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Abstract

Recent interest in persistent memory (PM) has stirred de-

velopment of index structures that are efficient in PM.

Recent such developments have all focused on variations

of the B-tree. In this paper, we show that the radix tree,

which is another less popular indexing structure, can be

more appropriate as an efficient PM indexing structure.

This is because the radix tree structure is determined by

the prefix of the inserted keys and also does not require

tree rebalancing operations and node granularity updates.

However, the radix tree as-is cannot be used in PM. As

another contribution, we present three radix tree variants,

namely, WORT (Write Optimal Radix Tree), WOART

(Write Optimal Adaptive Radix Tree), and ART+CoW.

Of these, the first two are optimal for PM in the sense that

they only use one 8-byte failure-atomic write per update

to guarantee the consistency of the structure and do not

require any duplicate copies for logging or CoW. Exten-

sive performance studies show that our proposed radix

tree variants perform considerable better than recently

proposed B-tree variants for PM such NVTree, wB+Tree,

and FPTree for synthetic workloads as well as in imple-

mentations within Memcached.

1 Introduction

Previous studies on indexing structures for persistent

memory (PM) have concentrated on B-tree variants. In

this paper, we advocate that the radix tree can be better

suited for PM indexing than B-tree variants. We present

radix tree variant indexing structures that are optimal for

PM in that consistency is always guaranteed by a single

8-byte failure-atomic write without any additional copies

for logging or CoW.

Emerging persistent memory technologies such as

phase-change memory, spin-transfer torque MRAM, and

3D Xpoint are expected to radically change the land-

scape of various memory and storage systems [4, 5, 7,

9, 10, 14]. In the traditional block-based storage de-

vice, the failure atomicity unit, which is the update unit

where consistent state is guaranteed upon any system

failure, has been the disk block size. However, as persis-

tent memory, which is byte-addressable and non-volatile,

will be accessible though the memory bus rather than via

the PCI interface, the failure atomicity unit for persistent

memory is generally expected to be 8 bytes or no larger

than a cache line [5, 6, 12, 13, 15, 19].

The smaller failure atomicity unit, however, appears

to be a double-edged sword in the sense that though this

allows for reduction of data written to persistent store,

it can lead to high overhead to enforce consistency. This

is because in modern processors, memory write opera-

tions are often arbitrarily reordered in cache line granu-

larity and to enforce the ordering of memory write op-

erations, we need to employ memory fence and cache

line flush instructions [21]. These instructions have been

pointed out as a major cause of performance degrada-

tion [3, 9, 15, 20]. Furthermore, if data to be written is

larger than the failure-atomic write unit, then expensive

mechanisms such as logging or copy-on-write (CoW)

must be employed to maintain consistency.

Recently, several persistent B-tree based indexing

structures such as NVTree [20], wB+Tree [3], and FP-

Tree [15] have been proposed. These structures focus on

reducing the number of calls to the expensive memory

fence and cache line flush instructions by employing an

append-only update strategy. Such a strategy has been

shown to significantly reduce duplicate copies needed

for schemes such as logging resulting in improved per-

formance. However, this strategy does not allow these

structures to retain one of the key features of B-trees,

that is, having the keys sorted in the nodes. Moreover,

this strategy is insufficient in handling node overflows as

node splits involve multiple node changes, making log-

ging necessary.

While B-tree based structures have been popular in-

memory index structures, there is another such structure,
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namely, the radix tree, that has been less so. The first

contribution of this paper is showing the appropriateness

and the limitation of the radix tree for PM storage. That

is, since the radix tree structure is determined by the pre-

fix of the inserted keys, the radix tree does not require

key comparisons. Furthermore, tree rebalancing opera-

tions and updates in node granularity units are also not

necessary. Instead, insertion or deletion of a key results in

a single 8-byte update operation, which is perfect for PM.

However, the original radix tree is known to poorly uti-

lize memory and cache space. In order to overcome this

limitation, the radix tree employs a path compression op-

timization, which combines multiple tree nodes that form

a unique search path into a single node. Although path

compression significantly improves the performance of

the radix tree, it involves node split and merge opera-

tions, which is detrimental for PM.

The limitation of the radix tree leads us to the sec-

ond contribution of this paper. That is, we present three

radix tree variants for PM. For the first of these struc-

tures, which we refer to as Write Optimal Radix Tree

for PM (WORTPM, or simply WORT), we develop a

failure-atomic path compression scheme for the radix

tree such that it can guarantee failure atomicity with the

same memory saving effect as the existing path compres-

sion scheme. For the node split and merge operations in

WORT, we add memory barriers and persist operations

such that the number of writes, memory fence, and cache

line flush instructions in enforcing failure atomicity is

minimized. WORT is optimal for PM, as is the second

variant that we propose, in the sense that they require

only one 8-byte failure-atomic write per update to guar-

antee the consistency of the structure without any dupli-

cate copies.

The second and third structures that we propose are

both based on the Adaptive Radix Tree (ART) that was

proposed by Leis et al. [11]. ART resolves the trade-off

between search performance and node utilization by em-

ploying an adaptive node type conversion scheme that

dynamically changes the size of a tree node based on

node utilization. This requires additional metadata and

more memory operations than the traditional radix trees,

but has been shown to still outperform other cache con-

scious in-memory indexing structures. However, ART in

its present form does not guarantee failure atomicity. For

the second radix tree variant, we present Write Optimal

Adaptive Radix Tree (WOART), which is a PM exten-

sion of ART. WOART redesigns the adaptive node types

of ART and carefully supplements memory barriers and

cache line flush instructions to prevent processors from

reordering memory writes and violating failure atomic-

ity. Finally, as the third variant, we present ART+CoW,

which is another extension of ART that makes use of

CoW to maintain consistency. Unlike B-tree variants

where CoW can be expensive, with the radix tree, we

show that CoW incurs considerably less overhead.

Through an extensive performance study using syn-

thetic workloads, we show that for insertion and search,

the radix tree variants that we propose perform better

than recent B-tree based persistent indexes such as the

NVTree, wB+Tree, and FPTree [3, 15, 20]. We also im-

plement the indexing structure within Memcached and

show that similarly to the synthetic workloads, our pro-

posed radix tree variants perform substantially better

than the B-tree variants. However, performance evalua-

tions show that our proposed index structures are less ef-

fective for range queries compared to the B-tree variants.

