
Worst-case to Average-case Reductions based on Gaussian Measures∗

Daniele Micciancio † Oded Regev ‡

December 14, 2005

Abstract

We show that finding small solutions to random modular linear equations is at least as hard as

approximating several lattice problems in the worst case within a factor almost linear in the dimension of

the lattice. The lattice problems we consider are the shortest vector problem, the shortest independent

vectors problem, the covering radius problem, and the guaranteed distance decoding problem (a variant

of the well known closest vector problem). The approximation factor we obtain is n logO(1)
n for all four

problems. This greatly improves on all previous work on the subject starting from Ajtai’s seminal paper

(STOC, 1996), up to the strongest previously known results by Micciancio (SIAM J. on Computing,

2004). Our results also bring us closer to the limit where the problems are no longer known to be in NP

intersect coNP.

Our main tools are Gaussian measures on lattices and the high-dimensional Fourier transform. We

start by defining a new lattice parameter which determines the amount of Gaussian noise that one has to

add to a lattice in order to get close to a uniform distribution. In addition to yielding quantitatively much

stronger results, the use of this parameter allows us to simplify many of the complications in previous

work.

Our technical contributions are two-fold. First, we show tight connections between this new parameter

and existing lattice parameters. One such important connection is between this parameter and the length

of the shortest set of linearly independent vectors. Second, we prove that the distribution that one obtains

after adding Gaussian noise to the lattice has the following interesting property: the distribution of the

noise vector when conditioning on the final value behaves in many respects like the original Gaussian

noise vector. In particular, its moments remain essentially unchanged.

1 Introduction

Lattice problems have received considerable attention as a potential source of computational hardness to

be used in cryptography, after a breakthrough result of Ajtai [2] showing that if certain lattice problems

are computationally hard to solve in the worst case, then average-case one-way functions (a fundamental

cryptographic primitive) exist. Ajtai’s one-way function is essentially the generalized subset sum function

over the additive group of n-dimensional vectors modulo q: functions are described by m group elements

a1, . . . ,am ∈ Zn
q , and the associated function maps bit-string x1, . . . , xm ∈ {0, 1} to fA(x1, . . . , xm) =∑

i aixi. The main worst-case lattice problem considered by Ajtai is that of finding a set of n linearly

independent lattice vectors in an arbitrary lattice of length within a polynomial (in n) factor from the

∗A preliminary version of this paper appears in the Proceedings of the 45th Annual Symposium on Foundations of Computer
Science - FOCS 2004. Rome, Italy. Oct. 2004. IEEE, pp. 372-381.

†UC San Diego, La Jolla, CA 92093. E-Mail: daniele@cs.ucsd.edu. Research supported in part by NSF Career Award
CCR-0093029 and a Sloan Research Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

‡Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Work supported by the Israel Science
Foundation, by the Binational Science Foundation, by an Alon Fellowship, by the Army Research Office grant DAAD19-03-1-
0082, and by NSF grant CCR-9987845.

1

shortest such set.1 This problem in turn, is related, using standard techniques, to various other lattice

problems, like approximating the length of the shortest nonzero lattice vector in the worst case, within

factors polynomial in n.

No polynomial time algorithm is known to solve any of these worst-case problems, so it is reasonable to

conjecture that the problems are hard for any polynomial approximation factor. Still, since the problems get

easier and easier as the factor increases, it is theoretically interesting and practically important to determine

the smallest factors for which the hardness of approximating these lattice problems in the worst case implies

that the function fA is one-way on the average. The factors implicit in Ajtai’s proof are rather large: [9]

estimates all these factors to be larger than n8. In subsequent developments the factors have been improved,

leading to the currently best known results of Micciancio [21]: the subset-sum function fA is hard to invert

(in fact, even collision resistant) on the average, provided any of the following problems is hard in the worst

case:

• Computing a set of n linearly independent lattice vectors in an n-dimensional lattice of length within

a factor2 Õ(n2.5) from the shortest such set;

• Approximating the length of the shortest nonzero vector in an n-dimensional lattice within a factor

Õ(n3);

• Approximating the covering radius of an n-dimensional lattice within a factor Õ(n2.5);

• Finding a lattice vector within distance at most Õ(n2.5) times the covering radius from any given target

point.

Micciancio [21] also showed that the above factors can be further reduced by
√

n if certain sequences of

“almost perfect” easily decodable lattices exist, and conjectured a reduction achieving factors as low as

Õ(n1.5). In a recent work of Regev [24], a similar result was shown based on worst-case instances of a

problem known as the Õ(n1.5)-unique shortest vector problem. This problem is a special case of the shortest

vector problem in which the lattices have a special structure (namely, their shortest vector is unique, in

the sense that the next shortest linearly independent vector is longer than the shortest nonzero vector by

Õ(n1.5)). Although the connection factor Õ(n1.5) is better than the factors of [21], a major drawback of the

reduction in [24] is that the unique shortest vector problem is potentially easier to solve than the shortest

vector problem; in fact, it is not even known to be NP-hard for small constant approximation factors.3

Our results: We substantially improve all of the above results and prove that the subset-sum function fA

is hard to invert (and collision resistant) on the average provided any of the following problems is hard in

the worst case:

• Computing a set of n linearly independent lattice vectors in an n-dimensional lattice of length within

a factor Õ(n) from the shortest such set;

• Approximating the length of the shortest nonzero vector in an n-dimensional lattice within a factor

Õ(n);

• Approximating the covering radius of an n-dimensional lattice within a factor Õ(n);

• Finding a lattice vector within distance at most Õ(n) times the covering radius from any given target

point.

1The length of a finite set of vectors is defined as the length of the longest vector in the set. The problem can be defined
with respect to any norm, but the Euclidean norm is the most common.

2A function g(n) is in Õ(f(n)) if there exist constants a, c ≥ 0 such that g(n) ≤ af(n) logc f(n) for all sufficiently large n.
3The main result of [24] is a lattice based encryption scheme. This encryption scheme, as the one in the original work of

Ajtai and Dwork [3], is also based on the unique shortest vector problem. Constructing an encryption scheme based on other
lattice problems such as the shortest vector problem is a major open problem.

2

In other words, the connection factor is Õ(n) for all four lattice problems. This proves Micciancio’s conjecture

[21], and in fact provides even better connection factors. Our results are significant for two reasons:

• On the technical side, we present a new approach to worst-case to average-case reductions for lattice

problems, based on the use of Gaussian measures. The results in [21] were making an essentially

optimal use of previous reduction techniques; the results presented in this paper require some new

techniques that might be of independent interest. Another important technical contribution of this

paper is the study of Gaussian distributions on lattices. These issues are discussed in Subsection 1.1.

• On the theoretical side, our improvements bring us closer to factors for which lattice problems are not

known to be in NP ∩ coNP. This is discussed in Subsection 1.2.

1.1 Our techniques

The reduction: In this paper, as in previous work [2, 12, 9, 21, 24], we consider the problem of reducing

worst-case instances of lattice approximation problems (e.g., finding short lattice vectors) to the problem of

finding small solutions to random linear equations with coefficients in Zn
q . So, in order to perform such a

reduction, one needs to sample (almost uniformly at random) the group Zn
q in a way that is somehow related

to an underlying lattice problem (for an arbitrary lattice) as we now explain. The core of the reduction

is a (polynomial time) sampling procedure that allows to draw pairs consisting of a group element and

a corresponding short “offset” vector (not necessarily in the lattice) having the following property: any

(integer) solution to the homogeneous linear equation defined by the group elements maps the corresponding

short offset vectors to a vector in the underlying lattice. The length of the resulting lattice vector depends

on the size of the integer solution used to combine the short offset vectors. If we can find a small solution to

the group equation (e.g., using the average-case oracle), then we can find a short lattice vector, essentially

solving the underlying lattice problem. We remark that for the average-case oracle to work, the coefficients

of the equation must be distributed almost uniformly at random in the group.

The high level approach outlined above to worst-case to average-case reduction is common to all works,

including this paper. The difference is in the way group elements (and corresponding short offset vectors)

are sampled. Essentially all previous works were based on the following approach: given an arbitrary lattice

L(B), consider a sufficiently large region of space C which is approximately equal to a hypercube of size `

(with vertices in L(B)). Then divide each side into q equal parts. This results in qn subcubes of size `/q,

each corresponding to a group element in Zn
q . Next we sample lattice points from L(B) ∩ C, and for each

sample consider the corresponding subcube and offset within the subcube (e.g., with respect to the center of

the subcube). If each subcube contains approximately the same number of lattice points, then the induced

distribution on group elements is almost uniform over Zn
q . The correctness of the reduction is based on the

following two important properties of the sampling procedure:

• Each subregion should be small enough, so that the offset vectors are short, and the final output of

the reduction is a short lattice vector.

• Each subregion should be large enough, so that the number of lattice points in each region is about

the same and the chosen group element is almost uniform in Zn
q .

These two contradicting requirements end up determining the connection factor obtained by the reduction.

In this paper we develop a new technique to generate random group elements that does not require

starting from a large hypercube C. Instead of considering large regions of space and counting the number of

lattice points in them, we simply start from a lattice point, and add some Gaussian noise to it. Our goal is

to use an amount of noise sufficiently large so that the resulting point (which does not belong to the lattice

in general) is distributed almost uniformly in space.

Technically, we pick a random noise vector with a Gaussian distribution, and reduce it modulo the basis

of the lattice, to obtain a vector distributed almost uniformly at random over the fundamental parallelepiped

3

of the lattice. Next we divide the fundamental parallelepiped into qn equal regions, and use each of them to

represent a group element in Zn
q . Notice that none of the regions contains any lattice point. Notice also that

using this approach, it is not important that the regions have a nice (approximately hypercubic) shape: since

all regions have the same volume, a reduced noise vector distibuted almost uniformly over the fundamental

parallelepiped will induce an almost uniform distribution over Zn
q .

As an additional remark, we point out that the previous best reductions produced group elements whose

distribution is only moderately close to uniform. In order to get almost uniformly distributed group elements,

they generated a small (super-logarithmic) number of group elements, and added them all up. Our technique

avoids this complication since it directly gives group elements whose distribution is extremely close to

uniform, and does not require to add up many samples. We believe that this fact, together with the fact

that we do not need to start from a large cube, allows us to obtain a much cleaner and simpler reduction. The

ideas and techniques presented in this paper have been recently used in [22] to obtain analogous improvements

and simplifications for similar results about cyclic lattices.

Gaussian distributions: The use of Gaussian distributions in the study of lattices is standard in math-

ematics (see, for example, [5]). In computer science, they have been recently used in [8, 24, 1]. In [1], for

example, Gaussian distributions are used to prove that certain lattice problems are in coNP.

We believe that a large part of our technical contribution is in the study of these Gaussian distributions.

We start by defining the smoothing parameter of a lattice, a new lattice parameter with the following

fundamental property:4 if one picks a noise vector from a Gaussian distribution with radius at least as

large as the smoothing parameter, and reduces the noise vector modulo the fundamental parallelepiped

of the lattice, then the resulting distribution is very close to uniform. We then relate this parameter to

standard lattice parameters such as the length of the shortest dual vector and the length of the shortest set

of independent vectors. The proof of the former is based on a lemma by Banaszczyk [5] while the proof of

the latter is, to the best of our knowledge, novel.

We then go on to consider the discrete Gaussian distribution on a lattice. Let c be any point in space.

Let y be obtained by adding to c a vector chosen from a Gaussian distribution whose size is at least the

smoothing parameter of the lattice. Then, consider the distribution of y conditioned on it being in the lattice

(this will be made rigorous later). This distribution is illustrated in Figure 1. Essentially, it is a Gaussian

distribution around c restricted to the lattice. Interestingly, we prove that this distribution behaves in many

respects like the (continuous) Gaussian distribution around c. For example, its center is very close to c and

its average square distance from c is also very close to that of the continuous Gaussian distribution. From

these two facts we can derive relatively easily all the properties needed for the worst-case to average-case

reduction.

1.2 Complexity of lattice problems

Since many lattice problems are NP-hard to approximate within small factors, connections between the

average-case and worst-case complexity of lattice problems can be regarded as progress toward the ambitious

goal of constructing one-way functions based on the assumption that P 6= NP. Unfortunately, there is still

a big gap between factors for which lattice problems are known to be NP-hard and those known to imply

the existence of one-way functions. The strongest known hardness result (for the problems considered

in this paper) is the NP-hardness of approximating the length of the shortest linearly independent set

within any constant and, under the stronger assumption NP * DTIME(2polylog(n)), within 2(log n)1−ε

for

any ε > 0 [6]. For the shortest vector problem, hardness within any constant approximation factor or

4 The actual definition of smoothing parameter involves the dual lattice, and it is rather technical. Here we only state a
fundamental property of the smoothing parameter that conveys the intuition behind our definition. See Definition 3.1 for the
actual definition.

4

factors of the form 2(log n)1/2−ε

(for any ε > 0) has been shown [16] under the assumption5 that NP 6= RP or

NP 6⊆ BPTIME(2polylog(n)) respectively. No hardness result (under deterministic or probabilistic reductions)

is currently known for the covering radius problem, although the problem is conceivably hard. (See [14] for

further discussion of the complexity of the covering radius problem.)

Beside the fact that all known hardness results are only for subpolynomial approximation factors, all

three problems have been shown to be in coAM for O(
√

n/ logn) approximation factors [11, 14] (see also

[1, 14] where the problems are shown to be in coNP for O(
√

n) factors), giving evidence6 that the problems

are not NP-hard within such factors. Still, one might conjecture that some of these problems are NP-hard

to approximate for factors close to
√

n/ log n, say, n1/2−ε for any ε > 0.

The results in this paper, showing that there exist hard on average problems based on the inapproxima-

bility of lattice problems within Õ(n), bring us closer to factors O(
√

n), below which the lattice problems

are not known to be in coNP, and therefore may be NP-hard. However, it is not clear how our techniques

can be used to obtain factors below Õ(n).

