
WOW: Wise Ordering for Writes – Combining Spatial and

Temporal Locality in Non-Volatile Caches

Binny S. Gill and Dharmendra S. Modha
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

Emails: {binnyg,dmodha}@us.ibm.com

Abstract— Write caches using fast, non-volatile storage are
now widely used in modern storage controllers since they
enable hiding latency on writes. Effective algorithms for write
cache management are extremely important since (i) in RAID-
5, due to read-modify-write and parity updates, each write may
cause up to four separate disk seeks while a read miss causes
only a single disk seek; and (ii) typically, write cache size is
much smaller than the read cache size – a proportion of 1 : 16

is typical.
A write caching policy must decide: what data to destage.

On one hand, to exploit temporal locality, we would like to
destage data that is least likely to be re-written soon with
the goal of minimizing the total number of destages. This is
normally achieved using a caching algorithm such as LRW
(least recently written). However, a read cache has a very
small uniform cost of replacing any data in the cache, whereas
the cost of destaging depends on the state of the disk heads.
Hence, on the other hand, to exploit spatial locality, we would
like to destage writes so as to minimize the average cost of
each destage. This can be achieved by using a disk scheduling
algorithm such as CSCAN, that destages data in the ascending
order of the logical addresses, at the higher level of the
write cache in a storage controller. Observe that LRW and
CSCAN focus, respectively, on exploiting either temporal or
spatial locality, but not both simultaneously. We propose a
new algorithm, namely, Wise Ordering for Writes (WOW),
for write cache management that effectively combines and
balances temporal and spatial locality.

Our experimental set-up consisted of an IBM xSeries
345 dual processor server running Linux that is driving
a (software) RAID-5 or RAID-10 array using a workload
akin to Storage Performance Council’s widely adopted SPC-
1 benchmark. In a cache-sensitive configuration on RAID-
5, WOW delivers peak throughput that is 129% higher than
CSCAN and 9% higher than LRW. In a cache-insensitive
configuration on RAID-5, WOW and CSCAN deliver peak
throughput that is 50% higher than LRW. For a random write
workload with nearly 100% misses, on RAID-10, with a cache
size of 64K, 4KB pages (256MB), WOW and CSCAN deliver
peak throughput that is 200% higher than LRW. In summary,
WOW has better or comparable peak throughput to the best
of CSCAN and LRW across a wide gamut of write cache
sizes and workload configurations. In addition, even at lower
throughputs, WOW has lower average response times than
CSCAN and LRW.

I. INTRODUCTION

Over the last three decades, processor speeds have
increased at an astounding average annual rate of 60%.
In contrast, disks which are electro-mechanical devices
have improved their access times at a comparatively

meager annual rate of about 8%. Moreover, disk ca-
pacity grows 100 times per decade, implying fewer
available spindles for the same amount of storage [1].
These trends dictate that a processor must wait for in-
creasingly larger number of cycles for a disk read/write
to complete. A huge amount of performance literature
has focused on hiding this I/O latency for disk bound
applications.

Caching is a fundamental technique in hiding I/O
latency and is widely used in storage controllers (IBM
Shark, EMC Symmetrix, Hitachi Lightning), databases
(IBM DB2, Oracle, SQL Server), file systems (NTFS,
EXT3, NFS, CIFS), and operating systems (UNIX
variants and Windows). SNIA (www.snia.org) defines a
cache as “A high speed memory or storage device used
to reduce the effective time required to read data from
or write data to a lower speed memory or device.” We
shall study cache algorithms in the context of a storage
controller wherein fast, but relatively expensive, random
access memory is used as a cache for slow, but relatively
inexpensive, disks. A modern storage controller’s cache
typically contains volatile memory used as a read cache
and a non-volatile memory used as a write cache.

Read cache management is a well studied discipline,
for a survey and for some recent work, see [2], [3], [4],
[5]. There are a large number of cache replacement algo-
rithms in this context, see, for example, LRU, CLOCK,
FBR, LRU-2, 2Q, LRFU, LIRS, MQ, ARC, and CAR.
In contrast, write caching is a relatively less developed
subject. Here, we shall focus on algorithms for write
cache management in the context of a storage controller
equipped with fast, non-volatile storage (NVS).

A. Fast Writes using NVS: When to Destage

For early papers on the case for and design of write
cache using NVS, see [6], [7], [8], [9], [10]. Historically,
NVS was introduced to enable fast writes.

In the absence of NVS, every write must be syn-
chronously written (destaged) to disk to ensure con-
sistency, correctness, durability, and persistence. Non-
volatility enables fast writes wherein writes are stored
safely in the cache, and destaged later in an asyn-
chronous fashion thus hiding the write latency of the
disk. To guarantee continued low latency for writes, the

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 129

FAST ’05: 4th USENIX Conference on File and Storage Technologies

data in the NVS must be drained so as to ensure that
there is always some empty space for incoming writes;
otherwise, follow-on writes will become effectively
synchronous, impacting adversely the response time for
writes. On the other hand, if the writes are drained
very aggressively, then one cannot fully exploit the
benefits of write caching since average amount of NVS
cache utilized will be low. Reference [11] introduced a
linear threshold scheduling scheme that varies the rate
of destages based on the instantaneous occupancy of the
write cache. Other simpler schemes include least-cost
scheduling and scheduling using high/low mark [11],
[12], [13]. Another related issue is the size of a write
burst that the write cache is designed to absorb while
providing the low response time of fast writes. The write
destage policy needs to ensure that a corresponding por-
tion of NVS is available on an average. In Section IV-E,
we describe a novel and effective approach to tackle
this problem by using adaptive high/low watermarks
combined with linear threshold scheduling.

B. A Fundamental Decision: What to Destage

In this paper, we shall focus on the central question
of the order in which the writes are destaged from
the NVS. Due to its asynchronous nature, the contents
of the write cache may be destaged in any desired
order without being concerned about starving any write
requests. As long as NVS is drained at a sufficiently
fast rate, the precise order in which contents of NVS are
destaged does not affect fast write performance. How-
ever, the decision of what to destage can crucially affect
(i) the peak write throughput and (ii) the performance
of concurrent reads.

The capacity of disks to support sequential or nearly
sequential write traffic is significantly higher than their
capacity to support random writes, and, hence, destag-
ing writes while exploiting this physical fact can sig-
nificantly improve the peak write throughput of the
system. This was one of the fundamental motivations
for development of log-structured file systems [14],
[15] in a slightly different context. Thus, any good
write caching algorithm should leverage sequentiality
or spatial locality to improve the write throughput and
hence the aggregate throughput of the system.

In the presence of concurrent reads, both the writes
being destaged and the reads compete for the attention
of the disk head. From the perspective of the applica-
tions, writes represent a background load on the disks
and, indirectly, make read response times higher and
read throughput lower. Less obtrusive the writes, the
lesser the response time for the reads. We argue that
the effect of writes on reads is significant:

• The widely accepted storage benchmark SPC-1
[16], [17] contains 60% writes and 40% reads.

While fast writes to NVS enable low response
times for writes, these writes, when destaged, do
interfere with the reads, increasing the read re-
sponse times.

• When RAID is used at the back-end, writes are
significantly more expensive than the reads. For
example, for RAID-5, a read miss on a page may
cause only one disk head to move, whereas due to
read-modify-write and due to parity updates a write
destage may cause up to four separate disk seeks.
Similarly, for RAID-10, a write destage causes two
disk heads to move.

• NVS is commonly built using battery-backed
volatile RAM. The size of NVS is limited by the
life of the battery which should be sufficient to
dump the contents to a non-battery-backed non-
volatile store like disks in case of a power failure.
A write cache size of one-sixteenth of the read
cache size is not unusual. Given the small relative
size of the NVS, it tends to produce relatively
fewer write hits, and, hence, a significantly large
fraction of writes must be destaged. Further, unlike
reads, writes do not benefit significantly from client
side caching.

