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ABSTRACT
In this paper we present GOAFR, a new geometric ad-hoc
routing algorithm combining greedy and face routing. We
evaluate this algorithm by both rigorous analysis and com-
prehensive simulation. GOAFR is the first ad-hoc algorithm
to be both asymptotically optimal and average-case efficient.
For our simulations we identify a network density range crit-
ical for any routing algorithm. We study a dozen of rout-
ing algorithms and show that GOAFR outperforms other
prominent algorithms, such as GPSR or AFR.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations, routing and layout ;
C.2.2 [Computer-Communication Networks]: Network
Protocols—routing protocols

General Terms
Algorithms, Performance, Theory

Keywords
Ad-Hoc Networks, Face Routing, Geometric Routing, Net-
work Connectivity, Performance, Routing, Simulation, Wire-
less Communication

1. INTRODUCTION
A mobile ad-hoc network consists of nodes equipped with

wireless radio. For two nodes not in mutual transmission
range to communicate, their messages need to be relayed

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’03, June 1–3, 2003, Annapolis, Maryland, USA.
Copyright 2003 ACM 1-58113-684-6/03/0006 ...$5.00.

through a series of intermediate nodes—a process known
as multi-hop routing. Routing is the foremost problem for
mobile ad-hoc networks, thus it is not surprising that the re-
search community has produced dozens of algorithmic pro-
posals for routing [5, 11, 19, 21].

Why did researchers propose algorithms in such abun-
dance? One possible answer to this question is that mobile
ad-hoc networks have many parameters, such as transmis-
sion power, signal attenuation, interference, physical obsta-
cles, type and extent of mobility, just to mention a few.
Indeed with some parameters certain algorithms are supe-
rior to others, with some other parameters the ranking is
reversed. It appears that a global evaluation is difficult.

One way to cease the process of designing more and more
hardly distinguishable algorithms is to assess the efficiency
of the proposed algorithms by rigorous analysis. However,
analyzing the complexity of mobile ad-hoc routing algo-
rithms appears to be not only a demanding but an almost
impossible mission. In order to come up with results, often
worrisome assumptions that would never hold in practice
need to be made. More important, analysis generally con-
siders the worst-case, which usually does not translate to
the average-case. To us only a few papers are known that
analyze their algorithms analytically [2, 3, 4, 16, 18].

The method of choice to assess the average-case quality of
an algorithm is simulation. A mobile ad-hoc network how-
ever having many parameters, simulation can never cover all
the degrees of freedom. Some parameters are well-accepted:
Nodes are considered to be points in a plane without ob-
structions, the nodes are equal in the sense that all of them
have exactly the same radio and therefore the same trans-
mission range. Other parameters are often questionable:
Does it make sense that the nodes are distributed uniformly
at random? In case the nodes are mobile, how do the nodes
move?

For the simulation part of our paper we use percolation
theory to identify a critical network density range where
routing is an inherently great challenge for any routing algo-
rithm. We also observe that graphs generated at this critical
density reflect reality more nicely than at higher densities;
the “artificiality” introduced by placing nodes uniformly (al-
though randomly) gains in importance with increasing net-
work density only. We believe that our simulation guide-
lines are of value to any subsequent simulations in the area
of multi-hop ad-hoc routing.

We propose a new algorithm (dubbed GOAFR, Greedy
Other Adaptive Face Routing, pronounced as “gopher”) for
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ad-hoc routing. Our algorithm GOAFR is a geometric (also
known as location-based, position-based, or geographic) rout-
ing algorithm. We present a rigorous analysis of the algo-
rithm which—together with a lower bound argument [18]—
shows that the algorithm is asymptotically worst-case op-
timal. In the second part of the paper a comprehensive
simulation shows that the algorithm is also average-case ef-
ficient. To the best of our knowledge GOAFR is the first
algorithm that is both worst-case optimal and average-case
efficient. We also show that other well-known algorithms
are not optimal in the worst-case, and that the only algo-
rithm so far known to be optimal in the worst-case is not
practicable, that is not efficient in the average case.

With the geometric routing algorithms we consider, each
node is informed about its own as well as its neighbors’ po-
sition. Additionally the source of a message knows the po-
sition of the destination. The former assumption becomes
more and more realistic with the advent of inexpensive and
miniaturized positioning systems. It is also conceivable that
position information could be attained by local computation
and message exchange with stationary devices. In order to
come up to the latter assumption, that is to provide the
source of a message with the destination position, a (peer-
to-peer) overlay network could be employed [19, 23]. For
some scenarios it can also be sufficient to reach any desti-
nation currently located in a given area (sometimes called
“geocasting” [15, 20]).

We consider network graphs in which connectivity is ex-
clusively based on relative node position. The analysis of
more general networks with ephemeral links dependent on
possible interference or noise lies beyond the scope of this
paper. Although we believe that node mobility is one of the
most important parameters in ad-hoc networks, mobility is
not considered in this paper: We assume that routing takes
place much faster than node movement. We also assume
that location information is accessible to the routing layer.
We explicitly make these simplifying assumptions in order to
analyze and assess the inherent quality of geometric routing
algorithms without possibly detracting side effects of other
communication layers.

In a sense, geometric routing can be considered a lean ver-
sion of source routing [13]: The source attaching the position
of the destination to the message, none of the intermediate
nodes is required to maintain routing lists or exchange spe-
cial routing information.

After providing an overview of related work in the field of
geometric routing in the following section, we state models
and preliminaries in Section 3. Section 4 introduces our al-
gorithm GOAFR and proves its asymptotic optimality. In
Section 5 we explain our observations concerning network
density and present the performance results of our simula-
tions of a variety of face routing algorithms and their combi-
nations with greedy routing. Section 6 concludes the paper
and suggests future research topics.

2. RELATED WORK
The early proposals for geometric routing in ad-hoc net-

works were of purely greedy nature [8, 12, 22]. A node for-
wards a message to its neighbor closest to the destination.
However, even on simple network configurations a message
will not succeed to reach the destination, but fall into a lo-
cal minimum, a node without any “better” neighbors. Also
other suggestions for greedy forwarding, such as a best an-

gle approach (introduced as Compass Routing in [16]) have
been shown to fail on special graphs.

