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Abstract: The literature is rich in techniques and methods to perform Continuous Authentication (CA)
using biometric data, both physiological and behavioral. As a recent trend, less invasive methods
such as the ones based on context-aware recognition allows the continuous identification of the
user by retrieving device and app usage patterns. However, a still uncovered research topic is to
extend the concepts of behavioral and context-aware biometric to take into account all the sensing
data provided by the Internet of Things (IoT) and the smart city, in the shape of user habits. In this
paper, we propose a meta-model-driven approach to mine user habits, by means of a combination
of IoT data incoming from several sources such as smart mobility, smart metering, smart home,
wearables and so on. Then, we use those habits to seamlessly authenticate users in real time all
along the smart city when the same behavior occurs in different context and with different sensing
technologies. Our model, which we called WoX+, allows the automatic extraction of user habits
using a novel Artificial Intelligence (AI) technique focused on high-level concepts. The aim is to
continuously authenticate the users using their habits as behavioral biometric, independently from
the involved sensing hardware. To prove the effectiveness of WoX+ we organized a quantitative
and qualitative evaluation in which 10 participants told us a spending habit they have involving the
use of IoT. We chose the financial domain because it is ubiquitous, it is inherently multi-device, it is
rich in time patterns, and most of all it requires a secure authentication. With the aim of extracting
the requirement of such a system, we also asked the cohort how they expect WoX+ will use such
habits to securely automatize payments and identify them in the smart city. We discovered that WoX+
satisfies most of the expected requirements, particularly in terms of unobtrusiveness of the solution,
in contrast with the limitations observed in the existing studies. Finally, we used the responses given
by the cohorts to generate synthetic data and train our novel AI block. Results show that the error in
reconstructing the habits is acceptable: Mean Squared Error Percentage (MSEP) 0.04%.

Keywords: continuous authentication; meta-model; internet of things; meta-model-driven design;
security; smart city; habits mining; behavioral biometrics

1. Introduction

One of the expected goals of ICT services is to provide relevant information for citizens.
Among the security services, such as authentication, access control, key management and
intrusion detection, user authentication is very much needed for a smart city environ-
ment [1]. Strong security layers—based for example on the blockchain—do exist, providing
a secure communication system in an intelligent city [2]. However, very few applications
are really focused on User Experience (UX) [3]. In particular, user authentication and
authorization stride with the seamless fruition of services in the smart city [4]. When taking
into account such security requirements, smart city stakeholders (policy makers, engineers,
architects, designers, industry, startups, etc.) not only should fulfill them but also they
should find a good trade-off between security and ease of use, to deliver a perceivable
value to the citizen [5].
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Different sub-concepts below the main vision of smart cities exist [6] and are becoming
reality: smart mobility [7–9], smart grid [10–12], and smart buildings [13–15] (including
smart home [16–19]) are just some main umbrella terms for a rich set of services that can
improve our daily life. When the access is authenticated, service fruition can be customized,
paid for and obviously authorized. Allowing the users to authenticate themselves with
zero friction, while not exposing the user and the systems to attackers, is an extra step that
currently represents a research challenge [20–22]. In most cases, the requested use of a
second factor can further increase the identification process complexity [23], hence erecting
barriers especially for the less accustomed to technology, who may feel excluded from the
evolution of the smart city.

To this aim, the adoption of smart authentication systems, such as the ones based on
biometric technologies [24], can sensibly improve the UX in accessing digital services in
the smart city, for example biometric solutions for access control [25,26] or wearables as
tools for implicit authentication [27,28]. When an access to a service is requested, the user
can simply use a fingerprint/palm/iris/voice timbre recognition system, depending on
the type of smart service to be accessed. Although those technologies are quite secure,
common and well accepted [29], this kind of physical biometric is more or less invasive [30],
by means of quantity of attention the user should pay to use the provided interface, or
the encumbrance of the equipment. Luckily, biometric is not compulsorily physical: the
behavioral biometric is a choice, when unobtrusive authentication is not an option [31–33].