The first two arguments imply that for the SPC-1 bench-
mark using RAID-5 ranks, writes constitute at least six
times the load of the read misses on the back-end!
This underscores the tremendous influence that writes
have on read performance and the peak throughput of
the system. In summary, improving the order in which
writes are destaged can significantly improve the overall
throughput and response times of the storage controller.

C. Our Contributions

In read caches, the cost of evicting any page from the
cache is the same and very small. Hence, the objective
of a read cache is simple: to minimize the miss ratio.
In contrast, we propose that the performance of a write
destage algorithm depends upon two factors: (i) the total
number of destages to disks, namely, the write miss
ratio and (ii) the average cost of each destage. Roughly
speaking, the objective of write destage algorithms
is to minimize the product of the above two terms.
Minimizing this product would result in the highest
peak write throughput in absence of any reads. Even
in presence of concurrent reads, this product attempts
to minimize the amount of time that the disk heads are
occupied in serving writes leading to minimizing the
average read response time, while maximizing aggregate
throughput.

To minimize the first term, the algorithm should
exploit temporal locality, namely, should destage data
that is least likely to be written to amongst all data in the
write cache. To minimize the second term, the algorithm

USENIX Association130

should exploit spatial locality and should destage data
that are closer on the disks together so as to exploit the
position of the heads and the geometry of the disks in
the system for higher throughput.

Classically, in read caches, LRU (least recently used)
policy has been used to exploit temporal locality. The
analogous policy for exploiting temporal locality in
writes is known as LRW that destages the least-recently
written page [18], [19], [20].

Algorithms for exploiting spatial locality have been
studied in the context of disk scheduling. Many such
algorithms require a detailed knowledge of the in-
stantaneous position of the disk head, and exploit the
precise knowledge of the location of each data relative
to the disk head. In this paper, we are working in
the context of a storage controller from which most
of the disk parameters are hidden by the underlying
RAID and disks. Hence, generally, speaking, spatial
locality is hard to exploit at such upper memory levels,
see, for example, [21]. We argue, however, that one
of the algorithms, namely, CSCAN, that destages data
in the ascending order of the logical addresses, can be
reasonably successfully applied at even upper levels of
memory hierarchy. We empirically demonstrate that as
the size of NVS managed by CSCAN increases, the
throughput of the system increases for a wide variety
of workloads.

The destage order suggested by LRW and CSCAN
are generally different, hence, it is only possible to
exploit temporal locality or spatial locality, but not
both. To emphasize, one reduces number of disk seeks
which is the goal of caching, while the other reduces
the cost of each disk seek which is the goal of
scheduling. This brings us to the main focus of this
paper: a novel algorithm that combines both tempo-
ral and spatial locality. As our main contribution, we
combine an approximation to LRU, namely, CLOCK,
with CSCAN to construct a new, simple-to-implement
algorithm, namely, Wise Ordering for Writes (WOW),
that effectively achieves this goal. The key new idea is to
maintain a recency bit akin to CLOCK in CSCAN, and
to skip destages of data that has been recently written
to.

To demonstrate effectiveness of WOW, we used the
following hardware, storage, and workload. The hard-
ware was an IBM xSeries 345 dual processor server
running Linux equipped with 4GB RAM that was
used as NVS. The storage consisted of 5 disks. Using
software RAID, we created a RAID-5 array in 4 data
disks + 1 parity disk configuration. We also created a
RAID-10 array in 2 + 2 configuration. As the workload,
we employed an earlier implementation of the Storage
Performance Council’s SPC-1 benchmark that is now
extremely widely used by many vendors of storage

systems [16], [17]. We refer to our workload as SPC-
1 Like. In a set-up with a high degree of temporal
locality (“a cache-sensitive configuration”), WOW de-
livers peak throughput that is 129% higher than CSCAN
and 9% higher than LRW. In a set-up with very little
temporal locality (“a cache-insensitive configuration”),
WOW and CSCAN deliver peak throughput that is
50% higher than LRW. For a random write workload
with nearly 100% misses, on RAID-10, with a cache
size of 64K, 4KB pages, WOW and CSCAN deliver
peak throughput that is 200% higher than LRW. Simi-
larly, for the random write workload with nearly 100%
misses, on RAID-5, with a cache size of 16K, 4KB
pages, WOW and CSCAN deliver peak throughput
that is 147% higher than LRW. In summary, WOW
has better or comparable peak throughput to the best
of CSCAN and LRW across a wide gamut of write
cache sizes and workload configurations. In addition,
even at lower throughputs, WOW has lower average
response times than CSCAN and LRW. In another
experiment, using SPC-1 Like workload, as cache size
is varied, we explore both cache-insensitive and cache-
sensitive regimes. We clearly show that CSCAN is good
for cache-insensitive regimes, LRW is good for cache-
sensitive regimes, whereas WOW is evergreen and is
good across the whole range of cache sizes. In sum-
mary, WOW is a practical algorithm that fundamentally
enhances the capacity of a storage controller to perform
more I/Os.

D. Outline of the Paper

In Section II, we briefly survey previous related
research, and we argue the utility of CSCAN for
exploiting spatial locality even at upper levels of cache
hierarchy. In Section III, we present the new algorithm
WOW. In Section IV, we describe the experimental
set-up. In Section V, we describe the workloads. In
Section VI, we present our main quantitative results.
Finally, in Section VII, we conclude with the main
findings of this paper.

II. PRIOR WORK

A. Temporal Locality

Algorithms for exploiting temporal locality have been
studied extensively in the context of read caches. Sev-
eral state-of-the-art algorithms include LRU, CLOCK,
FBR, LRU-2, 2Q, LRFU, LIRS, MQ, ARC, and CAR.
For a detailed review of these algorithms, please see
some recent papers [2], [4], [5].

These algorithms attempt to reduce the miss ratio.
However, as explained in Section I-C, in write caching,
it not sufficient to minimize the miss ratio alone, but we
must also pay attention to the average cost of destages.
The latter factor is completely ignored by the above

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 131

FAST ’05: 4th USENIX Conference on File and Storage Technologies

algorithms. We will demonstrate in the paper that a
write caching algorithm has a higher hit ratio than some
other algorithm and yet the second algorithm delivers a
higher throughput. In other words, decreasing the miss
ratio without taking into account its effect on the spatial
locality is unlikely to guarantee increased performance.
Thus, the problem of designing good write caching
algorithms is different from that of designing algorithms
for read caching.

In this paper, we focus on LRW as the prototypical
temporal locality algorithm. We also exploit a simple
approximation to LRU, namely, CLOCK [22], that
is widely used in operating systems and databases.
CLOCK is a classical algorithm, and is a very good
approximation to LRU. For a recent paper comparing
CLOCK and LRU, see [4].

B. Spatial Locality

The key observation is that given the geometry and
design of the modern day disks, sequential bandwidth
of the disks is significantly higher (for example, more
than 10 times) than its performance on 100% random
write workload. The goal is to exploit this differential
by introducing spatial locality in the destage order.

This goal has been extensively studied in the context
of disk scheduling algorithms. The key constraint in
disk scheduling is to ensure fairness or avoid starvation
that occurs when a disk I/O is not serviced for an
unacceptably long time. In other words, the goal is to
minimize the average response time and its variance. For
detailed reviews on disk scheduling, see [23], [24], [25],
[26]. A number of algorithms are known: First-come-
first-serve (FCFS) [27], Shortest seek time first (SSTF)
[28] serves the I/O that leads to shortest seek, Shortest
access time first (SATF), SCAN [28] serves I/Os first
in increasing order and then in decreasing order of their
logical addresses, Cyclical SCAN (CSCAN)[29] serves
I/Os only in the increasing order of their logical ad-
dresses. There are many other variants known as LOOK
[30], VSCAN [31], FSCAN [27], Shortest Positioning
Time First (SPTF) [26], GSTF and WSTF [24], and
Largest Segment per Track LST [11], [32].