Message delivery was guaranteed for the first time with
Face Routing introduced in [16] (called Compass Routing
II there). Face Routing walks along faces of planar graphs
and proceeds along the line connecting the source and the
destination. Besides guaranteeing to reach the destination,
it does so with O(n) messages, where n is the number of
network nodes. However, this is unsatisfactory, since also
a simple flooding algorithm will reach the destination with
O(n) messages. Additionally it would be desirable to see the
algorithm cost depend on the distance between the source
and the destination.

Other geometric routing algorithms guarantee to find the
destination [4, 6], partly on special graphs, such as trian-
gulations or convex subdivisions [3], have been suggested.
However none of these algorithms could show significant im-
provement over original Face Routing. As an exception, it
was shown that on Delaunay triangulations there is an al-
gorithm which is competitive compared with the shortest
path between the source and the destination [2]. However,
Delaunay triangulations can contain arbitrarily long edges,
disqualifying their employment for practical purposes, since
network nodes can only communicate within a restricted
transmission range. Consequently, local approximation of
the Delaunay Graph has been suggested [10], providing how-
ever no better bound on the performance of routing algo-
rithms.

To the best of our knowledge the first algorithm competi-
tive with the shortest path between the source and the desti-
nation was AFR [18]. It basically enhances Face Routing by
the concept of a bounding ellipse restricting the searchable
area. With a lower bound example AFR was even shown
to be asymptotically optimal. We will describe AFR more
precisely later in the paper.

Despite its asymptotic optimality AFR is not practicable
due to its pure face routing concept. For practical pur-
poses there have been earlier attempts to combine greedy
approaches and face routing [4, 6, 14]. None of them is how-
ever worst-case competitive with the shortest path; perfor-
mance assessments were carried out by means of simulation.

3. MODEL AND PRELIMINARIES
The networks considered in this paper both in the theo-

retical and the simulations part are modeled as Unit Disk
Graphs. The nodes of a Unit Disk Graph (UDG) are at-
tributed a position on a Euclidean plane; there exists an
edge between two nodes n1 and n2 iff |n1n2| ≤ 1, that is,
their distance is not greater than 1 unit. Accordingly, a Unit
Disk Graph models a flat environment with network devices
equipped with wireless radio, all having equal transmission
ranges. Edges in the UDG correspond to radio devices po-
sitioned in direct mutual communication range.

The cost c(e) of sending a message over an edge e to
a neighboring node has been modeled in many different
ways, the most common of which are the hop (link) met-
ric (c(e) :≡ 1), the Euclidean metric (c(e) := |e|, where
|e| is the Euclidean length of edge e), and the energy met-
ric (c(e) := |e|2). For the sake of simplicity we adopt the
Ω(1)-model introduced in [18]: The distance between any
two nodes may not fall below a (possibly small, but fixed)
constant d0. As a consequence and since we consider Unit
Disk Graphs, not only the above-mentioned three metrics,
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but any edge metric defined as a polynomial in |e| becomes
asymptotically equivalent, that is, differing by multiplicative
and/or additive constants only. Unless stated otherwise, we
simply refer to the “cost” of an edge and mean any cost
metric belonging to the above class of cost functions. (Us-
ing clustering techniques a similar result can be achieved
without the Ω(1)-model [1, 9, 17]. We will however adhere
to this model for simplicity.)

By the “cost of a path” we denote the sum of all costs of
the edges on the path. The “cost of an algorithm” is the to-
tal cost expended for all messages sent during the algorithm
execution (the considered algorithms do not send messages
in parallel to more than one recipient).

Since the nodes of all the considered graphs are embed-
ded in a Euclidean plane, we simply write planar graph but
actually refer to a planar embedding of the graph. A planar
graph features faces, contiguous regions separated by the
graph edges. In order to achieve planarity on the Unit Disk
Graph G, we employ the Gabriel Graph. A Gabriel Graph
contains an edge between two nodes n1 and n2 iff the circle
having n1n2 as a diameter does not contain a witness node
n3. Besides being planar, GGG, the Gabriel Graph on the
Unit Disk Graph G, features two important properties:

- It can be computed locally: A network node can determine
all its incident nodes in GGG by mere inspection of its
neighbors’ locations (since G is a Unit Disk Graph).

- The Gabriel Graph is a spanner for the energy metric:
The construction of the Gabriel Graph on G preserves an
energy-minimal path between any pair of network nodes.
Together with the Ω(1)-model it follows that the distance
(on the graph G) between any pair of nodes remains (up to
a constant) unchanged for all considered metrics.

The algorithms we consider are geometric routing algo-
rithms [18]. The algorithm attempts to route a message
from a source s to a destination t over the edges of the net-
work graph observing the following rules:

- Each node knows its own and its neighbors’ positions.

- The source s is informed about the destination t’s position.

- Except for the temporary storage of packets before forward-
ing, a node is not allowed to maintain any information.

- A packet may not contain control information about more
than O(1) nodes.

Given the above storage rules, geometric routing algorithms
are strictly local. Furthermore we assume that routing takes
place much faster than node movement: A routing algorithm
is modeled to run on temporarily stationary nodes. Finally,
we only consider finite networks, that is networks with a
finite number of nodes.

4. GOAFR
In this section we will present our asymptotically optimal

algorithm combining greedy and face routing.

4.1 AFR Reviewed
For completeness and reference we will first revisit Adap-

tive Face Routing AFR [18] briefly. The basis of this al-
gorithm is formed by Face Routing, an algorithm originally
introduced in [16]. At the heart of Face Routing lies the
exploration of the boundaries of faces in a planar graph,
employing the local right hand rule (in analogy to following
the right hand wall in a maze). On its way around a face,
the algorithm keeps track of the points where it crosses the
line st connecting the source s and the destination t. Having
completely surrounded a face, the algorithm returns to the

one of these intersections lying closest to the destination,
where it proceeds by exploring the next face closer to t. If
the source and the destination are connected, Face Routing
always finds a path to the destination.

