, T )

1: INPUT: Impulse response h (length n), window size T
2: OUTPUT: Worst-case current wave iw, window coordi-

nate tw, noise area Aw

3: Set Vs as the step response of h, As[k] as the definite
integral of Vs in [k, k + T )

4: Set As(tpv) as peaks and valleys of As, |tpv| = 2m− 1
5: Set Aw =

∑m−1
i=0 As(tpv2i )−

∑m−2
i=0 As(tpv2i+1)

6: Set tcur = 0 and tw = x0 = tpv2m−2

7: for all x ∈ tpv in reverse order do
8: tnew = tcur + (x− x0)
9: if x is a peak then

10: Set iw[tcur : tnew] = 1
11: else
12: Set iw[tcur : tnew] = 0
13: end if
14: Set x0 = x and tcur = tnew.
15: end for
16: return [iw, tw, Aw]

Design of Algorithm: The algorithm can be described as
follows. Firstly, we convolute h(t) (Figure 3(a)) with step
input s(t) and obtain the step response Vs(t) (Figure 3(b)),
then calculate the noise area function As(t) (Figure 3(d)).
To approach iw(t), we need to maximize (minimize) the
contributions of all positive (negative) step inputs, which is no
larger (smaller) than the sum of all peaks (valleys) of As(t).
Secondly, we extract all the peaks and valleys of As(t) into
As(tpv). The leftmost and rightmost element of As will also
be added to As(tpv) if they are peaks. As every negative step
input is sandwiched by two positive step inputs, we have each
valley in As(tpv) be sandwiched by two peaks on both sides.
Suppose there are m peaks thus m− 1 valleys extracted, we
have |tpv| = 2m− 1. Using tpvj to denote the jth element of
tpv , Aw is calculated at line 5 as

Aw =

m−1∑
i=0

As(tpv2i )−
m−2∑
i=0

As(tpv2i+1) (16)

Thirdly, tw is to the time of the last peak tpv2m−1 to make
enough space for all step inputs to be correctly shifted. We
calculate the phase delay tk for each step input sk(t), and
construct iw(t) as the superposition of them. Specifically, tk
is determined by the parity of k as below.

• k is even: Let x = m− k
2 , shift the kth step input sk(t) by

aligning the xth peak of sk(t) to tw. We have tk = tpv2x .
• k is odd: Let x = m − k+1

2 , shift the kth step input
sk(t) by aligning the xth valley of sk(t) to tw. We have
tk = tpv2x .

Figure 5(a) demonstrates the method by which we determine
the phase delay of each step input, notice that sk(t) is actually
aligned to the tw axis at tpv2m−1−k

. Figure 5(b) shows how
we construct iw(t).

Proof of Optimality: Given arbitrary (h(t), T ), our algorithm
always outputs iw(t) and tw, with maximum noise area Aw.

Theorem 2. Our algorithm is optimum on maximizing Aw.

The proof of Theorem 2 can be found in Section S1.
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Fig. 5. The generation of tk and iw(t) in terms of peak-to-valley distances.

Analysis of Complexity:The overall complexity of our
method is O(n), as there are only finite operations included
in Algorithm 1, while all of them are no more complex than
linear. Here n is the length of the vector of the discretized PDN
impulse response h(t). The value of n represents a trade-off
between accuracy and efficiency of the optimization.

The proposed worst-case current prediction can figure out
the worst-case peak noise and thw worst-case noise area for
general PDN cases.

V. EXPERIMENTAL RESULTS

We implement our algorithm in Matlab R2013a. The circuit
performance is simulated by HSPICE D-2013.03-SP1. Our test
datapath is extracted from ISCAS85 benchmark circuit with
0.13um standard spice model. All the experiments, including
both the optimization and the simulation, are executed on a
Windows 7 machine with an Intel i7 3.4GHz quad-core CPU
and 16GB memory. We design our experiments as follows.

• We study the relation of the circuit delay and the supply
voltage noise area.

• We analyze the delay of a datapath under the worst-peak
and the worst-area noise for a standard RLC tank model.