The extension of the behavior concept is the habit. Every one of us has habits, i.e.,
particular sequences of actions, motions and states, with a repetitive time pattern, that
distinctively identify each of us among other persons. The main research question we
try to answer in this paper is: if conveniently captured, could such habits be used to
continuously identify the citizens along their pathway in the smart city? The smart city
is the perfect environment to extend the concept of behavioral biometrics, i.e., to go over
the simple retrieving of device/app usage patterns or motion patterns, by exploiting the
pervasiveness of IoT sensors in different context, which allow access to a continuous stream
of data comparable with previously mined habits [34–36]. Habits mining is crucial for the
depicted scenario, because often users do not even know the habits they have, especially
when the granularity on the sensing data is very fine, and it is still a research challenge.

We strongly believe that the passwordless future that is going to be standardized
by the FIDO Alliance [37] will further evolve towards a zero-effort, zero-distraction and
zero-encumbrance approach. There is the need to create a new research line and overcome
a current research gap that is evident today in the literature, as there are no models and
methods for checking the identity of the users able to not disturb their attention in any way.
The motivation of the study lies in filling this gap by exploiting the habits to continuously
authenticate the user in the smart city, thanks to a fuzzy check between real time user
behaviors and previously automatically recorded habits. If the confidence level is over
a certain threshold, then it can be supposed that the user requesting access to a specific
service is indeed who s/he say s/he is.

To this aim, in this paper we use WoX+, a meta-model-driven approach to mine and
match user habits exploiting the pervasiveness of sensors deployed in the smart city. It is
based on a previous work, called WoX [38], which we thoroughly report in Section 2. WoX+
is a meta-model for WoX, as it defines how user interaction with the IoT can be described
using the WoX model. We present a novel machine-learning (ML) block based on the
WoX+ meta-model that can mine user rules (i.e., daily habits) and automatically instance
them in the shape of WoX rules (so, without knowing them a priori). The independence of
such rules from the physical layer, which is the main benefit of WoX, allows such rules to
“follow” the user also when s/he moves all along the smart city. Therefore, when similar
combinations of triggers are captured, the same security-critical reaction (like a payment)
can be safely fired.

To proof the effectiveness of WoX+ as a Continuous Authentication (CA) layer in
the smart city, in this paper we asked to a cohort of 10 persons to tell us a financial
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habit they have that they think should be captured and automatized by an IoT layer. We
chose the financial context because it is ubiquitous (we can pay anywhere), it is inherently
multi-device, it is rich in time patterns (purchases are repeatable in time), and most of
all it requires a secure authentication. Therefore, we generated a synthesized dataset and
inputted it to the ML block of WoX+, to check the capability of WoX+ to mine well known
habits. In this case, results show that the Mean Squared Error Percentage (MSEP) that
we reached is 0.04 (accuracy of 96%). Moreover, we asked the cohort to tell us how they
expect the comprehension of the personal habit should be used to automate the person’s
identification in the smart city. In this case, we analyze their answers, and we try to sketch
some conclusions.
To summarize the main objectives of the study, we identify the following ones:

• to define the requirements of a habits-based behavioral biometric system as a CA layer
for the smart city

• to define, implement and measure a ML block able to mine custom user habits from
daily sensing data

• to perform a quantitative and qualitative evaluation of the overall system

Figure 1 represent the research methodology adopted in this paper to validate and
measure the effectiveness of WoX+ as a habit-based CA tool for the smart city. The interview
is needed to extract the expectations from a cohort about the main system idea. Then, we use
the referred use cases to list a set of generic system requirements, to check the adherence of
our system to the same and consequently to perform a comparative analysis with previous
studies. In parallel, we use the same use cases to generate the training data for our system
and perform a quantitative evaluation.

Figure 1. Research methodology.

The rest of the paper is structured as follows. Section 2 reports on the background
and the authors’ previous studies, including IoT meta-models, WoX and WoX+. Section 3
describes the proposed method to mine user habits. Section 4 reports on the validation we
performed. We discuss the main results of our work in Section 5. In Section 6 we summarize
the conclusions and sketch future research efforts. Finally, we report the abbreviations in
the back matter.