The main problem with respect to the performance of
Face Routing lies in the necessity of exploring the complete
boundary of faces. It is thus impossible to bound the cost of
this algorithm by the cost of an optimal path between s and
t. If, however, we know the length of an optimal path con-
necting the source and the destination, Face Routing can be
extended to Bounded Face Routing BFR: The exploration
of faces is restricted to a searchable area, in particular an
ellipse whose size is chosen such that it contains a com-
plete optimal path. If the algorithm hits the ellipse, it has
to “turn back” and continue its exploration of the current
face in the opposite direction until hitting the ellipse for the
second time, which completes this face’s exploration. Since
BFR does not traverse an edge more than a constant num-
ber of times, and since the bounding ellipse (together with
the Ω(1)-model and the graph’s planarity) does not contain
more than O

�
|st|2 � edges, BFR’s cost is in O

�
c2(p∗) � , where

p∗ is an optimal path.
In most cases, however, a prediction of the length of an

optimal path will not be possible. The solution to this prob-
lem finally leads to Adaptive Face Routing AFR: BFR is
started with the ellipse size set to an initial estimate of the
optimal path length. If BFR fails to reach the destination,
which will be reported to the source, BFR will be restarted
with a bounding ellipse of doubled size. (It is also possible
to double the ellipse size directly without returning to the
source.) If s and t are connected at all, AFR will finally find
a path to t. This iteration is asymptotically dominated by
the cost of the algorithm steps performed in the last ellipse,
whose area is at the most proportional to the squared cost
of an optimal path. Consequently, also the cost of AFR is
bounded by O

�
c2(p∗) � .

When applied to the Unit Disk Graph, as we do, a lower
bound graph even proves that no local geometric routing
algorithm can perform better: AFR is asymptotically opti-
mal.

4.2 OAFR
A natural approach to leveraging the potential of greedy

routing for practical purposes consists in combining greedy
routing and AFR: Proceed in a greedy manner and use
AFR to escape from potential local minima (an algorithm
we will later in the paper call GAFR). We can however
show that, employing greedy routing, this algorithm loses
AFR’s asymptotic optimality. Nevertheless we found a vari-
ant of AFR (OAFR) whose combination with greedy rout-
ing (GOAFR) does finally yield an algorithm that is both
average-case efficient and asymptotically optimal.

Similarly to the above description of AFR, we will ex-
plain our algorithm OAFR in three steps: OFR, OBFR,
and OAFR.

Other Face Routing OFR differs from Face Routing in
the following way: Instead of changing to the next face
at the “best” intersection of the face boundary with st,
OFR returns—after completing the exploration of the cur-
rent face’s boundary—to the boundary point (or one of the
points) closest to the destination (Figure 1). Conserving the
headway made towards the destination on each face, OFR
in a sense uses a more natural approach than Face Routing.
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Figure 1: Face Routing starts at s, explores face F1,

finds P1 on st, explores F2, finds P2, and switches to F3

before reaching t. OFR, in contrast, finds P3, the point

on F1’s boundary closest to t, continues to explore F4,

where it finds P4, and finally reaches t via F5.

Other Face Routing OFR
0. Begin at s and start to explore the face F containing the

connecting line st in the immediate environment of s.

1. Explore the complete boundary of face F based on local
decisions employing the right hand rule.

2. Having accomplished F ’s exploration, advance to the point
p on F ’s boundary closest to t. Switch to the face contain-
ing pt in p’s environment and continue with step 1. Repeat
these two steps until reaching t.

Lemma 4.1. OFR always terminates in O(n) steps, where
n is the number of nodes. If s and t are connected, OFR
reaches t; otherwise, disconnection will be detected.

Proof. Let F1, F2, . . . , Fk be the sequence of the faces visited
during the execution of OFR. Let us first assume s and t to be
connected. Since the switch between two faces always happens
at the point on the face boundary closest to t, and because the
next face is chosen such that it always contains points which are
nearer to t, no face is visited twice. Let further p0, p1, p2, ..., pt

be the trace of OFR’s execution, where pi, i ≥ 1 is the point
with minimum distance from t on the boundary of Fi. Because
∀i, j : Fi 6= Fj , we have that ∀i > j : |pit| < |pjt|. Hence, if s
and t are connected, we eventually arrive at a face with t on its
boundary. Otherwise, there is an i for which pi = pi+1, which
means that the graph is disconnected.

Since each face is explored at most once, each edge is visited at
most four times. By the planarity of the graph, we have n = Θ(m)
(n is the number of nodes, m is the number of edges) and thus,
OFR terminates after O(n) steps.

If the algorithm detects graph disconnection (finding pi =
pi+1 for some i ≥ 0), this can be reported to the source by
again using OFR in the reverse direction.

Remark (Gabriel Graph). When applying OFR on a Gabriel

Graph—as we will do for the routing on Unit Disk Graphs—OFR

can be simplified in the following way. Instead of changing faces

at the point on the face boundary which is closest to t it is possible

to take the node which is closest to t. Because definitions and ex-

planations become clearer, we will use this form of the algorithm

for the description of the subsequent algorithms. Equivalent re-

sults can be achieved with the original version of the algorithm.

When trying to formulate a statement on OFR’s cost, the
main problem arising is its traversal of complete boundaries
of faces: Informally put, OFR can meet an incredibly big
face whose total exploration is prohibitively expensive com-
pared to an optimal path from s to t. In order to solve

this, we borrow AFR’s trick to bound the searchable area
by an ellipse containing the optimal path(s). Consequently
we obtain Other Bounded Face Routing OBFR.

For the sake of simplicity we assume for OBFR that s and
t are connected. Let c be the Euclidean length of an optimal
path and let E be the ellipse with foci s and t and with the
length of the major axis being c (E contains all paths from
s to t of length at most c).

Other Bounded Face Routing OBFR
0. Step 0 of OFR.

1. Step 1 of OFR, but do not leave E : When hitting E , con-
tinue the exploration of the current face F in the opposite
direction. F ’s exploration will afterwards be complete when
hitting E for the second time.

2. Step 2 of OFR.

Lemma 4.2.OBFR reaches the destination with cost O
�
c2 � .

Proof. The proof of Lemma 4.2 follows the lines of the proof
to Lemma 4.2 for BFR in [18]. Therefore we focus on the key
points here. Since OBFR stays within E while routing a message,
we only look at the part of the graph which lies inside E . We define
the faces to be those contiguous regions which are separated by
the edges of the graph and by the boundary of E . Hence, if a face
is cut into several pieces by the boundary of the ellipse, now each
such piece is denoted a face. For the same reasons as in the proof
of Lemma 4.1 every face is visited at most once. Therefore each
edge can only be visited a constant number of times (the constant
being 6 in this case). If s and t are connected (which is implicitly
assumed by the definition of E), OBFR finds a route from s to
t with cost linear in the number of edges inside E . Again the
reasoning is the same as for Lemma 4.1. By applying the Ω(1)-
model and the planarity of the network graph we see that this
cost is linear in E ’s area, which concludes the proof.