2 Preliminaries

General: For any real x, bxc denotes the largest integer not greater than x. For a vector x = (x1, . . . , xn)

we define bxc as (bx1c, . . . , bxnc). We write log for the logarithm to the base 2, and logq when the base q

is any number possibly different from 2. We use ω(f(n)) to denote the set of functions growing faster than

c · f(n) for any c > 0. A function ε(n) is negligible if ε(n) < 1/nc for any c > 0 and all sufficiently large n.

The n-dimensional Euclidean space is denoted Rn. We use bold lower case letters (e.g., x) to denote

vectors, and bold upper case letters (e.g., M) to denote matrices. The ith coordinate of x is denoted xi.

For a set S ⊆ Rn, x ∈ Rn and a ∈ R, we let S + x = {y + x : y ∈ S} denote the translate of S by x, and

aS = {ay : y ∈ S} denote the scaling of S by a. The Euclidean norm (also known as the `2 norm) of a vector

x ∈ Rn is ‖x‖ = (
∑

i x2
i)

1/2, and the associated distance is dist(x,y) = ‖x − y‖. The distance function is

extended to sets in the customary way: dist(x, S) = dist(S,x) = miny∈S dist(x,y). We often use matrix

notation to denote sets of vectors. For example, matrix S ∈ Rn×m represents the set of n-dimensional vectors

{s1, . . . , sm}, where s1, . . . , sm are the columns of S. We denote by ‖S‖ the maximum length of a vector in

S. The linear space spanned by a set of m vectors S is denoted span(S) = {
∑

i xisi : xi ∈ R for 1 ≤ i ≤ m}.
For any set of n linearly independent vectors S, we define the half-open parallelepiped P(S) = {∑i xisi :

0 ≤ xi < 1 for 1 ≤ i ≤ n}. Finally, we denote by B the closed Euclidean ball of radius 1 around the origin,

B = {w ∈ Rn : ‖w‖ ≤ 1}.

Statistical Distance: Statistical distance is a measure of distance between two probability distributions

and is a convenient tool in the analysis of randomized algorithms and reductions. Here we define it and state

some simple facts that will be used in the rest of the paper. These facts are easily verified; for more details

the reader is referred to [23, Chapter 8].

Definition 2.1 We define the statistical distance between two discrete random variables X and Y over a

(countable) set A as

∆(X, Y) =
1

2

∑

a∈A

|Pr{X = a} − Pr{Y = a}|.

5 No true NP-hardness result (i.e., under deterministic polynomial time reductions) is currently known for SVP even in its
exact version. However, [19] showed that if a certain number theoretic conjecture on the distribution of square-free smooth
numbers holds true, then SVP is NP-hard (under deterministic polynomial time Karp reductions) for any factor γ <

√
2.

6 Specifically, since the first two problems are in NP even in their exact version, they cannot be NP-hard to approximate
within O(

√
n/ log n) (resp. O(

√
n)) unless NP ⊆ coAM (resp. NP = coNP.) For the covering radius problem the situation is

more complicated because the exact version of the problem is not known to be in NP. See [11, 1] for further discussion of the
implications of these results.

5

Similarly, for two continuous random variables X and Y over Rn with probability density functions T1 and

T2 respectively, the statistical distance is defined as

∆(X, Y) =
1

2

∫

Rn

|T1(r) − T2(r)|dr.

One important fact that we use is that the statistical distance cannot increase by applying a (possibly

randomized) function f , i.e.,

∆(f(X), f(Y)) ≤ ∆(X, Y), (1)

see, e.g., [23]. In particular, this implies that the acceptance probability of any algorithm on inputs from X

differs from its acceptance probability on inputs from Y by at most ∆(X, Y). Another useful property of

the statistical distance is the following. Let X1, . . . , Xk and Y1, . . . , Yk be two lists of totally independent

random variables. Then

∆((X1, . . . , Xk), (Y1, . . . , Yk)) ≤
k∑

i=1

∆(Xi, Yi).

Lattices: We now describe some basic definitions related to lattices. For a more in-depth discussion, see

[23]. An n-dimensional lattice is the set of all integer combinations

{ n∑

i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

of n linearly independent vectors b1, . . . ,bn in Rn.7 The set of vectors b1, . . . ,bn is called a basis for the

lattice. A basis can be represented by the matrix B = [b1, . . . ,bn] ∈ Rn×n having the basis vectors as

columns. The lattice generated by B is denoted L(B). Notice that L(B) = {Bx : x ∈ Zn}, where Bx is the

usual matrix-vector multiplication.

For any lattice basis B and point x, there exists a unique vector y ∈ P(B) such that y−x ∈ L(B). This

vector is denoted y = x mod B, and it can be computed in polynomial time given B and x. The dual of a

lattice Λ is the set

Λ∗ = {x : ∀y ∈ Λ 〈x,y〉 ∈ Z}
of all vectors that have integer scalar product (〈x,y〉 =

∑
i xiyi) with all lattice vectors. The dual of a lattice

is a lattice, and if Λ = L(B) is the lattice generated by basis B, then B∗ = (BT)−1 is a basis for the dual

lattice, where BT is the transpose of B. A sub-lattice of L(B) is a lattice L(S) such that L(S) ⊆ L(B). The

determinant of a lattice det(L(B)) is the (n-dimensional) volume of the fundamental parallelepiped P(B)

and is given by | det(B)|.
The minimum distance of a lattice Λ, denoted λ1(Λ), is the minimum distance between any two distinct

lattice points, and equals the length of the shortest nonzero lattice vector:

λ1(Λ) = min{dist(x,y) : x 6= y ∈ Λ}
= min{‖x‖ : x ∈ Λ \ {0}} .

This definition can be generalized to define the ith successive minimum as the smallest λi such that λiB
contains i linearly independent lattice points:

λi(Λ) = min{r : dim(span(Λ ∩ rB)) ≥ i}.

Another important constant associated to a lattice is the covering radius ν(Λ), defined as

ν(Λ) = max
x∈Rn

{dist(x, Λ)}.

We often abuse notation and write λ1(B) instead of λ1(L(B)) and similarly for other lattice parameters.

7 Strictly speaking, this is the definition of a full-rank lattice. Since only full-rank lattices are used in this paper, all definitions
are restricted to the full-rank case.

6

Lattice problems: We consider the following lattice problems. For simplicity, we consider some of our

problems in their promise version.8 It is easy to see that a solution to any of the promise problems below

implies a solution to the corresponding optimization problem (that is, the problem that asks for an approxi-

mation to the corresponding lattice parameter, e.g., λ1). The reader is referred to [23] for further discussion

of these lattice problems. The following definitions are parameterized by a positive (and typically monotone)

real valued function γ : Z+ → R+ of the lattice dimension.

Definition 2.2 (Shortest Vector Problem) An input to GapSVPγ is a pair (B, d) where B is an n-

dimensional lattice basis and d is a rational number. In Yes inputs λ1(B) ≤ d and in No inputs λ1(B) >

γ(n) · d.

Definition 2.3 (Closest Vector Problem) An input to GapCVPγ is a triple (B, t, d) where B is an

n-dimensional lattice basis, t is a target vector, and d is a rational number. In Yes inputs dist(t,L(B)) ≤ d

and in No inputs dist(t,L(B)) > γ(n) · d.

Definition 2.4 (Covering Radius Problem) An input to GapCRPγ is a pair (B, d) where B is an n-

dimensional lattice basis and d is a rational number. In Yes inputs ν(B) ≤ d and in No inputs ν(B) >

γ(n) · d.

The remaining lattice problems are given in their search version.

Definition 2.5 (Shortest Independent Vectors Problem) An input to SIVPγ is an n-dimensional lat-

tice basis B. The goal is to output a set of n linearly independent lattice vectors S ⊂ L(B) such that

‖S‖ ≤ γ(n) · λn(B) where ‖S‖ is the maximum length of a vector in S.

A generalization of SIVP is the following somewhat less standard lattice problem.

Definition 2.6 (Generalized Independent Vectors Problem) An input to GIVP
φ
γ is an n-dimensional

lattice basis B. The goal is to output a set of n linearly independent lattice vectors S ⊂ L(B) such that

‖S‖ ≤ γ(n) · φ(B).

In the above, φ denotes any arbitrary function on lattices. Choosing φ = λn results in the SIVP. In this

paper, we usually take φ to be the smoothing parameter, defined in the next section.

Definition 2.7 (Guaranteed Distance Decoding) An input to GDD
φ
γ is an n-dimensional lattice basis

B and a target point t. The goal is to output a lattice point x ∈ L(B) such that dist(t,x) ≤ γ(n) · φ(B).

In this problem, we usually take φ = ν to be the covering radius of the lattice. Notice that for any lattice

basis B and target t ∈ Rn, there is always a lattice point within distance ν(B) of t. The GDD
ν
γ problem

can be seen as a variant of the CVP in which the quality of the solution is measured with respect to the

worst possible distance maxx∈Rn dist(x,L(B)) instead of the distance of the given target dist(t,L(B)).

Gaussian measures: For any vectors c,x and any s > 0, let

ρs,c(x) = e−π‖(x−c)/s‖2

be a Gaussian function centered in c scaled by a factor of s. The total measure associated to ρs,c is∫
x∈Rn ρs,c(x)dx = sn. Therefore, we can define the (continuous) Gaussian distribution around c with

parameter s by its probability density function

∀x ∈ Rn, Ds,c(x) =
ρs,c(x)

sn
.

8 Promise problems are a generalization of decision problems where one is asked whether a given input satisfies one of two
mutually exclusive properties. Unlike decision problems, these two properties are not necessarily exhaustive. The problem is,
under the promise that the given input satisfies one of the two conditions, tell which of the two properties is satisfied. If the
input satisfies neither property, then any answer is acceptable.

7

It can be seen that the expected square distance from c of a vector chosen from this distribution is ns2/(2π).

So, intuitively, one can think of Ds,c as a sphere of radius s
√

n/(2π) centered around c.

Notice that Ds,c can be expressed as the sum of n orthogonal 1-dimensional Gaussian distributions, and

each of them can be efficiently approximated with arbitrary precision using standard techniques. So, the

distribution Ds,c can be efficiently approximated. For simplicity, in this paper we work with real numbers

and assume we can sample from Ds,c exactly. In practice, when only finite precision is available, Ds,c can

be approximated by picking a fine grid, and choosing points from the grid with probability approximately

proportional to Ds,c. All our arguments can be made rigorous by selecting a sufficiently fine grid.

When c or s are not specified, we assume that they are the origin and 1 respectively. Functions are

extended to sets in the usual way; e.g., ρs,c(A) =
∑

x∈A ρs,c(x) for any countable set A.

Figure 1: A discrete Gaussian distribution

For any vector c, real s > 0, and lattice Λ, define the probability distribution DΛ,s,c over Λ by

∀x ∈ Λ, DΛ,s,c(x) =
Ds,c(x)

Ds,c(Λ)
=

ρs,c(x)

ρs,c(Λ)
.

We refer to DΛ,s,c as a discrete Gaussian distribution (see Figure 1) and as before, we sometimes omit s or

c. We will later use the following connection between Ds,c and DΛ,s,c: if x is distributed according to Ds,c

and we condition on x ∈ Λ, the conditional distribution of x is DΛ,s,c. To see why this is true, recall that

our vector x is in fact chosen from some very fine grid:9 then, the probability of obtaining some grid point

x in a sample from Ds,c is very close to αDs,c(x), where α is the volume of one cell in our grid, whereas the

probability of x ∈ Λ is very close to αDs,c(Λ). All our arguments can be made rigorous by working with a

fine enough grid.

We will show that for a large enough s, DΛ,s,c behaves in many respects like the continuous Gaussian

distribution Ds,c. In particular, vectors distributed according to DΛ,s,c have an average value very close to

c and expected squared distance from c very close to s2n/2π (for vectors chosen from Ds,c, these quantities

are exactly c and s2n/2π). In fact, we define a new lattice parameter that tells us how big s has to be in

order for this to happen. We name this parameter the smoothing parameter. We then relate this parameter

to other lattice parameters such as the length of the shortest vector in the dual lattice and the length of the

shortest maximal set of independent vectors.

Fourier transform: We briefly review some of the important properties of the Fourier transform. For

a more precise and in-depth treatment, see, e.g., [10]. The Fourier transform of a function h : Rn 7→ R is

defined to be ĥ(w) =
∫

Rn h(x)e−2πi〈x,w〉dx. From the definition we can obtain several useful formulas; first,

if h is defined by h(x) = g(x + v) for some function g and vector v then

ĥ(w) = e2πi〈v,w〉ĝ(w). (2)

9Although not needed in this paper, one can also define the conditional probability on the continuous random variables
directly. This requires some care as it involves conditioning on an event of probability zero.

8

Similarly, if h is defined by h(x) = e2πi〈x,v〉g(x) for some function g and vector v then

ĥ(w) = ĝ(w − v). (3)

Also, if we denote by hu the derivative of h in the direction of some unit vector u then its Fourier transform

is

ĥu(w) = 2πi〈u,w〉 · ĥ(w). (4)

Another important fact is that the Gaussian is its own Fourier transform, i.e., ρ̂ = ρ. More generally, for

any s > 0 it holds that ρ̂s = snρ1/s. We use the following formulation of the Poisson summation formula.

Lemma 2.8 For any lattice Λ and any10 function f : Rn → C, f(Λ) = det(Λ∗)f̂(Λ∗) where f̂ denotes the

Fourier transform of f .

An immediate application of the Poisson summation formula is the fact that the Gaussian measure ρs,c(Λ)

is maximized when the center is a lattice point c ∈ Λ.

Lemma 2.9 For any lattice Λ, positive real s > 0 and vector c, ρs,c(Λ) ≤ ρs(Λ).

Proof: Using Lemma 2.8 twice, and Equation (2) we get

ρs,c(Λ) = det(Λ∗)ρ̂s,c(Λ
∗)

= det(Λ∗)
∑

y∈Λ∗

ρ̂s,c(y)

= det(Λ∗)
∑

y∈Λ∗

e−2πi〈c,y〉ρ̂s(y)

≤ det(Λ∗)
∑

y∈Λ∗

ρ̂s(y) = ρs(Λ)

where we used that ρ̂s = snρ1/s is a positive function.