2. Background and Previous Studies
2.1. WoX

Web of Topics (WoX) is a model-driven approach for the Internet of Everything (IoE).
In WoX, the crucial concept mediating between who needs and who offers IoT capabilities
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is the topic, which wraps the value of a feature of interest (temperature, presence, or even
more abstract concepts), in a location defined similar to a URI. Moreover, WoX has the
concept of Role, by which an IoT entity can declare their interest in the topic, by means of the
technological (source/executor/function) and collaborative (capability/need) dimensions.
WoX brings two main advantages:

• Virtual things, beside physical things, can be easily wired up. WoX concepts are close
to the people’s understanding: everyone can design and deploy custom scenarios.

• WoX accelerates the development of applications, by taking care of the communication
toward the heterogeneous IoT layer. It hides the communication protocol details,
letting designers/developers concentrate on their business.

WoX is an abstraction layer placed in between the Web of Things (WoT) and the
applications (Figure 2). WoX provides ready-to-use Business Objects (BO) and Data Objects
(DO), leaving to the developer the only duty to display or handle the upcoming data.

Figure 2. WoX reference model. WoX simplifies the Application layer as it wraps the specific
Presentation Objects (PO), Business Objects (BO) and Data Objects (DO) for each (OBServable) thing.
By this way, it reduces the application volume.

2.2. IoT Meta-Models

The overall IoT meta-model can be seen as a combination of five meta-models, each of
which reflects a particular view of the IoT:

• The Human-Object-View metamodel: considers the human and the physical object
both users of the IoT. To interact, a physical object must be able to hear, speak, think,
inform about its being and change its being. These communication, calculation,
information acquisition and activation capabilities are provided to the object by a
device to which it is incorporated or connected. A physical entity can be a human or
physical object.

• The Service-View metamodel: exposes, in the form of services, the functions of infor-
mation acquisition, processing and embedded actions. Services provide the basis to
allow a man and a physical object to interact.

• The Context-View metamodel: Such an interaction occurs in a context, i.e., any in-
formation useful to characterize an entity’s situation. An entity is a person, place or
object that is relevant for the interaction.

• The Network-View metamodel: The exchange, as a result of an interaction, is made
on top of a communication network, which is conceptualized in the Network-view
meta-model

• The Location-View metamodel: The location of the man and/or object can affect such
an exchange. This meta-model is aimed at designing both the localization of men and
objects as well as their involvement in interaction.

The concept of smart home arises when the IoT is part of the residential environ-
ment. The home automation sector promotes technologies able to modify the state of
the equipment and systems installed in the house, for example using the remote control
possessed by the owners. The IoT overcomes the mere control and introduce an intelligent
component that can automate the home management. In this way, system and devices of
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the smart home can work in synergy: they exchange data and information, so they are able
to automatize the occupants’ actions and customize them according to their preferences
and habits. The natural extension of this approach is that the system will learn from the
occupants’ actions and controls so it will act proactively, hence optimize the management
of the whole home environment.

Developers involved in research projects in the world of IoT have encountered prob-
lems due to the lack of standardization of a technology and an architecture for the same IoT
applications. For the interaction of physical objects and intelligent applications, the current
paradigm of software development, based on object orientation, has reached the height of
the update and is also not suitable enough for applications and smart devices. The branch
of Engineering that deals with this aspect is Model-Driven Software Development (MDSD)
which marks a change in paradigm from object to model: the models do not constitute a
simple documentation but are considered equivalent products and convertible into code. A
new model architecture was presented in 2017 [39]. This model, called Meta-object Facility
(MOF) involves four different levels.

In the MOF model (Figure 3), starting from the bottom, we have:

• The IoT solution Implementation layer (M0), containing all the IoT devices that gather
information from the real world (e.g., the temperature sensor);

• The IoT Solution Model layer (M1), virtualizing the IoT devices from the underlying
layer (e.g., WoX);

• The IoT Meta-Model layer (M2), which generalizes the information and the interactions
between the IoT layers;

• The Meta-Object Facility or IoT Meta-Meta-Model layer (M3).

Figure 3. MOF model.