In the context of the present paper, we are interested
in write caching at an upper level in the memory hierar-
chy, namely, for a storage controller. This context differs
from disk scheduling in two ways. First, the goal is to
maximize throughput without worrying about fairness
or starvation for writes. This follows since as far as
the writer is concerned, the write requests have already
been completed after they are written in the NVS.
Furthermore, there are no reads that are being scheduled
by the algorithm. Second, in disk scheduling, detailed
knowledge of the disk head and the exact position of
various outstanding writes relative to this head position

and disk motion is available. Such knowledge cannot
be assumed in our context. For example, [21] found
that applying SATF at a higher level was not possible.
They concluded that “· · · we found that modern disks
have too many internal control mechanisms that are too
complicated to properly account for in the disk service
time model. This exercise lead us to conclude that
software-based SATF disk schedulers are less and less
feasible as the disk technology evolves.” Reference [21]
further noted that “Even when a reasonably accurate
software-based SATF disk scheduler can be successfully
built, the performance gain over a SCAN-based disk
scheduler that it can realistically achieve appears to be
insignificant · · · ”. The conclusions of [21] were in the
context of single disks, however, if applied to RAID-5,
their conclusions will hold with even more force.

For these reasons, in this paper, we focus on CSCAN
as the fundamental spatial locality algorithm that is
suitable in our context. The reason that CSCAN works
reasonably well is that at anytime it issues a few
outstanding writes that all fall in a thin annulus on
the disk, see, Figure 1. Hence, CSCAN helps reduce
seek distances. The algorithm does not attempt to opti-
mize for further rotational latency, but rather trusts the
scheduling algorithm inside the disk to order the writes
and to exploit this degree of freedom. In other words,
CSCAN does not attempt to outsmart or outguess the
disk’s scheduling algorithm, but rather complements it.

THIN ANNULUS

DISK PLATTER

DISK HEAD

PENDING
 WRITES

OUTSTANDING
WRITES

BOUNDING

Fig. 1. A visual depiction of how CSCAN localizes the outstanding
writes on a thin annulus on the disk platter.

In Figure 2, we demonstrate that as the size of
NVS managed by CSCAN grows, so does the achieved
throughput. We use a workload that writes 4KB pages
randomly over a single disk, and that has nearly 100%

USENIX Association132

Random Write Workload
Single Disk with 8.875 million 4KB pages

2 4 6 8 10 12 14 16 18

200

300

400

500

600

700

Log
2
 of NVS size in 4K pages

T
hr

ou
gh

pu
t (

IO
P

S
)

Queue Size = 1
Queue Size = 4
Queue Size = 16

Fig. 2. A plot of the size of NVS used by CSCAN versus the
throughput (in IOPS) achieved by the algorithm on a workload that
writes 4KB pages randomly over a single disk. It can be seen that
throughput seems to grows logarithmically as NVS size grows. Also,
as the queue size, namely, the number of outstanding requests issued
by CSCAN to the disk increases, the throughput also increases.

write misses. We also use several queue sizes that
control the maximum number of outstanding writes that
CSCAN can issue to the disk. It appears that throughput
grows proportionally to the logarithm of the NVS size.
As the size of NVS grows, assuming no starvation at the
underlying disk, the average thickness of the annulus
in Figure 1 should shrink – thus permitting a more
effective utilization of the disk. Observe that the disks
continuously rotate at a constant number of revolutions
per second. CSCAN attempts to increase the number
of writes that can be carried out per revolution.

C. Combining Temporal and Spatial Locality

The only previous work on the subject is [33], [32]
that partitions the cache into a “hot” zone that is man-
aged via LRW and a “cold” zone that is managed via
LST. The authors point out several drawbacks of their
approach: (i) “The work in this dissertation only deals
with the interaction between the cache and one disk.”
[32, p. 126] and (ii) “One of the most immediate aspects
of this work requiring more research is the method to
determine the size of the hot zone for the stack model-
based replacement algorithm. We determined the best
size for the hot zone empirically in our experiments.”
[32, p. 125]. To continue this program further would
entail developing an adaptive algorithm for tuning the
size of the hot zone. However, note that the hot zone
optimizes for temporal locality (say “apples”) and the
cold zone for spatial locality (say “oranges”). It is
not currently known how to compare and trade apples
versus oranges to determine the best adaptive partition.

In this paper, we will present a natural combination
of LRW and CSCAN that obviates this need, and yet
delivers convincing performance.

III. WOW

A. Preliminaries

We are working in the context of a storage controller.
Typically, a storage controller connects to a RAID
controller which, in turn, connects to physical disks.
We assume that there is no write cache at lower levels
such as RAID and disks. In other words, there is no
fast write at lower levels and I/O scheduling is limited
to concurrent requests issued by the storage controller.
Also, note that a typical RAID controller may choose to
implement FCFS or such simpler scheduling algorithm,
while an individual disk may implement a smarter disk
scheduling algorithm such as SATF. We can make no
assumptions about these algorithms at the level of a
storage controller. Also, typically the amount of write
cache in storage controllers per RAID array or per disk
is much larger than the amount of cache in the RAID
array or disks.

We will use 4KB pages as the smallest unit of cache
management. We will divide each disk into strips, where
each strip is a logically and physically contiguous set of
pages. Here, we use 64KB as the strip size. In RAID,
we will define a stripe as a collection of strips where
each participating disk contributes one strip to a stripe.
Due to mirroring in RAID-10 and parity in RAID-5,
the effective storage provided by a stripe is less than its
physical size.

The notion of a hit is straightforward in read caching,
but is somewhat involved for write caching. In write
caching, a hit can be a hit on a page, a hit on a strip, or
a hit on a stripe. These different hits may have different
payoffs, for example, in RAID-5, a page hit saves four
seeks, whereas a stripe hit and a page miss saves two
seeks because of shared parity. In RAID-5, we will
manage cache in terms of stripe groups. In RAID-10, we
will manage cache in terms of strip groups. This allows
a better exploitation of temporal locality by saving seeks
and also spatial locality by coalescing writes together.
We will refer to a strip or stripe group as a write group.

B. WOW : The Algorithm

We now describe our main contribution which is a
new algorithm that combines the strengths of CLOCK,
a predominantly read cache algorithm, and CSCAN,
an efficient write cache algorithm, to produce a very
powerful and widely applicable write cache algorithm.
See Figures 3 and 4 for a depiction of the data structures
and the algorithm.

The basic idea is to proceed as in CSCAN by
maintaining a sorted list of write groups. The smallest

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 133

FAST ’05: 4th USENIX Conference on File and Storage Technologies

17

43

65

SORTED CLOCK

9

15

16

21

42

51 55

68

85

98 89

82

80

79

74

69

63

44

45
46

13

Head and Tail are glued to form a

0

0

1

0
1

00
0

1

1

0

0

1

0

1

0
1

1 1
0

1

1

0

1

Fig. 3. A visual structure of the WOW algorithm. If the CLOCK’s
recency bit is ignored, the algorithm becomes CSCAN. The clock
hand represents the destagePointer in Figure 4.

and the highest write groups are joined forming a
circular queue. The additional new idea is to maintain
a “recency” bit akin to CLOCK with each write group.
The algorithm now proceeds as follows.

