
Mon. Not. R. Astron. Soc. 367, 259–274 (2006) doi:10.1111/j.1365-2966.2005.09949.x

Wouthuysen–Field coupling strength and application to high-redshift
21-cm radiation

Christopher M. Hirata�
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

Accepted 2005 November 30. Received 2005 November 26; in original form 2005 July 5

ABSTRACT

The first ultraviolet sources in the universe are expected to have coupled the H I spin tempera-
ture to the gas kinetic temperature via scattering in the Lyα resonance (the ‘Wouthuysen–Field
effect’). By establishing an H I spin temperature different from the temperature of the cos-
mic microwave background, the Wouthuysen–Field effect should allow observations of H I

during the reionization epoch in the redshifted 21-cm hyperfine line. This paper investigates
four mechanisms that can affect the strength of the Wouthuysen–Field effect that were not
previously considered. (1) Photons redshifting into the H I Lyman resonances may excite an
H atom and result in a radiative cascade terminating in two-photon 2s1/2 → 1s1/2 emission,
rather than always degrading to Lyα as usually assumed. (2) The fine structure of the Lyα reso-
nance alters the photon frequency distribution and leads to a suppression of the scattering rate.
(3) The spin-flip scatterings change the frequency of the photon and cause the photon spec-
trum to relax not to the kinetic temperature of the gas but to a temperature between the kinetic
and spin temperatures, effectively reducing the strength of the Wouthuysen–Field coupling.
(4) Near line centre, a photon can change its frequency by several times the line width in a single
scattering event, thus potentially invalidating the usual calculation of the Lyα spectral distortion
based on the diffusion approximation. It is shown that (1) suppresses the Wouthuysen–Field
coupling strength by a factor of up to ∼2, while (2) and (3) are important only at low kinetic
temperatures. Effect (4) has a �3 per cent effect for kinetic temperatures Tk � 2 K. In partic-
ular, if the pre-reionization intergalactic medium was efficiently heated by X-rays, only effect
(1) is important. Fitting formulae for the Wouthuysen–Field coupling strength are provided for
the range of Tk � 2 K and Gunn–Peterson optical depth 105 < τGP < 107 so that all of these
effects can be easily incorporated into 21-cm codes.

Key words: radiative transfer – intergalactic medium.

1 I N T RO D U C T I O N

The cosmic reionization is one of the unexplored frontiers of as-
trophysics. Currently, we have only a few limited observational
constraints on the nature of the intergalactic medium (IGM) dur-
ing this era and the objects that must have formed during it. The
major constraints on reionization currently come from the H I Lyα

absorption at a wavelength of λLyα = 1216 Å and from the polar-
ization of the cosmic microwave background (CMB). In particular,
observations of complete Lyα absorption at z ∼ 6 in quasar spec-
tra have pinpointed this epoch as the end of reionization (Becker
et al. 2001; Fan et al. 2002), whereas the CMB polarization data
from the Wilkinson Microwave Anisotropy Probe (WMAP) suggest
a significant ionization at higher redshifts, e.g. for instantaneous
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reionization WMAP finds reionization at z = 20+10
−9 (Bennett et al.

2003; Kogut et al. 2003).
While the Lyα and WMAP polarization data are currently our

best source of information about the early ionization history of the
IGM and the ionizing sources responsible for reionization, these
techniques leave several fundamental questions unanswered. The
Lyα absorption saturates at relatively low neutral fraction x H I �
1 and cannot probe the bulk of the reionization epoch. The CMB
polarization does probe the bulk of the reionization epoch, but on the
large angular scales of interest, cosmic variance limits the precision
with which information can be extracted (Hu & Holder 2003) and
polarized foregrounds may prove to be a further limitation. The
large-scale polarization also only probes the mean ionization of the
universe, and has coarse redshift information. CMB anisotropies
on small scales are sensitive to patchy reionization, but these come
with no redshift information, so their interpretation could be difficult
(Doré, Hennawi & Spergel 2004).

C© 2006 The Author. Journal compilation C© 2006 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/367/1/259/1018616 by guest on 16 August 2022



260 C. M. Hirata

One promising source of information about the reionization his-
tory that overcomes both of these problems is the hyperfine 21.1-cm
line of H I. For most of the reionization era, H I is present in signif-
icant quantities. Moreover, radio interferometry may make 21-cm
inhomogeneities observable across a range of angular scales, and
because the 21-cm radiation is a spectral line, frequency informa-
tion immediately gives the redshift. Thus the 21-cm line has at-
tracted much interest as a probe of the high-redshift IGM (Hogan &
Rees 1979; Madau, Meiksin & Rees 1997; Ciardi & Madau 2003;
Iliev et al. 2003; Wyithe & Loeb 2004; Zaldarriaga, Furlanetto &
Hernquist 2004). Several experiments are currently being performed
or planned to observe the high-redshift 21-cm signal, including the
Primeval Structure Telescope (Peterson, Pen & Wu 2004), the Low-
Frequency Array,1 the Mileura Wide-Field Array,2 and the Square
Kilometre Array.3

The 21-cm line is sensitive to several properties of the IGM in-
cluding its density, neutral fraction x H I, and spin temperature Ts. Be-
fore the first ultraviolet (UV) sources turn on, the spin temperature
is determined by a competition between the tendency of radiative
transitions to bring Ts into equilibrium with the CMB at Tγ and the
tendency of atomic collisions to bring Ts into equilibrium with the
gas kinetic temperature Tk. Loeb & Zaldarriaga (2004) have shown
that at redshifts z ∼ 30 the radiative transitions dominate over col-
lisions in regions of the universe near the mean density. Collisions
still dominate in the highest-density regions of the universe such
as minihaloes, which can be hotter than the CMB and thus appear
in emission (Iliev et al. 2002; Ahn et al. 2005; Kuhlen, Madau &
Montgomery 2005). Therefore at these redshifts, the 21-cm signal
should consist of very weak absorption from most of the volume,
plus emission from the high-density regions.

However, once the first galaxies form, UV radiation is released
into the IGM. This radiation can Raman-scatter through the Lyα

resonances and convert hydrogen atoms between the two hyperfine
levels F = 0 and 1. The photons within the Lyα resonance region can
exchange energy with H I atoms via the Doppler shift, hence they
are expected to come to Boltzmann equilibrium with the gas kinetic
temperature, and so the Raman scattering should tend to bring Ts

into equilibrium with Tk. This process is known as the Wouthuysen–
Field effect, after Wouthuysen (1952) and Field (1958); this effect,
together with the CMB and collisions, controls the H I spin temper-
ature during reionization. Once the Wouthuysen–Field effect turns
on, one should observe a strong absorption signal at 21(1 + z) cm
if Tk < Tγ as expected if the IGM has expanded adiabatically since
thermal decoupling from the CMB at z ∼ 200, or an emission signal
if the neutral IGM has been heated efficiently by X-rays (Madau
et al. 1997).

The main purpose of this paper is to investigate in more de-
tail the physics of the Wouthuysen–Field effect as applied to the
high-redshift IGM. Much progress in this direction has recently
been made due to the work of Chen & Miralda-Escudé (2004) and
Barkana & Loeb (2005b), who have, respectively, investigated the
mean Wouthuysen–Field coupling rate and the perturbations caused
by the fluctuating density of galaxies. However, there are several
physical effects that were neglected in these papers, but are investi-
gated here. First, it is usually assumed that any UV photon emitted
in the band between the Lyman edge at 912 Å and Lyα at 1216 Å,
will redshift into a Lyman-series resonance and be degraded to Lyα

1 http://www.lofar.org/
2 http://web.haystack.mit.edu/arrays/MWA/index.html
3 http://www.skatelescope.org/

via a radiative cascade. However, some radiative cascades in H I

terminate in the two-photon transition from 2s1/2 to 1s1/2, and these
produce no Lyα. It is shown that all photons emitted between Lyβ

(1026 Å) and Lyγ (973 Å), and most photons between Lyγ and the
Lyman edge, are ‘lost’ in this way. This reduces the Wouthuysen–
Field coupling rate since the latter is determined by the flux of Lyα

photons. Here, it is shown that the reduction can be as much as a
factor of ∼2 for hard source spectra.

Secondly, the photon spectrum in the vicinity of Lyα and the as-
sociated spin-flip rate are considered in detail, taking into consider-
ation the fine and hyperfine structures of Lyα, the frequency depen-
dence of the spin-flip probability (which was previously assumed
to be a constant 4/27), the �ν = ±1.4 GHz change of frequency
of photons during spin-flip scatterings. Additionally, the validity
of treating the Lyα spectral feature via the Fokker–Planck equation
(i.e. as a diffusive process) is investigated. These corrections are only
important at low kinetic temperatures, since at high Tk the smearing
of the Lyα line profile by the Doppler effect during repeated scat-
terings overwhelms the 11-GHz 2p1/2–2p3/2 fine structure splitting
and the even smaller hyperfine splitting. For example, they sup-
press the Wouthuysen–Field effect by ∼10 per cent at Tk = 5 K and
∼1 per cent at Tk = 50 K. Chen & Miralda-Escudé (2004) argue that
X-rays from supernovae or X-ray binaries are likely to have heated
the IGM to high temperatures (Tk � Tγ ) well before the end of
reionization; if this did indeed happen, then the fine and hyperfine
structure effects considered here are completely negligible.

One could ask whether it is worth investigating effects such as
two-photon decay or fine and hyperfine structures when there are
larger sources of uncertainty in predicting the 21-cm signal dur-
ing the early stages of reionization, in particular whether or not H2

cooling is active in low-mass haloes, the star formation efficiency,
the initial mass function and the X-ray luminosities of early galax-
ies. Of course, answering these questions is a major motivation for
21-cm observations. This paper takes the perspective that one can
only address these questions if the theoretically tractable parts of
the problem, such as the Wouthuysen–Field coupling strength, have
been solved. Otherwise, degeneracies exist in the data that can-
not be broken, e.g. one could change the emitted UV spectra of
the stars and also change how the Lyα production probability Pnp

depends on quantum level n. Also, one cannot establish that an ef-
fect such as the fine structure of Lyα is negligible until it has been
calculated.