We will also use the following lemma by Banaszczyk.

Lemma 2.10 ([5], Lemma 1.5) For any c > 1/
√

2π, n-dimensional lattice Λ, and vector v ∈ Rn,

ρ(Λ \ c
√

nB) < Cn · ρ(Λ) (5)

ρ((Λ + v) \ c
√

nB) < 2Cn · ρ(Λ) (6)

where C = c
√

2πe · e−πc2

< 1.

Sum of independent vectors: We conclude this section with a simple lemma which will be used in

Section 5 to bound the length of the sum of Gaussian random variables. The lemma essentially shows that

when summing m independent random variables, the expected length of the sum grows with
√

m and not

m. (As an example to illustrate the use of the lemma, consider the case ε = 0 and z = (1, . . . , 1).)

Lemma 2.11 Let v1, . . . ,vm be m vectors chosen independently from probability distributions V1, . . . , Vm

such that Exp[‖vi‖2] ≤ l and ‖Exp[vi]‖2 ≤ ε for every i = 1, . . . , m. Then, for any z ∈ Rm, the expected

squared norm of
∑

vizi is at most Exp[‖∑m
i=1 vizi‖2] ≤ (l + ε · m)‖z‖2.

10 For this formula to hold, f needs to satisfy certain niceness assumptions. These assumptions always hold in our applications.
See [10] for more details.

9

Proof: By linearity of expectation and inequality
∑

i |zi| ≤
√

m‖z‖, we get

Exp
[∥∥∥
∑

i

vizi

∥∥∥
2]

=
∑

i,j

zizj Exp[〈vi,vj〉]

=
∑

i

z2
i Exp[‖vi‖2] +

∑

i6=j

zizj〈Exp[vi], Exp[vj]〉

≤ ‖z‖2l +
(∑

i

|zi|
)2

ε

≤ ‖z‖2(l + εm).

3 The Smoothing Parameter

In this section we define a new lattice parameter related to Gaussian measures on lattices. We name it the

smoothing parameter:

Definition 3.1 For an n-dimensional lattice Λ, and positive real ε > 0, we define its smoothing parameter

ηε(Λ) to be the smallest s such that ρ1/s(Λ
∗ \ {0}) ≤ ε.

Notice that ρ1/s(Λ
∗ \{0}) is a continuous and strictly decreasing function of s such that lims→0 ρ1/s(Λ

∗ \
{0}) = ∞ and lims→∞ ρ1/s(Λ

∗ \ {0}) = 0. So, the parameter ηε(Λ) is well defined for any ε > 0, and

ε 7→ ηε(Λ) is the inverse function of s 7→ ρ1/s(Λ
∗ \ {0}). In particular, ηε(Λ) is also a continuous and strictly

decreasing function of ε.

In this paper we are mostly interested in sequences of lattices Λn (in increasing dimension n) and the

corresponding smoothing parameters ηε(n)(Λn), where ε(n) is some negligible function of n. So, ηε(n)(Λn)

is the smallest s such that a Gaussian measure on the dual lattice Λ∗
n with parameter 1/s gives all but a

negligible amount of its weight to the origin, for some negligible function ε(n) of the lattice dimension.

The motivation for this definition (and the name ‘smoothing parameter’) is presented in Lemma 4.1.

Intuitively, it says that if we start from a uniformly random lattice point in Λ and perturb it by a Gaussian

of radius ηε(Λ), then the resulting distribution is ε/2 close to uniform on the entire space.1112 The next two

lemmas relate the smoothing parameter to some standard lattice parameters.

Lemma 3.2 For any n-dimensional lattice Λ, ηε(Λ) ≤ √
n/λ1(Λ

∗) where ε = 2−n.

Proof: We use Lemma 2.10 with c = 1 and C =
√

2πe · e−π < 1/4. By separating the right hand side of (5)

as the sum over points in
√

nB and over points outside
√

nB and rearranging, we obtain that for any lattice

Λ,

ρ(Λ \
√

nB) <
Cn

1 − Cn
ρ(Λ ∩

√
nB).

Now, let s be such that s >
√

n/λ1(Λ
∗). We have,

ρ1/s(Λ
∗ \ {0}) = ρ(sΛ∗ \ {0}) = ρ(sΛ∗ \

√
nB) <

Cn

1 − Cn
ρ(sΛ∗ ∩

√
nB) =

Cn

1 − Cn
< 2−n

where we used that the shortest vector in sΛ∗ is longer than
√

n, and therefore sΛ∗ \ √nB = sΛ∗ \ {0} and

sΛ∗ ∩√
nB = {0}.

11In fact, no uniform probability distribution can be defined over a lattice (or other countably infinite set) or over the entire
space. Formally, in order to define this property we follow [18] and capture the intuition of “starting from a random lattice
point” by working modulo the lattice. See Section 4 for details, and [18] for more motivations and explanations about working
modulo the lattice.

12In fact, a stronger property holds: at any point, the density function of the resulting distribution is within (1 ± ε) of that
of the uniform distribution. Moreover, it can be shown that this stronger property is equivalent to the assumption s ≥ ηε(B).

10

Lemma 3.3 For any n-dimensional lattice Λ and positive real ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ).

In particular, for any superlogarithmic function ω(log n), there exists a negligible function ε(n) such that

ηε(Λ) ≤
√

ω(log n) · λn(Λ).

Proof: Let s =
√

ln(2(1+1/ε)n)
π · λn(Λ). Our goal is to show that ρ1/s(Λ

∗ \ {0}) ≤ ε. The idea is to show

that for any vector v ∈ Λ of length at most λn(Λ), almost all the contribution to ρ1/s(Λ
∗) comes from those

points in Λ∗ that lie on the hyperplane orthogonal to v. Therefore, if we take n linearly independent vectors

of length at most λn(Λ), almost all the contribution to ρ1/s(Λ
∗) must come from the intersection of the

corresponding hyperplanes, which is simply the origin. Details follow.

Let v1, . . . ,vn be a set of n linearly independent vectors in Λ each of length at most λn(Λ). Define the

set Si,j ⊆ Λ∗ as the set of all points in Λ∗ whose inner product with vi is j ∈ Z. Note that for any fixed i, the

Si,j ’s form a partition of Λ∗. Moreover, since v1, . . . ,vn ∈ Λ are linearly independent, any nonzero vector in

Λ∗ must have a nonzero integer inner product with at least one of them, and hence Λ∗ \ {0} =
⋃

i(Λ
∗ \Si,0).

For any index i let ui = vi/‖vi‖2 be a vector of length 1/‖vi‖ ≥ 1/λn(Λ) in the same direction as vi.

For all j,

ρ1/s(Si,j) = e−π‖jsui‖2

ρ1/s(Si,j − jui).

Now, Si,j − jui is simply a shift of the set Si,0. In other words, there exists some vector w (which is

orthogonal to ui) such that Si,j − jui = Si,0 − w. Therefore, by Lemma 2.9,

ρ1/s(Si,j − jui) = ρ1/s(Si,0 − w) = ρ1/s,w(Si,0) ≤ ρ1/s(Si,0).

Using ‖ui‖ ≥ 1/λn(Λ), and the bound
∑

j 6=0 x−j2 ≤ 2
∑

j>0 x−j = 2/(x − 1) (valid for all x > 1), we get

ρ1/s(Λ
∗ \ Si,0) =

∑

j 6=0

ρ1/s(Si,j)

≤
∑

j 6=0

e−π(s/λn)2j2

ρ1/s(Si,0)

≤ 2

eπ(s/λn)2 − 1
ρ1/s(Si,0)

=
2

eπ(s/λn)2 − 1
(ρ1/s(Λ

∗) − ρ1/s(Λ
∗ \ Si,0)).

Solving for ρ1/s(Λ
∗ \ Si,0), we get

ρ1/s(Λ
∗ \ Si,0) ≤

2

eπ(s/λn)2 + 1
ρ1/s(Λ

∗).

Since ρ is positive,

ρ1/s(Λ
∗ \ {0}) ≤

∑

i

ρ1/s(Λ
∗ \ Si,0) ≤

2n

eπ(s/λn)2 + 1
ρ1/s(Λ

∗).

Finally, using ρ1/s(Λ
∗) = 1 + ρ1/s(Λ

∗ \ {0}) and solving for ρ1/s(Λ
∗ \ {0}), we get

ρ1/s(Λ
∗ \ {0}) ≤ 2n

eπ(s/λn)2 + 1 − 2n
<

2n

eπ(s/λn)2 − 2n
= ε

by our choice of s.

11

4 Properties of Gaussian Distributions

In this section we prove several properties of Gaussian distributions related to lattices. Our first lemma

below justifies the name given to the smoothing parameter.

Lemma 4.1 For any s > 0, c ∈ Rn, and lattice L(B), the statistical distance between Ds,c mod P(B) and

the uniform distribution over P(B) is at most 1
2ρ1/s(L(B)∗ \ {0}). In particular, for any ε > 0 and any

s ≥ ηε(B), the statistical distance is at most

∆(Ds,c mod P(B), U(P(B))) ≤ ε/2.

Proof: Let Y be the density function of the distribution over P(B) defined by (Ds,c mod P(B)):

Y (x) =
1

sn

∑

y∈L(B)

ρs,c(x + y) =
1

sn
ρs,c−x(L(B)).

By Equation (2), the Fourier transform of ρs,c−x at point w is e2πi〈x−c,w〉snρ1/s(w). Hence, using Lemma

2.8,

Y (x) = det(L(B)∗)
∑

w∈L(B)∗

e2πi〈x−c,w〉ρ1/s(w)

= det(L(B)∗)


1 +

∑

w∈L(B)∗\{0}
e2πi〈x−c,w〉ρ1/s(w)


 .

The density function of the uniform distribution over P(B) is U(x) = 1/vol(P(B)) = det(L(B)∗). Therefore

the statistical distance between Y and U is

∆(Y, U) =
1

2

∫

x∈P(B)

|Y (x) − U(x)|dx

≤ 1

2
vol(P(B)) · max

x∈P(B)
|Y (x) − det(L(B)∗)|

=
1

2
vol(P(B)) · det(L(B)∗) · max

x∈P(B)

∣∣∣
∑

w∈L(B)∗\{0}
e2πi〈x−c,w〉ρ1/s(w)

∣∣∣

≤ 1

2
· ρ1/s(L(B)∗ \ {0})

where the last inequality follows by the triangle inequality (and is in fact an equality).

Our second lemma shows that when s is large enough, some statistical properties of the discrete Gaussian

distribution DΛ,s,c are very close to those of the continuous Gaussian distribution Ds,c.

Lemma 4.2 For any n-dimensional lattice Λ, point c ∈ Rn, unit vector u, and reals 0 < ε < 1, s ≥ 2ηε(Λ),
∣∣∣ Exp
x∼DΛ,s,c

[〈x − c,u〉]
∣∣∣ ≤ εs

1 − ε
∣∣∣ Exp
x∼DΛ,s,c

[〈x − c,u〉2] − s2

2π

∣∣∣ ≤ εs2

1 − ε

Proof: For any positive real s > 0, define Λ′ = Λ/s, c′ = c/s. Notice that, for any x,

Pr{DΛ,s,c = sx} =
ρs,c(sx)

ρs,c(Λ)
=

ρc′(x)

ρc′(Λ′)
= Pr{DΛ′,c′ = x},

12

i.e., the distribution DΛ,s,c is equal to DΛ′,c′ scaled by a factor of s. Therefore, it is enough to prove the

lemma for s = 1. The general case follows by scaling the lattice by a factor s.

In the rest of the proof, we assume s = 1. We want to estimate the quantity Expx∼DΛ,c
[〈x − c,u〉j], for

j = 1, 2. Without loss of generality, assume that u is the vector (1, 0, . . . , 0), and define the functions

gj(x) = (x1 − c1)
j · ρc(x),

where x1 and c1 denote the first coordinate of x and c respectively. Notice that

Exp
x∼DΛ,c

[〈x − c,u〉j] = Exp
x∼DΛ,c

[(x1 − c1)
j] =

gj(Λ)

ρc(Λ)
.

Applying Poisson’s summation formula (Lemma 2.8) to the numerator and denominator, the above fraction

can be rewritten as

Exp
x∼DΛ,c

[〈x − c,u〉j] =
det(Λ∗) · ĝj(Λ

∗)

det(Λ∗) · ρ̂c(Λ∗)
=

ĝj(Λ
∗)

ρ̂c(Λ∗)
. (7)

The Fourier transform ρ̂c is easily computed using Equation 2: ρ̂c(y) = ρ(y)e−2πi〈y,c〉. In particular,

ρ̂c(0) = 1, |ρ̂c(y)| = ρ(y), and

|ρ̂c(Λ
∗)| =

∣∣∣∣∣∣
1 +

∑

y∈Λ∗\{0}
ρ̂c(y)

∣∣∣∣∣∣
≥ 1 − ρ(Λ∗ \ {0}) ≥ 1 − ε (8)

where the last inequality uses ηε(Λ) ≤ 1
2 ≤ 1.

We evaluate the Fourier transform ĝj (for j = 1, 2) as follows. For any j ≥ 0, let

ρ(j)
c (x) =

(
∂

∂x1

)j

ρc(x)

be the jth partial derivative of ρc(x) with respect to x1. It is easy to see that

ρ(1)
c (x) = −2π(x1 − c1)ρc(x)

ρ(2)
c (x) = (4π2(x1 − c1)

2 − 2π)ρc(x).

Taking linear combinations of the previous equations, we can express the gj functions as:

g1 = − 1

2π
ρ(1)
c

g2 =
1

4π2
ρ(2)
c +

1

2π
ρc.

Using ρ̂
(j)
c (y) = (2πiy1)

j ρ̂c(y) (see Equation 4) and the linearity of the Fourier transform, we get

ĝ1(y) = −iy1ρ̂c(y) (9)

ĝ2(y) =

(
1

2π
− y2

1

)
ρ̂c(y) (10)

We are now ready to evaluate expression (7). For j = 1, using (9) and (8), we get

∣∣∣∣∣ Exp
x∼DΛ,c

[〈x − c,u〉]
∣∣∣∣∣ ≤

∑
y∈Λ∗ |y1| · |ρ̂c(y)|

1 − ε
.