2.3. WoX+

As already discussed in [18], WoX+ is a WoX plugin that makes WoX a proactive system,
based on a bottom-up configuration that uses smart rules, calculated using the historical
interactions.

For the proactivity property, WoX+ uses the cold data from the WoX system to under-
stand the pattern of the requests. It uses a ML block to generate the WoX+ Model, a schema
that describes the events and the operations to run.

The cold IoT data are defined as:

data := [{tn, av, pv, t, d}]

where tn is the topic name (feature + location), av is the actual value of the specific topic, pv
is the preferred value, t is the time instant of the interaction and d is the specific device that
send the data.

The WoX+ Model M is defined as:

M := [[{tn, av, cr}], [{tn, pv}]]
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where tn is the topic name (feature + location), av is the actual value of the specific topic, cr
is the criteria of the event and pv is the preferred value.

The cr value is a comparison operation:

cr := {==, ! =,<,<=,>,>=}

From the implementation point of view, WoX+ is developed in Python version 3.10.4
by Paolo Panarese (one of the author of this paper, using the AWS Software Development
Kit (SDK) (boto3 library, version 1.24.71, developed by Amazon) to interact with WoX and
sends the IoT data to the ML block via REST APIs (using Flask version 2.2.2). This plugin is
deployed in cloud.

3. Proposed Method
3.1. Mining Process

From the user’s perspective, the information flows as follow (see Figure 4):

1. the user interacts (directly and indirectly) with the IoT system;
2. ones per day, the IoT middleware sends all the user requests to a ML algorithm;
3. the ML algorithm extrapolates the user behavior from the user requests;
4. the extracted user behavior rules are sent to a rule player;
5. the rule player waits until a rule can be activated and executes it.

Figure 4. Solution workflow.

3.2. Machine-Learning Block

The ML block has the purpose to understand the human behavior using the data
gathered by the IoT devices. This block has the purpose to analyze the user interaction
with the IoT world and generates the rules which describe the user habits.

First, we tried to model a neural network algorithm [40,41]. There are different types
of neural network algorithms that we can use but, unlike what one might imagine, these
algorithms are not suitable for us. There are several jobs that a neural network can do really
well (classification, regression, transcription, anomaly detection, denoising, synthesis and
sampling, etc.) but seems that the extraction of a habit from a list of input data is not one of
them. For example, the predictive algorithms [42–46] are designed to predict one or more
unknown value after a (single) training phase. We do not want this algorithm because



Sensors 2022, 22, 6980 7 of 24

we want to know (if exists) what is the unknown pattern behind the user IoT interactions,
upgradeable every day.

For these reasons, we must change approach to this problem, trying to model in a
different way the interaction between the human and the IoT devices.

To reach the goal we have modeled our problem using the graph theory, where the
nodes are the interaction with an IoT device in a specific time slot, and the edges identify
the correlation between two different nodes.

In a more mathematical way, we define the starting dataset where the IoT interactions
are stored, the algorithm parameters, the graph entities and the algorithm to extrapolate
the rules.

3.2.1. IoT Dataset Definition

A dataset D is a list of IoT interactions composed of:

• sensor identifier s_id
• date of interaction d
• time of interaction t

3.2.2. Parameters Definition

• Max time delay (max_t) is the max amount of time (in minutes) to consider two
different nodes related;

• Similarity Max Delay (sim_max_del) is the max amount of time (in minutes) to con-
sider equivalent two nodes with the same id.

• Multiplication factor (mult) is a value that scales older dataset information. It must be
between 0 (ignore old values) and 1 (consider all values with the same weight).

• Minimum rule percentage (min_rule_perc) is the threshold value of the edge to
overcome to be a rule.

• Minimum percentage (min_perc) is the threshold value below which the edge value
is rounded to zero.

3.2.3. Behavior Graph Definition

Node. A node N is defined as:

n := {s_id, t}

With this definition, two interactions with the same sensor and time of interaction, but
in two different days, are mapped in the same node.