The results of this paper mostly affect the 21-cm signal during a
narrow redshift range near the beginning of reionization. This is be-
cause at earlier times there were no UV photons, so the Wouthuysen–
Field effect is unimportant, and at later times there were so many
UV photons that the Wouthuysen–Field effect is the only impor-
tant mechanism determining the spin temperature, so that Ts = Tk

regardless of the details. The transition region, in which UV pho-
tons compete with the CMB for control of the spin temperature,
may have been brief but it is a gold mine of information on early
galaxies. For example, Barkana & Loeb (2005b) have suggested that
the fluctuations in the UV radiation could be detectable, providing
information about the clustering of the first stars.

This paper is organized as follows. Section 2 explains the formal-
ism used to predict the 21-cm signal and defines relevant notation.
The main results of the paper are in Section 3, including the calcu-
lation of the probabilities for Lyα emission and two-photon decay,
the new calculation of the Lyα line profile and a fitting formula
for the Wouthuysen–Field coupling efficiency. Section 4 illustrates
how the changes in the physics affect the 21-cm signal in two toy
models of reionization. Conclusions are given in Section 5.
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Wouthuysen–Field effect 261

2 H I G H - R E D S H I F T H I 2 1 - cm R A D I AT I O N

This section reviews the basic theory of the 21-cm radiation from the
pre-reionization IGM. More details can be found in the references.

The brightness temperature of the 21-cm signal is determined
by the spin temperature Ts of the H I according to the relation (e.g.
Zaldarriaga et al. 2004)

Tb = 3c3h̄ A10nHxH I

16ν2
10kB(1 + z)2(dv‖/dr‖)

(
1 − Tγ

Ts

)
, (1)

where dv‖/dr ‖ is the physical velocity gradient at redshift z; A10 is
the intrinsic width of the F = 1 hyperfine level; ν 10 = 1.42 GHz
is the H I hyperfine transition frequency; nH is the proper number
density of hydrogen nuclei; x H I is the fraction of hydrogen that is
neutral; Tγ = 2.73(1 + z) K is the CMB temperature; and Ts is the H I

spin temperature. In the linear regime, the velocity field is related to
the matter field by (Bharadwaj & Ali 2004; Barkana & Loeb 2005a)

dv‖
dr‖

= H (z)

1 + z

(
1 + f ∂χ∇−2δ

)
. (2)

Here, f = d [ln (D/a)]/d ln a depends on the growth factor and f ≈
1 in the matter-dominated era (a good approximation at the redshift
of reionization), and χ is the comoving radial distance. Plugging in
numbers from the currently favoured cosmology gives

Tb ≈ 28 mK

(
1 + z

10

)1/2 (
1 − Tγ

Ts

)(
1 + f ∂χ∇−2δ

)−1
. (3)

Here χ is comoving radial distance. In the second line the homoge-
neous universe and peculiar velocity terms have been separated out
from each other.

The spin temperature is determined by three effects: the radiative
coupling to the CMB, the Wouthuysen–Field and collisional cou-
pling to the gas kinetic temperature Tk. These effects compete to
determine the fraction y of hydrogen atoms in the F = 1 excited
hyperfine level. This fraction is related to the spin temperature via

y
1 − y

= 3e−T�/Ts → y = 3

3 + eT�/Ts
, (4)

where T� = hν 10/k B = 68.2 mK. Sometimes we will write the pop-
ulations of the excited and ground hyperfine levels y1 = y and y0 =
1 − y for simplicity. At Ts � T�, one may use the approximation

y ≈ 3

4
− 3T�

16Ts
. (5)

The evolution of y can be broken into its CMB, Wouthuysen–Field
and collisional terms,

ẏ = ẏγ + ẏα + ẏc. (6)

The radiative term is given by

ẏγ = −4A10Tγ

T�

(
y − 3

4
+ 3T�

16Tγ

)
, (7)

where Tγ is the photon temperature. The factor of 4Tγ /T� in front
accounts for the acceleration of the radiative transition via stimulated
emission and absorption (which contributes a factor of 3 since the
F = 0 state can be excited to any of the three F = 1 states), which
dominate over spontaneous emission for Tγ � T�. The collisional
term is

ẏc = −4A10Tγ

T�

xc

(
y − 3

4
+ 3T�

16Tk

)
, (8)

where

xc = κ10nHT�

A10Tγ

(9)

and κ 10 is the collisional rate coefficient (Zygelman 2005).4 The
Wouthuysen–Field rate is

ẏα = −4A10Tγ

T�

xα

(
y − 3

4
+ 3T�

16Tk

)
. (10)

This is given by

xα = 8πλ2
Lyαγ T�

9A10Tγ

Sα Jα, (11)

where γ = 50 MHz is the half width at half-maximum (HWHM)
of the Lyα resonance. Here, Jα is the flux of Lyα photons (in
cm−2 s−1 Hz−1 sr−1), and Sα is a factor of order unity that accounts
for spectral distortions. Chen & Miralda-Escudé (2004) provide val-
ues for Sα that are typically of order unity. In this paper, the values of
Sα are revised downward slightly after accounting for several new
processes that affect the colour temperature and spectral profile of
the Lyα feature.

The final spin temperature is the steady-state solution to
equation (6),

1 − Tγ

Ts
= xα + xc

1 + xα + xc

(
1 − Tγ

Tk

)
. (12)

3 WO U T H U Y S E N – F I E L D C O U P L I N G

E F F I C I E N C Y

Lyα photons are produced in neutral regions of the universe in one
of two ways: either photons can be cosmologically redshifted into
the Lyα resonance, or they can be emitted as part of the radia-
tive cascade to the H I ground state following capture of a higher-
order Lyman-series photon. Once produced, Lyα photons couple
the spin temperature of H I to the gas kinetic temperature via the
Wouthuysen–Field mechanism until they are redshifted out of the
resonance. This section computes the Wouthuysen–Field coupling
rate as a function of the radiation field entering each of the Lyman
lines. Section 3.1 computes the probability that a photon entering
a Lyman-series resonance cause a radiative cascade in the excited
H I atom that terminates with a two-photon decay from the 2s1/2

level and produces no Lyα. Decay of an H I atom from 2s involves
a competition between the two-photon process and collisions that
transfer the atom to 2p; only the latter yields Lyα photons (Spitzer
& Greenstein 1951; Seaton 1955a). The usual assumption is that
the Lyα-producing channels dominate; however in the IGM the
opposite is true: collisions are negligible (see Appendix A). Sec-
tion 3.2 investigates the effect of fine and hyperfine structure and
frequency changes during spin-flip events using the Fokker–Planck
equation. Fitting formulae for these results are presented in Sec-
tion 3.3. Section 3.4 tests the assumptions of the Fokker–Planck
equation by comparing its predictions to Monte Carlo simulations
that are computationally intensive but do not make any approxima-
tions to the frequency redistribution matrix. There it is shown that
the Fokker–Planck equation reproduces the Wouthuysen–Field cou-
pling strength predicted by the simulations to within �3 per cent at
Tk � 2 K.

3.1 Lyα production efficiency

H I in the IGM is normally found in its ground configuration, 1s.
If a photon is emitted into the IGM at energies between the Lyα

4 This is roughly given by κ10 ≈ 4κ̃10/3, where κ̃10 is the coefficient tabu-
lated by Allison & Dalgarno (1969).
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resonance at 10.2 eV and the Lyman edge at 13.6 eV, it redshifts
cosmologically until it reaches one of the Lyman-series resonances.
Because the Lyman lines in the neutral IGM are optically thick, the
photon will be absorbed and one H I atom is boosted into the np con-
figuration (n � 2). The excited state is unstable and decays through
a radiative cascade. Ultimately the cascade ends in one of three pos-
sibilities: (i) an Lyα photon is emitted from the 2p configuration,
leaving the H I atom in the ground configuration; (ii) the H I atom
reaches the metastable 2s configuration or (iii) the H I atom decays
directly from n′p (with 2 < n′ < n) to 1s, emitting a higher-order
(Lyβ, Lyγ , etc.) photon. In case (iii), the emitted photon immedi-
ately re-excites an H I atom to the n′p configuration; the process of
absorption and re-emission ultimately terminates in either (i) or (ii).
In case (i), the original photon is downgraded to Lyα. Appendix A
shows that in case (ii) the atom in the 2s configuration decays al-
most always via two-photon emission. The latter process, of course,
produces no Lyα. Thus the Lyα photon production rate depends on
the branching fractions for cases (i) and (ii), which are evaluated
next.

[There is so much H I in the early universe that some of the elec-
tric quadrupole lines 1s1/2 → nd3/2,5/2 are optically thick. Since
some of these lines have slightly higher energy than the electric
dipole lines 1s1/2 → np1/2,3/2 due to fine structure, one might worry
that a photon will redshift into the quadrupole resonance first and
excite a hydrogen atom to the nd rather than np configuration. How-
ever a simple calculation shows that for n � 3, the fine structure
splitting 29n−3 GHz between np3/2 and nd5/2 levels is less than the
1.0(1 − n−2)T 1/2 K−1/2 GHz Doppler width of the Lyman line for
the temperatures T � 2 K expected in the IGM. The splitting be-
tween np3/2 and nd3/2 is even less, as it is due to Lamb shifts and
hyperfine splitting. Thus for the purposes of photon absorption, the
np3/2 and nd3/2,5/2 levels are degenerate and absorption occurs in
the stronger electric dipole line.]

Let us define Pnl to be the probability for an H I atom in the nl
configuration to decay ultimately via Lyα emission. The 2s → 1s
two-photon emission probability is then 1 − Pnl. The probabilities
can be determined iteratively via the usual equation

Pnl =
∑n−1

n′=2

∑n′−1
l ′=0 Anl→n′l ′ Pn′l ′∑n−1

n′=2

∑n′−1
l ′=0 Anl→n′l ′

, (13)

where the Anl→n′l ′ are the decay rate coefficients (in e.g. s−1) to the
specified states. The n p → 1s rate is removed from the sum since
it results in a Lyman-series photon that immediately re-excites a
hydrogen atom to np, and decays from non-p states to 1s are for-
bidden. Since an H I atom in the 2s configuration always undergoes
two-photon emission, whereas an atom in 2p undergoes Lyα emis-
sion, equation (13) can be initialized with P2s = 0 and P2p = 1.
The resulting probabilities for producing Lyα photons are shown in
Fig. 1 and Table 1. Note in particular that all photons that redshift
into Lyα end up in the Lyα resonance (P2p = 1), whereas none of
the photons that redshift into Lyβ do (P3p = 0) because the 3p con-
figuration always decays to 1s or 2s on account of electric dipole
selection rules. Photons entering higher-order Lyman resonances
can go either way (0 < Pnp < 1).