13

We use |y1| ≤
√
‖y‖2 ≤ e‖y‖

2/2 and |ρ̂c(y)| = ρ(y) to bound the numerator:

∑

y∈Λ∗

|y1||ρ̂c(y)| =
∑

y∈Λ∗\{0}
|y1| · ρ(y)

≤
∑

y∈Λ∗\{0}
e‖y‖

2/2 · e−π‖y‖2

≤
∑

y∈Λ∗\{0}
e−π‖y/2‖2

= ρ2 (Λ∗ \ {0}) ≤ ε

where the last inequality uses ηε(Λ) ≤ 1
2 . This completes the proof for j = 1.

For j = 2, combining (7), (8), (10), and |ρ̂c(y)| = ρ(y), we get

∣∣∣∣∣ Exp
x∼DΛ,c

[〈x − c,u〉2] − 1

2π

∣∣∣∣∣ =
|∑y∈Λ∗ y2

1 · ρ̂c(y)|
ρ̂c(Λ∗)

≤
∑

y∈Λ∗ y2
1 · ρ(y)

1 − ρ(Λ∗ \ {0}) .

This time we use y2
1 ≤ ‖y‖2 ≤ e‖y‖

2

to bound the numerator:

∑

y∈Λ∗

y2
1 · ρ(y) ≤

∑

y∈Λ∗\{0}
e‖y‖

2 · e−π‖y‖2 ≤
∑

y∈Λ∗\{0}
e−π‖y/2‖2

= ρ2 (Λ∗ \ {0}) ≤ ε.

As a corollary, we obtain the following lemma.

Lemma 4.3 For any n-dimensional lattice Λ, vector c ∈ Rn, and reals 0 < ε < 1, s ≥ 2ηε(Λ), we have

∥∥∥ Exp
x∼DΛ,s,c

[x − c]
∥∥∥

2

≤
(

ε

1 − ε

)2

s2n

Exp
x∼DΛ,s,c

[‖x − c‖2] ≤
(

1

2π
+

ε

1 − ε

)
s2n.

Proof: Take any orthonormal basis u1, . . . ,un. Using Lemma 4.2, we get

∥∥∥ Exp
x∼DΛ,s,c

[x − c]
∥∥∥

2

=

n∑

i=1

(
Exp

x∼DΛ,s,c

[〈x − c,ui〉]
)2

≤ ns2 ·
(

ε

1 − ε

)2

and

Exp
x∼DΛ,s,c

[‖x− c‖2] =

n∑

i=1

Exp
x∼DΛ,s,c

[〈x − c,ui〉2] ≤ ns2 ·
(

1

2π
+

ε

1 − ε

)
.

The remaining lemmas describe some additional properties of the discrete Gaussian distribution. These

lemmas are only used in our GapSVP result of Subsection 5.4.

Lemma 4.4 For any n-dimensional lattice Λ, vector c ∈ Rn, and reals 0 < ε < 1, s ≥ ηε(Λ), we have

Pr
x∼DΛ,s,c

{‖x− c‖ > s
√

n} ≤ 1 + ε

1 − ε
· 2−n.

14

Proof: As in the proof of Lemma 4.2, it is enough to prove the lemma for s = 1. We can write

Pr
x∼DΛ,c

{‖x− c‖ >
√

n} =
ρ((Λ − c) \ √nB)

ρc(Λ)
.

By Lemma 2.10 with c = 1, the numerator is at most 2−nρ(Λ). By the Poisson summation formula (Lemma

2.8),

ρc(Λ) = det(Λ∗)ρ̂c(Λ
∗)

= det(Λ∗)
∑

y∈Λ∗

ρ̂c(y)

= det(Λ∗)
∑

y∈Λ∗

e−2πi〈c,y〉ρ̂(y)

= det(Λ∗)(1 + δ)

where |δ| ≤ |ρ(Λ∗\{0})| ≤ ε. Therefore ρc(Λ) ≥ det(Λ∗)(1−ε), ρ(Λ) ≤ det(Λ∗)(1+ε), and 2−nρ(Λ)/ρc(Λ) ≤
2−n 1+ε

1−ε .

Lemma 4.5 Let Λ be an n-dimensional lattice, c,v be two points in Rn, 0 < ε < 1 and s ≥ ηε(Λ) such that

dist(v, Λ∗) ≥ √
n/s. Then,

∣∣∣ Exp
x∼DΛ,s,c

[e2πi〈x,v〉]
∣∣∣ ≤ 1 + ε

1 − ε
· 2−n.

Proof: Define Λ′ = Λ/s, c′ = c/s, and v′ = sv. As in the proof of Lemma 4.2, the distribution DΛ,s,c is

equal to DΛ′,c′ scaled by a factor of s. Therefore, it is enough to prove the lemma for the case s = 1.

Define the function

g(x) = e2πi〈x,v〉 · ρc(x)

and notice that

Exp
x∼DΛ,c

[e2πi〈x,v〉] =
g(Λ)

ρc(Λ)
.

Applying Poisson’s summation formula (Lemma 2.8) to the numerator and denominator, the above fraction

can be rewritten as

Exp
x∼DΛ,c

[e2πi〈x,v〉] =
det(Λ∗) · ĝ(Λ∗)

det(Λ∗) · ρ̂c(Λ∗)
=

ĝ(Λ∗)

ρ̂c(Λ∗)
. (11)

As in the proof of Lemma 4.2, we have ρ̂c(y) = ρ(y)e−2πi〈y,c〉 and |ρ̂c(Λ
∗)| ≥ 1 − ρ(Λ∗ \ {0}). By

Equation 3, the Fourier transform of g is given by

ĝ(y) = ρ̂c(y − v) = ρ(y − v)e−2πi〈y−v,c〉.

Combined with (11), we obtain
∣∣∣∣∣ Exp
x∼DΛ,c

[e2πi〈x,v〉]

∣∣∣∣∣ ≤
ρ(Λ∗ − v)

1 − ρ(Λ∗ \ {0}) .

Since dist(v, Λ∗) ≥ √
n, Lemma 2.10 with c = 1 implies that

ρ(Λ∗ − v) ≤ 2−nρ(Λ∗) = 2−n(1 + ρ(Λ∗ \ {0})

so we have ∣∣∣∣∣ Exp
x∼DΛ,c

[e2πi〈x,v〉]

∣∣∣∣∣ ≤ 2−n 1 + ρ(Λ∗ \ {0})
1 − ρ(Λ∗ \ {0}) .

15

Using the lemma, we obtain the following easy corollary.

Corollary 4.6 Let Λ be an n-dimensional lattice, w, c,v ∈ Rn, 0 < ε < 1 and s ≥ ηε(Λ) such that

dist(v, Λ∗) ≥ √
n/s. Then,

∣∣∣ Exp
x∼DΛ,s,c

[cos(2π〈x + w,v〉)]
∣∣∣ ≤ 1 + ε

1 − ε
· 2−n

Proof:
∣∣∣ Exp
x∼DΛ,s,c

[cos(2π〈x + w,v〉)]
∣∣∣ =

∣∣∣<
(

Exp
x∼DΛ,s,c

[e2πi〈x+w,v〉]
)∣∣∣

≤
∣∣∣ Exp
x∼DΛ,s,c

[e2πi〈x+w,v〉]
∣∣∣

=
∣∣∣ Exp
x∼DΛ,s,c

[e2πi〈x,v〉]
∣∣∣

5 Worst-case to Average-case Connection

In this section we show that if various lattice problems are hard to solve in the worst case, then a certain

computational problem is hard to solve on the average. We start in Subsection 5.1 with a description of the

average-case problem. We then describe our reductions. Following [21, 22], the reductions are performed in

two steps. First, in Subsection 5.2, we present a reduction from an intermediate worst-case lattice problem

to the average-case problem. This is the core of our proof. Then, in Subsection 5.3, we show that the

intermediate worst-case lattice problem is at least as hard as various other computational problems on

lattices, such as SIVP and GapCRP. We remark that the intermediate worst-case problem is introduced

to present the worst-case to average-case reduction in a simpler setting where the worst-case algorithm

makes a single call to the average-case oracle. This allows for a cleaner and simpler probabilistic analysis,

and it is well worth the effort of introducing one additional and perhaps artificial problem. Work prior to

[21, 22] reduced standard worst-case lattice problems (like SIVP) directly to the average-case problem by

making (polynomially) many random calls to the average-case oracle, resulting in an overall more complex

probabilistic argument.

In Subsection 5.4 we present our reduction from GapSVPÕ(n) to the average-case problem. The proof

of this result requires some additional machinery, and relies on the results proved in Subsections 5.2 and 5.3

as well as techniques from [1]. We remark that a weaker result can be derived directly from the results in

Subsection 5.3. Namely, using standard reductions between lattice problems (see [23, Theorem 7.12]), our

Õ(n) approximation to SIVP immediately implies a Õ(n2) approximation to GapSVP. Hence, Subsection

5.4 is only needed in order to reduce the approximation factor to Õ(n).

5.1 The average-case problem

Our average-case problem is the problem of finding small nonzero solutions to random linear systems of

modular equations.

Definition 5.1 The small integer solution problem SIS (in the `2 norm) is: given an integer q, a matrix

A ∈ Zn×m
q and a real β, find a nonzero integer vector z ∈ Zm \ {0} such that Az = 0 mod q and ‖z‖ ≤ β.

Equivalently, the SIS problem asks to find a vector z ∈ Λq(A) \ {0} with ‖z‖ ≤ β where

Λq(A) = {z ∈ Zm : Az = 0 mod q}

16

is the set of all integer solutions to the system of linear equations modulo q defined by matrix A.

In the definition of SIS it is implicitly assumed that a solution of length ‖z‖ ≤ β exists (for otherwise

the problem is trivially hard). The following lemma gives sufficient conditions under which SIS instances

are guaranteed to have a solution.

Lemma 5.2 For any q, A ∈ Zn×m
q and β ≥ √

mqn/m, the SIS instance (q,A, β) admits a solution, i.e.,

there exists a vector z ∈ Zm \ {0} such that Az = 0 mod q and ‖z‖ ≤ β.

Proof: The proof is by the pigeon-hole principle. Consider all vectors z ∈ Zm with coordinates in {0, . . . , qn/m}.
There are more than qn such vectors and hence there must exist two such vectors z1 6= z2 for which

Az1 = Az2 mod q. Then, z1 − z2 6= 0 satisfies A(z1 − z2) = 0 mod q and moreover, ‖z1 − z2‖ ≤ √
mqn/m

since all its coordinates are between −qn/m and qn/m.

We want to study the average-case complexity of the SIS problem when β ≥ √
mqn/m satisfies the

condition in Lemma 5.2, and SIS instances (q,A, β) are guaranteed to have a solution. In order to define

probability ensembles over SIS instances, it is convenient to use the number of equations n as a security

parameter, and consider families of SIS instances indexed by functions q(n), m(n) and β(n) that express

the other parameters in terms of n.

Definition 5.3 For any functions q(n), m(n) and β(n), let

SISq,m,β = {(q(n), U(Zn×m(n)
q(n)), β(n))}n

be the probability ensemble over SIS instances (q(n),A, β(n)) where A is chosen uniformly at random among

all n × m(n) integer matrices modulo q(n). When β(n) =
√

m(n)q(n)n/m(n) is the bound specified in

Lemma 5.2, the parameter β(n) is often omitted, and we simply write SISq,m.

Notice that for the instances of SISq,m,β to be of size polynomial in n, the number of variables must be

a polynomially bounded function m(n) = nO(1), but q(n) and β(n) can be exponentially large. However,

we will be mostly interested in instances where q(n) and β(n) are also polynomially bounded functions of

the security parameter n. Moreover, we typically choose values of q and m satisfying q(n)n/m(n) = O(1), so

that β(n) =
√

m(n)q(n)n/m(n) = O(
√

m(n)). In the next two subsections we show that for an appropriate

choice of parameters q, m and β, solving SISq,m,β on the average is as hard as solving worst-case instances

of several standard lattice problems such as SIVP and GapCRP. The reduction from GapSVP is shown

in Subsection 5.4. For technical reasons, in that reduction we need to consider a variant of the SIS problem,

defined below, which extends SIS with the additional requirement that the solution vector must contain at

least one odd coordinate.

Definition 5.4 The SIS
′ problem (in the `2 norm) is: given an integer q, a matrix A ∈ Zn×m

q and a real

β, find an integer vector z ∈ Zm \ 2Zm such that Az = 0 mod q and ‖z‖ ≤ β.

The distribution ensemble SIS
′
q,m,β = {(q(n),A, β(n))}n is defined analogously to SISq,m,β by choosing

matrix A ∈ Zn×m(n)
q(n) uniformly at random. Similarly, when β(n) =

√
m(n)q(n)n/m(n), we omit the parameter

β, and simply write SIS
′
q,m. Clearly, any solution to SIS

′
q,m,β is also a solution to SISq,m,β because 0 /∈

Zm \ 2Zm. The next lemma shows that when the modulus q(n) is odd, SIS
′
q,m,β is not any harder than

SISq,m,β .

Lemma 5.5 For any odd integer q ∈ 2Z + 1, and SIS
′ instance I = (q,A, β), if I has a solution as an

instance of SIS, then it also has a solution as an instance of SIS
′. Moreover, there is a polynomial time

algorithm that on input a solution to a SIS instance I, outputs a solution to the same SIS
′ instance I.

17

Proof: Assume q is odd, and let z be a solution to SIS instance (q,A, β), i.e., assume z ∈ Zm \ {0},
Az = 0 mod q and ‖z‖ ≤ β. Compute the largest power i such that 2i divides all the coordinates of z, and

output z/2i. Since z is nonzero, i is well defined and can be easily computed. Moreover, z/2i has at least

one odd coordinate, and since the modulus q(n) is odd, z/2i satisfies A(z/2i) = 0 mod q.

We end this subsection with two simple observations on the average-case hardness of SIS. These obser-

vations are not used in the following subsections and can be safely skipped at first reading.