• We compare the results of the worst-peak and worst-area
noise prediction between RLC tank analytical solutions
and algorithmic solutions for complete PDN paths with
cascaded RLC tanks.

• We measure the delay of a datapath under the worst-area
noise of a complete PDN path extracted from commercial
software tools.

A. Circuit Delay vs Supply Noise Area

The relation between the delay of a datapath and the supply
noise area is investigated in this subsection. The test datapath
is a customized circuit modified from C432 of ISCAS85
circuit. Delay between one input and output port are measured
under various supply noise areas as shown in Fig. 6. The
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supply voltage fluctuates from 0.76V to 1.2V . The negative
voltage area means the majority noise from droop, while
positive represents the majority noise from overshoot. The end
to end delay under constant 1V is normalized to 1. Results
show that the delay increases quadratically as the voltage
droop area increases.
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Fig. 6. Normalized delay of a datapath under different supply voltage noise
area. (The delay under constant Vdd = 1V is normalized to 1.)

B. Critical Path Delay under Worst-Area and Worst-Peak
Supply Noises of an RLC Tank

We create a RLC tank model as shown in Figure. 4, where
R1 = 10mΩ, l = 0.25nH , C = 33nF and R2 = 12mΩ. The
nominal voltage and window size T are set to 1V and 17ns,
respectively. The simulation time step is set to 0.5ns. Using
Algorithm 1, We generate the worst area/peak load current,
the worst area/peak voltage response and the voltage noise
area responses as shown in Fig. 7. The worst peak noise is
obtained by setting the window size to the minimum time
step, i.e., T = 0.5ns. Time causing the worst-case tw for both
the worst-area and worst-peak case are aligned to 500us in
Fig. 7. The load current beyond 500us are set to 1. Fig. 7(a)
confirms that the worst-peak load current is a constant square
waveform with a frequency of β, while the worst-area load
current is a piecewise-defined function. The segment before
499.983us is a constant square waveform with a frequency of
β. The segment between 499.983us and 500us is determined
by the solution of Eq. 15. Fig. 7(b) demonstrates the voltage
response waveform for the worst-peak and the worst-area
noise. Fig. 7(c) compares the voltage noise area of worst-peak
and worst-area response under the same targeted window size
T = 17ns.

We apply the waveforms between 499.9us and 500.1us
from Fig. 7(b) as the supply voltages for the datapath used
in the previous subsection. The delay of the datapath under
constant 1V is 16.2ns. For the delay measurement, we send
the input pulse every 100ps and record the delay at the output
port as shown in Fig. 8. (Exp. 1 means that the input pulse
starts at 499us. Exp. 1000 means that the input pulse starts
at 500us.) Simulation results show that the maximum delay
under the worst-area supply noise is 17ns, while the maximum
delay under the worst-peak supply noise is 16.9ns. Our results
confirm that the worst-area noise causes a worse circuit delay
compared to the worst-peak noise.
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C. Worst-Area and Worst-Peak Noise of Multi-Stage Cascaded
RLC Tanks

We use a multi-stage cascaded RLC tanks to model a
complete PDN path. We study three multi-stage cascaded RLC
tank PDN cases to compare the results from Theorem 1 and
Algorithm 1. The circuit diagram of three cases are shown in
Fig. 9 and the parameters are listed in Table I.

R1 L1
C1

R2

R3 L2

DC

C2

R4

R5 L3

C3

R6
i(t)

Fig. 9. Circuit diagram of a cascaded RLC Tank PDN

The multi-stage cascaded RLC tank can be decomposed
into multiple single RLC tank circuits in different frequency
regions. (An example is given to show Case I in Table I) are
decomposed into three RLC tanks in Fig. 10.