A write group is always inserted in its correct sorted
position. Upon insertion, its recency bit is set to zero.
However, on a write hit, the recency bit is set to one.
The destage operation proceeds as in CSCAN, wherein
a destage pointer is maintained that traverses the circular
list looking for destage victims. In CSCAN every write
group that is encountered is destaged. However, we only
allow destage of write groups whose recency bit is zero.
The write groups with a recency bit of one are skipped,
however, their recency bit is turned off, and reset to
zero. The basic idea is to give an extra life to those
write groups that have been hit since the last time the
destage pointer visited them. This allows us to incor-
porate recency representing temporal locality on one
hand, and small average distance between consecutive
destages representing spatial locality. The simplicity of
the algorithm is intentional so that it succeeds in real
systems. The superiority of the algorithm (demonstrated
in Section VI) to the current state-of-the-art should
encourage its widespread use.

C. WOW and its Parents

Since WOW is a hybrid between LRW or CLOCK,
and CSCAN, we now contrast and compare these
algorithms.

WOW is akin to CSCAN, since it destages in essen-
tially the same order as CSCAN. However, WOW is

CACHE MANAGEMENT POLICY:
Page x in write group s is written:

1: if (s is in NVS) // a write group hit
2: if (the access is not sequential)
3: set the recencyBit of s to 1
4: endif
5: if (x is in NVS) // a page hit
6: set the recencyBit of s to 1
7: else
8: allocate x from FreePageQueue

and insert x in s

9: endif
10: else
11: allocate s from

FreeStripeGroupHeaderQueue
12: allocate x from FreePageQueue
13: insert x into s and s into the sorted queue
14: initialize the recencyBit of s to 0
15: if (s is the only write group in NVS)
16: initialize the destagePointer to point to s

17: endif
18: endif

DESTAGE POLICY:

19: while (needToDestage())
20: while (the recencyBit of the write group

pointed to by the destagePointer is 1)
21: reset the recencyBit to 0
22: AdvanceDestagePointer()
23: endwhile
24: destage all pages in the write group pointed

to by the destagePointer and
move them to FreePageQueue

25: move the destaged write group to
FreeStripeGroupHeaderQueue

26: AdvanceDestagePointer()
27: endwhile

28: AdvanceDestagePointer()
29: if (destagePointer is pointing to the

highest address write group in the queue)
30: reset the destagePointer to point to the

lowest address write group in the queue
31: else
32: advance the destagePointer to the next

higher address write group in the queue
33: endif

Fig. 4. The WOW Algorithm.

USENIX Association134

different from CSCAN in that it skips destage of data
that have been recently written to in the hope that that
are likely to be written to again. WOW generally will
have a higher hit ratio than CSCAN at the cost of an
increased gap between consecutive destages.

WOW is akin to LRW in that it defers write groups
that have been recently written. Similarly, WOW is akin
to CLOCK in that upon a write hit to a write group a
new life is granted to it until the destage pointer returns
to it again. WOW is different from CLOCK in that the
new write groups are not inserted immediately behind
the destage pointer as CLOCK would but rather in their
sorted location. Thus, initially, CLOCK would always
grant one full life to each newly inserted write group,
whereas WOW grants on an average half that much
time. WOW generally will have a significantly smaller
gap between consecutive destages than LRW at the cost
of a generally lower hit ratio.

D. Is RAID just one Big Disk?

Intuitively, the reader may wish to equate the destage
pointer in WOW to a disk head. It is as if WOW or
CSCAN are simulating the position of the disk head,
and destaging accordingly. In practice, this intuition is
not strictly correct since (i) concurrent read misses may
be happening which can take the disk heads to arbitrary
locations on disks; and (ii) the position of the heads
cannot be strictly controlled, for example, due to read-
modify-write in RAID-5; and (iii) at a lower level, either
the RAID controller or the individual disks may re-order
concurrent write requests. In view of these limitations,
the purpose of WOW or CSCAN is to spatially localize
the disk heads to a relatively narrow region on the disks
with the idea that the resulting disk seeks will be less
expensive than random disk seeks which may move the
head across a larger number of cylinders on the disks.
In practice, we have seen that these observations indeed
hold true.

E. WOW Enhancements

We anticipate that WOW will engender a class of
algorithms which modify WOW along multiple di-
mensions. We have shown how to combine LRW and
CSCAN. Another important feature of workloads that
indicates temporal locality is “frequency”. It is possible
to incorporate frequency information into WOW by
utilizing a counter instead of just a recency bit. It is
extremely interesting and challenging to pursue adaptive
variants of WOW that dynamically adapt the balance
between temporal and spatial locality. Furthermore,
it will be interesting to see if a marriage of MQ,
ARC, CAR, etc. algorithms can be consummated with
CSCAN to develop algorithms that separate out recency
from frequency to further enhance the power of WOW.

Another aspect of temporal locality is the duration
for which a new stripe of page is allowed to remain in
the cache without producing a hit. For simplicity, we
have chosen the initial value of the recency bit to be
set to 0 (see line 14 in Figure 4). Thus, on an average,
a new write group gets a life equal to half the time
required by the destage pointer to go around the clock
once. If during this time, it produces a hit, it is granted
one more life until the destage pointer returns to it once
again. If the initial value is set to 1, then–on an average–
a new write group gets a life equal to 1.5 times the time
required by the destage pointer to go around the clock
once. More temporal locality can be discovered if the
initial life is longer. However, this happens at the cost of
larger average seek distances as more pages are skipped
by the destage head. It may be possible to obtain the
same effect without the penalty by maintaining a history
of destaged pages in the spirit of MQ, ARC, and CAR
algorithms.

F. WOW : Some design points

1) Sequential Writes: It is very easy to detect
whether a write group is being written to by a sequential
access write client or a random access one, see, for
example, [3, Section II.A]. In this paper, we enhance
the algorithm in Figure 4 to never set the recency bit to
1 on a sequential access. This is reflected in lines 2-4
in Figure 4. This heuristic gives the bulky sequential
stripes a smaller life and frees up the cache for more
number of less populated stripes that could potentially
yield more hits.

2) Variable I/O sizes: In Figure 4, we have dealt with
a illustrative wherein a single page x in a write group
s is written to. Typical write requests may write to a
variable number of pages that may lie on multiple write
groups. Our implementation correctly handles these
cases via simple modifications to the given algorithm.

3) Data Structures: The algorithm requires very sim-
ple data structures: a sorted queue for storing write
groups, a hash-based lookup for checking whether a
write group is presented in the sorted queue (that is
for hit/miss determination), and a destage pointer for
determining the next candidate write group for destage.
The fact that insertion in a sorted queue is an O(log(n))
operation does not present a practical problem due to
the limited sizes of NVS and the availability of cheap
computational power.

IV. EXPERIMENTAL SET-UP

We now describe a system that we built to measure
and compare the performance of the different write
cache algorithms under a variety of realistic configu-
rations.

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 135

FAST ’05: 4th USENIX Conference on File and Storage Technologies

A. The Basic Hardware Set-up

We use an IBM xSeries 345 machine equipped with
two Intel Xeon 2 GHz processors, 4 GB DDR, and
six 10K RPM SCSI disks (IBM, 06P5759, U160) of
36.4 GB each. A Linux kernel (version 2.6.11) runs on
this machine hosting all our applications and standard
workload generators. We employ five SCSI disks for the
purposes of our experiments, and the remaining one for
the operating system, our software, and workloads.

B. Storage: Direct Disks or Software RAID

We will study three basic types of configurations
corresponding to I/Os going to either a single disk, to
a RAID-5 array, or a RAID-10 array. In the first case,
we issue direct (raw) I/O to one of the five disk devices
(for example, /dev/sdb). In the latter two cases, we issue
direct I/O to the virtual RAID disk device (for example,
/dev/md0) created by using the Software RAID feature
in Linux.

