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Plants are continuously exposed to agents such as herbivores and environmental mechan-

ical stresses that cause wounding and open the way to the invasion by microbial

pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the

tissue and subsequent infection. Plants have evolved constitutive and induced defense

mechanisms to properly respond to wounding and prevent infection. The constitutive

defenses are represented by physical barriers, i.e., the presence of cuticle or lignin,

or by metabolites that act as toxins or deterrents for herbivores. Plants are also able

to sense the injured tissue as an altered self and induce responses similar to those

activated by pathogen infection. Endogenous molecules released from wounded tissue

may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate

immunity. Wound-induced responses are both rapid, such as the oxidative burst and

the expression of defense-related genes, and late, such as the callose deposition, the

accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and

gluganases). Typical examples of DAMPs involved in the response to wounding are the

peptide systemin, and the oligogalacturonides, which are oligosaccharides released from

the pectic component of the cell wall. Responses to wounding take place both at the

site of damage (local response) and systemically (systemic response) and are mediated by

hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
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INTRODUCTION

The sessile condition exposes plants to any possible environmen-

tal stress. Injury, one of the most frequent stress conditions that

plants must face, may cause both loss of nutrients and entry of

microbes. Therefore, plants have evolved sophisticated mecha-

nisms to promptly respond to wounding, rapidly heal the tissue

and prevent microbe infections. Unlike animals, plants do not

have mobile cells specialized for defense, but each plant cell has the

capability to activate protective mechanisms upon injury sensing.

The capacity of cells to activate defense responses upon “danger”

sensing and recognition of non-self microbe-associated molec-

ular patterns (MAMPs) and/or endogenous damage-associated

molecular patterns (DAMPs) is characteristic of the plant innate

immunity (Akira et al., 2006). Defense responses activated by

wounding are similar and overlapping with those activated by

MAMPs and DAMPs, indicating that both injury and pathogens

are limited by plants in a similar manner. Most of our knowledge

on wounding derives from studies in which plants are mechanically

damaged. Mechanical injury activates defenses that are similar to

those induced by herbivores and insects (Reymond et al., 2000;

Arimura et al., 2005; Rehrig et al., 2014), although the damage

caused by herbivores has peculiar characteristics and mechani-

cal wounding is necessary but not sufficient to trigger the full

response activated by insects (Maffei et al., 2007). Differences

between mechanical wounding and attacks by herbivores and

insects will be discussed in other reviews of this issue (Krautz

et al., 2014).

Plants contrast wounding with both constitutive structures,

such as epicuticular films and crystals of wax, and secretory

conduits for latices or resins, that restrict the access of oppor-

tunistic microorganisms to the tissue, as well as wound-induced

responses that, unlike the constitutive defenses, are energetically

costly (Leon et al., 2001; Bonaventure and Baldwin, 2010) and

thereby regulated and triggered only when required. The pri-

mary events of the response to wounding occur at the injured

site (local response) while the undamaged tissues respond later

(systemic response), upon perception of mobile signals that com-

municate the existence of a critical condition (Farmer and Ryan,

1992). Extracellular signals such as cell wall-derived oligogalactur-

onides (OGs) and peptides, like systemin, have been characterized

as typical signals of wounding (Roberts, 1992). Genes involved in

biosynthesis of jasmonic acid (JA) and ethylene (ET) as well as

genes for general stress responses (oxidative stress, dehydration

stress, heat-shock proteins, etc.) are rapidly induced (Reymond

et al., 2000; Delessert et al., 2004). Later, events of protein turnover

and transport processes involving aquaporins, lipid transfer pro-

teins, ABC transporters, sugar, and peptide transporters occur.

Finally, the modulation of primary metabolism (carbohydrate and

lipid metabolism, nitrogen assimilation) and the expression of

genes involved in the biosynthesis of secondary metabolites with

repellent or anti-digestive activity [i.e., glucosinolates, cyanogenic

glucosides, alkaloids, phenolics, and proteinase inhibitors (PI)]