Since there is usually no a priori information on the op-
timal path length, we—in analogy to AFR—initially use an
estimate for the ellipse size and iteratively enlarge it until
reaching the destination.

Let E(c) be the ellipse with foci s and t the size of whose
major axis is c.

Other Adaptive Face Routing OAFR
0. Initialize E to E(2 · |st|).
1. Start OBFR with E .

2. If the destination has not been reached, double the length
of E ’s major axis and go to step 1.

Note that OBFR is able to distinguish between insuffi-
cient ellipse size and graph disconnection between s and t.
Consequently also OAFR detects graph disconnection.

Lemma 4.3. If s and t are connected, OAFR reaches the
destination with cost O

�
c2(p∗) � , where p∗ is an optimal path.

If s and t are disconnected, OAFR detects so and reports to
s.

Proof. We have seen that the cost of OBFR is linear in the
area of the used ellipse. This also holds if no path to t is found
and therefore the ellipse has to be enlarged. Hence the cost of
OAFR can be bounded by the sum of the areas of all used el-
lipses. Because we increase the size of E exponentially, this is
linear in the area of the largest used ellipse. The size of the
smallest ellipse containing a path from s to t (for which the rout-
ing would already be successful) lies somewhere between the size
of the second-largest and of the largest used ellipse and is there-
fore only by a constant factor smaller than the size of the largest
used ellipse. Therefore, the cost of OAFR is linear in the area
used by OBFR and hence O

G
c2(p∗) H .
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Figure 2: Starting at s, GOAFR proceeds in greedy

mode until reaching the local minimum n1. The algo-

rithm switches to face routing mode and explores the

boundary of face F to find n2, the node closest to t on

F ’s boundary. GOAFR falls back to greedy mode and

finally reaches t. Note that GOAFR’s ellipse has been

omitted for simplicity.

Remark. It can be shown that for OAFR (and also AFR) the

cost of detecting non-connectivity of s and t can be bounded

by O(ñ log ñ), where ñ is the number of nodes in the network

component containing s. There are graphs for which this bound

is tight.

Lemma 4.4. OAFR is asymptotically optimal.

Proof. In [18] it has been shown that the worst case cost of
every geometric routing algorithm is bounded from below by a
term of order Ω(c2(p∗)). Combined with the matching upper
bound from Lemma 4.3, we conclude that OAFR is asymptoti-
cally optimal.

4.3 GOAFR: Greedy OAFR
A greedy routing approach is not only worth being consid-

ered due to its simplicity in both concept and implementa-
tion. Above all in dense networks such an algorithm can also
be expected to find paths of good quality efficiently; here,
the straightforwardness of a greedy strategy contrasts highly
the inflexible exploration of faces inherent to face routing.
For practical purposes it is inevitable to improve the perfor-
mance of a face routing variant by leveraging the potential
of a greedy approach.

Such a combination of greedy routing and our OAFR algo-
rithm forms Greedy Other Adaptive Face Routing GOAFR
(pronounced as “gopher”). In principle greedy routing is
used as long as possible. Local minima potentially met un-
derways are escaped from by use of OAFR (Figure 2). The
GOAFR algorithm will be shown to remain asymptotically
optimal.

We will first define the greedy routing algorithm employed
as part of GOAFR.

Greedy Routing GR
0. Start at s.

1. Proceed to the neighbor closest to t.

2. Repeat step 1 until either reaching t or a local minimum
with respect to the distance from t, that is a node n without
any neighbor closer to t than n itself.

Lemma 4.5. If GR reaches t, it does so with cost O
�
d2 � ,

where d := |st| denotes the (Euclidean) distance between s

and t.

Proof. Lemma 4.5 has already been proven in [10]. For com-
pleteness we give an outline of a possible proof. Let p := n1, . . . , nk

be the sequence of nodes visited during greedy routing. Accord-
ing to the definition of greedy routing, no two nodes ni, nj with
odd indices i, j are neighbors. Further, since the distance to t is
decreasing along the path p, all nodes ni are inside D(t, d), the
disk with center t and radius d. D(t, d) contains at most O

G
d2 H

nodes with pairwise distance at least 1. It follows that p consists
of O

G
d2 H nodes.

We are now ready to define the GOAFR algorithm.

Greedy Other Adaptive Face Routing GOAFR
0. Initialize E to E(2 · |st|) and start at s.

1. Perform greedy steps until either reaching t or a local min-
imum nm. If the next step leads beyond E , double the
length of E ’s major axis. If reaching a local minimum, pro-
ceed with step 2 starting at nm.

2. Execute OAFR on the first face only. Double the length of
E ’s major axis as long as necessary.

3. Terminate if OAFR reaches t. If OAFR detects disconnec-
tion, report so to s (by use of GOAFR). Otherwise continue
with step 1 on the node closest to t found by OAFR.

Lemma 4.6. If s and t are connected, the major axis of
E in GOAFR will not exceed 2 · max(|p∗|, 3|st|), where |p∗|
is the Euclidean length of an optimal path.

Proof. According to the definition of an ellipse as the locus
of all points having the same sum of distances from the two foci,
E(c) contains all paths of Euclidean length c. With the doubling
strategy in OAFR, the biggest ellipse employed in this “subalgo-
rithm” of GOAFR will have a major axis not longer than 2 · |p∗|.
Additionally the GR part of GOAFR might walk (almost) along
the boundary of D(t, |st|) (but is always inside), the disk centered
at t and with radius |st|. E(3|st|) is the smallest ellipse with s and
t as foci, completely containing D(t, st). Combining the OAFR
part, the GR part and the fact that the ellipse might get twice
as big as the smallest possible ellipse, the lemma follows. Note
that if the parameters are chosen as in the definition of GOAFR,
we can improve the bound on the length of the major axis to
max(2|p∗|, 4|st|).

In the following lemma we consider the execution of GO-
AFR within an ellipse with fixed size.

Lemma 4.7. For an ellipse E(c) with fixed major axis
length c, GOAFR traverses at most O

�
c2 � edges.