First, observe that for any A, Λq(A) forms a lattice. Therefore, the SIS problem is closely related

to the shortest vector problem (SVP) on lattices of the form Λq(A). More specifically, finding shortest

nonzero vectors in a random lattice Λq(A) is at least as hard as solving SISq,m on the average. So, all

our results can be formulated as reductions from solving various lattice problems (including GapSVPγ for

factors γ(n) = Õ(n)) in the worst case to solving SVP on the average (for random lattices of the form

Λq(A)).

Next, we observe that SIS can be reduced to the problem of finding collisions for an appropriately defined

family of hash functions. For any q(n), m(n) and d(n), define the family of functions

Hq,m,d = {fA : {0, . . . , d(n) − 1}m(n) → Zn
q(n) | A ∈ Zn×m(n)

q(n) }

where n is a security parameter and fA(x) = Ax mod q(n). A typical choice of parameters is q(n) = nO(1),

d(n) = 2 and m(n) > n log2 q(n) = Θ(n log n). A collision is a pair of distinct inputs x 6= y (both in the

domain {0, . . . , d(n) − 1}m(n) of fA) that are mapped to the same output fA(x) = fA(y). Notice that if

m(n) > n logd(n) q(n), then the domain {0, . . . , d(n) − 1}m(n) is larger than the range Zn
q(n), and, by the

pigeon hole principle, the functions fA are guaranteed to have collisions (x,y). We argue that these collisions

are computationally hard to find when A is chosen at random. Observe that if (x,y) is a collision for fA,

then z = x − y ∈ Λq(A) \ {0} is a nonzero lattice vector of length at most β(n) = (d(n) − 1)
√

m(n). So,

finding collisions on the average when A is chosen uniformly at random is at least as hard as solving random

instances of SISq,m,β for the same value of q(n) and m(n), and β(n) = (d(n)−1)
√

m(n). This gives collision

resistant hash functions that are provably secure based on the worst-case intractability assumption of lattice

approximation problems (e.g., SIVPγ , GapCRPγ , GapSVPγ) for approximation factors γ(n) = Õ(n)

almost linear in the dimension of the lattice.

5.2 Incremental guaranteed distance decoding

In this section we show that solving SIS on the average with non-negligible probability is at least as hard

as solving worst-case instances of the following IncGDD problem (originally introduced in [22] in a slightly

different form). We remind the reader that we introduce IncGDD for the sole purpose of simplifying the

worst-case to average-case reduction. In particular, we will show that IncGDD can be solved (in the worst-

case) by making a single call to the average-case SIS oracle, resulting in a simpler probabilistic analysis

compared to reductions that make several oracle calls. In the next subsection we show that several other

more interesting lattice problems (like SIVP and GapCRP) can be solved in the worst-case by making many

calls to an IncGDD oracle. Although these reductions require the solution of several IncGDD instances,

they are conceptually easier to analyze because they are standard worst-case to worst-case reductions.

Definition 5.6 (Incremental Guaranteed Distance Decoding) An input to IncGDD
φ
γ,g is an n-dimensional

lattice basis B, a set of n linearly independent vectors S ⊂ L(B), a target point t, and a real r > γ(n) ·φ(B).

The goal is to output a lattice vector s ∈ L(B) such that ‖s− t‖ ≤ (‖S‖/g) + r.

In other words, the IncGDD problem asks to find a lattice vector within distance (‖S‖/g) + r from the

given target. One possible choice of parameters is, for example, g = 4, γ(n) =
√

n/2 and φ = λn. Often,

‖S‖ is much larger than r, so the dominant part in the distance bound is ‖S‖/g, or ‖S‖/4 for our choice

18

of parameters. Notice that using the nearest plane algorithm [4] one can always find (in polynomial time)

a lattice point within distance (
√

n/2)‖S‖ from any target. Here we are trying to do much better than

that. However, it is not always possible to find a lattice vector within distance ‖S‖/4 of a given target

vector: for example, consider the integer lattice Zn generated by the identity matrix B = I. If we choose

the set S = I and the target point t = (1/2, . . . , 1/2) then there is no lattice point at distance strictly less

than
√

n/2 = (
√

n/2)‖S‖ from the target. The r term in the distance bound of the IncGDD problem is

introduced to guarantee the existence of a solution. For example, using the above choice of parameters, we

get r > γ(n)φ(B) = (
√

n/2)λn(B), and a lattice point within this distance always exists by the nearest

plane algorithm. To summarize, one can think of IncGDD as asking to find a lattice point within distance

roughly ‖S‖/g from the target, provided ‖S‖ is not too small.

We now give a high-level overview of the reduction. Our goal is to reduce worst-case instances of IncGDD

to random instances of SIS. In other words, we want to solve an IncGDD instance (B,S, t, r) with the help

of an oracle F that on input a random matrix A, returns with non-negligible probability a short nonzero

integer vector z such that Az = 0. To fix some parameters, assume that we want to reduce IncGDD with,

say, g = 4 (we ignore γ and φ in this discussion) to SIS with q(n) = n4, m(n) = n log n, and β(n) = n (it

is easy to check that for large enough n, this choice satisfies the conditions in Lemma 5.2). For now, let

us make two simplifying assumption: the target vector t is the origin 0, and S = B. Although the former

assumption makes the IncGDD instance trivial (0 ∈ L(B) is always a solution), it helps in explaining the

main ideas in the reduction. We will later indicate how to avoid these assumptions.

With these assumptions in place, we can describe a simplified form of the reduction. At the core of the

reduction is a sampling procedure S. This procedure generates a pair (c,y) where c is distributed uniformly

in P(B) and y ∈ L(B) is a lattice vector close to c. The reduction starts by applying the sampling procedure

m times to obtain m pairs (c1,y1), . . . , (cm,ym). We then partition the parallelepiped P(B) into qn smaller

parallelepipeds, naturally corresponding to elements of Zn
q . For each ci, let c̃i be the ‘lower-left’ corner of

the parallelepiped of ci, that is, c̃i = Bbq ·B−1cic/q. Notice that the distance between ci and c̃i is at most

n‖B‖/q = ‖B‖/n3. Next, let ai ∈ Zn
q be the group element corresponding to the parallelepiped that contains

ci. More precisely, we define ai = bq · B−1cic mod q. Since each ci is uniformly distributed in P(B), each

ai is uniformly distributed in Zn
q . We can therefore apply the oracle F to the matrix A = [a1, . . . ,am] to

find a small combination of the ai that sums to zero in Zn
q . That is, we find a vector z such that Az = 0

and ‖z‖1 ≤ √
m‖z‖2 ≤ √

mβ ≤ n2. Crucially, the same combination applied to c̃i yields a lattice vector: if

we denote by C̃ the matrix [c̃1, . . . , c̃m], we see that C̃z ∈ L(B). We complete the argument by noting that

the vector Cz is close to both C̃z and Yz (where C and Y are defined similarly to C̃). Since the latter two

vectors are lattice vectors, we obtain that (C̃−Y)z is a lattice vector close to 0, as required. In slightly more

detail, it turns out that the dominant part in the distance between C̃z and Yz is typically that between Cz

and C̃z. By a triangle inequality, this distance is at most ‖z‖1‖B‖/n3 ≤ ‖B‖/n � ‖B‖/4, hence we obtain

a solution to IncGDD.

Let us indicate how to avoid the two simplifying assumptions we have made. First, IncGDD asks not

for a lattice vector close to the origin, but for a lattice vector close to a given target t. This is taken care

of by modifying the sampling procedure so that it outputs a pair (c,y) where y is close to c + t′ (instead

of c) where t′ is now an input to the sampling procedure. By carefully choosing the vectors t′ used in each

of the m applications of the sampling procedure, we can guarantee that with some reasonable probability,

the output of the reduction will be a vector close to t. The second issue to consider is that in general, S

is not equal to B and typically, ‖S‖ � ‖B‖. This is taken care of by first mapping the vectors ci to the

parallelepiped P(S) and then partitioning P(S) into qn smaller parallelepipeds, as we did before with P(B).

This makes the dominant distance roughly ‖S‖/q, as required. The mapping requires some care, as we want

to map the uniform distribution over P(B) to the uniform distribution over P(S). Finally, let us mention

that although we have ignored so far the distance between Cz and Yz, this distance ends up determining

the approximation factor achieved by the reduction. Because of this, in the reduction below we will make

an effort to give a good bound on this distance.

19

We can now describe the reduction in more detail. We start with the sampling procedure S. This

procedure takes as input a lattice B and two additional parameters t and s. Provided s is not too small,

the output of the procedure is a pair of vectors (c,y) with the following properties. The distribution of c is

very close to uniform on P(B). The vector y is a lattice vector distributed according to a discrete Gaussian

distribution with parameter s around t + c. Since s is typically small, we can think of the procedure as

outputting a uniform vector c ∈ P(B) and a lattice vector y close to c + t.

Lemma 5.7 (Sampling Lemma) There is a probabilistic polynomial time algorithm S(B, t, s) that on

input an n-dimensional lattice B ∈ Rn×n, a vector t ∈ Rn, and a real s ≥ ηε(B) (for some ε > 0), outputs

a pair of vectors (c,y) ∈ P(B) × L(B) such that

• the distribution of vector c is within statistical distance ∆(c, U(P(B))) ≤ ε/2 from the uniform distri-

bution over P(B);

• for any ĉ ∈ P(B), the conditional distribution of y given c = ĉ is DL(B),s,(t+ĉ).

Proof: The sampling procedure S(B, t, s) is the following:

1. Generate a noise vector r with probability density Ds,t.

2. Output c = −r mod P(B) and y = r + c.

For the first property, notice that by Lemma 4.1 and s ≥ ηε(B), the statistical distance between the distri-

bution of c and the uniform distribution is at most

∆(c, U(P(B))) = ∆(−Ds,t mod P(B), U(P(B)))

= ∆(Ds,−t mod P(B), U(P(B)))

≤ ε/2.

For the second property, fix any ĉ ∈ P(B). Then, by definition, the distribution of r + ĉ is Ds,t+ĉ. Condi-

tioning on c = ĉ is the same as conditioning on r + ĉ ∈ L(B). As discussed in Section 2, the distribution of

r + ĉ conditioned on r + ĉ ∈ L(B) is DL(B),s,t+ĉ, as required.

Next, we describe a procedure which we call the combining procedure A. This procedure is the heart

of the worst-case to average-case reduction. It maps the vectors ci to vectors in the parallelepiped P(S)

and group elements ai, and then applies the oracle F . At first reading, we suggest to skip the proof of the

lemma, and jump directly to Theorem 5.9.

Lemma 5.8 (Combining Procedure) There is a probabilistic polynomial time oracle algorithm AF (B,S,C, q)

that on input an n-dimensional lattice B ∈ Rn×n, a full-rank sublattice S ⊂ L(B), m vectors C =

[c1, . . . , cm] ∈ P(B)m, and a positive integer q, makes a single oracle call F(A) = z (with A ∈ Zn×m
q)

and outputs a vector x ∈ Rn such that

• if the input matrix C ∈ P(B)m is distributed uniformly at random, then the query matrix A ∈ Zn×m
q

is also uniformly distributed;

• if the oracle’s answer z = F(A) is in Λq(A), then the output vector x belongs to the lattice L(B);

• the distance between the output vector x and Cz is at most
√

mn‖S‖ · ‖z‖/q.

Proof: The procedure AF (B,S,C, q) is the following (see also the box labelled AF in Figure 2).

1. Generate m uniformly random lattice vectors vi ∈ L(B) mod P(S) (this can be done using

standard techniques, see for example [21, Proposition 2.9]).

20

2. Define the matrix W = [w1, . . . ,wm] where wi = vi + ci mod P(S) for all i = 1, . . . , m.

3. Define the query A = [a1, . . . ,am] where ai = bq · S−1wic ∈ Zn
q for all i = 1, . . . , m.

4. Invoke the oracle F on input A to obtain an integer vector z = F(A).

5. Output the vector x = (C− W + SA/q)z.

We now prove the first property. We start by noting that if c is uniformly distributed in P(B) and v

is chosen uniformly from the vectors in L(B) mod P(S), then c + v mod P(S) is distributed uniformly in

P(S). This holds since the sets (v + P(B)) mod P(S) for all v ∈ L(B) mod P(S) form a partition of P(S)

into sets of equal volume. Thus, we see that if C ∈ P(B)m is distributed uniformly then W is distributed

uniformly in P(S)m. From this, it easily follows that A is distributed uniformly in Zn×m
q , as required.

We now prove the second property. Assume z ∈ Λq(A), and consider the output vector

x = (C− W + SA/q)z =

m∑

i=1

(ci − wi)zi + S(Az/q).

Notice that for any i = 1, . . . , m the vector

ci − wi = ((ci + vi) − wi) − vi

belongs to the lattice L(B) because ci + vi ≡ wi modulo L(S) ⊆ L(B) and vi ∈ L(B). Also, Az/q is an

integer vector because Az = 0 mod q. This proves that x belongs to the lattice L(B) because it is an integer

linear combination of lattice vectors.

For the third property, we bound the distance between x and Cz as follows:

‖x− Cz‖ =
∥∥∥

m∑

i=1

(wi − (S/q)ai)zi

∥∥∥

=
1

q

∥∥∥S
m∑

i=1

(ui − buic)zi

∥∥∥,

where ui = qS−1wi. Since for each i, all entries of ui −buic are bounded by 1, the vector
∑m

i=1(ui −buic)zi

has all entries bounded by
∑

i |zi| ≤
√

m‖z‖. It follows by triangle inequality that

∥∥∥S
m∑

i=1

(ui − buic)zi

∥∥∥ ≤ n
√

m‖z‖‖S‖

and ‖x − Cz‖ ≤ n
√

m‖z‖‖S‖/q.

We are now ready to reduce IncGDD to SIS using the procedures S and A from the previous lemmas.