The rest of the paper is organized as follows. In Sec-

tion 2, we present the background on consistency issues

with PM and PM targeted B-tree variant indexing struc-

tures. In Section 3, we first review the radix tree to help

understand the main contributions of our work. Then, we

present the three radix tree variants that we propose. We

discuss the experimental environment in Section 4 and

then present the experimental results in Section 5. Fi-

nally, we conclude with a summary in Section 6.

2 Background and Motivation

In this section, we review background work that we

deem most relevant to our work and also necessary to

understand our study. First, we review the consistency

issue of indexing structures in persistent memory. Then,

we present variants of B-trees for PM. As the contribu-

tion of our work starts with the radix tree, we review the

radix tree in Section 3.

2.1 Consistency in Persistent Memory

Ensuring recovery correctness in persistent indexing

structures requires additional memory write ordering

constraints. In disk-based indexing, arbitrary changes to

a volatile copy of a tree node in DRAM can be made

without considering memory write ordering because it is

a volatile copy and its persistent copy always exists in

disk storage and is updated in disk block units. However,

with failure-atomic write granularity of 8 bytes in PM,

changes to an existing tree node must be carefully or-

dered to enforce consistency and recoverability. For ex-

ample, the number of entries in a tree node must be in-

creased after a new entry is stored. If the system fails af-

ter we increase the number of entries but before the new

entry is stored in its corresponding space, the garbage en-

try previously stored in that space will be mistaken as a

valid entry resulting in inconsistency.

In order to guarantee consistency between volatile

CPU caches and non-volatile memory, we have to ensure

the ordering of memory writes via memory fence and
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cache line flush instructions. In the Intel x86 architecture,

the CLFLUSH instruction is used to flush a dirty cache line

back to memory and MFENCE is the load and store fence

instruction that prevents the reordering of memory access

instructions across the fence. Since CLFLUSH is ordered

only with respect to MFENCE, CLFLUSH needs to be used

along with MFENCE to prevent reordering of CLFLUSH in-

structions [21]. These memory fence and cache line flush

instructions are known to be expensive [3, 20].

Another important aspect of maintaining consistency

is the write size. In legacy B-tree variants, insertion or

deletion of a node entry results in modification of a large

portion of the node because the entries remain sorted.

This is because insertion or deletion of an entry can result

in shifts of data within the node. Such shifts are likely to

be larger than the failure atomicity unit.

To resolve this problem, legacy systems generally rely

on techniques such as logging or CoW. Logs can be used

to undo or redo activities such that the system remains

in a consistency state. CoW creates a copy and makes

updates to the copy. This allows for atomic validation of

the copy by overwriting the pointer with an atomic 8-byte

store operation. Although logging and CoW guarantee

consistency in the presence of failure, they hurt update

performance especially when the updated data is large as

they both need to duplicate the write operations.

2.2 Persistent B+-Trees

In recent years, several indexing trees for PM such as

CDDS B-tree [17], NVTree [20], wB+Tree [3], and FP-

Tree [15] have been proposed. To the best of our knowl-

edge, all previously proposed persistent indexes are vari-

ants of the B-tree, which has been widely used in various

domains including storage systems. We review each of

these trees in detail below.

CDDS B-Tree: CDDS (Consistent and Durable Data

Structure) B-tree is a multi-version B-tree (MVBT) for

PM [17]. When a tree node is updated in the CDDS B-

tree, it creates a copy of the updated entry with its version

information instead of overwriting the entry, which guar-

antees recoverability and consistency. However, CDDS

B-tree suffers from numerous dead entries and dead

nodes. Also, it calls the expensive MFENCE and CLFLUSH

instructions as many times as the number of entries in a

tree node to sort the entries. Hence, CDDS B-tree is far

from satisfactory in terms of both insertion and search

performance.

NVTree: NVTree proposed by Yang et al. [20] re-

duces the number of expensive memory fence and cache

line flush instructions by employing an append-only up-

date strategy. Due to this strategy and the fact that only

the leaf nodes are kept in PM, NVTree requires only

two cache line flushes, one for the entry and the other

for the entry count, resulting in improved performance.

This results in two consequences; first, the leaf node re-

mains unsorted and second, the internal nodes may be

lost upon system failure though the internal nodes can

trivially be reconstructed using the leaf nodes in PM.

However, NVTree requires all internal nodes to be stored

in consecutive memory blocks to exploit cache locality,

and within the large memory block, internal nodes are

located by offsets instead of pointers. However, because

NVTree requires internal nodes to be stored in consec-

utive blocks, every split of the parent of the leaf node

results in the reconstruction of the entire internal nodes.

We show in our experiments that due to this reconstruc-

tion overhead, NVTree does not perform well for appli-

cations that insert data on the fly.

FPTree: FPTree is another persistent index that keeps

internal nodes in volatile memory while leaf nodes are

kept in PM [15]. By storing the internal nodes in volatile

memory, FPTree exploits hardware transactional mem-

ory to efficiently handle concurrency of internal node ac-

cesses. FPTree also proposes to reduce the cache miss

ratio via fingerprinting. Fingerprints are one-byte hashes

for keys in each leaf node. By scanning the fingerprints

first before a query searches keys, FPTree reduces the

number of key accesses and consequently, the cache miss

ratio. Although FPTree shows superior performance to

NVTree, FPTree also requires reconstruction of internal

nodes when a system crashes.

wB+Tree: wB+Tree proposed by Chen and Jin also

adopts an append-only update strategy, but unlike

NVTree and FPTree, wB+Tree stores both internal and

leaf nodes in PM [3]. Since the entries in internal nodes

must be sorted, wB+Tree proposes to sort the entries via

the slot array, which adds a level of indirection to the ac-

tual keys and pointers. That is, the slot array stores the

index of keys in sorted order. Since the index is much

smaller than the actual key and pointer, seven key indexes

can be atomically updated via the 8-byte atomic write op-

eration. wB+Tree also proposes to use an 8-byte bitmap

to increase node capacity. When the bitmap is used,

wB+Tree requires at least four cache line flushes. If only

the slot array is used, the number of cache line flushes

decreases to two. Although the number of cache line

flushes is dramatically reduced compared to CDDS B-

tree, wB+Tree carries the overhead of indirection. Also,

wB+Tree still requires expensive logging or CoW for a

node split.