Software RAID in Linux implements the functional-
ity of a RAID controller within the host to which the
disks are attached. As we do not modify or depend on
the particular implementation of the RAID controller, a
hardware RAID controller or an external RAID array
would work equally well for our experiments. We cre-
ated a RAID-5 array using 5 SCSI disks in 4 data disk
+ 1 parity disk configurations. We chose the strip size
(chunk size) for each disk to be 64KB. Resulting stripe
group size was 256KB. Similarly, we created a RAID-
10 array using 4 SCSI disks in 2 + 2 configuration.
Once again, we chose the strip size for each disk to be
64KB.

C. NVS and Read Cache

We employ the volatile DDR memory as our write
cache or NVS. The fact that this memory is not battery-
backed does not impact the correctness or relevance
of our results to real-life storage controllers. We shall,
therefore, still refer to this memory as NVS. The
write cache is implemented in shared memory and is
managed by user space libraries that are linked to all
the applications that refer to this shared memory cache.
The size of the NVS can be set to any size up to the
maximum size of the shared memory. This approach
provides tremendous flexibility for our experiments by
allowing us to benchmark various algorithms across a
large range of NVS sizes.

For our experiments, we do not use a read cache as all
disk I/Os are direct (or raw) and bypass the Linux buffer
caches. This helps us eliminate an unnecessary degree
of freedom for our experiments. Recall that read misses
must be served concurrently, and disrupt the sequential
destaging operation of WOW and CSCAN. Also, read
misses compete for head time, and affect even LRW.

Eliminating the read cache serves to maximize read
misses, and, hence, our setup is the most adversarial for
NVS destage algorithms. In real-life storage controllers
equipped with a read cache, the aggregate performance
will depend even more critically on the write caching al-
gorithm and thus magnify even further the performance
differences between these algorithms.

A side benefit of maintaining a write cache is the
read hits that it produces. The write caching algorithms
are not intended to improve the read hit ratio primarily
because the read cache is larger and more effective in
producing read hits. Nevertheless, in our setup we do
check the write cache for these not-so-numerous read
hits and return data from the write cache on a hit for
consistency purposes.

D. The Overall Software System

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

Disk 1 Disk 2 Disk 4 Disk 5Disk 3

RAID−5 RAID−10

WRITES

WRITES

WRITES

READS

 SOFTWARE RAID

 LRW

 CSCAN

 WOW

 DESTAGER

 SHARED MEMORY

DIRTY PAGES

FREE PAGES

WORKLOAD APPS

Fig. 5. The overall design of our experimental software system.
The system is layered: (i) applications; (ii) NVS (shared memory)
whose size can be varied from “cache-insensitive” (very small) to
“cache-sensitive” (relatively large); (iii) destager which may choose
to implement LRW, CSCAN, or WOW; and (iv) backend storage
which may be a single disk, a RAID-5 array, or a RAID-10 array.

A schematic description of the experimental system
is given in Figure 5.

The workload applications may have multiple threads
that can asynchronously issue multiple simultaneous
read and write requests. We implemented the write
cache in user space for the convenience of debugging.
As a result, we do have to modify the workload ap-
plications to replace the “read()” and “write()” system
calls with our versions of these after linking our shared

USENIX Association136

memory management library. This is a very simple
change that we have implemented for all the workload
applications that we used in this paper.

For a single disk, NVS was managed in units of 4KB
pages. For RAID-5, NVS was managed in terms of
256KB stripe write groups. Finally, in RAID-10, NVS
was managed in terms of 64KB strip write groups.
Arbitrary subsets of pages in a write group may be
present in NVS. Write requests that access consecu-
tively numbered write groups are termed sequential.

On a read request, if all requested pages are found in
NVS, it is deemed a read hit, and is served immediately
(synchronously). If, however, all requested pages are
not found in NVS, it is deemed a read miss, and a
synchronous stage (fetch) request is issued to the disk.
The request must now wait until the disk completes the
read. Immediately upon completion, the read request
is served. As explained above, the read misses are not
cached.

On a write request, if all written pages are found in
NVS, it is deemed a write hit, and the write request is
served immediately. If some of the written pages are not
in NVS but enough free pages are available, once again,
the write request is served immediately. If, however,
some of the written pages are not in NVS and enough
free pages are not available, the write request must wait
until enough pages become available. In the first two
cases, the write response time is negligible, whereas
in the last case, the write response time can become
significant. Thus, NVS must be drained so as to avoid
this situation if possible.

We have implemented a user-space destager program
that chooses dirty pages from the shared memory and
destages them to the disks. This program is triggered
into action when the free pages in the shared memory
are running low. It can be configured to destage either
to a single physical disk or to the virtual RAID disk.
To decide which pages to destage from the shared
memory, this program can choose between the three
cache management algorithms: LRW, CSCAN, and
WOW.

E. Queue Depth and When To Destage

To utilize the full throughput potential of a RAID
array or even a single disk, it is crucial to issue
multiple concurrent writes. This gives more choice to
the scheduling algorithm inside the disks which, by
design, usually tries to maximize the throughput without
starving any I/Os. Furthermore, in RAID, the number
of outstanding concurrent writes roughly dictates the
number of disks heads that can be employed in parallel.
The number of outstanding concurrent writes constitute
a queue. As this queue length increases, both the
throughput and the average response time increases. As

the queue length increases, the reads suffer, in that,
they may have to wait more on an average. We choose
a value, MAXQUEUE (say 20), as the maximum of
number of concurrent write requests to the disks, where
a write request is a set of contiguous pages within one
write group.

We now turn our attention to the important decision
of “When to Destage” that is needed in line 19 of
Figure 4. At any time, we dynamically vary the number
of outstanding destages in accordance with how full
the NVS actually is. We maintain a lowThreshold
which is initially set to 80% of the NVS size, and a
highThreshold which is initially set to 90% of the NVS
size. If the NVS occupancy is below the lowThreshold
and we were not destaging sequential write group, we
stop all destages. However, if NVS occupancy is below
the lowThreshold but the previous destage was marked
sequential and the next candidate destage is also marked
sequential, then we continue the destaging at a slow
and steady rate of 4 outstanding destages at any time.
This ensures that sequences are not broken and their
spatial locality is exploited completely. Further, this
also takes advantage of disks’ sequential bandwidth.
If NVS occupancy is at or above the highThreshold,
then we always go full throttle, that is, destage at the
maximum drain rate of MAXQUEUE outstanding write
requests. We linearly vary the rate of destage from
lowThreshold to highThreshold in a fashion similar
to [11]. The more full within this range the NVS gets,
the faster the drain rate; in other words, the larger the
number of outstanding concurrent writes. Observe that
the algorithm will not always use the maximum queue
depth. Writing at full throttle regardless of the rate of
new writes is generally bad for performance. What is
desired is simply to keep up with the incoming write
load without filling up NVS. Convexity of throughput
versus response time curve indicates that a steady rate
of destage is more effective than a lot of destages at
one time and very few at another. Dynamically ramping
up the number of outstanding concurrent writes to
reflect how full NVS is helps to achieve this steady
rate. Always using full throttle destage rate leads to
abrupt “start” and “stop” situation, respectively, when
the destage threshold is exceeded or reached.