may occur. Transcriptional profiling analyses performed on 8.200

Arabidopsis genes revealed that approximately 8% of these genes

www.frontiersin.org September 2014 | Volume 5 | Article 470 | 1



Savatin et al. Wuonding in plants

are differential expressed after wounding and about 20% of the

wounding-regulated genes encode proteins involved in signal

transduction, such as members in the AP2, WRKY, and MYB

families (Cheong et al., 2002). A large fraction of the wound-

responsive genes are also responsive to pathogens, suggesting

that signaling pathways activated by these stimuli are shared (see

below). This clearly indicates that an important reprograming of

gene expression occurs in plants to defend the damaged tissue,

which represents an easy passage for pathogen invasion. Receptors

and signal transduction elements usually involved in pathogen

response as well as several putative disease resistance genes (R

genes) are up-regulated by wounding (Cheong et al., 2002). This

review is focused on what is currently known about the putative

signals that are released upon wounding, on the mechanism of

their perception and transduction and on plant defense responses

activated upon injury sensing.

SENSING THE WOUNDING THROUGH THE CELL WALL

INTEGRITY

The cuticle, composed of cutin and cuticular waxes, covers the out-

ermost epidermal cell wall in the aerial portions of plants (Riederer

and Schreiber, 2001; Nawrath, 2006). The integrity of cuticle and

cell wall (CWI) is affected by wounding and may be sensed by

the plant cells. Studies on Arabidopsis plants expressing cutinase

(Sieber et al., 2000) and on mutants impaired in cuticle biosyn-

thesis have indicated that a more permeable cuticle allows the

passage of diffusates with growth-inhibiting activity against phy-

topathogenic fungi (Bessire et al., 2007; Chassot et al., 2007). A

breach in the cuticle caused by wounding also favors the diffusion

of elicitors that, therefore, have an easier access to the cell surface,

while an intact cuticle may prevent their passage from the surface.

An early recognition of elicitors may lead to a prompt and effi-

cient activation of the immune responses (L’Haridon et al., 2011;

Benikhlef et al., 2013).

The cell wall is a dynamic structure that play a critical role

in growth and development as well as in preventing wounding

and pathogen attack (Bellincampi et al., 2014). The perception

of an altered CWI is a key event during wounding (Nuhse,

2012; Wolf et al., 2012). Subtle modifications caused by phys-

ical perturbations such as light touch, soft mechanical stress,

wind or contact with insects may be sensed at the level of the

plasma membrane through stretch-activated mechano-sensitive

channels that increase the intracellular Ca2+ concentration and

trigger further signal transduction events (Nakagawa et al., 2007;

Haswell et al., 2008; Benikhlef et al., 2013). Expression of the

Arabidopsis calcium channels MATING INDUCED DEATH 1

(MID1)-COMPLEMENTING ACTIVITY 1 (MCA1) and MCA2

in yeast complements the lethal effect of loss-of-function muta-

tions in the MID1 and MID2 genes encoding stretch-activated

calcium channels (Kanzaki et al., 1999; Ketela et al., 1999) and

promote calcium influx upon mechanical stimulation (Naka-

gawa et al., 2007; Yamanaka et al., 2010). Putative cation channels

belonging to the GLUTAMATE RECEPTOR-LIKE (GLR) fam-

ily, which mediate calcium influxes in response to MAMPs

(Kwaaitaal et al., 2011), are also required for the expression

of several JA-inducible genes upon wounding in Arabidopsis

(Mousavi et al., 2013).

Several Arabidopsis receptor like kinases (RLKs), among which

those belonging to the Catharanthus roseus receptor-like kinase 1

family that includes THESEUS 1 (THE1), HERCULES 1, and FER-

ONIA, have been proposed as possible sensors of CWI (Hematy

et al., 2007; Guo et al., 2009). Loss of THE1 function attenuates

the growth defects and ectopic lignification phenotype caused

by a mutation in the CELLULOSE SYNTHASE 6 (Hematy et al.,

2007). Moreover, THE1 is involved in the accumulation of reactive

oxygen species (ROS) and lignin deposition induced by isox-

aben, an inhibitor of cellulose synthesis (Denness et al., 2011).

This evidence clearly shows that defects in the cell wall caused

by a disturbance of cellulose biosynthesis are sensed through

THE1.