3.2 Scattering rate

The efficiency of Wouthuysen–Field coupling is determined by the
Lyα spin-flip rate x α and the degree to which the photon spectrum
in the vicinity of Lyα has relaxed to the gas kinetic temperature Tk.
It is generally believed that relaxation of the colour temperature to
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Figure 1. The probabilities Pnp of producing a Lyα photon following ex-
citation of H I to the np configuration. For example, if a photon redshifts
into the Lyγ resonance (1s → 4 p), there is a probability P4p = 0.26 that
the photon is degraded to Lyα and a probability 1 − P4p = 0.74 that it is
lost to two-photon emission and never contributes to the Wouthuysen–Field
coupling.

Table 1. The probabilities Pnp of producing a Lyα photon following exci-
tation of H I to the np configuration.

n Pnp n Pnp n Pnp

11 0.3496 21 0.3572
2 1.0000 12 0.3512 22 0.3575
3 0.0000 13 0.3524 23 0.3578
4 0.2609 14 0.3535 24 0.3580
5 0.3078 15 0.3543 25 0.3582
6 0.3259 16 0.3550 26 0.3584
7 0.3353 17 0.3556 27 0.3586
8 0.3410 18 0.3561 28 0.3587
9 0.3448 19 0.3565 29 0.3589

10 0.3476 20 0.3569 30 0.3590

Tk is complete if the optical depth through the Lyα resonance (i.e.
the Gunn–Peterson depth τGP) is high enough; Deguchi & Watson
(1985) showed that if Lyα can be treated as a single line, this re-
laxation occurs for τGP � 105, which holds at all redshifts prior
to reionization. The usual computation also assumes that each Lyα

scattering by an H I atom in the 1s1/2(F = 1) level has a 4/27 proba-
bility of transferring the atom to 1s1/2(F = 0), as computed by Field
(1958, 1959).

The 4/27 probability was derived assuming that the J (ν) is con-
stant across the Lyα multiplet. While this is appropriate in the con-
text of ISM studies where kBTk/h is much greater than the width of
the Lyα spectral feature (Field 1959), the pre-reionization IGM may
have been cold, with the minimum temperature determined by the
onset of X-ray heating (Chen & Miralda-Escudé 2004). In this case,
the use of frequency-averaged cross-sections, as in Field (1958), is
no longer valid and one must treat the line profile in detail. This
is done in Appendix B, where the Lyα line profile is broken into
the parts φFi Ff (�ν) that give the rate of scattering from initial total
spin F i ∈ {0, 1} to final F f ∈ {0, 1}. Also, the Wouthuysen–Field
coupling implies some transfer of energy between the Lyα photons
and the hydrogen spins, hence the colour temperature relaxes not
to Tk but to some value intermediate between Tk and Ts. This ef-
fect reduces x α because the Wouthuysen–Field energy transfer rate
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Wouthuysen–Field effect 263

contains the temperature difference between Tc and Ts, instead of
between Tk and Ts.

This section introduces this new physics to obtain the Lyα spectral
distortion and to compute x α . It is based on the treatment of the
photon spectrum using the Fokker–Planck equation, which assumes
that the change in frequency δν in a single scattering event is small in
comparison to the frequency scale over which the photon intensity or
the scattering coefficients change. These assumptions are not strictly
valid, and for this reason Section 3.4 will be devoted to testing them.

A distinction is made between ‘continuum’ photons that cos-
mologically redshift into Lyα, and ‘injected’ photons that are pro-
duced as part of a radiative cascade. We find that in terms of the
Wouthuysen–Field coupling, there is very little difference between
these, in accordance with the results of Chen & Miralda-Escudé
(2004).

The kinetic temperature range considered will be Tk � 2 K, which
occurs if the universe cools adiabatically until z = 9. In practice,
lower temperatures were probably not reached: the universe may
have been partially or fully reionized by z = 9, and even inefficient
heating sources such as Lyα heating could have kept the universe
warmer than 2 K throughout reionization (e.g. Chen & Miralda-
Escudé 2004).

3.2.1 The Lyα spectral distortion

The steady-state Fokker–Planck equation used by Chen & Miralda-
Escudé (2004) is easily modified to include the full (non-Voigt) line
profile. In the vicinity of the Lyα resonance, the equation can be
written as

∂

∂ν

(
−AJ + D

∂J
∂ν

)
+ Cψ(ν) = J̇ (ν) = 0, (14)

where A is the frequency drift (in Hz s−1), D is the frequency dif-
fusivity (in Hz2 s−1), C is the photon source term and ψ is the fre-
quency distribution with which photons are injected. The drift and
diffusivity can be decomposed as

A = AH + Ak + As (15)

and

D = Dk + Ds + Dint. (16)

This includes terms due to Hubble expansion (subscript H),
kinetic/Doppler coupling (k) and spin coupling (s). The diffusion
term contains an ‘interference’ contribution if the diffusion due to
kinetic coupling is correlated with that due to spin coupling; it is
shown later in this section that Dint can be neglected. (Hubble expan-
sion causes a drift in the frequency, but no diffusion.) The Hubble
expansion term is trivial, AH = −HνLyα .

The kinetic and spin diffusion terms can be worked out from the
usual Fokker–Planck rules, which state that for any process X,

AX = �scat〈δνX〉 (17)

and

DX = 1

2
�scat

〈
δν2

X

〉
, (18)

where �scat is the scattering rate (in s−1) and 〈δνX〉 and 〈δν2
X〉 are

the mean change in frequency and mean square change in frequency
during a scattering. The (spin-averaged) scattering rate is

�scat = 3

2
λ2

Lyαγ nHxH Icφ̄(ν), (19)

where

φ̄(ν) = 1

4
(φ00 + φ01) + 3

4
(φ10 + φ11) (20)

is the spin-averaged cross-section appropriate for Ts � T�; cf. equa-
tion (B17). As usual with Fokker–Planck equations, the drift and
diffusion terms obey an Einstein relation

AX = − h
kBTX

DX, (21)

where TX is the temperature of the reservoir with which the photon
exchanges energy during process X. Here X is either k (Doppler
shift, for which Tk appears in equation 21) or s (spin coupling with
Ts). Physically, the kinetic drift term Ak corresponds to the loss of
photon energy due to atomic recoil. The spin drift term As corre-
sponds to the loss of photon energy due to having more atoms in
the F = 0 than F = 1 level, so that if the photon spectrum were
flat (dJ/d ν= 0) the photons would on average lose more energy in
spin-flip excitations than they gain in de-excitations.

The kinetic diffusion has been worked out by Rybicki &
Dell’Antonio (1994),5 with the result that 〈δν2

k〉 = 2σ 2
ν and hence

Dk = 3

2
λ2

Lyαγ nHxH Icσ 2
ν φ̄(ν), (22)

where σ ν is the 1σ Doppler width. [In the Fokker–Planck approx-
imation, and for an isotropic situation, the angular dependence of
the cross-section enters into equation (22) only through the combi-
nation 〈1 − n · n′〉 where n and n′ are the incoming and outgoing
photon directions; see equations (A15) and (A16) of Rybicki &
Dell’Antonio (1994). So long as only the electric dipole transitions
are involved in scattering, the probability for scattering into direc-
tion n′ is the same as that into −n′, and the angular dependence
requires no modification to equation (22).] Equation (21) then gives
Ak.

Chen & Miralda-Escudé (2004) included in their Fokker–Planck
equation only the Hubble drift, kinetic drift and kinetic diffusivity (in
their equation 13, the Hubble drift is the γS term and the kinetic drift
is the η term). However, the hyperfine splitting of the ground state
allows a photon to change its frequency during scattering by ±ν 10,
even in the centre-of-mass frame. This results in spin contributions
to the drift and diffusivity. Spin diffusivity results only from those
Lyα scattering events that change the total spin state of the atom; in
the limit Ts � T�,

Ds = 3

4
λ2

Lyαγ nHxH Icν2
10

(
1

4
φ01 + 3

4
φ10

)
. (23)

Equation (21) can then be used to obtain As.
Finally, there is the interference diffusivity Dint in equation (16).

This term comes from the fact that one cannot exactly separate 〈δν2〉
into kinetic and spin parts, 〈δν2

k〉 + 〈δν2
s 〉, and is equal to

Dint = �scat〈δνkδνs〉. (24)

In our particular case, the deviation of δν k from its mean value
〈δν k〉 is proportional to n · n′. However as argued above, the prob-
abilities of scattering the photon in directions n′ and −n′ are
equal; the same argument holds for the conditional probabilities
for fixed final spin F f. Therefore δν k is uncorrelated with δν s, and

5 Rybicki & Dell’Antonio (1994) work in terms of the variable x, which is re-
lated to the detuning by �ν = √

2σν x . In this paper, including equation (22),
I have converted to �ν.
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264 C. M. Hirata

D int = �scat〈δν k〉〈δν s〉. Combining with equations (15), (16) and
(21) shows that

Dint√
Dk Ds

= h
〈
δν2

k

〉1/2

kBTk

h
〈
δν2

s

〉1/2

kBTs
. (25)

It is readily verified that h〈δν2
X〉1/2 � k BTX for X = k, s so long as

Tk � (hνLyα)2/k Bm p c2 = 1.3 mK and Ts � T�, respectively. Both
of these conditions are easily satisfied in the IGM, and so Dint �√

Dk Ds. Since it is strictly true that
√

Dk Ds � (Dk + Ds)/2, Dint

can be dropped.6

Equation (14) can be solved by the method of Chen & Miralda-
Escudé (2004), which consists of first reducing it to first order,

−A(ν)J (ν) + D(ν)
∂J (ν)

∂ν
= −A(−∞)J (−∞)