We add one more new idea, namely, we dynamically
adapt the highThreshold. Recall that write response
times are negligible as long as NVS is empty enough
to accommodate incoming requests, and can become
quite large if NVS ever becomes full. We adapt the
highThreshold to attempt to avoid this undesirable
state while maximizing NVS occupancy. We implement
a simple adaptive back-off and advance scheme. The
lowThreshold is always set to be highThreshold minus
10% of NVS size. We define desiredOccupancyLevel

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 137

FAST ’05: 4th USENIX Conference on File and Storage Technologies

to be 90% of the NVS size. The highThreshold is
never allowed to be higher than desiredOccupan-
cyLevel or lower than 10% of NVS size. We main-
tain a variable called maxOccupancyObserved that
keeps the maximum occupancy of the cache since the
last time it was reset. Now, if and when the NVS
occupancy drops below the current highThreshold, we
decrement the highThreshold by any positive differ-
ence between maxOccupancyObserved and desire-
dOccupancyLevel and we reset maxOccupancyOb-
served to the current occupancy level. We keep a note
of the amount of destages that happen between two
consecutive resettings of maxOccupancyObserved in
the variable resetInterval. Of course, decrementing
highThreshold hurts the average occupancy levels in
NVS, and reduces spatial as well as temporal locality
for writes. Thus, to counteract this decrementing force,
if after a sufficient number of destages (say equal to
resetInterval) the maxOccupancyObserved is lower
than the desiredOccupancyLevel, then we increment
highThreshold by the difference between desiredOc-
cupancyLevel and maxOccupancyObserved, and we
reset maxOccupancyObserved to the current occu-
pancy level.

V. WORKLOADS

A. Footprint

While modern storage controllers can make available
an immense amount of space, in a real-life scenario,
workloads actively use only a fraction of the total avail-
able storage space known as the footprint. Generally
speaking, for a given cache size, the larger the footprint,
the smaller the hit ratio, and vice versa. We will use
backend storage in two configurations: (i) Full Backend
in which the entire available backend storage will be
used and (ii) Partial Backend in which we will use 7.1
million 512 byte sectors. In RAID-5, we shall have
effectively the storage capacity of four disks at the
back-end, where Full Backend amount to 284 million
512 byte sectors. Similarly, for RAID-10, we shall have
effectively the storage capacity of two disks at the back-
end, where Full Backend amount to 142 million 512
byte sectors.

B. SPC-1 Benchmark

SPC-1 is a synthetic, but sophisticated and fairly re-
alistic, performance measurement workload for storage
subsystems used in business critical applications. The
benchmark simulates real world environments as seen
by on-line, non-volatile storage in a typical server class
computer system. SPC-1 measures the performance of a
storage subsystem by presenting to it a set of I/O oper-
ations that are typical for business critical applications
like OLTP systems, database systems and mail server

applications. For extensive details on SPC-1, please see:
[16], [17], [3]. A number of vendors have submitted
SPC-1 benchmark results for their storage controllers,
for example, IBM, HP, Dell, SUN, LSI Logic, Fujitsu,
StorageTek, 3PARdata, and DataCore. This underscores
the enormous practical and commercial importance of
the benchmark. We used an an earlier prototype im-
plementation of SPC-1 benchmark that we refer to as
SPC-1 Like.

SPC-1 has 40% read requests and 60% write re-
quests. Also, with 40% chance a request is a sequen-
tial read/write and with 60% chance a request is a
random read/write with some temporal locality. SPC-
1 is a multi-threaded application that can issue multiple
simultaneous read and writes. For a given cache/NVS
size, the number of read/write hits produced by SPC-1
changes as the footprint of the backend storage changes.
For example, for a given cache/NVS size, SPC-1 will
produce more hits with a Partial Backend then with a
Full Backend. Furthermore, it is easy to vary the target
throughput in I/Os Per Second (IOPS) for the workload.
Thus, it provides a very complete and versatile tool to
understand the behavior of all the three write destage
algorithms in a wide range of settings.

SPC-1’s backend consists of three disjoint application
storage units (ASU). ASU-1 represents a “Data Store”,
ASU-2 represents a “User Store”, and ASU-3 repre-
sents a “Log/Sequential Write”. Of the total amount of
available back-end storage, 45% is assigned to ASU-
1, 45% is assigned to ASU-2, and remaining 10% is
assigned to ASU-3 as per SPC-1 specifications. In all
configurations, we laid out ASU-3 at the outer rim of
the disks followed by ASU-1 and ASU-2.

C. Random Write Workload

We will use a random write workload that uniformly
writes 4KB pages over the Full Backend that is avail-
able. As long as the size of the cache is relatively
smaller than the Full Backend size, the workload has
little temporal locality, and will produce nearly 100%
write misses. The think time, namely, the pause between
completing one write request and issuing another one,
of this workload is set to zero. In other words, this
workload is capable, in principle, of driving a storage
system at an infinite throughput. The throughput is
limited only by the capacity of the system to serve the
writes. This workload is extremely helpful in profiling
behavior of the algorithms across a wide range of NVS
sizes.

VI. RESULTS

A. LRW Does Not Exploit Spatial Locality

In Figure 6, we compare LRW, CSCAN, and WOW
using random write workload (Section V-C) directed to

USENIX Association138

Random Write Workload (nearly 100% miss), Queue Depth = 20, Full Backend, RAID-10 (left panel), RAID-5 (right panel)

4 6 8 10 12 14 16
300

400

500

600

700

800

900

1000

1100

Log
2
 of NVS size in 4K pages

T
hr

ou
gh

pu
t i

n
IO

P
S

LRW
CSCAN
WOW

6 7 8 9 10 11 12 13 14
150

200

250

300

350

400

Log
2
 of NVS size in 4K pages

T
hr

ou
gh

pu
t i

n
IO

P
S

LRW
CSCAN
WOW

Fig. 6. A comparison of LRW, CSCAN, and WOW using random write workload using the Full Backend for both RAID-10 and RAID-5. It
can be seen that the throughput of LRW does not depend upon the NVS size, whereas throughput of WOW and CSCAN exhibit a logarithmic
gain as a function of the size of NVS.

Full Backend on RAID-5 and RAID-10. Since the work-
load has almost no temporal locality, the throughput of
LRW remains constant as the NVS size increases. In
contrast, WOW and CSCAN exhibit logarithmic gain
in throughput as a function of the size of NVS by
exploiting spatial locality (also see the related discus-
sion in Section II-B). For RAID-10, at the lowest NVS
size of 32 pages, WOW and CSCAN outperform LRW
by 16%, while, quite dramatically, at the NVS size of
65,536 pages, WOW and CSCAN outperform LRW
by 200%. Similarly, for RAID-5, at the lowest NVS
size of 64 pages, WOW and CSCAN outperform LRW
by 38%, while, quite dramatically, at the NVS size of
16,384 pages, WOW and CSCAN outperform LRW by
147%.

While, for brevity, we have shown results for a queue
depth of 20. When we used a larger queue depth,
performance of all three algorithms increased uniformly,
producing virtually identical curves. Increasing queue
depth beyond 128 in either RAID-10 or RAID-5 does
not seem to help throughput significantly.

B. WOW is Good for Cache-sensitive and -insensitive
Regimes

In Figure 7, we compare LRW, CSCAN, and WOW
using SPC-1 Like workload (Section V-B) directed to
Partial Backend on RAID-5 and RAID-10. We vary the
size of NVS from very small (corresponding to cache-
insensitive regime) to relatively large (corresponding to
cache-sensitive regime). For RAID-10, a target through-
put of 6000 IOPS was used for all NVS sizes. For
RAID-5, a target throughput of 3000 IOPS was used
for all NVS size except the largest one (100,000 pages)
for which a target throughput of 6000 IOPS was used
to drive the disks to full capacity.