3 Radix Trees for PM

In this section, we present the basics of the radix tree. We

also discuss the three radix tree variants that we propose,

namely, WORTPM (Write Optimal Radix Tree for PM)

or simply, WORT (Write Optimal Radix Tree), WOART

(Write Optimal Adaptive Radix Tree), and ART+CoW.
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n = 4, L = 16

Figure 1: An example radix tree

3.1 Radix Tree

Traditionally, radix trees come in two versions; one in

basic form, which we refer to as the original radix tree,

and the other that uses path compression to save mem-

ory [2, 26, 27, 28]. For ease of presentation, we first dis-

cuss the original version and defer the discussion on the

path compressed version to Section 3.3.

The radix tree does not explicitly store keys in its tree

nodes. Instead, a node consists of an array of child point-

ers, each of which is represented by a chunk of bits of a

search key as in a hash-based index. Taking the radix tree

example in Figure 1, each key is composed of 16 bits,

with a chunk of 4 bits in length. Starting from the root

node, the most significant leftmost 4 bits of each key is

used to determine the subscript within the pointer array.

Taking the key=527 case as a walking example, the left

4 bits, 0000, determines that the leftmost pointer points

to the child node. In the next level, the next chunk of bits

in the search key are used as the subscript of the child

pointer array. This would be 0010 for key=527, meaning

that the pointer in element 2 points to the next child. In

this manner, in the walking example, we see that the next

chunk of 4 bits, 0000, determines the next level child and

that the least significant bits of the search key, 1111, are

used in the leaf node.

There are two key characteristics of the radix tree that

are different from B-tree variants. The first is that the

height of the radix tree is determined and fixed by the

length of the index key and the chunk size. For a maxi-

mum key length of L bits and the chunk, which represents

the index to the child pointer, of n bits, which allows for a

maximum 2n child node pointers, the search path length

is ⌈L/n⌉. An often mentioned weakness of the radix tree

is that its height (⌈L/n⌉) is, in general, taller than that of

the B+-tree, which is logBN, where N is the number of

keys and B is the node degree [11]. This may result in

deeper traversals of the tree.

The second characteristic is that the tree structure is

independent of the insertion order but dependent on the

distribution of keys. Whereas the B-tree variants main-

tain a balanced tree growing and shrinking according to

the number of data, a radix tree has a fixed number of

nodes determined by the maximum key range. How these

nodes are used determines its effectiveness in terms of

memory usage. For example, when the keys are sparsely

distributed, the radix tree makes inefficient use of mem-

ory in contrast to when it is dense or skewed.

Due to these limitations and despite proposals to over-

come such limitations [2], the radix tree has not been a

popular indexing data structure. However, we find that

the radix tree possesses features that may be exploited

for efficient use with PM. First, with the radix tree, it is

possible to traverse the tree structure without perform-

ing any key comparison because the positions of the

child pointers are static and fixed according to its or-

der. For example, if 527 is indexed as shown in Figure 1,

527 can be easily found by using each 4 bits as a sub-

script of the index without any comparison operation,

i.e., radix index[0][2][0][15], as 527 is 0000 0010

0000 1111 in binary. In contrast, the B+-tree would re-

quire comparing the search key with other keys for each

visited node. Such difference in activity can affect cache

performance resulting in performance differences.

Also for insertion, the radix tree does not modify any

existing entries for the same reason. That is, the number

of child pointers in a radix tree node is fixed to 2n, and it

never overflows. Since the radix tree does not store keys,

sorting, by nature, is not necessary. This is in contrast to

B-tree variants that need to keep the keys sorted and also

require expensive split or merge operations accompanied

by logging to guarantee consistency.

3.2 Failure Atomic Write in Radix Tree

In this section, we describe the small changes that we

made to make radix tree PM efficient. With the changes

that we propose, the radix tree will remain consistent

upon system failure without requiring any kind of log-

ging or replication mechanism as long as the 8-byte fail-

ure atomicity assumption is satisfied. Essentially, there

are just two simple changes that need to be made, which

we describe in the following.

The first modification is making sure that a write to

change a pointer is done in a particular order. Let us

elaborate using an example of inserting key=3,884 (0000

1111 0010 1100 in binary) into the radix tree shown in

Figure 1. With a given key, we traverse down the path

using the partial keys until we find a pointer value that is

NULL. For 3,884, as the first partial key is 0000, we fol-

low the leftmost child pointer from the root node. At this

level (depth 1), we find that the next partial key 1111 and
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struct Header 

Figure 2: Compression header

that its pointer is NULL. Once we find the child pointer

to be NULL, we create a new node and continue doing

this until the leaf node is created. For the 3,884 exam-

ple, we create a new node in depth 2 and a leaf node in

depth 3. Finally, we replace the NULL pointers with the

addresses of the new nodes.

The first modification that we propose is that the oper-

ation to replace the very first NULL pointer (if we have

a sequence of nodes created) with the address of the next

level node be the last operation. This ensures that the en-

tire operation is failure-atomic. Since the pointer assign-

ment statement is an 8-byte atomic write operation, no

form of logging is necessary in the radix tree. However,

we do need to call a few memory access serialization in-

structions to enforce failure atomicity. For example, if

8,209 is indexed as shown in Figure 1, first, we must

call memory fence and cache line flush instructions to

make sure all nodes leading to the leaf node, including

the leaf node, is written to PM. Only then, should we

change the very first NULL pointer in the root, that is,

element 2 in node A1 to point to node E1. This change

is then persisted with the memory fence and cache line

flush instructions.

3.3 Radix Tree Path Compression

Thus far, we have described the original radix tree with-

out path compression optimization. In this section, we

describe the workings of path compression as our second

proposed change is related to this matter.

Although the deterministic structure of the radix tree

is the source of its good performance, it is also the weak-

est point as the key distribution has a high impact on the

tree structure and memory utilization. If the distribution

of the keys is sparse, the implicit key representation of

the radix tree can waste excessive memory space. For ex-

ample, suppose a string key is stored in a radix tree and

there is no other key that shares the prefix with the key.