The monitoring of the status of pectin contributes to the

sensing of CWI alterations (De Lorenzo et al., 2011). Plants car-

rying mutations that significantly alter pectin integrity, such

as quasimodo 2 or tumorous shoot development 2, exhibit con-

stitutive induction of defense responses (Krupkova et al., 2007;

Mouille et al., 2007). However, minor modifications in the methy-

lation status, which occur in transgenic plants overexpressing the

inhibitors of pectin methylesterases or in KO mutants of PECTIN

METHYLESTERASE 3, do not influence the expression of defense

genes (Lionetti et al., 2007, 2010, 2012; Raiola et al., 2011). Possi-

ble indicator of an altered pectin integrity is the presence of OGs,

a well-known class of DAMPs that, similarly to MAMPs, act as

danger signals for the activation of the immune responses (Boller

and Felix, 2009; De Lorenzo et al., 2011). OGs are released from

the plant cell walls upon partial degradation of homogalacturo-

nan, the main component of pectin, by wound-induced hydrolytic

enzymes or, during infections, by microbial hydrolytic enzymes.

The size of OGs is critical for their elicitor activity, being OGs

with a degree of polymerization (DP) between 10 and 15 most

active while shorter oligomers are inactive. OGs induce in sev-

eral plant species a wide range of defense responses, including

production of ROS, nitric oxide, phytoalexins, glucanase, chiti-

nase, and callose (Bellincampi et al., 2000; Galletti et al., 2008;

Rasul et al., 2012; Ferrari et al., 2013). In tomato, OGs, proba-

bly generated by the action of a wound-inducible plant-derived

polygalacturonase (PG; Bergey et al., 1999), induce the accu-

mulation of PI (Ryan and Jagendorf, 1995). OGs may act only

locally, because their oligoanionic nature confers them a limited

mobility in the tissues (Baydoun and Fry, 1985). In Arabidop-

sis, both wounding and OG treatment induce a strong local

resistance against the necrotrophic fungus Botrytis cinerea that

is independent of salicylic acid (SA)- and JA-mediated signaling

(Chassot et al., 2007; Ferrari et al., 2007). OGs also antagonize

auxin responses (Branca et al., 1988; Bellincampi et al., 1996;

Ferrari et al., 2008; Savatin et al., 2011), but the auxin-OG antago-

nism is uncoupled from their activity as defense elicitors. Indeed,

the Arabidopsis mitogen-activated protein (MAP) kinase kinase

kinases ANPs have been identified as elements in the OG-mediated

induction of defenses, but do not play a major role in the

inhibition of the auxin-induced gene expression (Savatin et al.,

2014).

OG sensing in Arabidopsis may involve wall-associated kinases

(WAKs; Brutus et al., 2010; Kohorn and Kohorn, 2012). WAKs are

RLKs consisting of an extracellular domain, containing epidermal
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growth factor repeats, a transmembrane domain and a cytoplas-

mic Ser/Thr kinase domain. The extracellular domain of WAK1

and WAK2 also contains an N-terminal portion that binds pectin

in vitro (Decreux and Messiaen, 2005; Kohorn et al., 2009). OGs

with a DP > 9 bind reversibly WAK1 and the binding increases

when OGs are present as dimers in a calcium-mediated “egg box”

conformation (Decreux and Messiaen, 2005; Cabrera et al., 2008).

Five WAK genes are clustered on chromosome 1 and additional

21 WAK-like genes (WAKL) are present in Arabidopsis (Verica

et al., 2003). WAK1, WAK2, WAKL5, and WAKL7 are induced

by wounding (Wagner and Kohorn, 2001; Verica et al., 2003). In

rice, OsWAK1 is also induced by mechanical wounding as well as

by SA and methyl-JA (MeJA) but not by abscisic acid (ABA; Li

et al., 2008). A role of WAK2 in the wound response was suggested

by the analysis of gene expression in plants overexpressing WAK2

fused to a TAP epitope (Kohorn et al., 2012).

A lectin receptor kinase-I.9 (DORN1), which plays a role in

the perception of extracellular ATP, is also involved in the wound

responses. Indeed, ectopic expression of DORN1 enhances expres-

sion of genes co-regulated by wounding and ATP (Choi et al.,

2014). A maize wound-induced gene encoding a leucine-rich

RLK (WPK1) is involved in JA- and phytochrome-mediated sig-

naling (He et al., 2005). In tobacco, a leucine-rich repeat RLK

(WRK) is involved in the JA-dependent wound signaling and acts

upstream of the SA- and wound-induced protein kinases SIPK and

WIPK, respectively (Seo et al., 1995; Zhang and Klessig, 1998a,b;

Takabatake et al., 2006). WRK expression increases 15 min after

wounding (Ito et al., 2002). WRK orthologs are present in dicots

(Arabidopsis and tomato) but not in monocots (rice and wheat;

Takabatake et al., 2006).