− C

∫ ν

−∞
ψ(ν ′) dν ′, (26)

and then applying an ordinary differential equation (ODE) solver
starting from ν = −∞ and working upward in frequency.7 Here
J (−∞) = Jα is the total flux at Lyα (including both continuum and
injected photons) and C is determined only by the injected photons.
One can determine C as follows: substituting ν = +∞ into equation
(26), and recalling that ψ integrates to unity, one finds

−A(+∞)J (+∞) = −A(−∞)J (−∞) − C, (27)

implying

C = −A(−∞)[J (+∞) − J (−∞)] = HνLyα Jα(inj). (28)

3.2.2 Effect on spin temperature

Once a solution to equation (14) is obtained, one can go back and
estimate the Wouthuysen–Field effect on the spin temperature. The
rate per atom �α10 for converting F = 1 hydrogen atoms to F = 0
is

�10 = 4π

∫
J (ν)σ (1 → 0; ν) dν

= 6πλ2
Lyαγ Jα

∫
J (ν)

Jα

φ10(ν) dν, (29)

and a similar rate holds for F = 0 → 1 conversions. If y is the
fraction of hydrogen atoms in the excited hyperfine level F = 1,
then the Wouthuysen–Field contribution to ẏ is

ẏα = (1 − y)�01 − y�10 = (�01 + �10)(y − yα,ss), (30)

where

yα,ss = �01

�01 + �10
(31)

is the steady-state occupation fraction of the excited level if the
Wouthuysen–Field effect were the only effect operating and if the

6 It is a good thing that Dint can be neglected, since if we had
h〈δν2

X〉1/2 � k BTX then the typical change in frequency in a single scat-
tering would be comparable to kBTX/h, i.e. to the width of the spectral
features. In this case the assumptions of the Fokker–Planck equation would
not be valid.
7 The initial condition is technically given by J (−∞) = Jα . In prac-
tice, any errors in the initial condition of equation (26) are damped as
∝ exp

∫
[A/D] dν. Since A � AH < 0 and the diffusivity D → 0 far

from resonance, all solutions of equation (26) rapidly converge to the phys-
ical solution if the integration is initiated at sufficiently negative �ν.

Lyα spectral shape were fixed. For the special case where the photon
spectrum is thermal across the Lyα line with colour temperature Tc,
J (ν) ∝ exp(− hν/kBTc), one would have yα,ss = 3/4 − 3T�/16Tc.
In reality, the spectrum in the vicinity of the Lyα resonance is non-
thermal, and the effective colour temperature −(h/k B) d ln J/dν is
between Tk and Ts. However, yα,ss as defined by equation (31) still
exists. One can therefore define an effective colour temperature T eff

c

by

e−T�/T eff
c ≡ yα,ss

3(1 − yα,ss)
→ yα,ss ≈ 3

4
− 3T�

16T eff
c

. (32)

Then comparison of equation (30) with equation (10) yields

xα = (�01 + �10)T�

4A10Tγ

(
T eff

c

)−1 − T −1
s

T −1
k − T −1

s

. (33)

This is the equation used to determine x α . Note that x α depends on
all three temperatures Tk, Ts and Tγ , both explicitly and through the
dependence on �01, �10 and T eff

c . The explicit dependence on the
radiation temperature can be eliminated by using equation (11) to
write

Sα = 9(�01 + �10)

32πλ2
Lyαγ Jα

(
T eff

c

)−1 − T −1
s

T −1
k − T −1

s

. (34)

The value of Sα thus depends only on Tk, Ts, the injection profile
ψ(ν), H , and nHx H I. It does not depend on Jα because of the linearity
of equation (14). Furthermore, if one multiplies both H and nH x H I

by some scaling factor β while holding Jα fixed, then A, D and
C are all multiplied by β, hence the solution to equation (14) and
the value of Sα are unchanged. Therefore, Sα can really be written
purely as a function of Tk, Ts, ψ(ν) and the Gunn–Peterson depth
(Gunn & Peterson 1965)

τGP = 3nHxH Iλ
3
Lyαγ

2H
, (35)

which differs from the ratio nH x H I/H only by fundamental con-
stants.

As an example, Fig. 2 shows the values of Sα for the particular
case of Ts = 57 K and τGP = 2 × 106, which are reasonable for red-
shifts z ≈ 20 in late-reionization scenarios where the Wouthuysen–
Field coupling is still weak (i.e. x α � 1). The figure shows both
the ‘old’ calculation, which neglected fine structure and spin dif-
fusivity, and assumed T eff

c = Tk, and the ‘new’ calculation which
includes fine structure and spin diffusivity and accounts for incom-
plete relaxation of the photon spectrum (T eff

c �= Tk). The feature in
the ‘all’ curve at Tk = 57 K represents the fact that the denomina-
tor in equation (34) has a singularity when Tk = Ts, since even in
this case, the Hubble expansion term in the Fokker–Planck equation
implies that T eff

c is not exactly equal to Tk. Because this feature cor-
responds only to a small change in T eff

c it has no important physical
consequences, rather it is just an annoying feature of the variable
Sα . In Section 3.3, I introduce a modified variable S̃α that avoids
any singular behaviour.

3.3 Practical calculation

The scattering function Sα is convenient conceptually, however in
actual computation the presence of T −1

k − T −1
s in the denominator

is problematic. This problem is solved by splitting Sα into two parts,

Sα = S̃α

(
T eff

c

)−1 − T −1
s

T −1
k − T −1

s

, (36)
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Figure 2. The Wouthuysen–Field effective coupling Sα . The solid curve
shows the old calculation, which treats the Lyα resonant cross-section as a
single Voigt profile and assumes T eff

c = Tk. The long-dashed curve (‘+FS’)
shows what happens when one includes the fine and hyperfine structure of the
Lyα line profile using equation (B18). The short-dashed curve (‘+FS+SD’)
also includes the spin diffusivity, i.e. the change of frequency of a photon
when it scatters a hydrogen atom and flips the spin state. Finally, the dotted
curve (‘all’) represents the full calculation and includes the correct colour
temperature T eff

c instead of assuming that it is completely relaxed to the
kinetic temperature Tk. Note that all of the effects are most important at low
Tk. (See the text for a discussion of the singularity in the ‘all’ curve at Tk =
57 K.)

where

S̃α = 9(�01 + �10)

32πλ2
Lyαγ Jα

= 27

16

∫
J (ν)

Jα

[φ10(ν) + φ10(ν)] dν. (37)

Here S̃α and T eff
c are functions of τGP, Ts and Tk, and the second

equality uses equation (29). One can define a modified Lyα coupling
parameter x̃α by

x̃α = 8πλ2
Lyαγ T�

9A10Tγ

S̃α Jα. (38)

The overall spin temperature is then given by

T −1
s = T −1

γ + x̃α

(
T eff

c

)−1 + xcT −1
k

1 + x̃α + xc
. (39)

Note that since S̃α and T eff
c are functions of Ts as well as Tk and τGP,

equation (39) is an implicit equation for the spin temperature. The
dependence is however weak, so a simple and robust way to find Ts

for given Tγ , Tk, Jα , and τGP is to iteratively compute T eff
c and S̃α for

some value of Ts, and then update Ts using equation (39). Initializing
the iteration with Ts(init) = Tγ results in convergence to better than
1 per cent after less than five iterations for reasonable values of
Tk (Tk > 1 K).

The functions S̃α and T eff
c cannot be computed in closed analytic

form, and can be expensive to evaluate numerically as they require
solution of an ODE. Therefore the simplest method to obtain them
is to first compute values on a grid of points in (τGP, Ts, Tk), and then
build a fitting formula. The following formula for S̃α reproduces our
numerical results to within 1 per cent in the range Tk � 2 K, Ts � 2 K
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Figure 3. The values of S̃α for Ts = ∞ (top panel) and 2 K (bottom panel)
for continuum photons. The curves are drawn for 11 values of Tk spaced
logarithmically from 1 to 104 K with intervals of 100.4. The labels shown
are the values of log 10 Tk, with Tk in K.

and 105 � τGP � 107 for continuum photons:

S̃α = (
1 − 0.063 1789T −1

k + 0.115 995T −2
k

− 0.401 403T −1
s T −1

k + 0.336 463T −1
s T −2

k

)
× (1 + 2.983 94ξ + 1.535 83ξ 2 + 3.852 89ξ 3)−1, (40)

where

ξ = (
10−7τGP

)1/3
T −2/3

k (41)

and the temperatures Tk and Ts are in K. A simpler formula holds
for T eff

c over the same range,(
T eff

c

)−1 = T −1
k + 0.405 535T −1

k

(
T −1

s − T −1
k

)
, (42)

where again Tk is in K. This reproduces the (T eff
c )−1 values from the

Fokker–Planck equation to 1 per cent.
The numerically computed (i.e. not from the fitting formula) func-

tion S̃α is shown in Fig. 3.
For the injected photons, it is found that equation (40) repro-

duces the Fokker–Planck results for S̃α to better than 3 per cent.
Equation (42) reproduces the colour temperature T eff

c to better than
4 per cent at Tk < 103 K. At higher temperatures 103 < Tk < 104 K,
the error increases to 12 per cent with the fitting formula underes-
timating the colour temperature. This is because for the very high
temperatures the photon spectrum is essentially flat, with the slope
(T eff

c )−1 being very close to zero. The absolute error in (T eff
c )−1

at Tk > 103 K is never greater than 3.7 × 10−5 K−1, which is
<1 per cent of T −1

γ at all redshifts of interest.
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3.4 Monte Carlo simulations

In Section 3.2, we solved for the Lyα spectral distortion assum-
ing the Fokker–Planck equation to be valid. This equation rests on
several assumptions whose validity must be considered and tested.
The simplest way to test the assumptions is to use a Monte Carlo
simulation, which is done in this section.