In both graphs, it is easy to see that CSCAN dom-
inates LRW in the cache-insensitive regime, but loses
to LRW in the cache-sensitive regime. WOW, however,
is evergreen, and performs well in both the regimes.
This is easy to see since in a cache-insensitive regime
CSCAN wins by exploiting spatial locality, whereas in
cache-sensitive regime LRW puts up a nice performance
by exploiting temporal locality. However, WOW which
is designed to exploit both temporal and spatial locality
performs well in both the regimes and across the entire
range of NVS sizes.

Specifically, in RAID-10, for the smallest NVS size,
in a favorable situation for CSCAN, WOW performs
the same as CSCAN, but outperforms LRW by 4.6%.
On the other hand, for the largest NVS size, in a favor-
able situation for LRW, WOW outperforms CSCAN by
38.9% and LRW by 29.4%.

Similarly, in RAID-5, for the smallest NVS size,
in a favorable situation for CSCAN, WOW loses to
CSCAN by 2.7%, but outperforms LRW by 9.7%. On
the other hand, for the largest NVS size, in a favorable
situation for LRW, WOW outperforms CSCAN by
129% and LRW by 53%. In Figure 8, we examine,
in detail, the write hit ratios and average difference
in logical address between consecutive destages for all
three algorithms. The larger the write hit ratio the larger
is the temporal locality. The larger the average distance
between consecutive destages the smaller is the spatial
locality. It can be seen that temporal locality is the
highest for LRW, followed by WOW, and the least for
CSCAN. On the contrary, spatial locality is the highest
for CSCAN, followed by WOW, and the least (by 3 to
4 orders of magnitude) for LRW. As shown in the right
panel of Figure 7, WOW outperforms both LRW and

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 139

FAST ’05: 4th USENIX Conference on File and Storage Technologies

SPC-1 Like Workload, Queue Depth = 20, Partial Backend, RAID-10 (left panel), RAID-5 (right panel)

10 11 12 13 14 15 16

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

Log
2
 of NVS size in 4K pages

Lo
g 2 o

f T
hr

ou
gh

pu
t i

n
IO

P
S

LRW
CSCAN
WOW

10 11 12 13 14 15 16

10

10.5

11

11.5

12

Log
2
 of NVS size in 4K pages

Lo
g 2 o

f T
hr

ou
gh

pu
t i

n
IO

P
S

LRW
CSCAN
WOW

cache−insensitive
regime

cache−sensitive
regime

cross−over

Fig. 7. A comparison of LRW, CSCAN, and WOW using SPC-1 Like workload using the Partial Backend for both RAID-10 and RAID-5.
It can be seen that CSCAN is a good bet in cache-insensitive regime whereas LRW is an attractive play in cache-sensitive regime. However,
WOW is attractive in both regimes.

SPC-1 Like Workload, RAID-5 with Partial Backend
Write Hit Ratio (left panel), Average Distance Between Consecutive Destages (right panel)

10 11 12 13 14 15 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log
2
 of NVS size in 4K pages

W
rit

e
H

it
R

at
io

LRW
WOW
CSCAN

10 11 12 13 14 15 16

18

20

22

24

26

28

Log
2
 of NVS size in 4K pages

Lo
g 2 o

f A
ve

ra
ge

 D
is

ta
nc

e
B

et
w

ee
n

C
on

se
cu

tiv
e

D
es

ta
ge

s

LRW
WOW
CSCAN

Fig. 8. The left panel shows the write hit ratios (indicating temporal locality) for LRW, CSCAN, and WOW, while using the SPC1-Like
workload using partial backend for RAID-5. Temporal locality is the highest for LRW, followed by WOW, and the least for CSCAN. The
right panel shows the corresponding average difference in logical address between consecutive destages for the three algorithms during the same
run. The larger this average distance the smaller is the spatial locality. We can see that, contrary to the temporal locality, spatial locality is the
highest for CSCAN, followed by WOW, and the least (by 3 to 4 orders of magnitude) for LRW. As shown in the right panel of Figure 7,
WOW outperforms both LRW and CSCAN by effectively combining temporal as well as spatial locality.

CSCAN by effectively combining temporal as well as
spatial locality.

C. Throughput versus Response Time in Cache-
insensitive Scenario

In Figure 9, we compare LRW, CSCAN, and WOW
using SPC-1 Like workload directed to Full Backend on
RAID-5. We use an NVS size of 4K pages each of 4KB.
Hence, NVS to backing store ratio is very low, namely,
0.011%, constituting a cache-insensitive scenario.

We vary the target throughput of SPC-1 Like from
100 IOPS to 1100 IOPS. At each target throughput, we

allow a settling time of 10 mins, after which we record
average response time over a period of 5 minutes.

It can be clearly seen that WOW and CSCAN have
virtually identical performances, and both significantly
outperform LRW. In particular, it can be seen that
LRW finds it impossible to support throughput beyond
515 IOPS. Demanding a target throughput higher than
this point does not yield any further improvements,
but rather worsens the response times dramatically. In
contrast, WOW and CSCAN saturate, respectively, at
774 and 765 IOPS. In other words, WOW delivers a
peak throughput that is 50% higher than LRW, and

USENIX Association140

SPC-1 Like, Cache-insensitive configuration, NVS size=4K pages, RAID-5, Full Backend

100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

Achieved Overall Throughput (IOPS)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
se

c)

LRW
CSCAN
WOW

100 200 300 400 500 600 700 800
100

200

300

400

500

600

700

800

900

1000

1100

Achieved Overall Throughput (IOPS)

T
ar

ge
t T

hr
ou

gh
pu

t (
IO

P
S

)

LRW
CSCAN
WOW

Fig. 9. A comparison of LRW, CSCAN, and WOW. The left panel displays achieved overall throughput versus achieved average response time.
This set-up does not have much temporal locality. WOW and CSCAN have comparable performance, and both outperform LRW dramatically.
Specifically, WOW increases the peak throughput over LRW by 50%. The right panel shows the target throughput corresponding to the data
points in the left panel. It can be clearly seen that LRW hits an insurmountable stiff wall at a much lower throughput.

virtually identical to CSCAN.

D. Throughput versus Response Time in Cache-
sensitive Scenario

In Figure 10, we compare LRW, CSCAN, and WOW
using SPC-1 Like workload directed to Partial Backend
on RAID-5. We use an NVS size of 40K pages each of
4KB. Hence, NVS to backing store ratio is relatively
large, namely, 4.52%, constituting a cache-sensitive
scenario.

We vary the target throughput of SPC-1 Like from
300 IOPS to 3000 IOPS. At each target throughput, we
allow a settling time of 10 mins, after which we record
average response time over a period of 8 minutes.

It can be clearly seen that WOW dramatically out-
performs CSCAN and even outperforms LRW. In par-
ticular, it can be seen that CSCAN finds it impossible
to support throughput beyond 1070 IOPS. In contrast,
WOW and LRW saturate, respectively, at 2453 and
2244 IOPS. In other words, WOW delivers a peak
throughput that is 129% higher than CSCAN, and 9%
higher than LRW.

Remark VI.1 (backwards bending) Observe that in
Figures 9 and 10 when trying to increase the target
throughput beyond what the algorithms can support, the
throughput actually drops due to increased lock and
resource contention. This “backwards bending” phe-
nomenon is well known in traffic control and congestion
where excess traffic lowers throughput and increases
average response time.

VII. CONCLUSIONS

It is known that applying sophisticated disk schedul-
ing algorithms such as SATF at upper levels in cache
hierarchy is a fruitless enterprise. However, we have
demonstrated that CSCAN can be profitably applied
even at upper levels of memory hierarchy for effectively
improving throughput. As the size of NVS grows, for
a random write workload, the throughput delivered by
CSCAN seems to grow logarithmically for single disks,
RAID-10, and RAID-5.