WOUND-ASSOCIATED DAMPs

Peptides that function as DAMPs have been isolated in wounded

tissues. Systemin, a 18-aminoacid peptide, was identified in

tomato after wounding or insect attack as a cleavage product

released into the apoplast from prosystemin, i.e., a larger cyto-

plasmic precursor protein that accumulates in the cytosol of

phloem parenchyma cells (Jacinto et al., 1997; Narvaez-Vasquez

and Ryan, 2004; Schilmiller and Howe, 2005). Sensing of sys-

temin activates the biosynthesis of JA, which, in turn, activates

defenses responses in neighboring cells (Orozco-Cardenas et al.,

1993). The systemin receptor was identified as the tomato homolog

of the brassinosteroid receptor BRI1, SR160 (Scheer and Ryan,

1999), but more recent findings argued against this evidence

(Hind et al., 2010). Hydroxyproline-rich systemins (HypSys) that

trigger plant immunity during herbivore or pathogen attack (Heil-

ing et al., 2010; Bhattacharya et al., 2013) have been identified

in Solanaceae (Pearce et al., 2001, 2007, 2009; Pearce and Ryan,

2003; Bhattacharya et al., 2013) and in sweet potato (Chen et al.,

2008). HypSys peptides, as systemin, are processed from precursor

proteins which are induced by wounding (Narvaez-Vasquez et al.,

2005).

A peptide, Pep1, was identified in Arabidopsis for its capa-

bility of inducing alkalinization in suspension-cultured cells.

Pep1 is a 23-amino acid peptide released from the C-terminus

of a 92 amino acid precursor protein, PROPEP1, which is

induced by wounding, MeJA and ET. PROPEP1 belongs to a

gene family of eight members. The family members PROPEP2

and PROPEP3, and, to a lesser extent, PROPEP1 are strongly

induced by microbial pathogens such as B. cinerea, Phytoph-

thora infestans, and Pseudomonas syringae as well as by various

MAMPs and DAMPs elicitors, including NPP1, HrpZ, flg22, and

OGs (Craigon et al., 2004; Toufighi et al., 2005; Denoux et al.,

2008). PROPEPs are localized in the cytosol and the tonoplast

and may function in the amplification/modulation of elicitor-

triggered responses rather than being signals responsible for

the initiation of the defense responses (Huffaker et al., 2006;

Bartels et al., 2013). Homologues of AtPeps have been identified

in maize. ZmPep1 regulates disease responses whereas ZmPep3

triggers the biosynthesis of JA and ET and induces the pro-

duction of anti-herbivore volatiles (Huffaker et al., 2011, 2013).

AtPeps are perceived by two RLKs (PEPR1 and PEPR2), which

share structural and functional similarity to the MAMP recep-

tors FLS2 and EFR (Yamaguchi et al., 2006; Krol et al., 2010).

PEPR1 and PEPR2 are induced by wounding and MeJA but not

by SA and 1-aminocyclopropane-1-carboxylic acid (ACC) syn-

thase (Yamaguchi et al., 2010). They are also differentially induced

by DAMPs (AtPeps and OGs) and MAMP (flg22 and elf18;

Zipfel et al., 2004, 2006; Denoux et al., 2008; Yamaguchi et al.,

2010).

Cutin monomers, that are formed as a breakdown of the cuti-

cle, have been proposed as signal molecules for the induction of

disease resistance in cereals, i.e., barley and rice (Schweizer et al.,

1994). Fungal pathogens such as Erysiphe graminis and Magna-

porthe grisea are able to produce and secrete cutinases that facilitate

the formation of cutin monomers in the infection site. Pretreated

barley leaves with cutin monomers display acquired protection

against E. graminis (Schweizer et al., 1996b) and evidences that

free cutin monomers can be recognized by plant cells as endoge-

nous stress-related signals were obtained in cultured potato cells

(Schweizer et al., 1996a).

SIGNAL TRANSDUCTION UPON WOUNDING

Many events triggered by wounding have been uncovered and are

discussed here.