Each tank contributes to a portion to the worst-peak and the
worst-area noise. By applying Theorem 1 and Claim 5 in [20],
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TABLE I
THE R,L,C PARAMETERS FOR THREE CASCADED RLC TANK CASES

Cases I II III
R1 (mΩ) 5 38 5
R2 (mΩ) 0.1 8 0.5
R3 (mΩ) 3 2 5
R4 (mΩ) 0.3 1.7 0.8
R5 (mΩ) 5 10 10
R6 (mΩ) 10 4.6 5
C1 (μF ) 32 35 30
C2 (μF ) 1.5 35.8 1.0
C3 (nF ) 12 26.1 30
L1 (nH) 40 530 16.7
L2 (nH) 1.0 95 1.0
L3 (pH) 50 157 100

5mΩ 40nH

32uF

0.1mΩ

i(t)

3.1mΩ 0.995nH

1.5uF

0.3mΩ

i(t)

5.3mΩ 50pH

12nF

10mΩ

i(t)

(a) f 852kHz (b) 852kHz<f≤ 19.1MHz (c) f≥  19.1MHz

Fig. 10. Three standard RLC tanks to model a cascaded tank in Case I of
Table I

we calculate the noise contribution of each tank and estimate
the global noise peak and area as shown in Table II. The
RLC tank decomposition method provides a quick prediction
on the worst area and peak noise from impedance profile
directly. However, it tends to overestimate the voltage peak
noise and voltage noise area due to the cancellation effect
between neighbouring tanks. We observe a relatively large
estimation error for Case II, which is because the impedance
peaks of its first two tanks are close to each other. On average,
the prediction error of RLC tank prediction method is 7.75%
for the worst-peak noise and 12.3% for the worst-area noise.
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Fig. 11. The impedance profile of a complete PDN path

D. Critical Path Delay under Worst Noise Area Fluctuation:a
Test Case

We study the worst-area noise (T = 12.5ns) of a complete
PDN path and the maximum detapath delay under the worst-
area noise from a industrial design. The board model is
extracted from Cadence Allegro Sigrity Power SI 16.6 and
the package model is extracted from Ansoft Q3D 12.0. A fine
on-die power grid model is used to simulated the die. The
impedance profile of the complete PDN is shown in Fig. 11.

Plugging the impedance profile and T into Algorithm 1,
the worse-peak and worst-area voltage response are shown in
Fig. 12. Because the voltage droop of the complete PDN path
is slightly high under our maximum current assumption (1(A)),
we increase the nominal voltage to 1.15(V ). Simulation results
show that the worst-peak noise is 1.15− 0.7779 = 0.3721(V )
and the worst noise area Aw is 1.15(V )∗12.5(ns)−12.21(V ∗
ns) = 2.165(V ∗ ns).

The datapath extracted from C432 of ISCAS85 is slightly
modified for the new window size by removing some circuitry.
The results of delay measurement are shown in Fig. 13. We
observe 0.22ns (1.8%) extra delay for the worst-area noise for
this complete PDN path case. The comparison of the worst-
area and worst-peak noise of this case are listed in Table III.
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D
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 (s

)
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Worst Area (T=12.5ns) Max Delay

Fig. 13. The delay under worst-area and worst-peak supply noise for a
complete PDN path (T = 12.5ns)

TABLE III
COMPARISON OF THE WORST-PEAK AND THE WORST-AREA NOISE FOR A

COMPLETE PDN PATH (T = 12.5ns)

Worst-Peak Worst-Area
Max Voltage Area (V*ns) 1.695 2.165
Delay of Datapath (ns) 12.33 12.55

VI. CONCLUSIONS

In this paper, we predict the worst-case voltage noise area
and measure its impact on the circuit performance. We propose
an analytical solution for RLC tank cases and an algorithm to
find the worst-case current generation for general PDN cases.
Our study shows that circuit delay is better correlated with
the worst-area noise than the worst-peak noise. The former
introduces on 1.8% additional propagation delay than the latter
from our empirical validation under a complete PDN path.

S1. PROOF OF OPTIMALITY ON THE PHASE DELAY OF THE

WORST-CASE CURRENT

The worst-case current iw(t) is a binary-valued function switching
between 0 and 1. Based on this assumption, we prove that our
algorithm could generate the optimum phase delay tk for every step
input sk(t), such that the superposition equals iw(t), as Theorem 2
shows. Fig. 5 shows that our algorithm determines tk by the peak-to-
valley distances in As(t). Thus our target is to prove the correctness
of Eq. (17), which is equivalent to the optimality of our algorithm as
Theorem 2 shows.