If the number of child pointers in a node is 28, each node

can implicitly index an 8-bit character but requires an 8-

byte pointer per each child. That is, the tree node will

use 8× 256 bytes for each letter in the key. In order to

mitigate this memory space utilization problem, we can

consider reducing the number of child pointers in a node.

However, this could result in a longer search path, possi-

bly degrading search performance. The path compressed

radix tree can save space by removing the internal nodes

n = 4, L = 16

Figure 3: Path compression collapses radix tree nodes

that have only one child per node.

If a node in the radix tree has a single child such as

key 8,209 in Figure 1, the node does not have to exist in

order to distinguish it from other search paths. Hence,

the node can be safely removed and created in a lazy

manner until it becomes shared with another child node

without hurting correctness. Path compression optimiza-

tion in the radix tree truncates unique paths in the tree

structure. Path compression is known to improve mem-

ory utilization especially when the key distribution is

sparse. Moreover, path compression helps improve in-

dexing performance by shortening the search path. There

are three ways of implementing path compression in the

radix tree, that is, the pessimistic, optimistic, and hybrid

methods [11].

The pessimistic method explicitly saves the collapsed

unique search path as the prefix array in the child node.

The pessimistic method requires more memory space in

the compressed nodes, but it can prune out unmatching

keys instantly. On the other hand, the optimistic method

stores the length of the collapsed prefix in the child node,

instead of the collapsed prefix itself. Hence, the opti-

mistic method cannot compare the collapsed prefix in the

compressed node. Instead, it postpones the comparison

of the collapsed keys until we reach a leaf node. The hy-

brid method combines the two by using the pessimistic

method when the collapsed prefix is smaller than a spe-

cific length, and the optimistic method, otherwise.

Figure 2 illustrates the structure of a radix tree node

header and Figure 3, which is a hybrid compressed ver-

sion of Figure 1 as it simultaneously stores the length and

the collapsed search path, shows how it is used to com-

bine the inner nodes that share the common prefix. Prefix

length specifies how many inner nodes are collapsed. In

the example shown in Figure 3, 512, 514, and 527 share

the second and third partial keys (2 and 0). Hence, the

leaf node stores 2 as a prefix length. The prefix array is

the collapsed common prefix. In the example, the prefix

array stores the common prefix 2 (0010 in binary) and 0

(0000 in binary). Note that we always make use of an 8-
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Figure 4: Path compression split

byte compression header. This is to maintain consistency

with 8-byte atomic writes, which we elaborate on later.

3.4 WORT: Write Optimal Radix Tree

While it is trivial to make the radix tree that is not path

compression optimized be failure-atomic as was shown

in Section 3.2, doing so with the path compression opti-

mized radix tree is more complicated as nodes are split

and merged dynamically. The second modification that

we propose makes the path compression optimized radix

tree failure-atomic. (Hereafter, the radix tree we refer to

are path compression optimized unless otherwise stated.)

Note that even though the structure of the radix tree is no

longer static, it is nevertheless still deterministic.

The second modification to the radix tree that we pro-

pose is the addition of the node depth information to each

compression header, which was not needed in the legacy

radix tree. Note that in our design, this requires one byte,

which should be sufficient even in general deployment,

and does not compromise the memory saving effect of

the legacy path compression scheme. We now show how

the node depth is used to guarantee failure atomicity dur-

ing insertions. Let us again make use of an example.

Figure 4 is a depiction of how a compressed internal

node (B3 in Figure 3) splits when the prefix of the key to

insert does not match the prefix array, while Algorithm 1

describes the algorithm involved. Let us now go through

the process step by step. Assume key=546 (0000 0010

0010 0010 in binary) is being inserted to the radix tree in

Figure 3. Since 546 shares only the first partial key (4-bit

prefix) with the prefix array of node B3, we need to split

and create a parent node for the smaller common prefix.

This new node is depicted as C4 in Figure 4. Once the

new node C4 stores child pointers to node B4 and key

546, node B3 (in Figure 3) needs to delete the two par-

tial keys in the prefix array (lines 5-12 in Algorithm 1).

Also, node A3 (in Figure 3) needs to replace the child

pointer to B3 to point to C4 (lines 12-17) as shown in

node A4, and this must be done atomically. Otherwise,

failure atomicity is not guaranteed and the tree may end

up in an inconsistent state. For example, say the system

Algorithm 1 SplitCmp(node,key,value,depth,diffPrfxIdx)

1: /*N=node,K=key,V=value,D=depth*/
2: Allocate newParent and newLeaf(K,V)
3: Move a part of header of N to header of newParent
4: Insert newLeaf and N into newParent as children
5: Allocate tmpHdr
6: Record header of N to be updated into tmpHdr
7: *((uint64*)&N.Hdr) = *((uint64*)&tmpHdr;
8: mfence();
9: clflush(&newLeaf);

10: clflush(&newParent);
11: clflush(&N.Hdr);
12: mfence();
13: /*Update old parent pointer*/
14: oldParent.children[]=newParent;
15: mfence();
16: clflush(&oldParent.children[]);
17: mfence();

crashes as B3 is changed to B4, but A3 is still unchanged.

Since multiple tree nodes cannot be updated atom-

ically, persistent structures such as the B-tree variants

employ expensive logging methods. However, we find

that the radix tree can tolerate this temporary inconsis-

tent state by storing the depth in each node and skipping

the comparison of the partial key that is currently being

expanded to a new parent node. That is, if the node that

expands can atomically update its depth, prefix length,

and prefix array altogether, then the radix tree can return

to its consistent state without relying on logging.

Consider the example of Figure 4 once again. Before

node B3 is expanded, the depth of node B3 is 1 (start-

ing from 0 at root node) and the prefix length is 2, which

indicates that node B3 indexes the second and third pre-

fixes. After creating node C4, the depth and the prefix

length need to be updated to 3 and 0, respectively. As-

sume the system crashes after we update the prefix length

and depth, but before we update the child pointer of node

A3. If we only had the prefix length as in the tradition

radix tree, there is no way to detect node B4 is in an in-

consistent state. However, if the depth is atomically up-

dated along with the prefix length, which is possible with

the 8-byte failure atomic write assumption, we can eas-

ily detect that there is a missing node between A3 and B4.