Chen & Miralda-Escudé (2004) argued that the Fokker–Planck
equation is valid whenever the scale in frequency over which the
photon spectrum varies is much greater than σν . This is true in the
damping tails of the Lyα resonances, but not in the Doppler cores
since one must also drop the derivatives of the line profiles φ Fi Ff ,
as was done in deriving equation (A15) of Rybicki & Dell’Antonio
(1994). The Lyα Doppler core extends out to �3.3σν at Tk � 2 K,
so within this region the Fokker–Planck equation does not repro-
duce the frequency redistribution matrix. Of course, for the case
considered by Chen & Miralda-Escudé (2004) the portion of the
spectrum near line centre is in thermal equilibrium with the atoms,
with colour temperature Tk. If equilibrium applies, the correct solu-
tion is obtained regardless of the frequency redistribution matrix. In
this paper, however, we have introduced spin diffusivity for which
one may have Ts �= Tk, and thermal equilibrium does not apply. At
high kinetic temperatures, this is irrelevant because the change in
frequency ∼ν 10 due to spin-flip events is negligible compared to the
change ∼σν due to the Doppler effect, and the photons equilibrate
at colour temperature Tk. But at low kinetic temperature if Ts �= Tk

no such equilibrium occurs, the exact form of the frequency re-
distribution matrix matters, and the validity of the Fokker–Planck
equation must be verified.

The results from the Fokker–Planck equation can be checked in
two basic ways: one could construct the integro-differential equa-
tions for J (ν) and solve them, or one could do a Monte Carlo simu-
lation in which the distribution J (ν) is sampled rather than explicitly
represented as a function. In our case, the inclusion of fine/hyperfine
structure and spin-flip (Raman) scattering makes the redistribution
matrix much more complicated than the ‘RII’ form of Deguchi &
Watson (1985) or Rybicki & Dell’Antonio (1994), so the Monte
Carlo method is used here.

3.4.1 Methodology

The basic procedure for the Monte Carlo simulation is:

(1) Start a photon at some starting frequency ν = ν start.
(2) Determine the optical depth δτ through which the photon trav-

els before it scatters by selecting it from an exponential distribution:
P(δτ ) dδτ = e−δτ dδτ .

(3) Determine the photon’s frequency ν(1) when it scatters by
solving the equation,

δτ = τGP

∫ ν

ν(1)

∑
Fi,Ff

yFiφFi Ff (ν
′) dν ′. (43)

The Gunn–Peterson depth τGP normalizes the total optical depth.
The Doppler-convolved line profiles φFi Ff appear in equation (43). If
the optical depth δτ is not reached by the time the integration reaches
a terminating frequency ν(1) = ν term, the simulation is stopped.

(4) When the photon scatters off an H atom, choose the initial
and final spin states of the H atom. The probability for F i → F f

scattering is yFiφFi Ff/
∑

F ′
i F ′

f
yF ′

i
φF ′

i F ′
f
.

(5) Once the initial and final spin states are selected, one must
obtain the velocity v of the atom that does the scattering. It is most
convenient to express this velocity in frequency units, u = νLyα v/c.

The component parallel to the initial direction of propagation of the
photon is denoted by u‖. Its probability distribution is

P(u‖) du‖ = e−u2
‖/2σ 2

ν φu
Fi Ff

[
ν(1) − u‖

]
du‖∫ ∞

−∞ e−u′
‖

2
/2σ 2

ν φu
Fi Ff

[
ν(1) − u′

‖
]

du′
‖
, (44)

where the superscript u denotes the unconvolved line profile. The
perpendicular component in the plane of scattering (i.e. containing
the initial and final directions of the photon) is u⊥ and has a Gaus-
sian probability distribution with zero mean and variance σ 2

ν . For a
Maxwellian velocity distribution, u‖ and u⊥ are independent.

(6) Obtain the scattering angle χ , i.e. the angle between the in-
coming and outgoing photon directions. This is obtained via

P(χ ) dχ = 1

2

[
1 + 5�2

(
3

2
cos2 χ − 1

2

)]
sin χ dχ (45)

within the range 0 � χ � π; cf. equation (B12). The phase function
� 2 is evaluated using equation (B22) at the frequency in the frame
of the atom, ν(1) − u′

‖, instead of ν(1).
(7) The post-scattering frequency of the photon is determined

by conservation of energy. Specifically, the atom picks up a recoil
velocity δv with components δv‖ = (1 − cos χ )hνLyα/m p c and
δv⊥ = (sin χ )hνLyα/m pc. Its kinetic energy then changes by
m pv · δv + (1/2)m p|δv|2. The atom also changes its hyperfine
energy by (F f − F i)hν 10. Putting these results together implies
a post-scattering frequency

ν(2) = ν(1) − (Ff − Fi)ν10 − (u‖ + η)(1 − cos χ ) − u⊥ sin χ, (46)

where η = hν2
Lyα/m pc2.

(8) Replace ν := ν(2) and return to step #2.

The Monte Carlo method is straightforward in concept; the major
non-trivial aspect is the construction of random numbers. The distri-
bution of δτ in step #2 and that of u⊥ in step #5 are exponential and
Gaussian, respectively, and are computed using the ‘expdev’ and
‘gasdev’ functions from the Numerical Recipes in C (Press et al.
1992). The distribution of χ in step #6 is also straightforward: the
variable μ = cos χ is in the range −1 � μ � +1, and a simple rejec-
tion method with a constant comparison function (e.g. section 7.3
of Press et al. 1992) works very efficiently. The challenge is the
distribution of u‖ in step #5 because in most cases the distribution is
polymodal with P(u‖) sometimes varying by several orders of mag-
nitude between the very narrow resonance peaks. This algorithm is
presented in Appendix C.

The starting and terminating frequencies also require some work.
There are two requirements on these. First, one does not want to miss
the spin-flip scattering events that can occur in the Lyα damping
wings; and secondly, one does not want to artificially terminate
photons that reach ν term that in reality would be scattered back to line
centre. The first issue can be addressed by considering the number
of spin-flip scatterings that occur in the damping wings. Using equa-
tion (B18), we can find the integrated spin-flip cross-section in the
far damping wings. For example, for F = 0 → 1 scattering,∫ ∞

νA+750 GHz

φu
01(ν ′) dν ′ ≈

∫ νA−750 GHz

−∞
φu

01(ν ′) dν ′ ≈ 3 × 10−10; (47)

the corresponding value for 1 → 0 scattering is 1 × 10−10. Thus
the fraction of the spin-flip events that occur more than 750 GHz
from resonance can be neglected. The Doppler smearing does not
change this conclusion since at the temperatures of interest, σν �
750 GHz and hence the spin-flip cross-sections more than 750 GHz
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Figure 4. The colour temperatures and spin-flip scattering rates for several values of Tk and τGP. The points with error bars come from Monte Carlo simulations
at the specified values of Tk/Ts and τGP. The curves in the left-hand panel come from equation (40), and those in the right-hand panel come from equation
(42) using τGP = 105 (upper curve) and 106 (lower curve). The τGP = 105 points were obtained by simulating 4096 Monte Carlo photons, while the τGP =
106 points were obtained with 512. All of these simulations are for continuum photons, with the photons being started well to the blue side of Lyα at ν start =
νLyα + 750 GHz.

from resonance are not significantly affected by the Doppler effect.8

We thus use νstart = νA + 750 GHz.
We next consider the possibility of a photon reaching ν term = νA

− 1 THz and scattering back to line centre. A simple way of eval-
uating how important this is to go to the Fokker–Planck equation
(which is valid in the damping tails) and injecting photons at the
frequency ν term instead of at line centre. Even in the worst case used
in the Monte Carlo simulations below (Tk = 10 K, Ts = ∞ and
τGP = 106), this gives S̃α = 1.0 × 10−12, which implies that pho-
tons that pass through ν term and then scatter contribute this amount
to the scattering rate. Since this is negligible, we conclude that
for the parameters simulated, ν term = νA − 1 THz is an acceptable
terminating frequency.

Once the Monte Carlo simulation has been run, one can construct
the quantities S̃α and T eff

c as follows. Suppose that during the course
of the simulation, one observes NFi Ff of the F i → F f scattering
events. The rate per unit volume (i.e. in cm−3 s−1) at which photons
are redshifting into the Lyα resonance is

ṅγ = 4πHνLyαcJα, (48)

where the factor of 4πc converts the ‘per unit area per unit time per
unit solid angle’ in the definition of Jα into ‘per unit volume’, and
HνLyα is the rate at which the frequency of the photon is changing.
The rate of F i → F f scattering events per neutral atom in the F i

8 The values of the order of 10−10 are several orders of magnitude less than
that one would calculate for a Lorentzian profile. This is because the spin-
flip process can proceed through either the 2p1/2(F = 1) or 2p3/2(F = 1)
hyperfine excited levels. The amplitudes through each of the excited levels
add coherently, and they undergo destructive interference when one is far
from resonance.

level is then

�Fi Ff = ṅγ 〈NFi Ff 〉
nHxH I yFi

(49)

(this has units of s−1). Comparison to equation (29), and use of
equation (35) to express the Hubble rate and the number densities
in terms of τGP, yields the expression∫

J (ν)

Jα

φFi Ff (ν) dν = 〈NFi Ff 〉
τGP yFi

. (50)

Equation (50) allows us to obtain S̃α by plugging the results into
equation (37). One may also obtain the colour temperature by plug-
ging the rates (equation 49) into equations (31) and (32); the result
is

e−T�/T eff
c = y0〈N10〉

3y1〈N01〉 . (51)

Error estimates on S̃α and T eff
c may be computed by taking the

covariance matrix of N 10 and N 01, obtained from the dispersion
among many Monte Carlo simulations, and propagating these to S̃α

and T eff
c using the usual Jacobian rules.

3.4.2 Results

The Monte Carlo simulations must be used to verify the Fokker–
Planck estimates of (i) the colour temperature T eff

c and (ii) the
spin-flip rate S̃α that describes how rapidly the spins relax to the
colour temperature. Results for both of these are shown in Fig. 4 for
Tk = 2 and 10 K, and at τGP = 105 and 106. The agreement with the
fitting formulae (equations 40 and 42) is at the �3 per cent level. It
is especially remarkable that the fitting formulae perform very well
at reproducing the correct dependence of the colour temperature on
Ts at low Tk, since the non-equilibrium effects on the spectral dis-
tortion must be taken into account and the slope of the spectrum
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in the Doppler cores of the resonances (where the validity of the
Fokker–Planck equation is most questionable) is important.