ELECTRIC SIGNALS

The involvement of electrical signals in the local and systemic alert

in plants was postulated in 1992, when it was found that mechan-

ical wounding in tomato cotyledons causes the transmission of

a potential action to the first unwounded leaf concomitantly

with the induction of PI proteins at the site of injury (Wildon

et al., 1992). More recently, it has been shown that mechanical

wounding at the tips of Arabidopsis leaves generates, within a

few seconds, wound-activated surface potential (WASP) changes

that are consequent to a plasma membrane depolarization. The

WASP signal first moves from tips toward the center of the

rosette leaves and then to a restricted and selected number of

distal leaves. For example, wounding at the tip of leaf no. 8

causes WASP changes of the same amplitude and duration in

leaves no. 5, 11, 13, and 16 but not in other leaves. Both JA

and JA-responsive gene expression increases with a total of 313

genes up-regulated both locally and systemically. GLR proteins,

putative cation channels, are required for WASP propagation
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leading to defense gene expression (Mousavi et al., 2013). Simi-

lar WASP effects on JA levels and defense gene expression have

been reported in tomato plants upon wounding (Herde et al.,

1996). Electric signals that propagate over distances of 100 cm

from the wounded site are generated in avocado trees (Oyarce and

Gurovich, 2011).

ION FLUXES

One of the earliest responses (0.5–2 min) activated by the elici-

tors of plant defenses is the membrane depolarization following

the influx of H+ and Ca2+ and a concomitant efflux of K+ and

nitrate across the membrane (Nurnberger et al., 2004; Mithofer

et al., 2005). Injury-induced ion fluxes occur in both dicots such

as Vicia faba and monocots such as Hordeum vulgare (Zimmer-

mann et al., 2009). Calcium spikes are critical for downstream

signaling, since the physiological concentration of cytosolic cal-

cium very rapidly increases after “danger” sensing (Lecourieux

et al., 2006; Kudla et al., 2010; Reddy et al., 2011). In plants, as

in animals, calcium is a well-known second messenger. Plants

discriminate among the various stimuli by generating “calcium

signatures” that are characteristic in terms of sub-cellular local-

ization, amplitude, duration and frequency (Sanders et al., 2002).

Intracellular peaks of calcium are detected in both epidermis and

vascular cells proximal to the injury within 6 s (Beneloujaepha-

jri et al., 2013). Signatures are decoded by three major types of

sensor proteins: calmodulins (CAMs) and CAM-like proteins, cal-

cineurin B-like proteins (CBL) and calcium-dependent protein

kinases (CDPKs), a class of calcium sensors bearing both protein

kinase and CAM-like domains in a single polypeptide (Luan et al.,

2002; Harper and Harmon, 2005; Luan, 2009). Different studies

highlight the role of calcium sensors in plant immunity. For exam-

ple, the Arabidopsis CAM binding protein (CBP) 60 g contributes

to flg22-induced accumulation of SA and is involved in resistance

against P. syringae (Wang et al., 2009); the rice CBL-interacting

protein kinases (CIPKs) 14 and 15 are involved in various MAMP-

induced immune responses (Kurusu et al., 2010); the potato and

tobacco CDPKs participate in the activation of the oxidative burst

(Ludwig et al., 2005; Kobayashi et al., 2007, 2012). In Arabidop-

sis, CALCIUM-DEPENDENT PROTEIN KINASE 3 (CPK3) and

CPK13 are required for defense gene induction upon feeding by

the generalist herbivore Spodoptera littoralis (Kanchiswamy et al.,

2010). CPK3 is also activated by flg22 in Arabidopsis protoplasts

suggesting that it is involved in MAMP signaling as well (Boudsocq

et al., 2010). In tomato, LeCDPK2 contributes to wound-triggered

ET production by phosphorylating and activating the ET biosyn-

thesis enzyme ACC SYNTHASE 2 (Kamiyoshihara et al., 2010).

In Nicotiana attenuata, CDPK4 and CDPK5 are negative regula-

tors of JA synthesis; plants with silenced expression of these two

CDPKs are more resistant to larvae of Manduca sexta and exhibit

enhanced responses to mechanical wounding (Yang et al., 2012).

MeJA, touching and mechanical wounding enhance a calcium-

activated CDPK activity that induces systemic wound responses

also in maize (Szczegielniak et al., 2012).