Proof. GOAFR consists of face routing steps (more specifi-
cally OBFR) and of greedy routing steps. Each of those steps (a
greedy step or the complete exploration of a face) brings us to
a node closer to the destination t. The number of greedy steps
is bounded by O

G
c2 H (cf. Lemma 4.5). As in OBFR each face

is explored at most once and hence each (Gabriel Graph) edge
is used at most 4 times in a face routing step. Combined, this
proves the lemma.

Theorem 4.8. If s and t are connected, GOAFR reaches
t with cost O

�
c2(p∗) � . This is asymptotically optimal. If s

and t are not connected, GOAFR reports so.

Proof. If s and t are connected, the lemma is a direct conse-
quence of Lemma 4.7 combined with the fact that OBFR always
finds a route to t as long as s and t are connected by edges lying
inside the used ellipse. The lower bound of [18] proves the asymp-
totic optimality. If s and t are not connected, the node detecting
this (after a face routing step which does not yield a better node)
sends the result back to s by means of the same algorithm.
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Figure 3: Connectivity rate (dashed), greedy success

rate (dotted, both plotted against the right y axis), and

shortest path span (solid, plotted against the left y axis).

5. SIMULATIONS
In this section we present simulation results. We describe

performance measurements taken in simulations of a vari-
ety of face routing algorithms and their combinations with
a greedy approach. We also present a number of graph char-
acteristics yielding deeper insight in the behavior of the rout-
ing algorithms. Before focusing on our routing algorithms
we will present a basic observation.

5.1 The Role of Network Density
In this section we analyze the correspondence between

network density and substantial network properties in the
context of routing. In particular we point out the impor-
tance of the chosen density range for the simulation of rout-
ing algorithms.

Our measurements were carried out on the Unit Disk
Graph of networks with nodes randomly and uniformly placed
on a square with 20 units side length. For each density value
(denoted in nodes per unit disk on the x axis of Figure 3), we
generated 2000 such random networks and chose the source
s and the destination t randomly.

In particular we measured three parameters for each den-
sity:

- Connectivity rate: In how many cases are s and t con-
nected?

- Greedy success rate: How often does the greedy algorithm
GR alone reach t?

- Shortest path span: The ratio between |p∗|, the Euclidean
length of the shortest (Euclidean) path, and |st|, the Eu-
clidean distance between s and t. Note that the shortest
path span is only defined if s and t are connected.

Figure 3 depicts our measured values of these three pa-
rameters over a density range of 0.3 to 20 nodes per unit
disk. The connectivity and greedy success rate values are
plotted against the right, the shortest path span is plotted
against the left y axis.

The network connectivity curve (dashed line) shows that
the density spans from one extreme to the other. At very
low network densities nodes are so sparsely placed that we

observe almost no connectivity at all. On the other end of
the scale s and t are virtually always connected. The tran-
sition between these two extremes takes place in a relatively
narrow density range between approximately 3 and 7 nodes
per unit disk. Network connectivity—above all in this tran-
sition range—is one of the main issues in percolation theory
[7]. In the following we will justify why this is a mandatory
range for routing algorithm simulations to take place.

Of high importance for our greedy/face routing combina-
tions is the greedy success rate (dotted line). Since network
connectivity is a requirement for any routing algorithm, the
greedy success rate lies strictly below the connectivity rate
curve. For high network densities on the other hand a gap
big enough to form a local minimum for greedy routing will
only be generated with low probability; greedy routing can
be expected to almost always reach the destination.

The third curve in Figure 3 (solid line) represents the
mean shortest path span, that is, for each density the curve
value is the mean of the ratios between the Euclidean length
of the shortest path and the Euclidean distance between
s and t over all generated networks. Note that for very
low densities this value is close to 1 due to low network
connectivity: The shortest path span is only defined if s and
t are connected, which is rarely ever the case here. If however
s and t are connected, they are with high probability close
together, or even neighbors, in which case the shortest path
span is equal to 1. The low values for high densities, on the
other hand, can be explained by the fact that with increasing
density the shortest path will more and more closely follow
the direct connecting line st due to the rising number of
nodes in st’s vicinity.

Between these two extremes the shortest path span forms
an almost bell-shaped curve in the network density range
approximately between 3 and 6 nodes per unit disk. Infor-
mally put, this is the only density region where the shortest
path is usually much longer than the direct connection be-
tween s and t (cf. Figure 4). This special quality identifies
that region as “critical” for routing algorithms. Here finding
a good path at low cost becomes a nontrivial task and a real
challenge for geometric routing. It also appears that for the
critical density region the effect of introducing “artificiality”
by placing network nodes uniformly remains acceptably low:
The density is relatively heterogeneous, which reflects real-
ity more closely than a homogeneous placement of nodes
that would occur for higher network densities. It is also not
astonishing that simulations taken on dense networks (such
as for GPSR with approximately 21.8 nodes per unit disk
in [14]) display very good results with respect to both the
quality of the found path and the algorithm performance.

In the following we will therefore mainly focus on this
critical density range around 4.5 nodes per unit disk in our
algorithm simulations.

5.2 Algorithm Overview
Before presenting our simulation results we will for the

sake of clarity introduce all simulated algorithms. Figure 5
contains an “algorithm family tree”, a graphical represen-
tation of the conceptual relations between the single algo-
rithms.

The basis of this algorithm family is formed by two fun-
damental algorithms:

- FR is the traditional Face Routing algorithm as introduced
in [16]. On a planar graph one face after the other is com-
pletely explored in order to find intersections of its bound-
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Figure 4: Example of generated (Gabriel) graph at criti-

cal network density 4.71 (≈ 1.5 π) nodes per unit disk (600

nodes on 20 by 20 units field). Most of the nodes are

connected; for most pairs of nodes, however, the short-

est connecting path is significantly longer than their Eu-

clidean distance.

ary with st, the line connecting s and t. Along this line the
algorithm gradually proceeds and finally reaches t.

- GR proceeds in each step to the neighbor closest to the
destination. Note that this algorithm—as opposed to all
other simulated algorithms—cannot guarantee to reach t.

In Section 4.2 we introduced OFR, a variant of FR in the
sense that it does not switch to a new face along the line
st, but at the point closest to t on the boundary of the
currently explored face. OFR builds the basis for a complete
line of algorithms, has however not been implemented for
our simulations. Extending the FR and OFR algorithms by
adaptive bounding ellipses, we obtain AFR and OAFR:

- In AFR [18] Face Routing is extended by the concept of
a bounding ellipse whose size is iteratively incremented
as needed. Note that—as an improvement over the origi-
nal description—our implementation of the AFR algorithm
does not return to the source before incrementing the ellipse
size.