Interaction. We define interaction I between two devices i, j in a particular day d,
such as I(i, j, d):

I(i, j, d) :=


1, if ∃t ∈ <, 0 < ε ≤ max_t |
∃D(i, t, d) ∧ D(j, t + ε, d)

0, otherwise

In a simple way, interaction I between two nodes in a particular day is 1 if the time
delay between the two executions is less than or equal to max_t.

Edge. Given two nodes N1 and N2 and a specific day d, the weight of the edge between
these nodes is defined as:

E(i, j, d) := E(i, j, d− 1) + I(i, j, d)
2

∗mult

Using this formula, the weight of the edge can change day by day, and consider more
the last few days than the first ones.

Another optimization is to round to 0 if the weight is less than min_perc.
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3.2.4. Algorithm Definition

The algorithm behind the ML block is based on 5 steps:

• constructor (Algorithm 1): the setup of all parameters and variables used in the
algorithm;

• get_related_rows (Algorithm 2): returns the list of related nodes starting from a
source node;

• get_node (Algorithm 3): if the input node does not exists, the algorithm creates it,
otherwise returns the existing node;

• calculate_rules (Algorithm 4): the rules extractor starting by the graph generated;
• elaborate_day (Algorithm 5): the elaboration of a subset D(d) in a specific day,

defined as
D(d) := {(s_id, d, t) ⊂ D}

Algorithm 1 Constructor

1: Setup parameters
2: node_ids← [ ]
3: nodes← {}
4: adj_mat← [ [0] ]

Algorithm 2 get_related_rows

Input: source_node, input_data, max_t
Output: related_rows

1: min_time← source_node.t
2: max_time← min_time−max_t
3: related_rows← [ ]
4: for all row ∈ input_data do
5: if row.s_id 6= source_node.s_id then
6: if min_time ≤ row.t ≤ max_time then
7: related_rows.append(row)
8: end if
9: end if

10: end for
11: return related_rows

Algorithm 3 get_node

Input: row, temp_adj_mat
Output: related_rows

1: if row.s_id ∈ nodes_ids then
2: Find the nearest node in nodes[row.s_id] with t < sim_max_delay
3: if nearest_node exists then
4: return nearest_node
5: end if
6: else
7: row.id← size(nodes_ids)
8: Append row to nodes[row.s_id] and nodes_ids
9: Add 1 empty row and 1 empty column to adj_mat and temp_adj_mat

10: return row
11: end if
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Algorithm 4 calculate_rules

Input: adj_mat
Output: rules

1: rules← [ ]
2: Generate directed graph from adj_mat
3: Remove edges with weight < min_rule_perc
4: Get connected components of the graph
5: for all connected_component ∈ connected_components do
6: if size(connected_component) > 1 then
7: Sort nodes of the connected component graph by time
8: Append the nodes to rules
9: end if

10: end for
11: return rules

Algorithm 5 elaborate_day

Input: input_data
Output: rules

1: temp_adj←{NxN zero matrix with N = size(nodes_ids)}
2: for all source_row ∈ input_data do
3: source_node← get_node(source_row, temp_adj)
4: related_rows← get_related_rows(source_node, input_data, max_t)
5: for all related_row ∈ related_rows do
6: related_node← get_node(related_row, temp_adj)
7: temp_adj[source_node.s_id][related_node.s_id] = 1
8: end for
9: end for

10: adj_mat← (adj_mat + temp_adj)/2 ∗mult
11: Rounds to 0 the adj_mat values less than min_perc
12: rules← calculate_rules(adj_mat)
13: return rules

3.3. Habits-Based Continuous Authentication Requirements

Analyzing the answers given by the cohort, we can summarize as follows the require-
ments of a habit-based continuous authentication system for the smart city:

1. a sensed value should be independent from the specific device that generates the
reading

2. mined habits should be identifiable over different physical setups
3. a habits-matching layer should be flexible enough to recognize with a certain precision

a typical habit even if not all the exact conditions occur
4. authorization-based services should be informed about the opening (or closing) of a

secure session for a specific user, fired by the detection of a habit
5. both temporal and spatial information should be provided to open a contextual secure

session in time and space
6. the user should tell authorization-based services who s/he claims to be, prior to use

the service in frictionless mode
7. the way the user claims to be himself should be constant among the different auth-

based scenarios
8. the way the user claims to be himself should be independent from the media used