REACTIVE OXYGEN SPECIES

The production of ROS is a highly conserved process among

aerobic organisms and is involved in defense and development

processes of plants. ROS are emerging as signal molecules in plant

immunity activation in response to both pathogens and wounding

(Mittler et al., 2011; Suzuki and Mittler, 2012). In tomato, hydro-

gen peroxide is detected within 1 h after wounding and increases

at 4–6 h both locally and in the upper unwounded leaves. OGs

generated by a plant PG probably act as mediators of this process.

A tomato mutant unable to properly respond to wounding neither

induce PG nor generates hydrogen peroxide and is more sus-

ceptible to larvae of Manduca sexta (Orozco-Cardenas and Ryan,

1999). Given its toxicity, hydrogen peroxide must be tightly regu-

lated to work as a signal molecule, and this is achieved through a

complex mechanism involving calcium, protein phosphorylation,

and production of ROS-scavenging enzymes that determine its

steady-state levels in the cell. Wound-induced apoplastic hydro-

gen peroxide is produced by transmembrane NADPH oxidases

(RBOHs) and by peroxidases, which also have a role in detoxifica-

tion of other ROS (Minibayeva et al., 2014). The C-terminal region

of plant RBOHs contains cytosolic FAD- and NADPH-binding

domains and six conserved transmembrane domains while the

cytosolic N-terminal region contains two EF-hand motifs which

bind calcium (Kobayashi et al., 2007; Oda et al., 2010; Proels

et al., 2010; Kimura et al., 2012; Drerup et al., 2013). Indeed, the

wound-induced oxidative burst is dependent on calcium spikes

and occurs also in the absence of the stimulus through arti-

ficially increasing the calcium levels in the cells (Monshausen

et al., 2007; Takeda et al., 2008; Kimura et al., 2012). On the

other hand, wound-related production of hydrogen peroxide is

abolished by pretreatments with the calcium channel blocker ver-

apamil or calcium chelators EGTA and oxalate (Beneloujaephajri

et al., 2013). A calcium-dependent protein kinase CPK5 phos-

phorylates RBOHD and, probably, represents the link between

calcium accumulation and ROS production. CPK5 phosphory-

lates in vitro and in vivo the N-terminal serine residues S39, S148,

S163, and S347 of AtRBOHD (Dubiella et al., 2013) while, in

a contradicting report, ROS production triggered by pathogen

infection is reduced in cpk1 cpk2 double mutant plants (Gao

et al., 2013). RBOHD forms complexes with EFR and FLS2 as

well as with the plasma membrane-associated kinase BOTRYTIS-

INDUCED KINASE 1 (BIK1), which is also required for the

protection conferred by wounding against pathogens (Laluk et al.,

2011). BIK1 directly interacts with and phosphorylates different

residues of RBOHD in response to elicitors (Kadota et al., 2014).

In addition, RBOHF activity is regulated both through direct

binding of Ca2+ to EF-hands and through calcium-dependent

phosphorylation by CBL1/9-CIPK26 complexes (Drerup et al.,

2013).

MITOGEN-ACTIVATED PROTEIN KINASES (MAPKs)

Mitogen-activated protein kinase cascades amplify several abi-

otic and biotic stimuli leading to appropriate physiological

responses (Rodriguez et al., 2010). They consist of a core module

of three kinases that perform sequential phosphorylation reac-

tions: a MAP kinase kinase kinase (MAP3K) activates a MAP

kinase kinase (MAP2K), which activates a MAPK. Involvement

of MAPKs in wounding has been widely described in various

plant species (Nakagami et al., 2005). In Arabidopsis, wounding

activates MEKK1, MPK3, MPK19 and, consequently, MEKK1
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phosphorylates MKK1 (Hadiarto et al., 2006). Wounding also

activates MPK4 and MPK6 and plants overexpressing the PP2C-

type phosphatase AP2C1, which dephosphorylates and inactivates

MPK4 and MPK6, do not respond to wounding (Ichimura et al.,

2000). On the contrary, ap2c1 mutants display enhanced responses

to wounding and are more resistant to phytophagous mites

(Tetranychus urticae; Schweighofer et al., 2007). On the other hand,

MPK8, which is activated through direct binding of CAMs in a

Ca2+-dependent manner and through a MKK3-mediated phos-

phorylation, negatively regulate the expression of RBOHD and

ROS homeostasis triggered by wounding (Nemoto et al., 2011). In

tobacco, the SA-induced protein kinase kinase SIPKK and MPK4,

which are orthologs of Arabidopsis MKK1/MKK2 and MPK4,

respectively, are required for wound-induced expression of JA-

responsive genes, being MPK4 activated by SIPKK (Gomi et al.,

2005). Moreover, WIPK and SIPK, which are orthologs of the

Arabidopsis MPK3 and MPK6, respectively, are also involved in

wounding signaling (Seo et al., 2007).