- In OAFR, as described in Section 4.2, face routing is not
performed along the st line. Instead, the algorithm explores
a face for the node on its boundary with the least distance
from t, where it proceeds to the next face.

Introduced as a building block for later use, the algorithm
AFRFI uses a heuristic to try to switch to the next face
earlier than AFR:

- AFRFI (AFR + “First Intersection” heuristic)—in contrast
to AFR—does not necessarily explore complete faces, but
already switches to the next face when first meeting an
intersection with st closer to t than where the current face’s
exploration started.

The remaining algorithms all include greedy routing phases.
GOAFR combines GR with OAFR, GAFR employs GR and
AFR; we introduce the GFR algorithm for the concept only,
that is without simulations.

- The GOAFR algorithm is described in detail in Section 4.3.
It employs GR as long as possible and overcomes potential
local minima by exploration of one face with OAFR.

- GAFR combines greedy routing and AFR. Local minima
are circumvented using the AFR algorithm for one face be-
fore returning to greedy mode. Analogously to GOAFR,

AFR

GAFR

GAFRFI

GOAFR- GAFR-

OAFR

GOAFR

GOAFRFC

FR
(Face Routing)

(Greedy Routing)
GR

GFR

OFR

GPSR
FC=GFR

AFRFI

Figure 5: Algorithm relation overview. The basis for all

simulated routing algorithms is formed by FR and GR.

Algorithms in elliptic shapes use a bounding ellipse. A

double ellipse represents asymptotic optimality. Algo-

rithms in dashed circles have been introduced for the

concept only, without simulations.

GAFR retains the same ellipse throughout its execution,
apart from enlarging it when necessary.

The algorithms GOAFR– and GAFR– are minor variations
of GOAFR and GAFR, respectively.

- GOAFR–’s only difference compared to GOAFR consists
in its use of a bounding ellipse exclusively when in face
routing mode. Each time starting a face routing phase at
node n, the ellipse is initialized around n and t.

- GAFR– reinitializes its bounding ellipse for each face rout-
ing phase around the new starting point and t; otherwise it
is identical to GAFR.

Similarly as in AFRFI , the algorithms GAFRFI , GOAFRFC ,
and GPSR employ heuristics to terminate the exploration of
the current face and consequently fall back to greedy mode
earlier than GAFR, GOAFR, or GFR, respectively.

- GAFRFI ’s only difference compared to GAFR is its use of
AFRFI instead of AFR: The next greedy phase is started
already when meeting the first intersection with st.

- GOAFRFC (GOAFR + “First Closer” heuristic) uses GR
and OAFR, but falls back to greedy mode even earlier, that
is at the first node closer to t than where the face routing
phase started.

- GPSR was introduced in [14]. Apart from the fact that
it does not bound its searchable area, it is identical to
GOAFRFC.

In order to distinguish the single algorithms, we intro-
duced a naming system in which each character contained
in an algorithm name represents a concept (Table 1). Note
that the abbreviation GPSR (Greedy Perimeter Stateless
Routing) [14] does not correspond with our naming system.
In our system GPSR would be named GFRFC.

Table 2 summarizes all simulated algorithms and com-
pares them with respect to five characteristics:

- Type: The algorithms fall into three main classes: Pure
face routing algorithms (fr), the GR algorithm (gr), and
combinations thereof (gr + fr).

- With Bounding Ellipse: Apart from FR and GPSR all al-
gorithms bound their searchable area (by an ellipse).
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Character Stands for Comment

R Routing occurs in all algo-
rithm names

F Face
algorithms employ-
ing face routing

G Greedy
algorithms employ-
ing greedy routing

A Adaptive
algorithms using a
bounding ellipse

O Other algorithms using
OFR

–
starts face routing
phases with small el-
lipse

. . . RFI First Intersection uses “First Intersec-
tion” heuristic

. . . RFC First Closer uses “First Closer”
heuristic

Table 1: Algorithm naming system.

- With Heuristic: In face routing mode (G)AFRFI, GO-
AFRFC, and GPSR apply heuristics in order to proceed
with greedy routing without exploring the complete bound-
ary of a face. Doing so, however, these algorithms lose their
asymptotic optimality.

- Retains Ellipse: This property is only applicable to gr +
fr algorithms with a bounding ellipse. Most of these al-
gorithms only use a bounding ellipse during their greedy
routing phase. GOAFR and GAFR in contrast retain—
apart from incrementing its size—the same ellipse through-
out their whole execution.

- Asymptotically Optimal: AFR has previously been proven
to be asymptotically optimal [18]. In Section 4 we showed
that also OAFR and GOAFR are asymptotically optimal
geometric routing algorithms. Note the correspondence be-
tween algorithms using heuristics and asymptotic optimal-
ity. Whether an algorithm can only achieve the latter ex-
ploring the complete boundary of faces (within a searchable
area) is an interesting open problem.

Note that GR is the only algorithm that may fail to reach
t. All other simulated algorithms are guaranteed to find the
destination.

5.3 Routing Algorithm Simulations
We will now present the results of our routing algorithm

simulations. As in the measurements presented in the pre-
vious section, we generated networks on square fields of side
length 20 units by distributing network nodes randomly and
uniformly. For every simulation series the number of nodes
was determined according to the chosen network density.
For each considered network the source s and the destina-
tion t were also chosen randomly.

In order to judge the practicability of an algorithm we
introduced the performance perfA(N) of an algorithm A on
a network N as

perfA(N, s, t) :=
sA(N, s, t)

|sp(N, s, t)|
,

where sA(N, s, t) is the number of steps algorithm A per-
forms on network N finding a route from s to t (which is in
our case, with all simulated algorithms, equal to the num-
ber of sent messages); |sp(N, s, t)| is the (hop) length of the
shortest path (with respect to the hop metric) between the
source s and the destination t on N .
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Figure 6: Algorithm performance overview. Mean per-

formance values of FR (upper dashed line), AFR (upper

solid), OAFR (lower dashed), and AFRFI (lower solid).

All greedy/face routing combinations (including GOAFR

and GPSR) are shown in dotted lines (for details see

Figure 7). The network connectivity and greedy success

rates are plotted against the right y axis for reference

(cf. Section 5.1).