Once we detect the inconsistency, the inconsistent node

can reconstruct its previous depth, prefix length, and pre-

fix array by selecting two leaf nodes from two arbitrary

search paths (lines 3-4 of Algorithm 2) and recomputing

the common prefix (lines 5-12 of Algorithm 2). Note that

path compression guarantees the existence of at least two

leaf nodes in any internal node and that the prefix array

has the largest common prefix of every key in a node.

In the example of Figure 4, suppose node B4 selects

key=512 (0000 0010 0000 0000 in binary) and key=527

(0000 0010 0000 1111 in binary) as the two arbitrary

leaf nodes. The largest common prefix of those two keys
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Algorithm 2 RecoverHeader(node,depth)

1: /*N=node,D=depth*/
2: /*Select two different arbitrary leaves of N*/
3: L1 = SelectArbitraryLeaf(N);
4: L2 = SelectArbitraryLeaf(N);
5: safeHdr = AllocHeader();
6: safeHdr.depth=D;
7: Compute the largest common prefix of L1 and L2
8: Record it into prfxLen and prfxArr of safeHdr
9: *((uint64*)&N.Hdr) = *((uint64*)&safeHdr);

10: mfence();
11: clflush(&N.Hdr);
12: mfence();

is 0000 0010 0000 in binary. The first prefix 0000 is ig-

nored because we reconstruct the node in depth 1.

We name the radix tree that incorporates the two mod-

ifications that we mentioned, one in Section 3.2 and one

in this section, WORTPM for Write Optimal Radix Tree

for PM, or just WORT. WORT is optimal in that con-

sistency is accomplished by using only 8-byte failure-

atomic writes for every operation without requiring any

logging or duplication of data under any circumstance.

3.5 Write Optimal Adaptive Radix Tree

Even with path compression, with the radix tree, there

is a well known trade-off between tree traversal perfor-

mance and memory consumption, i.e., if we increase

the number of child pointers in a node, the tree height

decreases but node utilization is sacrificed. Poor node

utilization and high memory consumption have been

pointed out as the major disadvantages of the radix

tree. In order to resolve these problems, studies such

as Generalized Prefix Tree [2] and Adaptive Radix Tree

(ART) [11] have been conducted. In this section, we dis-

cuss ART and how we adapt ART for PM.

ART is a space efficient radix tree that adaptively

changes its node size according to node utilization. In

order to reduce the tree height, ART sets the number

of child pointers in a node to 28 and uses one-byte

sized partial keys per node. In parallel, ART reduces

memory space consumption by using one of four differ-

ent node types, namely, NODE4, NODE16, NODE48,

and NODE256, according to node utilization. Starting

with NODE4, ART adaptively converts nodes into larger

or smaller types as the the number of entries exceeds

or falls behind the capacity of a node type. Although

ART has been shown to outperform other state-of-the-art

cache conscious in-memory indexing structures includ-

ing FAST [11], ART in its current form does not guar-

antee failure atomicity in PM. Hence, we redesign the

node structure of ART, without compromising its mem-

ory saving effect, to enforce failure atomicity in PM,

which we refer to as Write Optimal Adaptive Radix Tree

(WOART). In particular, we find that for PM, NODE4

0 1 2 15

0 1 2 3

1032

0 1 47

047 246

46

n = 8, L = 16

2

Figure 5: Node structures in WOART

and NODE16 have to be redesigned, NODE48 slightly

modified, and NODE256 left unchanged from the origi-

nal design.

NODE4: In order to reduce the node size when node

utilization is low, ART utilizes the node type NODE4,

a node that has no more than 4 entries. Since implicit

key representation in NODE4 wastes memory space and

is not helpful in distinguishing index keys, NODE4 ex-

plicitly stores partial keys. Hence, in the original ART

scheme, four pairs of partial keys and pointers are kept.

The partial keys and pointers are stored at the same in-

dex position in parallel arrays and sorted together by the

partial key values. With sorting employed, some form of

logging becomes a requirement to ensure consistency.

In WOART, we make the following changes to en-

sure consistency with a single 8-byte atomic write. First,

pointers are updated in append-only manner only when

an empty entry is available. Then, we add a level of in-

direction by having a separate slot array that serves as an

index to the position of the pointer corresponding to the

partial key as shown in NODE4 of Figure 5. Finally, we

make use of the fact that the partial key size in the radix

tree node is just one byte and that NODE4 only stores

four keys per node, plus the fact that the entire slot ar-

ray size is also only four bytes. Hence, the partial keys

and the slot array in NODE4 altogether can be written

in a single 8-byte atomic write operation. By performing

this operation as the last update, consistency of the tree

is guaranteed.

Algorithm 3 shows the details of the insertion algo-

rithm for NODE4. Deletion is omitted as it is analogous

to insertion. First, we look for an empty pointer in the

slot array (line 1). If there is one (idx is returned), we

first make a copy of the 8-byte partial keys and slot array

and insert the partial key value and the idx value into the

copy (lines 3 and 4). Then, we store the child address in

the pointer array entry indexed by idx, and call mfence

and clflush (lines 5-8). Finally, we atomically update

the partial keys and slot array by atomically overwriting
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Algorithm 3 AddChild4(node4,PartialKey,child)

1: if node4 is not full then
2: idx = getEmptyIdx(node4.slot);
3: CopySlot(tmpSlot,node4.slot);
4: InsertKeytoSlot(tmpSlot,PartialKey,idx);
5: node4.ptrArr[idx]=child;
6: mfence();
7: clflush(&node4.ptrArr[idx]);
8: mfence();
9: *((uint64*)node4.slot)=*((uint64*)&tmpSlot);

10: mfence();
11: clflush(node4.slot);
12: mfence();
13: else
14: Copy and Exchange node4 to node16

the original with the copy of the 8-byte partial keys and

slot array and call mfence and clflush (lines 9-12).

If a node needs more than 4 entries, we expand the

node into a NODE16 type through memory allocation

and multiple write operations. Note, however, that con-

sistency is always guaranteed during this expansion as

the final change to the parent of the new NODE16 is al-

ways done with a single 8-byte atomic write.

NODE16: A NODE4 type node becomes a NODE16

type when the number of child pointers grows past four

and can have as many as 16 child pointers. Similarly to

NODE4, the original NODE16 node keeps the partial

keys sorted. However, as previously mentioned, this is

an expensive task with PM.