4 S I M P L E M O D E L F O R S P I N T E M P E R AT U R E

E VO L U T I O N

This section presents a simple model for the evolution of Ts as a func-
tion of redshift. The purpose of this model is to illustrate how much
of a difference the improvements in the physics of the Wouthuysen–
Field effect can make in the final result; it is not claimed that they
necessarily represent the real universe. Only the mean brightness
temperature perturbation Tb in the 21-cm line is calculated here for
simplicity. While foreground synchrotron radiation probably pre-
cludes a direct measurement of the mean signal Tb (Shaver et al.
1999; Oh & Mack 2003), it is still possible that it could be deter-
mined indirectly using redshift space distortions. Specifically, on
linear scales the l = 4 moment of the power spectrum of 21-cm
fluctuations, denoted Pμ4 (k) by Barkana & Loeb (2005a), is sim-
ply related to the mean temperature and matter power spectrum
via Pμ4 (k) = Tb2 Pδ(k). If linear scales can be observed during the
early stages of reionization and the cosmological parameters are
known well enough to estimate Pδ(k), then it may become possible to
obtain Tb.

A model for Ts requires a model for the evolution of the CMB
temperature, the Lyα flux and the gas kinetic temperature. Of these,
finding the CMB temperature is the easiest. It is

Tγ = Tγ 0(1 + z), (52)

where Tγ 0 = 2.725 K. The Lyα flux is given by

Jα = (1 + z)2

4π

∞∑
n=2

Pnp

∫ zmax

z

c
H (z′)

ε(ν ′
n, z′) dz′; (53)

see Barkana & Loeb (2005b). The UV source term is ε(ν ′
n , z′), which

is the number of photons emitted per unit comoving volume per unit
proper time per unit frequency at redshift z′ and frequency ν ′

n (see
below). The factor of Pnp has been added to account for the fact that
not all photons in the 912–1216 Å band degrade to Lyα. The nth
term in the sum is the contribution from photons emitted between
the 1s → n p and 1s → (n + 1)p Lyman transitions, which ultimately
redshift and excite 1s → n p; as such, the emitted photon frequency
is ν ′

n = ν 1s→np (1 + z′)/(1 + z) and the maximum redshift from
which this photon could have been received is

1 + zmax = ν1s→(n+1)p

ν1s→np
(1 + z) = 1 − (n + 1)−2

1 − n−2
(1 + z). (54)

The source emissivity is modelled following Barkana & Loeb
(2005b) by the equation

ε(ν, z) = εb(ν)
�b

mp�m

d

dt

∫
f�(M, t)Mn(M, t) dM, (55)

where M is the relevant halo mass, n(M , t) is the comoving number
density of haloes at proper time t per unit mass, f �(M , t) is the
fraction of the baryons that have turned into stars, and εb(ν) is the
number of photons emitted per baryon by the stars. This equation as-
sumes that the lifetimes of the UV-emitting stars are short compared
to the Hubble time, so that the UV emissivity tracks the instanta-
neous star formation rate. This is reasonable since most radiation at
912–1216 Å is emitted by the most massive stars with lifetimes of
<107 yr, whereas the Hubble time during reionization is >108 yr.
The halo mass function of Sheth & Tormen (1999) is used.

We consider the temperature evolution of the IGM due to cos-
mological expansion and X-ray heating. The real universe has inho-
mogeneities that alter the spin temperature evolution via changes in
the kinetic temperature (in shocks, by adiabatic expansion or com-
pression during structure formation, or from inhomogeneous X-ray
sources), and by enhancing the collisional coupling in the denser re-
gions. The main effect is to increase the 21-cm emissivity of haloes
and filaments (Iliev et al. 2002; Ahn et al. 2005; Kuhlen et al. 2005)
and so including them in the model would make the computed sig-
nal more positive (or less negative). For example, Ahn et al. (2005)
find in a simulation with no X-ray or UV sources that these effects
increase the mean signal by +1 mK at z = 18 and +5 mK at z = 10.
We have not simulated the effect of inhomogeneities in the presence
of UV radiation, but they could be larger than that found by Ahn et al.
(2005) because the Wouthuysen–Field coupling will make most of
the diffuse, unshocked IGM ‘visible’ and hence the importance of
temperature fluctuations in the unshocked phase will be increased.
Subject to these caveats, our temperature evolution equation is thus

(1 + z)
dTk

dz
= 2Tk − 2μmp�X

3ρb0kB H (z)
, (56)

assuming a monatomic gas (Chen & Miralda-Escudé 2004) with
mean atomic weight of μ = 1.22, as appropriate for a hydrogen–
helium mixture with helium mass fraction 0.24.

The X-ray heating �X (in e.g. erg per physical second per comov-
ing cm3) is

�X = f� fXe EX
�b

mp�m

d

dt

∫
f�(M, t)Mn(M, t) dM, (57)

where f� is the fraction of X-ray energy that goes into heating the
IGM, fXe is the fraction of X-ray photons that escape from an early
star cluster or galaxy, and EX is the energy emitted in X-rays per
baryon that forms stars. There are many sources that contribute to
EX, e.g. stars, supernovae, X-ray binaries and quasars, and both the
total X-ray emission and the relative contributions from different
sources are very uncertain (Glover & Brand 2003). Also, equation
(57) assumes that the X-ray heating tracks the star formation rate,
which may not be true particularly if quasars contribute significantly
to the X-ray emission. Equation (56) has the solution

Tk(z) =
(

1 + z
1 + z0

)2

Tk(z0)

+ 2μmp

3ρb0kB

∫ z0

z

�X(z′)
H (z′)

(1 + z)2

(1 + z′)3
dz′, (58)

where z0 is an arbitrary starting redshift, which can be any time after
the thermal decoupling of the gas from the CMB but prior heating
is important. We use z0 = 50 and initialize the temperature using
RECFAST (Seager, Sasselov & Scott 1999).

An example of this model is shown in Fig. 5. Here, it is assumed
that stars form only in haloes with virial temperature Tvir > 104 K
that can cool via atomic transitions. The star formation efficiency
is taken as f∗ = 2.5 × 10−4 in these haloes, which causes the Lyα

coupling to turn on (x α = 1) at z ≈ 21. Their εb(ν) is assumed to
be a blackbody of temperature 105 K, as appropriate for massive
Population III stars with M � 300 M� (Bromm, Kudritzki & Loeb
2001); the blackbody is normalized to a total energy of 7.1 MeV
per H nucleus or 5.4 MeV per baryon, appropriate for complete
hydrogen burning to 4He. (Most of the energy of the star is released
during the hydrogen-burning stage.) This model contains no X-ray
emission. If one assumes that 0.5 per cent of the energy of the
stars emerges from early galaxies in the form of X-rays that can
heat the IGM (corresponding to f Xe EX = 27 keV), and that the
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Figure 5. (a) Spin temperature evolution assuming Population III stars
forming with efficiency f∗ = 2.5 × 10−4 in haloes that can cool via atomic
transitions. All sources of heating, including X-rays, have been neglected in
this model. (b) The effect of changing the physics of the Wouthuysen–Field
effect. The solid curve shows the full calculation for the mean brightness
temperature Tb. The long-dashed curve shows the calculation removing the
spin diffusivity and fine structure corrections. The short-dashed curve also
assumes Pnp = 1 instead of the correct values; this is the curve that would
be calculated using the most recent models prior to this paper. The dotted
curve makes the further simplification that Sα = 1, as was done by Madau
et al. (1997).

heating efficiency is f� = 0.14 (Shull & van Steenberg 1985; Chen
& Miralda-Escudé 2004), then one obtains the model in Fig. 6.9 In
both cases, the best-fitting six-parameter cosmology of Seljak et al.
(2005) was used.

In both the examples with and without X-ray emission, a cal-
culation neglecting the Lyα spectral distortion (e.g. Madau et al.
1997) can overestimate the 21-cm signal by as much as a factor
of ∼2.4, as shown by the dotted curves. Incorporating the simpli-
fied model of the Lyα spectral distortion using the Voigt profile
(e.g. Chen & Miralda-Escudé 2004) reduces the error to a factor of
�1.9, as shown by the short-dashed curves. Most of the remaining
error is due to the two-photon decays (included in the long-dashed
curves). The inclusion of Lyα fine structure and spin diffusivity
(solid line) makes a <10 per cent difference in the model with no
X-rays and even less in the model with X-rays. Thus, it is seen that
the two-photon correction Pnp can have a large effect on the 21-cm
signal.

9 This amount of X-ray emission corresponds to αX = 0.028 in the notation
of Chen & Miralda-Escudé (2004).
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Figure 6. Same as Fig. 5, except with X-rays. Here, it is assumed that the
X-rays escaping from early galaxies carry 0.5 per cent of the stellar energy
output, corresponding to fXe E X = 27 keV.

5 C O N C L U S I O N S

The H I spin temperature of the IGM is determined by a balance
of interaction with the CMB in the 21-cm line, atomic collisions
and the Wouthuysen–Field effect. The last of these depends on
both the emission rate of UV photons and on the coupling coeffi-
cient Pnp Sα . In this paper, I have evaluated the coupling coefficient
including several new physical processes, and found that it is lower
than previously computed. The most important correction is the in-
clusion of two-photon decay, Pnp < 1. Fine and hyperfine structure
effects and spin diffusivity are small except at low temperatures. The
Fokker–Planck equation is found to provide an accurate description
of the Wouthuysen–Field effect at the several per cent level even at
the lowest temperatures that could reasonably be encountered in the
IGM. Fitting formulae for the scattering rate S̃α (equation 40) and
colour temperature T eff

c (equation 42) have been provided, along
with bounds on their errors.