Counting the steps taken by an algorithm A corresponds
to the hop metric of A’s path. There are two reasons for
choosing the hop metric for our simulations. First, the hop
metric is a model for today’s radio network technology: In
most communication standards (such as IEEE 802.11) ra-
dio devices transmit with a fixed—at least not dynamically
adapted—power. Second, already the networks used as the
basis for our simulations are Unit Disk Graphs, according
to whose definition every node has such a fixed (unit) trans-
mission range.

Our objective was to measure the performance of the rout-
ing algorithms without any interference of possible side ef-
fects of other communication layers. We therefore assumed
an ideal environment with collisionless MAC layer and pos-
tulated all position information required by the geometric
routing model (a node’s own and its neighbors’ positions as
well as the source’s knowledge about the destination po-
sition) to be available without additional communication
overhead. We furthermore assumed the routing algorithms
to execute fast compared to possibly moving network nodes;
node movement was consequently not simulated. The mea-
surements were carried out on a custom simulation environ-
ment.

Figure 6 shows for each simulated algorithm A the mean
performance values, defined as

perfA :=
1

k

k�

i=1

perfA(Ni, si, ti)

over all k = 2000 generated triples (Ni, si, ti) for network
densities ranging from 0.3 to 20 nodes per unit disk. For
reference to the density range, the network connectivity and
greedy success rates are plotted against the right y axis.

For very low network densities all algorithms perform more
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Algorithm Name Type

With
Bound-

ing
Ellipse

With
Heuristic

Retains
Ellipse

Asympto-
tically

Optimal

Comment

FR fr no no - no traditional Face Routing [16]
AFR fr yes no - yes Adaptive Face Routing [18]

AFRFI fr yes yes - no AFR, but switches to next face at
first intersection with st

OAFR fr yes no - yes
Other Adaptive Face Routing (Sec-
tion 4.2)

GOAFR gr + fr yes no yes yes
Greedy Other Adaptive Face Rout-
ing (Section 4.3)

GOAFR– gr + fr yes no no no
GOAFR, but starts face routing
phases with small ellipse

GAFR gr + fr yes no yes no Greedy + AFR

GAFR– gr + fr yes no no no
Greedy + AFR, but starts face
routing phases with small ellipse

GAFRFI gr + fr yes yes no no
GAFR, but falls back to greedy
routing when first intersecting st

GOAFRFC gr + fr yes yes no no

GOAFR, but falls back to greedy
routing when meeting first node
closer to t than where AFR phase
started

GPSR gr + fr no yes - no
Greedy Perimeter Stateless Rout-
ing [14]: GOAFRFC without
bounding ellipse

GR gr no - - -
out of competition, since reaching
of t not guaranteed

Table 2: Classification of simulated routing algorithms. The GOAFR algorithm, for instance, is a greedy/face routing

combination, employs a bounding ellipse, does not use a heuristic for early fallback to greedy mode, keeps the ellipse

when switching from one mode to the other (does not restart with a small ellipse), and is asymptotically optimal.

The GR algorithm is listed for completeness, but runs out of competition, since it does not guarantee to reach the

destination.

or less equally well, for the same reason that keeps the short-
est path span low (see Section 5.1): The source s and the
destination t are rarely ever connected; if however they hap-
pen to be connected, they are very likely direct neighbors.

On the other end of the density scale two classes of algo-
rithms can be distinguished.

- The performance of all algorithms solely employing a
variant of face routing approach a linearly growing
curve. The general growth of these algorithms’ per-
formance towards infinity can be explained by the fact
that we measure the hop metric performance of the
algorithm paths together with two reasons: FR, AFR,
and OAFR route along complete faces; the expected
number of such faces between s and t rises linearly
with network density. Although AFRFI, on the other
hand, does not explore complete faces and will—still
for dense networks—stay close to the connecting line
st, its performance increases towards infinity, since it
proceeds along the Gabriel Graph, whose mean edge
length decreases with rising density.

- All algorithms combining greedy routing with face rout-
ing display performances approaching 1. For high net-
work densities these algorithms rarely ever need to
change to the face routing mode (cf. the greedy suc-

cess rate curve). Furthermore the length of the greedy
path approaches the length of the shortest path. Note
that in greedy mode all network edges (not only the
Gabriel Graph’s) can be used.

The eye-catching bell-shaped performance curves for all
algorithms—including the greedy/face routing combinations
—are centered around the critical density region as defined
in Section 5.1. We observe that—not only in the worst, but
also in the average case—FR is clearly disqualified due to its
missing limitation to a searchable area; AFR and OAFR—
both employing this technique—display much more favor-
able values, yet cannot compete with AFRFI, which—at
least in the critical region—performs not worse than a num-
ber of greedy/face routing combinations.

In accordance with the considerations from Section 5.1
this critical density range appears to be the most challeng-
ing area for all the simulated algorithms without exception.
Accordingly we now “zoom” into this area to analyze the
performances of the algorithms combining greedy and face
routing in more detail.

Figure 7 depicts the mean performances of all simulated
greedy/face routing combinations in the critical density range
around 4.5 nodes per unit disk. The six algorithms can be
split into three groups with respect to their peak perfor-
mance values:
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Figure 7: Algorithm performance in critical density

range around 4.5 nodes per unit disk. Mean perfor-

mance values of GPSR (upper solid line), GOAFR (up-

per dotted), GAFR (upper dashed), GOAFR– (lower

dotted), GAFR– (lower dashed), GAFRFI (lower solid),

and GOAFRFC (dash-dotted). Again, the network con-

nectivity and greedy success rates are plotted against

the right y axis for reference.

- GOAFR, GOAFR–, GAFR, GAFR–,

- GAFRFI, GOAFRFC, and

- GPSR.

GOAFR, GOAFR–, GAFR, and GAFR– have more or
less comparable peak performances. They have in common
that they explore complete faces (within the searchable area)
when in face routing mode. It appears that restarting with
a small (reinitialized) ellipse at the beginning of each face
routing phase slightly reduces the mean performance; doing
so, GOAFR however loses its asymptotic optimality.

The heuristics employed by GAFRFI and GOAFRFC on
the other hand apparently almost halve the mean perfor-
mance values. However, in contrast to GOAFR, the latter
algorithms cannot guarantee asymptotic optimality (cf. Fig-
ure 8).