In the theorem below, all parameters are implicitly assumed to have bit-size polynomial in the security

parameter, i.e., g(n), q(n) = 2nO(1)

. In fact, in most of the applications of this theorem considered in

this paper, the parameters will be smaller, typically polynomial in n. For example, one can take, say,

g = 8 to be a constant, q(n) = n3 (or any other sufficiently large polynomial), m(n) = n logn, and

β(n) =
√

m(n)q(n)n/m(n) = 8
√

n log n the bound from Lemma 5.2 so that SISq,m,β is guaranteed to admit

a solution. It is easy to check that q(n) satisfies the condition in the theorem below, yielding approximation

factor γ(n) = β(n)
√

n = 8n
√

log n = O(n
√

log n).

Theorem 5.9 For any function g(n) > 0, polynomially bounded functions m(n), β(n) = nO(1), negligible

function ε(n) = n−ω(1), and q(n) ≥ g(n)n
√

m(n)β(n), there is a probabilistic polynomial time reduction from

solving IncGDD
ηε
γ,g for γ(n) = β(n)

√
n on n-dimensional instances in the worst case to solving SISq,m,β on

the average with non-negligible probability.

21

Proof: Many of our parameters depend on n; for notational convenience, we often omit this dependency

and write m instead of m(n), and similarly for γ, β, g, q, ε, and δ. Let F be an oracle that solves SISq,m,β on

the average. In other words, we assume that on input a uniformly random matrix A ∈ Zn×m
q , the oracle call

F(A) returns a nonzero vector z ∈ Λq(A) of length at most ‖z‖ ≤ β with some non-negligible probability

δ(n) = n−O(1).

On input an IncGDD
ηε
γ,g instance (B,S, t, r), the reduction performs the following operations (see Figure

2 for a high-level overview). The goal of the first step is to ‘guess’ how to choose the vectors ti given to the

sampling procedure. As we shall see later, with reasonable probability, this guess causes the output of the

reduction to be a lattice vector close to t.

1. Pick an index j ∈ M = {1, . . . , m} and integer α ∈ B = {−β, . . . ,−1, 1, . . . , β} uniformly

at random. For each i ∈ M , define the vector

ti =

{
−t/α if i = j

0 otherwise

2. For each i = 1, . . . , m, compute the pair

(ci,yi) = S(B, ti, 2r/γ)

using the sampling procedure of Lemma 5.7, each time with independent randomness.

3. Define the matrices C = [c1, . . . , cm] and Y = [y1, . . . ,ym].

4. Finally, call the combining algorithm AF (B,S,C, q) = x using F as an oracle, and output

the vector s = x − Yz, where z = F(A) is the answer returned by F to A’s query A.

S

S

S

AF

W ∈ P(S)m A ∈ Z
n×m

qC ∈ P(B)m

t1

t2

tm

c1

c2

cm

y1

y2

ym

Y ∈ L(B)m

F
z x

z

st

Figure 2: A diagram of the worst-case to average-case reduction

We want to bound from below the success probability of the reduction, i.e., the probability that the

output vector s satisfies s ∈ L(B) and ‖s− t‖ ≤ (‖S‖/g) + r. We start by finding some ‘good’ values for j

and α. To this end, consider the output z′ = F(A′) of the oracle on a uniformly random input A′ ∈ Zn×m
q .

For each j′ ∈ M, α′ ∈ B denote by δj′,α′ the probability that this output z′ satisfies

(z′j′ = α′) ∧ (z′ ∈ Λq(A
′) \ {0}) ∧ (‖z′‖ ≤ β).

Since any nonzero vector z ∈ Zm with ‖z‖ ≤ β must have at least one coordinate in the set B,

∑

j′∈M,α′∈B

δj′,α′ ≥ δ.

Hence, there must exist some j′ ∈ M, α′ ∈ B for which δj′,α′ ≥ δ/2βm and is thus non-negligible. In the

rest of the proof we consider the execution of the reduction for any fixed values of j and α and show that its

22

success probability is at least δj,α/3, up to a negligible term. In particular, for j = j′, α = α′, the reduction

is successful with a non-negligible probability. This would complete the proof since the event j = j′, α = α′

happens with probability 1/2βm, which is non-negligible.

So in the rest of the proof, fix some values of j and α. Let H be the event

H
def
= (zj = α) ∧ (z ∈ Λq(A) \ {0}) ∧ (‖z‖ ≤ β) (12)

where A and z are the random variables that appear in the reduction. In other words, H is the event

that oracle F is successful and the values j and α satisfy the desired condition zj = α. We now show that

the input C to the combining procedure is very close to uniform, and that this implies that H happens

with probability very close to δj,α. We will later see that conditioned on H , the reduction succeeds with

probability 1/3.

Each column ci of C is chosen by running the sampling algorithm S(B, ti, s) = (ci,yi) for some vector

ti ∈ Rn and s = 2r/γ > 2ηε(B). It follows from Lemma 5.7 that for each i, the statistical distance between

ci and the uniform distribution over P(B) is at most ε/2. Since the vectors ci are independent, we have

∆(C, U(P(B)m)) ≤
m∑

i=1

∆(ci, U(P(B))) ≤ εm/2. (13)

By Lemma 5.8, on input a uniformly random matrix C′ ∈ P(B)m, the distribution of the query A ∈ Zn×m
q

asked by AF (B,S,C′, q) is also uniform. Therefore, on a uniform input C′, the vector z = F(A) obtained

by the combining procedure satisfies the conditions in (12) with probability δj,α. By (13) and the properties

of the statistical distance, it follows that the event H holds with probability at least δj,α − εm/2, which is

δj,α up to a negligible term.

To complete the proof, we show that the success probability of the reduction conditioned on H is at least

1/3. We in fact show the stronger fact that the success probability of the reduction is at least 1/3 conditioned

on any fixed values of C, the oracle query A, and the answer z = F(A) for which H is satisfied. So in the

following, fix some j, α, C, A, and z for which zj = α, z ∈ Λq(A)\{0} and ‖z‖ ≤ β. In particular, if we define

T = [t1, . . . , tm], we get Tz = −t. We know from Lemma 5.8 that the vector x = AF (B,S,C, q) belongs

to the lattice L(B) and is within distance n
√

m‖z‖‖S‖/q ≤ ‖S‖/g from Cz. We also know from Lemma 5.7

that the vectors yi are distributed independently according to DL(B),s,(ci+ti), where s = 2r/γ > 2ηε. Since

x and y1, . . . ,ym are all lattice vectors, and z ∈ Zm, also s = x− Yz belongs to the lattice L(B). We need

to compute the probability that ‖s− t‖ ≤ (‖S‖/g) + r. By the triangle inequality,

‖s− t‖ ≤ ‖x− Cz‖ + ‖(C− Y)z − t‖ ≤ ‖S‖
g

+ ‖(Y − (C + T))z‖.

So, all we have to do is to bound the probability that ‖(Y − (C + T))z‖ ≤ r. By Lemma 4.3, since each

vector yi is distributed according to DL(B),s,(ci+ti), we have

Exp[‖yi − (ci + ti)‖2] ≤
(

1

2π
+

ε

1 − ε

)
s2n

and

‖Exp[yi − (ci + ti)]‖2 ≤
(

ε

1 − ε

)2

s2n.

Since the vectors y1, . . . ,ym are chosen independently, we can apply Lemma 2.11 and get

Exp

[∥∥∥
m∑

i=1

(yi − (ci + ti))zi

∥∥∥
2
]

≤
(

1

2π
+

ε

1 − ε
+

(
ε

1 − ε

)2

m

)
‖z‖2s2n

≤ ‖z‖2s2n

6

23

for all sufficiently large n. Finally, using ‖z‖ ≤ β, s = 2r/γ and γ = β
√

n, we get

Exp[‖(Y − (C + T))z‖2] ≤ ‖z‖2s2n

6
≤ 2

3
r2

and, by Markov inequality, we get

Pr{‖(Y − (C + T))z‖ > r} = Pr{‖(Y − (C + T))z‖2 > r2} ≤ 2

3
.

This proves that the conditional probability of ‖s− t‖ ≤ (‖S‖/g) + r is at least 1/3.

5.3 Other worst-case problems

In Section 5.2 we have shown that solving SIS on the average is at least as hard as solving IncGDD in the

worst case. In this section we prove that solving SIS on the average is at least as hard as solving many other

standard lattice problems, like SIVP and GapCRP. These results are obtained as corollaries to Theorem 5.9

using straightforward worst-case to worst-case reductions among lattice problems. We now describe three

such reductions. The first two are taken from [22] and for completeness, we include a sketch of their proof.

Lemma 5.10 For any γ(n) ≥ 1 and any φ, there exists a reduction from GIVP
φ
8γ to IncGDD

φ
γ,8.

Proof: Given a basis B, our goal is to construct a set of n linearly independent vectors S of length ‖S‖ ≤
8γ(n)φ(B). We do this by an iterative process. Initially, we set S = B. At each step, we identify the

longest vector in S, say si. We then take t to be a vector orthogonal to s1, . . . , si−1, si+1, . . . , sn of length

‖S‖/2. We apply the IncGDD oracle with the instance (B,S, t, ‖S‖/8). If it fails, we abort and output S.

Otherwise, we obtain a lattice vector u within distance at most (‖S‖/8) + ‖S‖/8 = ‖S‖/4 from t. Notice

that ‖u‖ ≤ 3‖S‖/4 and that it is linearly independent from the vectors in s1, . . . , si−1, si+1, . . . , sn. We then

replace si with u and repeat the process.

Notice that when the oracle call fails, it must be the case that ‖S‖/8 ≤ γ(n)φ(B), and hence ‖S‖ ≤
8γ(n)φ(B), as required. Moreover, it is not difficult to argue that this procedure terminates after a polynomial

number of steps. For instance, one can note that log Πi‖si‖ decreases by a constant at each step, and that

its initial value is polynomial in the input size.

Lemma 5.11 For any γ(n) ≥ 1 and any φ, there exists a reduction from GDD
φ
3γ to IncGDD

φ
γ,8.

Proof: Given a basis B and a vector t, our goal is to find a lattice vector within distance 3γ(n)φ(B) of t.

First, we apply the reduction in Lemma 5.10 to obtain a set S of n linearly independent vectors of length at

most ‖S‖ ≤ 8γ(n)φ(B). We then search for a value r for which an oracle call with (B,S, t, r/2) fails but an

oracle call with (B,S, t, r) succeeds. Since the former oracle call fails, it must be the case that r ≤ 2γ(n)φ(B).

The latter oracle call yields a lattice vector within distance ‖S‖/8+r ≤ γ(n)φ(B)+2γ(n)φ(B) = 3γ(n)φ(B),

as required.

Lemma 5.12 For any γ(n), there exists a randomized reduction from GapCRPγ to GDD
λn

γ/4.

Proof: Let (B, d) be an instance of GapCRPγ . The reduction picks a point t ∈ P(B) uniformly at random

and then calls the GDD
λn

γ/4 oracle with the instance (B, t) to obtain a lattice vector x ∈ L(B) within distance

(γ/4)λn(B) from the target t. If ‖t− x‖ ≤ γd/2 then we accept, otherwise we reject. If ν(B) ≤ d, then

‖t− x‖ ≤ γλn(B)/4 ≤ γν(B)/2 ≤ γd/2

where we used that for any lattice Λ, ν(Λ) ≥ λn(Λ)/2 [23, Theorem 7.9]. So, Yes instances are always

accepted. On the other hand, assume that ν(B) > γd. In [14] it is shown that a random t chosen as above

satisfies dist(t,L(B)) ≥ ν(B)/2 with probability at least 1/2. Hence, dist(t,L(B)) > γd/2 with probability

1/2, and No instances are rejected with probability 1/2.

24

By combining these reductions with Theorem 5.9, we obtain several useful corollaries. The first relates

GIVP to SIS and we give it here in its most general form, as it will later be used in the GapSVP reduction.

Corollary 5.13 For any polynomially bounded functions β(n), m(n) = nO(1), any negligible function ε(n),

and any q(n) ≥ 8n
√

m(n)β(n), there is a probabilistic polynomial time reduction from solving GIVP
ηε
γ in

the worst case with γ(n) = 8β(n)
√

n to solving SISq,m,β on the average with non-negligible probability.

For the remaining corollaries, it is helpful to specialize Theorem 5.9 to the SISq,m problem where solutions

are guaranteed to exist. This is done by choosing β(n) =
√

m(n)q(n)n/m(n). Observe that for this value of

β, the condition q(n) ≥ g(n)n
√

m(n)β(n) is equivalent to q(n) ≥ (g(n)nm(n))1+n/(m(n)−n).

Corollary 5.14 For any function g(n) > 0, polynomially bounded function m(n) = nO(1), negligible function

ε(n) = n−ω(1), and q(n) ≥ (g(n)nm(n))1+n/(m(n)−n), there is a probabilistic polynomial time reduction from

solving IncGDD
ηε
γ,g for γ(n) =

√
nm(n) · q(n)n/m(n) on n-dimensional instances in the worst case to solving

SISq,m on the average with non-negligible probability.

We continue with some other connections. For simplicity, from now on we consider a specific choice of

parameters. Other choices can be handled similarly.

Theorem 5.15 For any m(n) = Θ(n log n), there exists some q(n) = O(n2 log n) and γ(n) = O(n
√

log n)

such that for any negligible function ε(n), solving SISq,m on the average with non-negligible probability is at

least as hard as solving any of the following worst-case problems:

• GIVP
ηε
γ

• GDD
ηε
γ

Proof: Notice that for any m(n) = Θ(n log n) there exists a q(n) = O(n2 log n) that satisfies the conditions

in Corollary 5.14 with g(n) = 8 a constant. This yields a solution to IncGDD
ηε

γ,8 for some γ(n) = O(n
√

log n).

It remains to apply Lemmas 5.10 and 5.11.

Theorem 5.16 For any m(n) = Θ(n log n) there exists a q(n) = O(n2 log n) such that for any function

γ(n) = ω(n logn), solving SISq,m on the average with non-negligible probability is at least as hard as solving

any of the following worst-case problems:

• SIVPγ (or equivalently, GIVP
λn
γ),

• GDD
λn
γ ,

• GapCRPγ.

Proof: Let α(n) be any function (e.g., α(n) =
√

γ(n)/n logn) such that α(n) = ω(1) and γ(n) = ω(α(n)n log n).