In WOART, with NODE16, we take a similar ap-

proach as with NODE4 as we explicitly store keys

in append-only manner. However, unlike NODE4,

NODE16 does not sort partial keys nor use a slot array to

store the indexes to child pointers. Instead, partial keys

and pointers are stored as parallel arrays, denoted as par-

tial key array and pointer array, respectively, in Figure 5.

Note that there is also a 16-bit bitmap that distinguishes

the valid and invalid key and pointer values. The atomic

write of this bitmap ensures the consistency of the tree.

Specifically, and in relation to Algorithm 4, we refer

to the bitmap (line 2) to find an empty entry to insert

the partial key. Then, the partial key and pointer values

are placed in the empty entry position of the parallel ar-

rays (lines 3-8). Finally, the bitmap position of the empty

entry is set to 1 with an atomic write (lines 9-12). This

guarantees consistency of the radix tree.

Note that for deletion, we need to manipulate the

bitmap to indicate the invalidness of partial keys and

pointers. This is also an atomic write operation, hence,

consistency is maintained. Also note that although the

partial keys are not sorted, this does not hurt search per-

formance as NODE16 has no more than 16 partial keys.

Comparing a given search key with 16 partial keys that fit

in a single cache line can be performed very efficiently in

modern processors. As this is not true when the number

Algorithm 4 AddChild16(node16,PartialKey,child)

1: if node16 is not full then
2: idx=getEmptyIdx(node16.bitmap);
3: node16.partialkeys[idx]=PartialKey;
4: node16.ptrArr[idx]=child;
5: mfence();
6: clflush(&node16.partialkeys[idx]);
7: clflush(&node16.ptrArr[idx]);
8: mfence();
9: node16.bitmap+= (0x1UL << idx);

10: mfence();
11: clflush(&node16.bitmap);
12: mfence();
13: else
14: Copy and Exchange node16 to node48

of keys becomes large, WOART explicitly stores partial

keys only for NODE4 and NODE16 types.

NODE48 and NODE256: Let us now go over the

NODE48 and NODE256 type nodes in WOART. As

shown in Figure 5, a NODE256 type node is exactly the

same as a node in the original radix tree (see Figure 1).

Hence, for NODE256, we simply make use of WORT

and do not discuss NODE256 any further.

For NODE48, the details are referred to the original

ART [11] as it is essentially what is used. We make use

of the open source code provided by Leis et al. [24] but

do make slight code changes to make it consistent in PM.

However, the essence is the same. Specifically, NODE48

keeps two separate arrays, one that has 256 entries in-

dexed by the partial key and one that has 48 entries, each

of which will hold one of the child pointers, respectively

denoted child index array and pointer array in Figure 5.

Consistency is ensured by making writes to the pointer

array first, and then atomically writing the pointer array

index value to the child index array, the index of which is

determined by the partial key. Note that we search for an

available entry in the pointer array by checking the child

index array. If we instead search for an available entry

by checking for a NULL pointer in the pointer array, as

was implemented by Leis et al. [24], system failure may

result in leaving non-reusable invalid pointers.

3.6 ART with Copy-on-Write

The third radix tree variant that we consider in this study

is one that makes use of copy-on-write (CoW). CoW in

the radix tree is much simpler than that with B-tree vari-

ants as CoW occurs for only one node upon an update

as only the updated node itself is affected upon an up-

date. That is, for any update one can simply create a copy

of the node and maintain consistency by replacing the

pointer in its parent node with the address of the copy

at the final moment. This is in contrast to B-tree variants

where node changes can cascade to other nodes, for ex-

ample, due to splits forcing parent nodes to also split.

In this study, we consider ART with CoW, which we
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Figure 6: Workloads

refer to as ART+CoW. ART+CoW combines the features

of WORT, WOART, and CoW. First, for NODE256, we

incorporate the first modification of WORT discussed

in Section 3.4. However, for path compression, instead

of adding the node depth, we use CoW for both split

and merge. Second, for NODE48, we make use of the

same mechanism as in WOART. Finally, for NODE16

and NODE4, we simply employ CoW. That is, we make

a copy of the node, make changes to it, then change the

parent pointer value with the 8-byte failure-atomic write.

4 Experimental Environment

To test the effectiveness of the proposed radix trees, we

implement them and compare their performance with

state-of-the-art PM indexing structures. The experiments

are run on a workstation with an Intel Xeon E5-2620

v3 2.40GHz X 2, 15MB LLC (Last Level Cache), and

256GB DRAM running the Linux kernel version 4.7.0.

We compile all implementations using GCC-4.4.7 with

the -O3 option.

To observe the effect of PM latency on the perfor-

mance of the data structure, we emulate PM latency us-

ing Quartz [1, 18], a DRAM-based PM performance em-

ulator. Quartz emulates PM latency by injecting software

delays per each epoch and throttling the bandwidth of re-

mote DRAM using thermal control registers. We emulate

read latency of PM using Quartz while disabling its band-

width emulation. Since write memory latency emulation

is not yet supported in the publicly available Quartz im-

plementation [1], we emulate PM write latency by in-

troducing an additional delay after each clflush and

mfence instructions, as in previous studies [7, 9, 19]. No

delays are added for the store instruction as the CPU

cache hides such delays [25].

For comparison, we implement wB+Tree, NVTree and

FPTree [3, 15, 20]. For wB+Tree, we implement both

the slot-only and bitmap+slot schemes, but we present

the performance of only the bitmap+slot scheme denoted

as wB+Tree because we observe that the bitmap+slot

scheme has lower node split overhead and search perfor-

mance is better due to the large node degree. Note that

the internal nodes of NVTree and FPTree are designed to

be volatile and does not guarantee failure atomicity. As

we consider PM latency in our experiments, for NVTree

Figure 7: Insertion performance in DRAM latency

and FPTree, we distinguish latency for internal nodes in

DRAM and leaf nodes in PM.