HORMONES

Wounding induces de novo synthesis of JA, ABA, and ET, which

are known to activate a network of interconnected pathways that

coordinate host defense responses (Peña-Cortés et al., 1995; Bergey

et al., 1996; Bouquin et al., 1997). JA accumulates in wounded

plants and activates expression of various defense genes such as

those encoding PI, thionin, and enzymes involved in secondary

metabolism (Creelman and Mullet, 1997). Jasmonates, includ-

ing the active form jasmonoyl-isoleucine (JA-Ile), derive from

plastidial fatty acids through at least 10 intermediates and the

involvement of three cellular compartments (Staswick and Tiryaki,

2004; Browse, 2009; Fonseca et al., 2009; Schaller and Stintzi,

2009). In Arabidopsis, wounding at leaf no. 8 promptly (90 s)

induces an increase of JA amount in leaf no. 13, which shares a

connected vasculature with leaf no. 8 (Dengler and Kang, 2001).

Plant 13-lipoxygenases (13-LOXs) catalyze the first event in JA

synthesis, i.e., the dioxygenation of fatty acids (Andreou and

Feussner, 2009). In Arabidopsis, LOX2 is required for the JA syn-

thesis proximal to the wound (Glauser et al., 2009) while LOX6

is required for JA and JA-Ile accumulation in the wounded as

well as in the distal unwounded leaves. The conversion of JA to

JA-Ile takes 50 s in the wounded leaf and about 100 s in the distal

connected leaf no. 13 (Chauvin et al., 2013). JA and JA-Ile accu-

mulation in response to wounding have been demonstrated to be

dependent on WASPs (see above, Mousavi et al., 2013). Another

important step in JA synthesis is the accumulation of the JA precur-

sor 12-oxo-phytodienoic acid (OPDA) catalyzed by allene oxidase

(AOS), which is induced by tissue injury (Leon et al., 2001). In

potato, two putative AOS genes, StAOS1 and StAOS2, are dif-

ferentially induced upon wounding and are required for OPDA

and JA accumulation both in wounded and in unchallenged tis-

sues (Taurino et al., 2014). A possible link between JA signaling

and CWI alterations is suggested by the analysis of the Arabidopsis

cev1 and cob mutants, which have defects in cellulose synthesis

and deposition and produce higher amount of JAs (Ellis et al.,

2002; Ko et al., 2006). On the other hand, plants with a reduced

expression of StAOS1 and StAOS2, and, consequently, a lower

amount of OPDA, display reduced PME activity, increased methyl

esterification level of pectins and an increased susceptibility to

an hypovirulent strain of Dickeya dadantii (Taurino et al., 2014).

In tomato, JA is preferentially generated in vascular bundles and

accumulates in the midrib of leaves (Stenzel et al., 2003). AOS and

lipoxygenases are located in the companion-cell–sieve-element

complex of the vascular bundle (Hause et al., 2003). Since sys-

temin accumulates in phloem parenchyma cells (Narvaez-Vasquez

and Ryan, 2004) and activates the octadecanoid pathway for JA

biosynthesis, it may be hypothesized that perception of systemin

on the surface of companion cells initiates the synthesis of JA that

is rapidly transported along the phloem (Schilmiller and Howe,

2005).

Abscisic acid is a stress hormone that mediates plant responses

to drought and salinity (Finkelstein, 2013) as well as the expres-

sion of wound-induced PROTEINASE INHIBITOR II (PIN2) gene

in tomato and potato (Peña-Cortés et al., 1995). Moreover, ABA

positively regulates programmed death in Arabidopsis leaf cells

surrounding the wounding site to confine injury and/or pathogen

infections (Bostock and Stermer,1989). Spreading of programmed

cell death from wounded sites is repressed by the transcription fac-

tor MYB108 or BOTRYTIS SENSITIVE1 (BOS1; Mengiste et al.,

2003), and plants lacking this element exhibit mis-regulated cell

death after wounding (Cui et al., 2013).