Aw =

m−1∑
i=0

As(tpi)−
m−2∑
i=0

As(tvi) (17)
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TABLE II
COMPARISON OF THE WORST-CASE NOISE PREDICTION BETWEEN THE RLC TANK DECOMPOSITION METHOD AND ALG. 1. T = 10ns FOR Aw

Cases Tank1 Tank 2 Tank 3 Valley of Tank 1,2 Valley of Tank 2,3 Total Est. Results Alg. 1 Results err (%)
Case I Vpeak(V ) 0.1592 0.1263 0.1742 -0.008 -0.005 0.4467 0.4151 7.23%
Case I Aw(V ∗ ns) 1.592 1.263 0.1366 -0.08 -0.05 2.8616 2.571 11.3%
Case II Vpeak(V ) 0.1614 0.0838 0.2406 -0.023 -0.012 0.4508 0.4050 11.31%
Case II Aw(V ∗ ns) 1.614 0.838 0.7206 -0.23 -0.12 2.8226 2.363 19.45%
Case III Vpeak(V ) 0.0678 0.1047 0.1397 -0.016 -0.011 0.2852 0.2724 4.70%
Case III Aw(V ∗ ns) 0.678 1.047 0.300 -0.16 -0.11 1.755 1.653 6.17%
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Fig. 12. The worst-peak and worst-area current, voltage response and voltage area response (T = 12.5ns) of a complete PDN path. (d-f) shows the expanded
view of (a-c) at the peak droop point.

where tpi (tvi ) represents the ith elements of peaks(valleys). We prove
the optimality by sequentially introducing the following lemmas. In
the rest of the section, we assume iw(t) is decomposed into N step
inputs.

Lemma 3. ∃ {x0, x1, . . .}, s.t. Aw =
∑N−1

k=0 (−1)kAs(xk)

Proof: Based on Eq. 4, we can have iw(t) decomposed into N
step inputs with constant amplitude ±1. Positive step inputs alternate
with negative step inputs. Without loss of generality, suppose that the
first step input is positive, and we have iw(t) =

∑N−1
k=0 (−1)ks(t−

tk). Let xk = tw − tk and we have the lemma proved.

Lemma 3 shows that worst-case noise Aw equals the sum of a
set of functional values sampled on As(t), each with alternative sign
of ±1. Let X = {x0, x1, . . . , xN−1}. As Aw = maxi,t A(i, t),
we need to maximize the amount of positive components in As(xk)
while minimize negative components, which leads to Lemma 4.

Lemma 4. As(x0) and As(xN−1) must be positive.

Proof: We prove this by contradiction. Suppose that the sign of
As(x0) is negative. We can simply remove x0 from X thus reduce
|X| to N − 1. Meanwhile, Aw will be increased by As(x0), which
contradicts to the fact that Aw is maximum. As a result, we can
prove that As(x0) is positive. The proof to the fact that As(xN−1)
is positive can be obtained in the similar way.

Lemma 4 shows the boundary conditions for As on X . We divide
As(t) into a series of uphill and downhill regions.

Definition 1. An uphill region (downhill region) corresponds to

an interval on As(t) with monotonically increasing (decreasing)
functional values.

As Figure 14 shows, each uphill region is sandwiched by two
downhill regions, vice versa. Suppose that there are mp peaks and
mv valleys in As(t), thus totally there are m = mp + mv locally
extreme points. The two end points of an uphill (downhill) regions
are peak and valley (valley and peak), respectively. As a result, there
are totally m− 1 regions on As(t). For the jth region rj , we have
rj = [tpvj , tpvj+1 ].

pvj 1 pvj pvj+1

rj 1 rj rj 1

pvj+2
As(t)

tO

downhill
uphill

Fig. 14. Downhill region rj−1 is sandwiched by peak pvj−1 and valley
pvj , Uphill region rj is sandwiched by valley pvj and peak pvj+1, etc..

Lemma 5. ∀j ∈ [0, m− 1], ∃k ∈ [0, N − 1], s.t. tpvj = xk.