CSCAN exploits spatial locality and is extremely
effective in cache-insensitive storage configurations.
However, it does not perform as well in cache-sensitive
storage configurations, where it loses to LRW that
exploits temporal locality. Since, one cannot a pri-
ori dictate/assume either a cache-sensitive or a cache-
insensitive scenario, there is a strong need for an
algorithm that works well in both regimes. We have
proposed WOW which effectively combines CLOCK
(an approximation to LRW) and CSCAN to exploit both
temporal locality and spatial locality.

We have demonstrated that WOW convincingly out-
performs CSCAN and LRW in various realistic sce-
narios using a widely accepted benchmark workload.
WOW is extremely simple-to-implement, and is ideally
suited for storage controllers and for most operating
systems. WOW fundamentally increases the capacity
of a storage system to perform more writes while
minimizing the impact on any concurrent reads.

REFERENCES

[1] J. Gray and P. J. Shenoy, “Rules of thumb in data engineering,”
in ICDE, pp. 3–12, 2000.

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 141

FAST ’05: 4th USENIX Conference on File and Storage Technologies

SPC-1 Like, Cache-sensitive configuration, NVS size=40K pages, RAID-5, Partial Backend

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

Achieved Overall Throughput (IOPS)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
se

c)
LRW
CSCAN
WOW

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

Achieved Overall Throughput (IOPS)

T
ar

ge
t T

hr
ou

gh
pu

t (
IO

P
S

)

LRW
CSCAN
WOW

Fig. 10. A comparison of LRW, CSCAN, and WOW. The left panel displays achieved overall throughput versus achieved average response
time. This set-up has significant temporal locality since the ratio of NVS size to the size of the backend is relatively high (4.52%). WOW
increases the peak throughput over LRW by 9% and over CSCAN by 129%. The right panel shows the target throughput corresponding to the
data points in the left panel. It can be clearly seen that CSCAN hits an insurmountable stiff wall at a much lower throughput.

[2] N. Megiddo and D. S. Modha, “Outperforming LRU with an
adaptive replacement cache algorithm,” IEEE Computer, vol. 37,
no. 4, pp. 58–65, 2004.

[3] B. S. Gill and D. S. Modha, “SARC: Sequential prefetching in
adaptive replacement cache,” in USENIX, 2005.

[4] S. Bansal and D. S. Modha, “CAR: Clock with adaptive replace-
ment,” in FAST 04, pp. 142–163, 2004.

[5] Y. Zhou, Z. Chen, and K. Li, “Second-level buffer cache
management,” IEEE Trans. Parallel Distrib. Syst, vol. 15, no. 6,
pp. 505–519, 2004.

[6] J. Menon and M. Hartung, “The IBM 3990 disk cache,” in Proc.
IEEE Comput. Soc. Int. COMPCON Conf., 1988.

[7] G. P. Copeland, T. Keller, R. Krishnamurthy, and M. Smith,
“The case for safe RAM,” in VLDB, pp. 327–335, 1989.

[8] J. Menon, “Performance of RAID5 disk arrays with read and
write caching,” Distributed and Parallel Databases, vol. 2, no. 3,
pp. 261–293, 1994.

[9] J. Menon and J. Cortney, “The architecture of a fault-tolerant
cached RAID controller,” in ISCA, pp. 76–86, 1993.

[10] K. Treiber and J. Menon, “Simulation study of cached RAID5
designs,” in HPCA, pp. 186–197, 1995.

[11] A. Varma and Q. Jacobson, “Destage algorithms for disk arrays
with nonvolatile caches,” IEEE Trans. Computers, vol. 47, no. 2,
pp. 228–235, 1998.

[12] P. Biswas, K. K. Ramakrishnan, and D. Towsley, “Trace driven
analysis of write caching policies for disk,” Performance Eval-
uation Review, vol. 21, no. 1, pp. 12–23, Jun 1993.

[13] Y. J. Nam and C. Park, “An adaptive high-low water mark
destage algorithm for cached RAID5,” in PRDC, pp. 177–184,
2002.

[14] J. K. Ousterhout and F. Douglis, “Beating the I/O bottleneck: A
case for log-structured file systems,” Operating Systems Review,
vol. 23, no. 1, pp. 11–28, 1989.

[15] M. Rosenblum and J. K. Ousterhout, “The design and imple-
mentation of a log-structured file system,” ACM Transactions
on Computer Systems, vol. 10, no. 1, pp. 26–52, 1992.

[16] B. McNutt and S. Johnson, “A standard test of I/O cache,” in
Proc. Comput. Measurements Group’s 2001 Int. Conf., 2001.

[17] S. A. Johnson, B. McNutt, and R. Reich, “The making of
a standard benchmark for open system storage,” J. Comput.
Resource Management, no. 101, pp. 26–32, Winter 2001.

[18] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer,
“Non-volatile memory for fast, reliable file systems,” in Oper-
ating Systems Review, vol. 26, pp. 10–22, October 1992.

[19] P. Biswas, K. Ramakrishnan, D. Towsley, and C. Krishna,
“Performance analysis of distributed file systems with non-
volatile caches,” in Proc. 2nd Int. Symp. High Perf. Distributed
Computing, pp. 252–262, 1993.

[20] W. W. Hsu, A. J. Smith, and H. C. Young, “I/O reference behav-
ior of production database workloads and the TPC benchmarks
- an analysis at the logical level,” ACM Trans. Database Syst.,
vol. 26, no. 1, pp. 96–143, 2001.

[21] L. Huang and T. Chiueh, “Experiences in building a software-
based SATF scheduler,” Tech. Rep. ECSL-TR81, SUNY at
Stony Brook, July 2001.

[22] F. J. Corbató, “A paging experiment with the multics system,”
in In Honor of P. M. Morse, pp. 217–228, MIT Press, 1969.
Also as MIT Project MAC Report MAC-M-384, May 1968.

[23] E. G. Coffman and P. J. Denning, Operating Systems Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[24] M. Seltzer, P. Chen, and J. Ousterhout, “Disk scheduling revis-
ited,” in Proc. USENIX Winter Tech. Conf., pp. 313–324, 1990.

[25] D. M. Jacobson and J. Wilkes, “Disk scheduling algorithms
based on rotational position,” tech. rep., HPL-CSP-91-7, HP
Labs, Mar 1991.

[26] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling
algorithms for modern disk drives,” in SIGMETRICS, pp. 241–
251, 1994.

[27] E. G. Coffman, L. A. Klimko, and B. Ryan, “Analysis of scan-
ning policies for reducing disk seek times,” SIAM J. Comput.,
vol. 1, no. 3, pp. 269–279, 1972.

[28] P. J. Denning, “Effects of scheduling on file memory operations,”
in Proc. AFIPS Spring Joint Comput. Conf., pp. 9–21, 1967.

[29] P. H. Seaman, R. A. Lind, and T. L. Wilson, “An analysis of
auxiliary-storage activity,” IBM Systems Journal, vol. 5, no. 3,
pp. 158–170, 1966.

[30] A. G. Merten, Some quantitative techniques for file organization.
PhD thesis, University of Wisconsin, 1970.

[31] R. Geist and S. Daniel, “A continuum of disk scheduling
algorithms,” ACM Trans. Comput. Syst., vol. 5, no. 1, pp. 77–92,
1987.

[32] T. R. Haining, Non-volatile Cache Management For Improving
Write Response Time with Rotating Magnetic Media. PhD thesis,
Ph.D. Dissertation, University of California, Santa Cruz, 2000.

[33] J.-F. Paris, T. R. Haining, and D. D. E. Long, “A stack model
based replacement policy for a non-volatile cache,” in Proc.
IEEE Sym. Mass Storage Sys., pp. 217–224, March 2000.

USENIX Association142