By Lemma 3.3, there exists a negligible ε(n) for which ηε(Λ) ≤ α(n)
√

log nλn(Λ) holds for any lattice. Hence,

the first two claims follow from Theorem 5.15 for some approximation factor O(α(n)n log n) < γ(n). The

third claim follows from the second claim together with Lemma 5.12.

We complete this section with a discussion of non-adaptive reductions. These are reductions in which

the oracle queries do not depend on the answers to previous queries and hence can be performed all at once.

It is known that unless the polynomial hierarchy collapses, no average-case problem can be shown to be

NP-hard under non-adaptive reductions. See [7] and references therein for a more accurate description of

these results. Here, we observe that our reductions can be made non-adaptive with only a slight worsening

of the approximation factors obtained.

25

Lemma 5.17 For any functions g(n), γ(n) such that γ(n) < nc for some c > 0, there exists a non-adaptive

reduction from GDD
λn

γ′ to IncGDD
λn
γ,g where γ′(n) = (2n/g(n)) + 2γ(n).

Proof: Given a lattice B and a target t, we want to find a lattice vector close to t. Using the LLL lattice

reduction algorithm [17], we can efficiently compute a basis S of L(B) such that ‖S‖ ≤ 2nλn(B). Let

λ̃n = ‖S‖/2n and notice that λ̃n ≤ λn(B) ≤ 2nλ̃n. The reduction then calls the IncGDD oracle on input

(B,S, t, 2i · λ̃n) for i = 0, 1, . . . , dn + c log ne and outputs the lattice vector closest to t among the vectors

returned.

Let i be the smallest index such that 2iλ̃n > γ(n)λn(B). Such an i exists since 2n+c log nλ̃n = nc ·2nλ̃n >

γ(n)λn(B). Notice that 2iλ̃n ≤ 2γ(n)λn(B). It follows that the lattice vector returned by the IncGDD

oracle on input (B,S, t, 2iλ̃n) is within distance

‖S‖
g(n)

+ 2iλ̃n ≤ 2nλn(B)

g(n)
+ 2γ(n)λn(B) =

(2n

g(n)
+ 2γ(n)

)
λn(B)

from the target t, as required.

Lemma 5.18 For any γ(n), there exists a non-adaptive reduction from SIVPγ to GDD
λn

γ/4
√

n
.

Proof: Let B be some instance of SIVPγ . Using the LLL lattice reduction algorithm [17], we can efficiently

compute a basis S of the same lattice such that ‖S‖ ≤ 2nλn(B). Notice that if γ ≥ 2n, we can simply

output S so in the following assume γ < 2n. Let λ̃n = 2−n−1‖S‖ and notice that 2λ̃n ≤ λn(B) ≤ 2n+1λ̃n.

Let e1, . . . , en be some orthonormal set of vectors. The reduction calls the GDD
λn

γ/4
√

n
oracle on input

(B, 2iλ̃nej) for i = 0, . . . , 2n − 1 and j = 1, . . . , n. For i = 0, . . . , 2n − 1, let Si denote the set of n vectors

returned by the oracle on queries corresponding to i. Among the sets Si that contain n linearly independent

vectors, the reduction outputs the one that minimizes ‖Si‖. We need to prove that there exists an index i

such that the vectors Si are linearly independent and ‖Si‖ ≤ γλn(B).

Let i ∈ {0, . . . , 2n−1} be the smallest index such that 2iλ̃n > γλn(B)/4. Notice that such an i exists and

that 2iλ̃n ≤ γλn(B)/2. Each column of Si is within distance γλn(B)/4
√

n from the corresponding vector

2iλ̃nej . Since the length of the latter is strictly greater than γλn(B)/4, it follows that the columns of Si are

linearly independent (see, e.g., [20]). Finally, by the triangle inequality, each vector in Si has length at most

2iλ̃n + γλn(B)/4
√

n ≤ γλn(B)/2 + γλn(B)/4
√

n ≤ γλn(B).

Theorem 5.19 There exist functions q(n) = 2O(n) and m(n) = nO(1) such that for any function α(n) =

ω(
√

log n), solving SISq,m on the average with non-negligible probability is at least as hard (via non-adaptive

reductions) as solving any of the following worst-case problems:

• GDD
λn
γ for some γ(n) = O(n1.5α(n)),

• GapCRPγ for some γ(n) = O(n1.5α(n)),

• SIVPγ for some γ(n) = O(n2α(n)).

Proof: By Lemma 3.3, we can choose a negligible function ε(n) such that for any lattice Λ, ηε(Λ) ≤
α(n)λn(Λ). Let q(n) = n32n, m(n) = n2 and g(n) = 2n/4. Notice that this choice satisfies the hypothesis

in Corollary 5.14. Moreover, notice that the reduction in Theorem 5.9 is non-adaptive since it makes only

one oracle query. Therefore, by Corollary 5.14, there is a non-adaptive reduction from solving worst-case

instances of IncGDD
ηε
γ,g with γ(n) ≤ 4n1.5 to solving SISq,m on the average with non-negligible probability.

By our choice of ε, this is also a reduction from IncGDD
λn

γ′,g where γ′(n) = γ(n)α(n).

The first claim follows from Lemma 5.17. The second claim follows directly from the first together with

Lemma 5.12. The only thing to notice is that the reduction in that lemma is non-adaptive since it makes

only one oracle call. The third follows similarly with the use of Lemma 5.18.

26

5.4 Shortest vector problem

In this subsection we reduce GapSVP to SIS
′. Let us first recall Hoeffding’s inequality [15], which states

the following. Let X1, . . . , XN be N independent random variables, such that for all i, Xi ∈ [a, b]. Then

SN =
∑

i Xi satisfies

Pr{SN ≥ Exp[SN] + Nε} ≤ e−Nε2/(b−a)2 . (14)

We will also need the following lemma from [1]. For completeness, we include its proof in the appendix.

Lemma 5.20 ([1], Lemma 6.2) Let σ, K, ` be some positive numbers and let D be a distribution on Rn

such that for any fixed unit vector u,

Exp
w∼D

[〈u,w〉2] ≤ `2

and, moreover,

Pr
w∼D

{‖w‖ ≥ K`} ≤ σ.

Let W = [w1, . . . ,wN] be a matrix obtained by picking each column independently at random according to

distribution wi ∼ D. Then, with probability at least 1 − e−N/K4

(4
√

nK2)n − Nσ (over the choice of matrix

W) the maximum eigenvalue of the n × n matrix WWT is at most 3N`2.

We now define a variant of the closest vector problem that will be used as an intermediate step in our

reduction from GapSVP to SIS
′.

Definition 5.21 An input to GapCVP
′
γ is a triple (B, t, d) where B is an n-dimensional lattice basis, t is

a target vector, and d is a rational number. In Yes inputs dist(t,L(B)) ≤ d. In No inputs λ1(B) > γ(n) · d
and for any odd k ∈ Z, dist(kt,L(B)) > γ(n) · d.

The difference between GapCVP
′ and the standard problem GapCVP, is that when the target is far

from the lattice, also any odd multiple of the target is far and the minimum distance of the lattice is large.

In [13] it is shown that there is a polynomial time reduction from GapSVPγ to GapCVPγ . We observe

that the reduction given in [13] is also a reduction from GapSVPγ to GapCVP
′
γ , as shown in the following

lemma.

Lemma 5.22 For any approximation factor γ(n), there is a polynomial time reduction from GapSVPγ to

GapCVP
′
γ .

Proof: In [13] it is shown that for any γ, there is a deterministic Cook reduction from GapSVPγ to

GapCVPγ (see also [23]). Here we observe that the same reduction can be used as a reduction from

GapSVPγ to GapCVP
′
γ . To see this, it suffices to know that on input GapSVPγ instance (B, d), all

the GapCVPγ calls made by the reduction have the form (Bi,bi, d), where B = [b1, . . . ,bn] and Bi =

[b1, . . . ,bi−1, 2bi,bi+1, . . . ,bn]. Moreover, the reduction outputs Yes if and only if any of the calls is

answered Yes. Since GapCVPγ and GapCVP
′
γ have the same set of Yes instances, if the reduction is

guaranteed to output Yes given a GapCVPγ oracle (e.g., when the input is a Yes instance), then it outputs

Yes also when given access to a GapCVP
′
γ oracle. Now, let us consider the case when the input (B, d) is

a No instance, and therefore all calls made by the reduction would receive a No answer from a GapCVPγ

oracle. Notice that for any odd integer k, dist(kbi,L(Bi)) = dist(bi,L(Bi)) because 2bi ∈ L(Bi). Moreover,

λ1(Bi) ≥ λ1(B) > γd. So, if (Bi,bi, d) is a No instance of GapCVPγ , then it is also a No instance of

GapCVP
′
γ . Therefore all calls made by the reduction receive a No answer by the GapCVP

′
γ oracle as well,

and the final output of the reduction is No.

We now show how to solve GapCVP
′
γ in the worst case given access to an oracle that solves SIS

′ on the

average. By Lemma 5.22 this also implies a reduction from GapSVPγ to SIS
′ (or SIS when the modulus q

is odd).

27

Theorem 5.23 For any polynomially bounded functions β(n), m(n), q(n) = nO(1), with q(n) ≥ 4
√

m(n)n1.5β(n),

and γ(n) = 14π
√

nβ(n), there is a probabilistic polynomial time reduction from solving GapCVP
′
γ in the

worst case to solving SIS
′
q,m,β on the average with non-negligible probability.

In particular, for any m(n) = Θ(n log n), there exist q(n) = O(n2.5 log n), and γ(n) = O(n
√

log n), such

that solving SIS
′
q,m on the average is at least as hard as solving GapSVPγ in the worst case.

Proof: We adopt the notation of Theorem 5.9 and omit the dependence on n for the parameters m, γ, β, q, ε,

and δ. Let F be an oracle solving SIS
′
q,m,β on the average with non-negligible probability δ. Namely, F is an

oracle that on input a random matrix A ∈ Zn×m
q returns a vector z = F(A) ∈ Λq(A)\2Zm of length at most

β with probability δ. Notice that since 0 /∈ Λq(A) \ 2Zm, oracle F also solves SISq,m,β with probability at

least δ. We want to use F to solve GapCVP
′
γ . The main idea is to use the NP verifier for (the complement

of) GapCVP presented in [1] as a routine for solving GapCVP
′. To be able to do this, we need to be able

to generate a good witness to that verifier. Such a witness is given by a set of short vectors sampled from

the discrete Gaussian distribution in the dual lattice. Luckily, we can generate such a witness by using the

sampling procedure and the combining procedure given in Subsection 5.2 (together with F). In fact, to be

able to use these procedures, we need a reasonably short set of linearly independent vectors S. We obtain

such a set by using Corollary 5.13.13

We start by describing the NP verifier of [1]. For our purposes, it is best to think of this NP verifier as

an algorithm, call it V . The input to V consists of a lattice B, a vector t, a number d > 0, and a sequence of

vectors W = [w1, . . . ,wN] in L(B)∗ where N = n3m3. The algorithm V(B, t, d,W) performs three tests:

(a) Check that for all i = 1, . . . , N , wi ∈ L(B)∗,

(b) Check that fW(t) < 1/2, where fW is the function fW(x) = 1
N

∑N
i=1 cos(2π〈x,wi〉).

(c) Check that the largest eigenvalue of the n×n positive semidefinite matrix WWT is at most N/(2πd)2.

If all three tests are satisfied, then V outputs Yes, otherwise it outputs No. It is shown in [1] that if

dist(t,L(B)) ≤ d then V(B, t, d,W) is guaranteed to output No (for any matrix W), while if dist(t,L(B)) >

c
√

nd (for some absolute constant c) then there exist a matrix W that makes V output Yes.

We now describe our GapCVP
′ reduction. From now on, fix ε(n) = 2−n. First, using Corollary 5.13 (with

F as an oracle), we obtain a set of n linearly independent vectors S in L(B)∗ such that ‖S‖ ≤ 8β
√

nηε(B
∗).

Define

s =
2
√

n

γd
.

Consider the following procedure W(B,S):

1. Run the sampling procedure S(B∗,0, s) of Lemma 5.7 on input a basis B∗ of the dual lattice L(B)∗.
This procedure is run m times to generate m pairs of vectors (ci,yi), and define the matrices C =

[c1, . . . , cm] and Y = [y1, . . . ,ym].

2. Run the combining procedure AF (B∗,S,C, q) of Lemma 5.8 with the oracle F . Let A be the query

asked by A, and z = F(A) the answer returned by the oracle.

3. If z is not a valid solution to SIS
′ instance (q,A, β), then W aborts the computation with no output.

Otherwise, let x be the vector returned by A, and output the vector w = x − Yz.

We apply W(B,S) nN/δ times, each time with independent randomness. If the number of non-aborting

runs of W is less than N , then the reduction terminates immediately with output Yes. Otherwise, let

W = [w1, . . . ,wN] be the vectors returned by the first N non-aborting runs of W , and call V(B, t, d,W). If

13We remark that we could also use any polynomially longer set S with only a minor effect on our results.

28

V says Yes, the reduction outputs No; otherwise, the reduction outputs Yes. This completes the description

of the reduction.

By the properties of V , it is clear that whenever dist(t,L(B)) ≤ d, the reduction correctly outputs Yes

(either because the number of non-aborting runs of W is less than N , or because V(B, t, d,W) outputs No).

For completeness, let us sketch the proof that V outputs No whenever dist(t,L(B)) ≤ d. Assume that the

distance of t from L(B) is at most d and assume that tests (a) and (c) are satisfied. We show that test

(b) must fail, and therefore V outputs No. First, by the definition of fW and the assumption that test

(a) accepts, we have that fW is periodic modulo L(B). Moreover, since the largest eigenvalue of WWT is

bounded by N/(2πd)2, we have that ‖WTx‖2 ≤ N‖x‖2/(2πd)2 for any vector x. Let τ(t) denote the lattice

vector closest to t. Notice that ‖t−τ(t)‖ ≤ d. Since fW is periodic modulo the lattice, fW(t) = fW(t−τ(t)).