For the workloads, we make use of three synthetically

generated distributions of 8-byte integers. Unlike B-tree

based indexes, the radix tree is sensitive to the key distri-

bution due to its deterministic nature. To see how the in-

dexes react to extreme cases, we consider three distribu-

tions as shown in Figure 6. In Dense key distribution, we

generate sequential numbers from 1 to 128M, so that all

keys share a common prefix. This workload is the ideal

case for the radix tree since overall node utilization is

100%. In Sparse key distribution, keys are uniformly dis-

tributed, thus they share a common prefix only in the up-

per level of the tree structure. For the lower level nodes,

the radix tree relies on path compression optimization to

improve node utilization. In Clustered key distribution,

we merge Dense and Sparse key distributions to model a

more realistic workload. Specifically, we generate 2 mil-

lion small dense distributions, each consisting of 64 se-

quential keys. In Clustered key distribution, the middle

level nodes share common prefixes. For all three distri-

butions, the keys are inserted in random order and exper-

imental results are presented by using a single thread.

5 Performance Evaluation

In this section, we evaluate the three proposed radix tree

variants against the state-of-the-art persistent indexing

structures, namely, wB+Tree, NVTree, and FPTree.

5.1 Insertion Performance

Figure 7 shows the average insertion time for insert-

ing 128 million keys for the three different distributions

when the entire memory space is of DRAM latency. We

set the number of child pointers of WORT to 24 so that

each node indexes 4-bit partial keys for a maximum of

16 child pointers. We see from the results that in general

the radix based trees perform considerably better than

NVTree and wB+Tree. The range of benefits and the best

radix tree variant depends on the workload.

For NVTree, performance suffers because it requires

internal nodes to be pre-allocated in consecutive mem-

ory space and a node split results in reconstruction of all

the internal nodes. FPTree performs the best among the

B-tree variants and, in some cases, better than the radix
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Figure 8: Insertion Performance Comparison

Table 1: Average LLC Miss and CLFLUSH per Insertion, LLC Miss

per Search, and Leaf Node Depth for Various PM Indexing Structures

D (Dense) (a) Average number of (b) Average number of (c) Average number of (d) Average leaf

S (Sparse) LLC miss per insertion CLFLUSH per insertion LLC miss per search node depth

C (Clustered) D S C D S C D S C D S C

WORT 6.3 7.2 17.0 2.2 2.4 2.3 6.5 7.6 11.5 7.0 7.0 8.2

WOART 5.7 7.9 11.2 2.4 3.5 3.7 4.8 7.9 8.9 4.0 4.0 4.2

ART+CoW 5.0 12.7 12.9 2.4 3.8 3.9 3.8 6.2 8.8 4.0 4.0 4.2

FPTree 6.8 6.8 6.8 4.8 4.8 4.8 13.9 14.1 14.1 3.0 3.0 3.0

NVTree 35.0 35.6 33.6 3.3 3.3 3.3 33.5 33.5 33.3 3.0 3.0 3.0

wB+Tree 22.3 22.4 22.4 6.0 6.0 6.0 22.9 22.8 23.3 4.0 4.0 4.0

tree variants. However, this comparison must be made

with caution as FPTree assumes that the internal nodes

are in DRAM. This has the drawback that when the sys-

tem recovers from failure or rebooted the internal nodes

must be reconstructed incurring considerable overhead.

Considering only the radix trees for the distributions in

Figure 7, we see that for Clustered distribution, insertion

time is roughly 1.5× higher than for the other two. As

shown in column (a) in Table 1, this is due to the higher

number of LLC misses incurred as the common prefix of

the Clustered distribution is much more fragmented due

to the scattered tree nodes than the other two distribu-

tions.

Figure 8 shows the insertion results as the latency for

reads and writes are changed. The numbers on the x-axis

represent the latency values in nanoseconds. The default

latency, that is of DRAM as reported by Quartz, is 100ns.

As PM read and write latency is generally expected to

be comparable or slightly worse than those of DRAM,

we set the latency to various values as shown in the fig-

ure. For these experiments, the internal nodes of NVTree

and FPTree are considered to be in DRAM, hence not af-

fected by the latency increase of PM. This should result

in more favorable performance for these two trees.

Throughout the results, whether read or write latency

is increased, we see that the radix tree variants consis-

tently outperform the B-tree variants, except for FPTree.

However, as latency increases, wB+Tree and the radix

tree variants that store every node in PM suffer more.

We also see that the B-tree variants are, in general,

more sensitive to write latency increases. Column (b) in

Table 1, which is the measured average number of cache

line flushes per insertion, shows the reason behind this.

We see that B-tree variants incur more cache flush in-

structions than the radix tree variants.

5.2 Search Performance

Figure 9 shows the average search time for searching 128

million keys for the three different distributions. Since

search performance is not affected by the write latency

of PM, we vary only the read latency using Quartz.

First, observe the left part of each graph, where both

read and write latencies of PM are the same as DRAM.

We see that the radix tree variants always perform better

than the B-tree variants. In particular, ART+CoW per-

forms the best for all cases. Since ART+CoW uses copy-

on-write to ensure consistency, there is no additional

indirection caused by the append-only strategy and the

alignment of partial keys can be maintained. Therefore,

ART+CoW is advantageous in tree searching compared

to WOART where additional indirection and unsorted

keys are employed to support the append-only strategy.

The reason that the radix tree variants perform bet-

ter can be found in columns (c) and (d) in Table 1 that

shows the average number of LLC misses and the aver-

age leaf node depth, respectively. We see that the overall

performance is inversely proportional to the number of

LLC misses and the depth of the tree. Notice that the

depth of the tree is slightly higher for the radix tree vari-

ants. However, the number of LLC misses is substan-
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Figure 9: Search Performance Comparison

tially smaller, which compensates for the higher depth.

The reason there are fewer LLC misses is because the

radix tree can traverse the tree structure without perform-

ing any key comparisons, which incurs less pollution of

the cache. Recall that, in contrast, B-tree variants must

compare the keys to traverse the tree and that the keys

may even be scattered across the entire node due to the

append-only strategy. Hence, the B-tree variants more

frequently access the entire range of the node causing

more LLC misses.

Now, consider the right part of each graph, which is

when read latency is increased to 300, in comparison

with the left part. We see that WORT stands out in la-

tency increase especially for Dense and Clustered work-

loads. This is due to the depth of the tree as WORT

has the highest depth. Other than WORT, we see that

WOART and ART+CoW perform better than the B-tree

variants even with the increased read latency even though

the internal nodes of FPTree and NVTree are still seeing

DRAM latency.