The corrections described here pertain to the strength of the
Wouthuysen–Field effect and are important only during the era
when x c < x α � O(1). Early on (z > 30 in the models of Sec-
tion 4), the Wouthuysen–Field effect is negligible. Later on (z <

15 in the models of Section 4), the Wouthuysen–Field effect be-
comes saturated in the sense that x α � 1 and Ts ≈ Tk; in this case
changes in the coupling strength have no impact on the observable
temperature fluctuations. The changes described here, particularly
Pnp, can however have a very large effect at intermediate redshifts
(here 15 < z < 30) particularly where x α ∼ 1. This is the range of
redshifts at which Barkana & Loeb (2005b) have suggested that the
fluctuations in the Lyα background could be observable, providing
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information about early galaxies such as their bias (and hence their
halo mass). These authors found that photons redshifting into the
higher-order Lyman transitions Lyn (n � 1) dominate the Lyα fluc-
tuations at k � 0.1 h Mpc−1; since Pnp = 0.36 for these photons, the
power spectrum of these small-scale Lyα fluctuations will be corre-
spondingly reduced. For this application in particular, the inclusion
of the two-photon decay mechanism will be valuable in extracting
maximal information from 21-cm observations.
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A P P E N D I X A : T H E FAT E O F H Y D RO G E N

I N T H E 2 s C O N F I G U R AT I O N

When excited hydrogen atoms decay to the 2s configuration, there
are no further one-photon transitions allowed to the ground con-
figuration. In vacuum, the 2s configuration decays via two-photon
emission with a rate � = 8.2 s−1 (Goeppert-Mayer 1931; Breit &
Teller 1940; Shapiro & Breit 1959). The purpose of this appendix is
to show that under conditions encountered in the high-redshift IGM,
the two-photon process is faster than competing processes, namely
collisions and interactions with the CMB.

The 2s1/2 level can be depopulated by either collisions with neu-
tral atoms or with charged particles. Only crude approximations to
these are needed since they will be shown to be negligible. This
is convenient, since there are no published rate coefficients for the
low temperatures required here. For the collisions with neutral H or
He, the rate of de-excitation of 2s1/2 is �Q ∼ nσ Qv, where n is the
number density of H or He, σ Q is the quenching cross-section, and
v is the typical velocity v ∼ 1.3 × 104T 1/2

k cm s−1 (with Tk in K). In
order for the collisional de-excitation rate to be 1 per cent of the two-
photon rate at z = 75, one needs σ Q ∼ 10−4 T −1/2

k cm2, i.e. many
orders of magnitude larger than the cross-sections for collision of
neutral atoms; thus the atomic collisions contribute negligibly to the
depopulation of H(2s1/2). Of course in the standard cosmological
model there are no Lyα photons at z = 75; the result that collisions
with neutrals are negligible is even stronger at lower redshifts that
are more reasonable for the Wouthuysen–Field effect.

Cross-sections for H(2s1/2) with charged particles (e− or p+) can
be much larger than that for neutral atoms, particularly at low tem-
perature, because the long-range electric field of the passing charged
particle can produce a Stark effect that mixes 2s and 2p; once the
H atom reaches 2p, it decays quickly by Lyα emission. The rate
coefficients W (in e.g. cm3 s−1) scale roughly as T −1/2

k and are dom-
inated by collision with protons (Seaton 1955b). Extrapolating the
rate coefficients from Seaton (1955b) at Tk = 104 K down, and as-
suming no heating of the IGM so that Tk = 0.022(1 + z)2 K, one
finds a rate coefficient of W = 0.36(1 + z)−1 cm3 s−1. This is an
upper limit because the actual scaling is shallower than W ∝ T −1/2

k

at low Tk, and because any heating of the IGM increases Tk. The rate
of charged particle collisional de-excitation is then

�charge ∼ nHxeW = 7 × 10−4

(
1 + z
100

)2

xe s−1, (A1)

which is much less than the two-photon rate � = 8.2 s−1 at all
relevant redshifts since the electron-to-hydrogen nucleus ratio xe is
always less than 1.16 (and much less before reionization).

The CMB can depopulate the H I 2s1/2 level via stimulated emis-
sion at the Lamb shift frequency ν 1/2 = 1.06 GHz to the 2p1/2 level,
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or via radiative excitation to 2p3/2 at ν 3/2 = 11 GHz. H I atoms in
these levels decay by Lyα emission. The rates for these are given
by the usual formula

�(2s1/2 → 2p j ) = 32π3αν3
j

3c2

∑
|r 2p j ,2s1/2 |2

(
kBTγ

hν j

)
, (A2)

where the bar and summation indicates that the squares of the dipole
matrix elements r2p j ,21/2 are averaged over values of the magnetic
quantum number in the 2s1/2 level and summed over the 2pj level,
and the last factor is the number of photons per state. (This is much
greater than 1, so spontaneous emission and quantum corrections to
the Rayleigh–Jeans formula can be neglected.) The dipole matrix
elements

∑ |r 2p j ,2s1/2 |2 are 9a2
0 for j = 1/2 and 18a2

0 for j = 3/2,
where a0 is the Bohr radius. Substituting into equation (A2) and
using Tγ = 2.73(1 + z) K yields

�(2s1/2 → 2p1/2) = 4.4 × 10−8(1 + z) s−1 and

�(2s1/2 → 2p3/2) = 9.3 × 10−6(1 + z) s−1. (A3)

These rates are negligible compared with the two-photon rate � =
8.2 s−1 at all relevant redshifts.

Most of the CMB photons during the reionization era have much
higher energies than 1.06 or 11 GHz (for comparison, k BTγ /h =
570 GHz at 1 + z = 10). These photons can cause non-resonant
Raman scattering, 2s1/2 → 1s1/2, that puts the hydrogen atom in the
ground state and results in the emission of a photon with frequency
just above the Lyα frequency. This photon immediately redshifts into
the Lyα doublet and can participate in the Wouthuysen–Field effect.
The relevant frequencies are all much greater than the fine structure
splitting, so at least for a rough estimate one can ignore electron
spin in the calculation of the Raman scattering rate. The Raman
scattering cross-section is (e.g. Berestetskii, Lifshitz & Pitaevskii
1971, equation 61.8)

σ (i → f) = 128π5e4νν ′3

9h2c4

×
∑
α,β

∣∣∣∣∣
1∑

ml =−1

〈
1s|rα|2p, ml

〉〈
2p, ml |rβ |2s

〉
�ν

∣∣∣∣∣
2

= 128π5e4νν ′3

27h2c4

∣∣∣∣ 〈1s||r ||2p〉〈2p||r ||2s〉
�ν

∣∣∣∣2

, (A4)

where ν is the incoming frequency, ν ′ = νLyα + ν is the outgoing
frequency, and �ν is the detuning from the intermediate (2p) state,
i.e.

h�νn = hν + E2s − E2p. (A5)

This includes only the 2p intermediate state since the total energy of
the atom and photon is only slightly above the n = 2 energy level,
hence its denominator �ν is the largest. For the same reason the
terms in the Raman matrix element where the outgoing photon is
emitted before the incoming photon is absorbed have been dropped.
One also has ν ′ ≈ νLyα , and because of the 2s–2p degeneracy �ν 2p ≈
ν. Putting this together and using the hydrogenic matrix elements
gives

σ (i → f) = 419 4304π5e4ν3
Lyαa4

0

19683h2c4ν
. (A6)

The total Raman scattering rate (per atom in the 2s1/2 level)
is given by integration of the cross-section over the blackbody

curve:

�Raman =
∫

8πν2

c2(ehν/kBTγ − 1)
σ (i → f) dν

= 167 772 16π8e4ν3
Lyαa4

0k2
B

590 49h4c6
T 2

γ

= 64π2α6k2
BT 2

γ

81h2νLyα

= 1.7 × 10−7(1 + z)2 s−1, (A7)

where we have used a0 = 3e2/(8hνLyα) and α = 2πe2/(hc). Once
again, this rate is negligible compared to � = 8.2 s−1 at the redshifts
of interest for the Wouthuysen–Field effect.

A P P E N D I X B : L yα C RO S S - S E C T I O N

In order to compute the Wouthuysen–Field coefficient x α , it is nec-
essary to know the cross-sections for resonant Rayleigh and Raman
scattering between the two hyperfine levels 1s1/2 (F = 0, 1). There
are four cross-sections F → F ′, where F , F ′ ∈ {0, 1}, which de-
pend on the photon frequency ν. Similar computations can be found
in Domke & Hubeny (1988) and Braskén & Kyrölä (1998), but
this appendix includes both the hyperfine structure and the detailed
frequency dependence.

The cross-sections can be determined from the reduced dipole
matrix elements between the 1s1/2 (F) and 2p j (F ′) hyperfine levels.
The electron position operator r has reduced matrix element given
by the hydrogenic form

〈2p||r ||1s〉 = 128
√

6

243
a0. (B1)

Since the r operator acts only on the positional degrees of freedom
of the electron, without regard to electronic or nuclear spin, the hy-
perfine matrix elements can be obtained entirely from group theory.
Applying equation (7.1.7) of Edmonds (1960) twice, and using the
fact that H I has electronic spin S = 1/2 and (for 1H) nuclear spin
I = 1/2,

〈n′l ′
j ′ (F ′)||r ||nl j (F)〉 = I〈n′l ′||r ||nl〉, (B2)

where the coefficient I is given by the 6 j symbols,

I = (−1)l ′+ j+ j ′+F+1

× [(2 j + 1)(2 j ′ + 1)(2F + 1)(2F ′ + 1)]1/2

×
{

l ′ j ′ 1/2

j l 1

}{
j ′ F ′ 1/2

F j 1

}
. (B3)

Values of I are shown in Table B1.

Table B1. The six hyperfine components of the Lyα lines. The frequency
offset shown is relative to the lowest-frequency line, i.e. it is ν − νA. The
values of I are used in equation (B2).