It thus suffices to prove that fW(t− τ(t)) ≥ 1/2. Using the inequality cosx ≥ 1−x2/2 (valid for any x ∈ R)

we get:

fW(t − τ(t)) =
1

N

N∑

i=1

cos(2π〈t − τ(t),wi〉)

≥ 1 − 4π2

2N

N∑

i=1

〈t − τ(t),wi〉2

= 1 − 2π2

N
‖WT (t − τ(t))‖2

≥ 1 − ‖t − τ(t)‖2

2d2
≥ 1

2
.

It remains to show that the reduction outputs the correct answer when the input is a No instance, i.e.,

when λ1(B) > γd and dist(kt,L(B)) > γd for any odd k ∈ Z. In order for our reduction to output No, two

conditions must be satisfied: at least N calls to W succeed, and V outputs Yes. Let us first show that after

n · N/δ calls to W , we obtain at least N vectors with high probability. By Lemma 3.2, we have that

ηε(B
∗) ≤

√
n

λ1(B)
<

√
n

γd
=

s

2
(15)

and hence s satisfies s > 2ηε(B
∗). Therefore, by Lemma 5.7, the pairs (ci,yi) computed by the sampling

procedure S(B∗,0, s) satisfy that ci is within distance ε/2 from the uniform distribution. It follows that

C is within distance mε/2 from the uniform distribution over P(B∗)m. Hence, by Lemma 5.8, the query

A given to the oracle by the combining procedure AF (B∗,S,C, q) is within negligible distance εm/2 from

the uniform distribution, and the oracle returns a vector z such that z ∈ Λq(A) \ 2Zm and ‖z‖ ≤ β with

probability at least δ − εm/2 > δ/2 for all sufficiently large n. So, the probability that out of n · N/δ calls

to W less than N are successful is at most N(1 − δ/2)n/δ ≤ Ne−n/2 < 2−n/2.

It remains to show that V outputs Yes with high probability. The proof of this is based on [1]. However,

in [1], it is only shown that there exists a good matrix W that makes V output Yes. Here, we have to argue

that the W given by W is good with high probability.

First, we observe that test (a) is always satisfied since W(B,S) is guaranteed to output vectors in L(B)∗.
Indeed, x,y1, . . . ,ym ∈ L(B)∗ and hence x−Yz also belongs to the lattice L(B)∗. In the rest of the proof,

we show that tests (b) and (c) are satisfied with high probability. To this end, notice that each vector w in W

is distributed independently according to the distribution D defined as the output of W(B,S) conditioned

on a non-aborting run.

Consider test (b). Our goal is to show that Pr{fW(t) ≥ 1/2} is small. Below, we will show that

∣∣∣Exp
w

[cos(2π〈t,w〉)]
∣∣∣ ≤ 2−n+1 (16)

29

where w is distributed according to D. By Hoeffding’s bound (14), this would imply that fW(t) ≥ 1/2 with

probability at most e−N(1
2−Exp[fW(t)])2/4 ≤ e−N(1

2−2−n+1)2/4 = 2−Ω(N). We now prove (16). We in fact show

that it is true even when we condition on any fixed values of C, A, and z ∈ Λq(A) \ 2Zm. Furthermore, we

condition on any fixed values of y1, . . . ,yj−1,yj+1, . . . ,ym where j is some index for which zj is odd. Notice

that the only randomness left is in yj , which, by Lemma 5.7, is distributed according to DL(B)∗,s,cj
. Hence,

a sample w = x − Yz can be written as −zj(ŵ + yj) for some fixed vector ŵ. Notice that

cos(2π〈t,w〉) = cos(2π〈t,−zj(ŵ + yj)〉) = cos(2π〈−zjt, ŵ + yj〉).

By Corollary 4.6, Equation (15), and dist(−zjt,L(B)) > γd = 2
√

n/s, we obtain

∣∣∣Exp
yj

[cos(2π〈t,w〉)]
∣∣∣ =

∣∣∣Exp
yj

[cos(2π〈ŵ + yj ,−zjt〉)]
∣∣∣ ≤ 1 + ε

1 − ε
· 2−n ≤ 2−n+1.

In the rest of the proof we show that test (c) is satisfied with high probability. We do this by applying

Lemma 5.20 with ` = 2sβ, N = n3m3, σ = N2−n(1 + ε)/(1 − ε), K =
√

n · m, and the distribution D.

Assuming the hypothesis in that lemma holds, we get that the maximum eigenvalue of matrix WWT is

bounded by

3N`2 = 12Ns2β2 =
48Nnβ2

γ2d2
<

N

(2πd)2

except possibly with probability

e−N/K4

(4
√

nK2)n + Nσ ≤ (4e−mn1.5m)n + N22−n+1 ≤ 2−n/2.

Therefore, the probability that test (c) fails is exponentially small. It remains to check that the hypothesis

of Lemma 5.20 is satisfied, i.e.,

Pr
w
{‖w‖ ≥ 2

√
n · msβ} ≤ σ (17)

and for any unit vector u,

Exp
w

[〈u,w〉2] ≤ 4s2β2. (18)

In the following, we show that (17) and (18) are true even when we condition on any fixed values of C, A,

and z. The only randomness left is in y1, . . . ,ym where each yi is distributed according to DL(B)∗,s,ci
.

We first prove (17). We can write a vector w produced by W as

w = x − Yz = (x − Cz) − (Y − C)z.

By Lemma 5.8 and (15), the norm of the first term is at most

‖x− Cz‖ ≤
√

mn‖S‖ · ‖z‖
q

≤ 8
√

m · n1.5ηε(B
∗) · β2

q

≤ 2βηε(B
∗) < sβ

with probability 1. By Lemma 4.4, for every i, the probability that ‖yi − ci‖ > s
√

n is at most 2−n(1 +

ε)/(1 − ε) = σ/N . Hence, by union bound and triangle inequality, the norm of the second term is bounded

by

‖(Y − C)z‖ ≤ s
√

n

m∑

i=1

|zi| ≤ s
√

n
√

mβ

with probability at least 1 − σ. It follows that with probability at least 1 − σ the norm of w is bounded by

sβ +
√

nmsβ < 2
√

nmsβ for all sufficiently large n, proving (17).

30

Next, we prove (18). Fix some unit vector u and let us bound the expected value of 〈u,w〉2. Using the

inequality (a − b)2 ≤ 2a2 + 2b2 (valid for all a, b ∈ R), we can write

〈u,w〉2 = (〈u,x − Cz〉 − 〈u, (Y − C)z〉)2

≤ 2〈u,x− Cz〉2 + 2〈u, (Y − C)z〉2

≤ 2‖x− Cz‖2 + 2〈u, (Y − C)z〉2.

Using Lemma 4.2, we obtain that for all i = 1, . . . , m,

|Exp[〈u,yi − ci〉]| ≤
εs

1 − ε
, (19)

Exp[〈u,yi − ci〉2] ≤
(1

2π
+

ε

1 − ε

)
s2. (20)

Using Equations (19) and (20), and Lemma 2.11 with vi = 〈u,yi − ci〉 as one-dimensional vectors, we obtain

Exp[〈u, (Y − C)z〉2] = Exp
[(m∑

i=1

〈u,yi − ci〉zi

)2]

≤
((1

2π
+

ε

1 − ε

)
s2 +

(ε

1 − ε

)2

s2m
)
‖z‖2

≤
(1

2π
+

ε

1 − ε
+

(
ε

1 − ε

)2

m
)
s2β2

≤ s2β2.

Using this bound in the expression for Exp[〈u,w〉2] we get that

Exp[〈u,w〉2] < 2(sβ)2 + 2(sβ)2 = 4s2β2.

6 Acknowledgments

Part of this work was done while both authors were visiting the Institute for Advanced Study, Princeton.

We thank the anonymous referees for their helpful comments.

References

[1] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. Journal of the ACM, 52(5):749–765,

2005. Preliminary version in FOCS 2004.

[2] M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th ACM Symp. on Theory of

Computing, pages 99–108, 1996. Available from ECCC at http://www.uni-trier.de/eccc/.

[3] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In

Proceedings of the 29th Annual ACM Symposium on Theory of Computing - STOC ’97, pages 284–293,

El Paso, TX, USA, May 1997. ACM.

[4] L. Babai. On Lovasz’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1–13,

1986. Preliminary version in STACS 1985.

[5] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische

Annalen, 296(4):625–635, 1993.

31

[6] J. Blömer and J.-P. Seifert. On the complexity of computing short linearly independent vectors and

short bases in a lattice. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing -

STOC ’99, pages 711–720, Atlanta, GA, USA, May 1999. ACM.

[7] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP problems. In Proc. 44th

Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages 308–317, 2003.

[8] J.-Y. Cai. A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection

factor. Discrete Applied Mathematics, 126(1):9–31, Mar. 2003. Preliminary version in CCC 1999.

[9] J.-Y. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice problems. In

Proc. 38th IEEE Symp. on Found. of Comp. Science, pages 468–477, 1997.

[10] W. Ebeling. Lattices and codes. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braun-

schweig, revised edition, 2002. A course partially based on lectures by F. Hirzebruch.

[11] O. Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice problems. Journal of

Computer and System Sciences, 60(3):540–563, 2000. Preliminary version in STOC 1998.

[12] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems. Technical

Report TR96-056, Electronic Colloquium on Computational Complexity (ECCC), 1996.

[13] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vectors is not

harder than approximating closest lattice vectors. Information Processing Letters, 71(2):55–61, 1999.

[14] V. Guruswami, D. Micciancio, and O. Regev. The complexity of the covering radius problem. Compu-

tational Complexity, 14:90–121, 2005. Preliminary version in CCC 2004.

[15] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American

Statistical Association, 58:13–30, 1963.

[16] S. Khot. Hardness of approximating the shortest vector problem in lattices. In Proc. 45th Annual IEEE

Symp. on Foundations of Computer Science (FOCS), pages 126–135, 2004.

[17] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients.

Math. Ann., 261(4):515–534, 1982.

[18] D. Micciancio. Improving lattice based cryptosystems using the hermite normal form. In J. Silverman,

editor, Cryptography and Lattices Conference — CaLC 2001, volume 2146 of Lecture Notes in Computer

Science, pages 126–145, Providence, Rhode Island, Mar. 2001. Springer-Verlag.

[19] D. Micciancio. The shortest vector problem is NP-hard to approximate to within some constant. SIAM

Journal on Computing, 30(6):2008–2035, Mar. 2001. Preliminary version in FOCS 1998.

[20] D. Micciancio. A note on the minimal volume of almost cubic parallelepiped. Discrete and Computational

Geometry, 29(1):133–138, Dec. 2002.

[21] D. Micciancio. Almost perfect lattices, the covering radius problem, and applications to Ajtai’s connec-

tion factor. SIAM Journal on Computing, 34(1):118–169, 2004. Preliminary version in STOC 2002.

[22] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from

worst-case complexity assumptions. Technical Report TR04-095, ECCC Electronic Colloquium on

Computational Complexity, 2004. Preliminary version in FOCS 2002.

32

[23] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspective, vol-

ume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic

Publishers, Boston, Massachusetts, Mar. 2002.

[24] O. Regev. New lattice-based cryptographic constructions. Journal of the ACM, 51(6):899–942, 2004.

Preliminary version in STOC 2003.

A Proof of Lemma 5.20

The largest eigenvalue of W ·WT is at most 3N`2 if and only if

1

N

N∑

i=1

〈u,wi〉2 ≤ 3`2

for all unit vectors u ∈ Rn. In the following, we show that this condition is satisfied with the desired

probability. Let ξ : Rn → Rn be the function defined by ξ(x) = x if ‖x‖ ≤ K` and ξ(x) = 0 otherwise.

Clearly, for any unit vector u,

Exp
w∼D

[〈u, ξ(w)〉2] ≤ Exp
w∼D

[〈u,w〉2] ≤ `2.

Moreover, the random variable 〈u, ξ(w)〉2 takes values in the interval [0, (K`)2]. Hence, Hoeffding’s inequality

(14) implies that for any unit vector u, a sequence of samples w1, . . . ,wN from D satisfies

1

N

N∑

i=1

〈u, ξ(wi)〉2 ≤ 2`2 (21)

with probability at least 1 − e−N/K4

.

Consider an ε-net A on the unit sphere with parameter ε = 1
2K−2, i.e., a set of points A such that any

point on the unit sphere is within distance ε from some point in A. It is possible to construct such nets of

size at most (2
√

n/ε)n. For instance, let C be [−1, 1]n, i.e., the n-dimensional cube of edge length 2. Notice

that C contains the unit sphere. Partition C into (2
√

n/ε)n small cubes of edge length ε/
√

n. For each small

cube that intersects the n-dimensional sphere, choose any point in the intersection and include it in A. It is

easy to see that the collection of these points constitutes an ε-net on the sphere, because any point in the

sphere belongs to one of the small cubes, and the diameter of each small cube is exactly ε.

We now apply the union bound on the set of all unit vectors u in A. It follows that (21) holds with

probability at least 1 − e−N/K4

(4
√

nK2)n for all u in the net A simultaneously.

Next, we show that if (21) holds for all u ∈ A, then a slightly weaker version of it holds for all unit

vectors. Consider an arbitrary unit vector u′. Let u ∈ A be the closest point to u′ in A. Notice that

‖u− u′‖ ≤ ε. Thus,

∣∣∣ 1

N

N∑

i=1

〈u′, ξ(wi)〉2 −
1

N

N∑

i=1

〈u, ξ(wi)〉2
∣∣∣ ≤ 1

N

N∑

i=1

|〈u′ − u, ξ(wi)〉〈u′ + u, ξ(wi)〉|

≤ 2ε max
i

‖ξ(wi)‖2 ≤ 2ε(K`)2 = `2.

This yields that with probability at least 1 − e−N/K4

(4
√

nK2)n over the choice of the wi’s it holds that

1

N

N∑

i=1

〈u, ξ(wi)〉2 ≤ 2`2 + `2 = 3`2

for all unit vectors u. It remains to notice that with probability at least 1 − Nσ, ξ(wi) = wi for all i.

33