5.3 Range Query Performance
Traditionally, B+-trees have an edge over radix trees on

range queries as keys are sorted within the nodes and the

leaf nodes are linked with sibling pointers. In contrast,

in the radix tree, no sibling pointers exist, but the leaf

nodes essentially contain keys that are implicitly sorted.

Hence, in the radix tree, one may have to traverse up the

descendant node(s) in order to find the next leaf node.

Our proposed radix tree variants are no different from

traditional radix trees and do not do well for range

queries. However, we note that the B-tree variants for PM

also do not keep the keys sorted to reduce the overhead

for ensuring consistency, which harms one of the key fea-

tures of B+-trees. To see the effect of such changes we

perform experiments for range queries.

Figure 10 shows the range query performance when

keys in the range consisting of 0.001% and 0.01% of the

128M keys are queried. Here, we also present the per-

formance of the original B+-tree for reference. We ob-

serve that the average time per operation of the three

radix tree variants is over 5.8× and 6.4× than B+-tree for

the 0.001% and 0.01% range, respectively. However, the

performance gap declines for PM indexes. With respect

to FPTree, NVTree, and wB+Tree, the average time per

operation of the three radix variants is 3.0× and 2.8×,

1.8× and 1.8×, and 4.8× and 5.3× higher for 0.001%

and 0.01% range queries, respectively. The reduction in

difference is because B-tree variants need to rearrange

the keys when servicing range queries.

5.4 Experiments with Memcached
In order to observe the performance of our proposed

index structures for real life workloads, we imple-

ment all the tree structures used in the previous ex-

periments within Memcached. Memcached is an in-

memory caching system for key-value based database

systems [22]. We remove the hash function and table of

Memcached and embed the indexing structures. We also

replace the bucket locking mechanism of the hash table

with the global tree locking mechanism. The global tree

locking mechanism locks the root of the tree in order to

prevent conflicts between threads whenever an insertion

operation is executed. We run mc-benchmark, which per-

forms a series of insert queries (SET) followed by a se-

ries of search queries (GET) [23]. The key distribution

is uniform, which randomly chooses a key from a set of

string keys.

For these experiments, we use two connected ma-

chines with a 10Gbps Ethernet switch, one for Mem-

cached and the other for running the mc-benchmark. We

execute 128 million SET and GET queries with 4 threads

and 50 threads, respectively. The machine used for Mem-

cached is the same as described in Section 4 and the

machine that runs the mc-benchmark is an Intel i7-4790

3.60GHz, 32GB DRAM and with Linux version 4.7.0.

For these experiments, all indexing structures are as-

sumed to run entirely on PM even for the internal nodes

of FPTree. This is because to consider the hybrid con-

figuration, considerable changes must be made to Mem-

cached, which we wanted to avoid as such changes may

affect the outcome of the results. To support variable-

sized string keys, wB+Tree and FPTree replace the keys

in nodes with 8-byte pointers to the keys stored in a sep-
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Figure 10: Range query over 128M

arate location [3, 15]. We follow this design in our ex-

periments. For NVTree, as there is no mention on how

to handle variable-sized keys, we omit its evaluation for

Memcached [20].

The left part of Figure 11 shows the results for SET op-

erations. We observe that the radix tree variants perform

considerable better than the B-tree variants by roughly

50%. Other than the difference in structure, there are a

couple of other factors that influences the difference. One

is that there is the additional indirection and large key-

comparing overhead, which was also observed by Chen

and Jin [3]. Note that for radix tree variants, the over-

head for key comparison is minimal. The other is the

additional cache line flush required to store the keys in

a separate PM area in the case of B-tree variants. This

overhead does not exist for radix tree as variable-sized

strings can be handled in essentially the same manner as

integers. We also see that the effect of increased PM la-

tency is also more profound for the B-tree variants.

The right part of Figure 11 shows the results for GET

queries. Similarly to the SET query, the radix tree vari-

ants perform better than the B-tree variants. However,

we also notice that the radix tree variants’ results are the

same for both 100 and 300 read latencies. We conjecture

that this actually represents the network communication

bottleneck. In spite of this, however, we see that the radix

tree variants reduce wB+Tree latency by 41% and 60%

and FPTree latency by 31% and 51% for 100 and 300

read latencies, respectively.

6 Summary and Conclusion

With the advent of persistent memory (PM), sev-

eral persistent B-tree based indexing structures such as

NVTree [20], wB+Tree [3], and FPTree [15] have re-

cently been proposed. While B-tree based structures have

been popular in-memory index structures, there is an-

other such structure, namely, the radix tree, that has been

less popular. In this paper, as our first contribution, we

showed that the radix tree can be more appropriate as an

indexing structure for PM. This is because its structure

is determined by the prefix of the inserted keys dismiss-

ing the need for key comparisons and tree rebalancing.

Figure 11: Memcached mc-benchmark performance

However, we also show that the radix tree as-is cannot

be used in PM.

As our second contribution, we presented three radix

tree variants adapted for PM. WORT (Write Optimal

Radix Tree), which is the first variant that we proposed,

employs a failure-atomic path compression scheme that

we develop. WORT is optimal for PM, as is WOART, in

the sense that they only require one 8-byte failure-atomic

write per update to guarantee the consistency of the struc-

ture totally eliminating the need to make duplicates typ-

ically done via logging or copy-on-write (CoW) in tra-

ditional structures. WOART (Write Optimal Adaptive

Radix Tree) and ART+CoW, the second and third vari-

ants, are both based on the Adaptive Radix Tree (ART)

that was proposed by Leis et al. [11]. ART resolves the

trade-off between search performance and node utiliza-

tion found in traditional radix trees by employing an

adaptive node type conversion scheme that dynamically

changes the size of a tree node based on node utilization.

However, ART in its present form does not guarantee

failure atomicity. WOART redesigns the adaptive node

types of ART and supplements memory barriers and

cache line flush instructions to prevent processors from

reordering memory writes and violating failure atomic-

ity. ART+CoW, the third variant, extends ART to make

use of CoW to maintain consistency.

Extensive performance studies showed that our pro-

posed radix tree variants perform considerable better

than recently proposed B-tree variants for PM such as

NVTree, wB+Tree, and FPTree for synthetic workloads

as well as in implementations within Memcached.
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