Line Lower Upper I Frequency
level level offset

(GHz)

A 1s1/2 (F = 1) 2p1/2 (F = 0) +√
1/3 0.000

B 1s1/2 (F = 1) 2p1/2 (F = 1) −√
2/3 0.059

C 1s1/2 (F = 0) 2p1/2 (F = 1) −√
1/3 1.479

D 1s1/2 (F = 1) 2p3/2 (F = 1) −√
1/3 10.945

E 1s1/2 (F = 1) 2p3/2 (F = 2) +√
5/3 10.968

F 1s1/2 (F = 0) 2p3/2 (F = 1) +√
2/3 12.365
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The matrix element for resonant electric dipole scattering with
incoming photon energy hν is

(cμν)fi = e2
∑

a

〈 f |r̂μ|a〉〈a|r̂ ν |i〉
Ea − Ei − hν − ih�a/4π

, (B4)

where �a is the width of the intermediate state a and the width of the
initial and final states is neglected. In order to obtain the differential
cross-section for F i → F f scattering by randomly oriented atoms,
one must obtain the spin-K irreducible parts of the scattering tensor,

Ḡ(K )
Fi→Ff

= �
(K )
μναβ

2Fi + 1

Ff∑
Mf=−Ff

Fi∑
Mi=−Fi

(cμν)fi (c
αβ )∗fi

, (B5)

where �
(K )
μναβ is the projection matrix that selects the spin-K (K =

0, 1, 2) part of an arbitrary second-rank tensor X αβ . This decompo-
sition of second-rank tensors is complete, so that

2∑
K=0

�
(K )
μναβ = gμαgνβ , (B6)

where gμν is the metric tensor, equal to δμν in the usual Cartesian
coordinate basis. The most convenient basis for these calculations,
however, is not the Cartesian basis but the polar basis (Edmonds
1960) in which the coordinates rμ are related to Cartesian X, Y and
Z via

r±1 = ∓ 1√
2

(X ± iY ) and r 0 = Z ; (B7)

the metric tensor is gμν = (−1)μδμ,−ν . In this basis the powerful
spherical tensor methods can be used. The projection matrix is then

�
(K )
μναβ =

∑
MK ,γ,δ

gμγ gνδ〈1γ ; 1δ|K MK 〉

×〈K MK |1α; 1β〉

= (2K + 1)
K∑

MK =−K

(−1)MK

( 1 1 K

μ ν −MK

)

×
(

1 1 K

α β MK

)
, (B8)

where in the first line Clebsch–Gordon coefficients have been used
to emphasize the nature of �(K ) as a projection matrix, and in the
second line these have been converted to 3 j symbols.

Writing equation (B5) in terms of reduced matrix elements, and
substituting equation (B8), one obtains

Ḡ(K )
Fi→Ff

= 2K + 1

2Fi + 1

e4

h2

∑
Mf,Mi,MK ,μ,ν,α,β,a,b

〈 f ||r ||a〉〈a||r ||i〉〈i ||r ||b〉〈b||r || f 〉
(�νai + i�a/4π)(�νbi − i�b/4π)

(−1)MK

×
( 1 1 K

μ ν −MK

)(
1 1 K

α β MK

)
×(−1)Ff−Mf

(
Ff 1 Fa

−Mf μ Ma

)
×(−1)Fa−Ma

(
Fa 1 Fi

−Ma ν Mi

)
×(−1)Fi−Mi

(
Fi 1 Fb

−Mi α Mb

)
×(−1)Fb−Mb

(
Fb 1 Ff

−Mb β Mf

)
. (B9)

The complicated sums of 3 j symbols can be reduced by applying
the reduction formula (equation 6.2.8 of Edmonds 1960) twice and
then using 3 j symbol orthogonality. This eliminates all summation
over magnetic quantum numbers:

Ḡ(K )
Fi→Ff

= 2K + 1

2Fi + 1

e4

h2

∑
a,b

(−1)Fa−Fb

×〈 f ||r ||a〉〈a||r ||i〉〈i ||r ||b〉〈b||r || f 〉
(�νai + i�a/4π)(�νbi − i�b/4π)

×
{

Ff Fi K

1 1 Fa

}{
Ff Fi K

1 1 Fb

}
. (B10)

Similar expressions are given by Omont, Smith & Cooper (1972)
and Domke & Hubeny (1988) for the case where there is a single
(possibly degenerate) intermediate level.

The cross-section is given by equations (61.7) and (61.9) of
Berestetskii et al. (1971).10 Noting that the phase space factors in-
volving the frequency can be evaluated at νLyα with negligible error
yields a total cross-section

σFi→Ff = 128π5ν4
Lyα

9c4

[
Ḡ(0) + Ḡ(1) + Ḡ(2)

]
. (B11)

The angular dependence is given by

dσFi→Ff

d�
= σFi→Ff

4π
[1 + 5�2;Fi→Ff P2(cos θ )], (B12)

where P2 is a Legendre polynomial and the phase function is

�2;Fi→Ff = (1/10)Ḡ(0) − (1/20)Ḡ(1) + (1/100)Ḡ(2)

Ḡ(0) + Ḡ(1) + Ḡ(2)
. (B13)

Repeated scattering of Lyα photons eliminates any polarization so
the polarization dependence is not needed.

The scattering cross-sections can then be determined in terms
of the detunings for the six hyperfine transitions of Lyα, shown in
Table B1, and their HWHM values,

γ = �2p

4π
= 16π3e2ν3

Lyα

9hc3
|〈2p||r ||1s〉|2 = 50 MHz (B14)

(γ is the same for all 2p levels on account of the sum rules). In
writing the cross-sections, it is convenient to define the normalized
Lorentzian profiles

φAA = γ

π
(
�ν2

A + γ 2
) (B15)

and the interference profiles

φAB = γ (�νA�νB + γ 2)

π
(
�ν2

A + γ 2
)(

�ν2
B + γ 2

) . (B16)

(Similar definitions are used for profiles of other lines.) The cross-
sections in the rest frame of the atom are

σ (Fi → Ff) = 3

8π
λ2

Lyα�2pφ
u
Fi Ff

, (B17)

10Berestetskii et al. (1971) denote our Ḡ(0), Ḡ(1) and Ḡ(2) by 3G0, Ga and
Gs, respectively. This can be seen by noting that their equation (60.10) is
precisely the projection �(K ), K = 0, 1, 2, but in the Cartesian instead of
the polar basis.
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where

φu
00 = 1

9
φCC + 4

9
φFF + 4

9
φCF,

φu
11 = 1

9
φAA + 4

27
φBB + 1

27
φDD + 5

9
φEE + 4

27
φBD,

φu
01 = 2

9
φCC + 2

9
φFF − 4

9
φCF and

φu
10 = 2

27
φBB + 2

27
φDD − 4

27
φBD. (B18)

(The superscript u indicates that these profiles are unconvolved and
do not include thermal broadening.) These satisfy the line profile
normalization conditions

1∑
Ff=0

∫ ∞

−∞
φu

Fi Ff
(�ν) d�ν = 1. (B19)

In gas with a finite temperature, all profiles must be convolved with
a Gaussian of 1σ width

σν =
√

kBT
mpc2

νLyα, (B20)

that is,

φFi Ff (ν) =
∫ ∞

−∞
φu

Fi Ff
(ν ′)

1√
2π σν

e−(ν−ν′)2/2σ 2
ν dν ′. (B21)

The phase factors �2;Fi→Ff are

�2;0→0= 1

10
,

�2;1→1= 1

40
(4φBB + φDD + 21φEE + 24φAE

+ 4φBD + 36φBE + 18φDE)

× (φAA + 4φBB + φDD + 15φEE + 4φBD)−1,

�2;0→1= − 1

20
and

�2;1→0= − 1

20
. (B22)

Note that � 2;1→1 is frequency dependent because there are several
resonances with different symmetries that contribute to it. This fre-
quency must of course be evaluated in the frame of the atom rather
than the frame at rest with respect to the bulk gas.

A P P E N D I X C : R A N D O M - V E L O C I T Y

G E N E R ATO R

This appendix presents an algorithm for generating random vari-
ables u‖ from the distribution of equation (44). This distribution is
an appropriately normalized version of a Gaussian (the Maxwellian
velocity distribution of the H atoms) times a resonance line profile.
In this case the resonance line profile is complicated and has up to
four separate resonances, including interference terms. There are
existing algorithms (Lee 1977, 1982) for the case where the reso-
nance line profile is Lorentzian in the frame of the atom, and the
algorithm given here draws on many of the same concepts. Our ver-
sion of the algorithm is not highly optimized and there are places

u||

w

u1 u2 u3 u4 u5 u6

w1

w2

Figure C1. The region chosen for the rejection algorithm. The shaded
region corresponds to the region within which (u‖, w) pairs are chosen, and
the solid line indicates the upper boundary of the acceptance region. The
scale in the figure is schematic only.

where it could be sped up significantly at the expense of additional
complexity, but its speed is adequate for our purposes. In particular,
the code is fast within 1–2σν of the Doppler cores of the H I 1s1/2–
2p1/2 and 1s1/2–2p3/2 lines, and since nearly all scatterings occur in
these regions there is little to be gained by speeding up the code at
other frequencies.

The distribution here is generated by first restricting to |u‖|� 7σν ,
which introduces negligible error since only a fraction ∼1.3 × 10−12

of the H atoms have higher velocities |u‖| than this. We then use
a rejection method with a piecewise constant comparison function.
Specifically, we begin by defining the region in the (u‖, w)-plane
shown in Fig. C1. The boundaries {uj}6

j=1 are chosen to enclose
both the Gaussian (Maxwell) distribution and the Lyα resonances.
They are

u1 = −7σν,

u2 = ν(1) − νE − 5γ,

u3 = ν(1) − νD + 5γ,

u4 = ν(1) − νB − 5γ,

u5 = ν(1) − νA + 5γ and

u6 = 7σν (C1)

if F i = 1. If F i = 0 one substitutes νA, νB → νC and νD, νE → νF,
since these are the resonances that can be excited from F i = 0.

The upper limits are chosen as follows. The non-resonant upper
limit is

w1 = 6
max

j=1
φu

Fi Ff
(ν(1) − u j ); (C2)

this is an upper limit to e−u2
‖/2σ 2

ν φu
Fi Ff

(ν(1) −u) in the entire region of
interest excluding the resonance regions [u2, u3] and [u4, u5], since

e−u2
‖/2σ 2

ν never exceeds 1 and φu
Fi Ff(ν(1)−u) has local maxima only at

the resonance peaks. The resonant upper limit is

w2 = R exp

(
− 1

2σ 2
ν

|u‖|2min

)
, (C3)
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274 C. M. Hirata

where |u‖|min is the minimum value of u‖ in the resonant regions
[u2, u3] and [u4, u5]. The amplitude R can be any number greater
than the maximum of φu

Fi Ff(ν′); this guarantees that w2 is an upper

limit to e−u2
‖/2σ 2

ν φu
Fi Ff

(ν(1) − u) within the resonant regions. Here we
choose R to be 0.156/γ , 0.078/γ , 0.026/γ and 0.207/γ for 0 →
0, 0 → 1, 1 → 0 and 1 → 1 scatterings, respectively.

Once the point (u‖, w) has been chosen, we accept it if

w < e−u2
‖/2σ 2

ν φu
Fi Ff

(ν(1) − u); (C4)

if this is not the case, we generate a new point.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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