Ethylene production upon wounding has been documented

(O’Donnell et al., 1996; Bouquin et al., 1997; Liu et al., 1997).

Among the early wound-induced genes there are several ACC

synthase genes and many of ET response transcription factors,

i.e., EREBPs (Cheong et al., 2002). In tomato, ET and wound

signaling, mediated by systemin and JA, have been reported to

independently act on resistance against B. cinerea (Diaz et al.,

2002). ET and JA, besides mediating inducible defenses in response

to wounding, have been also proposed to function in the trade-

off between growth and defense and the associated changes in

resource allocations (Onkokesung et al., 2010).

LATE RESPONSES

Early intra- and inter-cellular events activated around the

wounded site are required for late responses such as deposition

of callose, suberin, lignin, and synthesis of various phenolics that

may function both as a physical barrier and as antimicrobial sub-

stances. An Arabidopsis callose synthase, PMR4, is required for

wound-induced callose formation (Jacobs et al., 2003). Callose is

a (1−→3)-β-D-glucan synthetized in all types of plant tissues in

response to wounding (Chen and Kim, 2009). Its accumulation is

dependent on the oxidative burst (Daudi et al., 2012; O’Brien et al.,

2012) and occurs at the level of the cell wall either at wounded pen-

etration sites or during attempted infections of fungi (Bellincampi

et al., 2014). Callose may also prevent the spread of viruses

through plasmodesmata (Benitez-Alfonso et al., 2011). Activity of

both copper amine oxidases (CuAO) and flavin-containing amine

oxidases (PAO), hydrogen peroxide-producing enzymes respon-

sible for the oxidative de-amination of polyamines, appears to

be important in wound healing in tobacco plants (Tisi et al.,

2008). CuAO mediates also the enhanced accumulation of cell

wall phenolics, observed on wound surface in tobacco plants

over-expressing a fungal endopolygalacturonase, which show

constitutively activated defenses. This observation suggests an
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FIGURE 1 | Local and systemic responses induced by wounding in

Arabidopsis. Wounding of Arabidopsis leaves (1) is sensed through

mechano-sensitive elements or by recognition of damage-associate

molecular patterns, such as OGs or PEPs, which are perceived at the

plasma membrane level. (2) Elements involved in wound signaling include

calcium channels, MAPK cascades, CDPKs, and other kinases. Cell-to-cell

communication is achieved by H2O2 waves produced by the

trans-membrane NADPH oxidase RBOHD. Alert messages are generated

and systemically propagated to undamage tissues through WASPs (red

dashed lines) and other signals, such as JA. (3) Dashed lines indicate still

partially uncharacterized roles of MAPKs or hypothetical cascades. WRGI:

wound-regulated gene induction.

important role of polyamine catabolism-derived hydrogen per-

oxide in the response activated by a compromised pectin integrity

(Cona et al., 2014). Reconstruction of damaged tissues often takes

place upon wounding and involves vascular and/or other cells that

may divide and differentiate to reunite the existing tissues. More-

over, active biosynthesis and accumulation of pectic substances has

been described in the cell wall of the reunion region in the cortex in

cucumber and tomato hypocotyls (Asahina et al., 2002). The tran-

scription factors RAP2.6L and ANAC071 are induced by ET and

JA, differentially expressed around the injury site and are essen-

tial for tissue reunion of Arabidopsis wounded flowering stems

(Asahina et al., 2011).

CONCLUSION

Pathogens often utilize wounded tissues for their entry into

the plant. Wounding is rapidly perceived through an efficient

surveillance mechanism of tissue integrity followed by cell-to-cell

communication and long-distance signaling. Every cell is able to

rapidly produce and propagate different alert messages, such as

WASPs and ROS waves (Figure 1), which rapidly prime the rest

of the plant to set up defenses against the potential danger. Prop-

agation occurs over long distances, between different parts of the

same plant and even between different individuals through volatile

molecules production (Komarova et al., 2014). In the recent years

several elements involved in sensing and signaling of wounding

have been identified showing that the defense-related responses

activated by wounding are comparable and almost overlapping

with those activated after elicitor sensing. Thus, injury triggers a

similar level of alert as a pathogen does, indicating that a breach in

the physical barriers of the plant needs to be efficiently defended.
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