Proof: We prove this by contradiction. Suppose that there is no
xk in X which equals the index of the jth extreme point pvj . Without
loss of generality, let us make the following assumptions.

• Suppose that pvj is a valley, which is sandwiched by two
regions rj−1 and rj , as Figure 14 shows.

• Suppose that xk is the sampling point which is the closest to
tpvj , and xk > tpvj . Thus we have tpvj ∈ (xk−1, xk).
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• Suppose that xk−1 corresponds to a negative step input sk−1(t),
while xk corresponds to a positive step input sk(t).

We divide all possible local sampling cases in the two neighboring
regions of pvj , rj−1 and rj , into two categries.

• If xk−1 ∈ rj−1, we can shift xk−1 rightwards to tpvj , thus
increase Aw by As(xk−1)−As(tpvj ), which contradicts to the
fact that Aw is maximum.

• If xk−1 /∈ rj−1, there must be no sampling point at pvj−1.
We can increase Aw by adding one positive point at pvj−1 and
one negative point at pvj , without changing the sign of any
previous sampling points. This also contradicts to the fact that
Aw is maximum.

Here we get the proof based on the above assumptions. As our
proof and assumptions are general, the proofs for other conditions
can be obtained in a similar way (e.g., pvj is a peak, xk corresponds
to a positive step input sk(t), etc.) and are ignored here.

We define Xj to be the cluster of sampling points located in
rj . The two boundary points, tpvj and tpvj+1 , are also included in
Xj . Suppose that Xj is an uphill region, we define the noise area
contribution of rj to Aw as Aj

w =
∑tpvj+1

k=tpvj
As(xk).

Lemma 6. Aw is maximum only if Aj
w is maximum, ∀j ∈ [0, m−1].

Proof: The proof is straightforward. As both tpvj−1 and tpvj are
included in Xj according to Lemma 5, we can only select or deselect
the internal sampling points of rj , which is independent with other
regions. As a result, Xj is an optimum substructure for X , and we
have Lemma 6 proved.

Based on Lemma 6, we only need to conduct local maximization
of Aj

w on each Xj , and a global maximization of Aw is achieved,
as Eq. (18) shows.

Aw =

m−1∑
j=0

Aj
w −

m−2∑
j=1

As(tpvj ) (18)

rj

pvj pvj+1

O

As(t)

t

x’0
x’2

x’1

x’n 3

x’n 2

x’n 1

positive
negative

Fig. 15. A set Xj of n′ local sampling points {x′0, . . . , x′
n′−1

} within
region rj .

Lemma 7. Aj
w is maximum when Xj = {tpvj−1 , tpvj}.

Proof: We illustrate our proof in Fig. 15. Assume that there
are n′ sampling points in Xj where Xj = {x′

0, x
′
1, . . . , x

′
n′−1} in

ascending order. From Lemma 5 we know that x′0 = tpvj−1 and
x′
n′−1 = tpvj−1 . Therefore, n′ = |Xj | is an even number, as Xj

starts from a negative sampling point and ends at a positive point.

Aj
w =

n′−1∑
k=0

(−1)k+1As(x
′
k)

=

n′
2

−1∑
k=1

(
As(x

′
2k−1)−As(x

′
2k)

)
+ As(tpvj+1)− As(tpvj )

≤As(tpvj+1)− As(tpvj )
(19)

The last step of Eq. (19) holds because rj is an uphill region
with monotonically increasing functional values. Therefore, we have
As(x

′
k1
) ≤ As(x

′
k2
), ∀0 ≤ k1 < k2 ≤ (n′ − 1). From Eq. 19 we

have Aj
w ≤ As(tpvj+1)− As(tpvj ), which proves the lemma.

Based on all the above proved lemmas, we finally obtain the
following equation which proves Eq. (17) thus Theorem 2 and shows
that our algorithm is optimum.

Aw =

mp−1∑
j=0

As(tpj )−
mv−1∑
j=0

As(tvj ) =

N−1∑
k=0

(−1)kAs(xk) (20)
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