GPSR, forming the third group, only differs from GO-
AFRFC by the absence of a bounded searchable area. Yet
this has a dramatic effect on the critical area performance:
While GOAFRFC displays the best mean performance of
all simulated algorithms, omission of the bounding ellipse
almost triples the peak mean performance value, throw-
ing GPSR back to the last position among the simulated
greedy/face routing combinations.

Figure 9 displays the (normalized) performance distribu-
tions for all algorithms simulated at the network density
4.71 nodes per unit disk. Apart from AFRFI—which also
features a significantly smaller mean value at that density
(cf. Figure 7)—all pure face routing variants show their peak
distribution values for relatively high performances (3–5 for
FR, 5–7 for AFR and AFRFI). Due to the lack of a bounding
ellipse, FR displays a great number of very high performance
values (> 41), which is also reflected in its higher mean value
at that density.

With all greedy/face routing combinations, on the other
hand, the majority of the measured performance values are
relatively low (not higher than 3 for GOAFRFC, GPSR, and
GAFRFI, not higher than 5 for GOAFR– and GAFR–, and
not higher than 7 for GOAFR and GAFR). GPSR, although
featuring a great number of low performance values, does not
restrict its searchable area, which leads to a significant num-
ber of large performance values and consequently increases
also its mean value considerably (cf. Figure 7).

Remark (Ellipse Size Implementation). For completeness

we carried out a simulation series dedicated to the question wheth-

er the ellipse size doubling strategy suggested by GOAFR (and

AFR)—although compliant with asymptotic optimality—can be

improved for practical purposes. We achieved best values initial-

izing the major axis c of the ellipse E to 1.2 · |st| and multiplying c

with the factor
√

2 (that is doubling E ’s area) when E is required

to be enlarged. Employing a circle centered at t for the search-

able area, all respective algorithms consistently displayed worse

results than using an ellipse. The original algorithm descriptions

were accordingly modified for the implementations used in the

above simulations.

5.4 Algorithm Scalability
In the simulation series of Figures 6 and 7 we analyzed

the algorithm performance over different network densities,
but on a fixed network (field) size. For the following series
we considered algorithm performance on different network
sizes at fixed network density 4.71 nodes per unit disk.

Figure 10 shows the mean performance results obtained
in simulations on networks generated in square fields of side
length 4 to 40 units. Again the algorithms fall into different
classes with respect to their performance behavior.

The lack of a bounding ellipse results in a fast growing
curve with increasing network size for FR and GPSR, al-
though on a lower level for the latter algorithm. The most
important factor for this behavior is formed by the fact that
it can be expected that—for the critical network density—
these algorithms need to explore a considerable part of the
entire network independent of its size. Whereas GPSR can
compete with most other algorithms for small networks (up
to approximately 12 units side length), this effect clearly
disqualifies the algorithm for large networks.

Although GOAFRFC only differs from GPSR by using a
bounding ellipse, we find this algorithm at the other end of
the performance scale together with GAFRFI, whose perfor-
mance values grow relatively slowly for all simulated network
sizes.

The remaining algorithms all display more or less compa-
rable performance curves, AFR and OAFR—both requiring
exploration of complete faces (within the searchable area)
and missing a greedy phase—at a slightly higher level. Inter-
estingly AFRFI can compete with GOAFR(–) and GAFR(–
); the advantage gained using the “First Intersection” heuris-
tic appears to be neutralized by the lack of a greedy phase
(cf. AFRFI).

The general performance growth for increasing network
sizes of all algorithms, particularly including the ones using
bounding ellipses, can be explained by the fact that the
mean distance (both Euclidean and shortest path) between
randomly chosen s and t rises as well and that consequently
the number of network nodes contained in the searchable
area grows even faster.
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Figure 8: Example graph on which (G)AFRFI and GOAFRFC display asymptotic suboptimality. Starting from s,

GAFRFI, for instance, will reach the local minimum m1 in greedy mode, switch to face routing mode and (unluckily)

begin to explore the boundary of face F in counterclockwise direction. Only after traversing the maze-like structure left

of s will the algorithm hit the ellipse E and return (after passing s) to m 1 and continue to find P , the first intersection

with m1t. After falling back to greedy mode and reaching the local minimum m2, the algorithm will repeat the above

procedure. In total the maze-like structure left of s will be traversed Θ(`) times, where ` is the (Euclidean) distance

between s and t. (The size of the maze can be chosen in a way that even after k ∈ Θ(`) of the above rounds it is

contained in the ellipse with foci mk and t.) Since the maze-like structure is designed such that its traversal takes cost

Θ(`2), the overall algorithm executes with cost Θ(`3), whereas the optimal path has cost Θ(`). Similar examples can be

constructed for all simulated algorithms which use heuristics, including GPSR.
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Figure 9: Distribution of performance values of the pure face routing algorithms (left) and the greedy/face routing

combinations (right) simulated at network density 4.71 nodes per unit disk. The simulations for AFR FI, for instance,

show that in approximately 21 percent of all connected graphs a performance greater than 3 but not greater than 5

was measured.
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sity 4.71 nodes per unit disk simulated on networks

in square fields with side lengths from 4 to 40 units.
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6. SUMMARY AND OUTLOOK
In this paper we introduced a new geometric ad-hoc rout-

ing algorithm named GOAFR, which combines greedy and
face routing. We proved that GOAFR is asymptotically op-
timal with respect to the competitive ratio with the shortest
path. For the simulations part of the paper we first employed
percolation theory to identify a critical network density re-
gion where the average length of the shortest path between
source and destination is significantly larger than their Eu-
clidean distance. This density range forms an inherent chal-
lenge to any (not only geometric) routing algorithm. Our
simulations showed that GOAFR provides not only worst-
case guarantees but is also average-case efficient. In particu-
lar, in the critical density range GOAFR performs not much
worse than heuristical algorithms, which however do not fea-
ture worst-case guarantees. Finally, restricting itself to a
searchable area, GOAFR outperforms also in the average
case well-known algorithms (such as GPSR) for large net-
works. For application types where worst-case guarantees
are not required GOAFRFC would be even more commend-
able, since it clearly beats GOAFR in the critical density
range.

For the scope of this paper routing was considered to take
place much faster than network node movement. The in-
tegration of network movement is an interesting topic for
future research in both theory and simulation.
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