(i.e., mobile-based BLE or WiFi, smartcard)
9. a spatio-temporal matching engine should fuzzy-match different units of time (e.g.,

weekdays, months, a nth part of the month, seasons) and taxonomies of locations,
both hierarchical (e.g., town-city-province-state) and flat (e.g., beaches, parking lot)
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4. Functional and Quantitative Validation

To validate the algorithm, we have searched the Internet for a dataset of IoT interac-
tions with the habit description. This information would be used to train the algorithm and
measure the results. Unfortunately, we did not find this particular information and, for this
reason, we preferred to generate a synthetic dataset by interviewing a cohort, as described
in the next section.

4.1. Scenario

The experiment is aimed at clarifying how WoX+ could be used as a continuous
authentication layer in the smart city, particularly in the financial context.
The 10 persons who took part in this experiment where workers in the IT (five developers,
four entrepreneurs, one clerk), proportion between male and female is 80% vs. 20%, and
the average age is 32. We decided to involve only very skilled persons because of the
complexity in understanding our requests.

In Table 1 we describe what we collected from the expectation of each participant. To
populate the 2nd to 4th column, we asked them the following questions, leaving them one
business day to give us the answers:

1. What is a spending habit you have that you think an IoT layer could capture?
2. What is a different context that you expect such an intelligent IoT layer should match

with the spending habit you described, to automatize the payment?
3. What is a security-related scenario that could exploit the occurrence of your habit to

provide a frictionless experience?

Table 1. Habits and expectations from the cohort.

Habit
ID Habit Description Expectation from WoX+ Continuous Authentication

Expectation

1

Every 2 months, when the
decalcification warning light on
the coffee machine turns on, I

buy the decalcifier on Amazon

I expect that if the decalcification
warning light is on, the

decalcifier should be
automatically bought

I expect that if the decalcifier warning
light is on and I have bought the

decalcifier at the supermarket, I can
also buy alcohol without showing

my ID

2
At the end of the month, when I

receive my salary, I pay the
energy bill

I expect that if I receive extra
money in a different day of the

month, pending bills are
automatically paid

I expect that if I am at Walmart and
I’m paying the energy bill in any day
of the month, I can book and pay my
taxi without using the second factor

authentication

3

Every business day, at 7:40 a.m. ,
8:10 a.m. or 1:20 p.m. I buy the

bus ticket on the company’s
website

I expect that if I’m at the bus
stop at 7:30 and I forgot to buy
my ticket, the system should
automatically buy it for me

I expect that if my parents are
accompanying me at the University

campus, I could move the price of the
ticket to the digital piggy bank

without authorizing the transaction

4

In the summer, during the
weekend and when I come back
from the beach, I buy the car’s

perfume after washing the car at
around 21:30

I expect that, if I am at the
washing car service after being

at the beach, an automatic
purchase should be triggered

I expect that if it is weekend and I am
at the beach, the system should book

and pay a washing service for me
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Table 1. Cont.

Habit
ID Habit Description Expectation from WoX+ Continuous Authentication

Expectation

5

When I go shopping, if I like a
dress but my size is finished, in
the late evening when the baby
sleeps I search and buy the same

dress on the Internet

I expect that if I am in a clothes
shop and I scan the barcode of a

dress, it should automatically
put my size in the shopping cart

I expect that if I’m at home in the late
night and I’m buying a cloth, I can

order my dinner without the second
step verification

6
When the car notifies me on the
app that I reached the number of

km for tires, I buy them

I expect that I should receive a
list of quotations for different
tires when the car reaches the

km threshold

I expect that if I’m paying the tires
after the notification from the app, I

can book and pay a parking lot for the
next day using Amazon Alexa

7 When I park the car near the bus
stop, I buy the bus ticket

I expect that if I park the car
near the bus stop, the bus ticket

is automatically bought

I expect that if the parking lot is the
one of the municipality, I can pay my
taxes at the totem without inserting

my password

8 In the summer, I buy 3 antiparos
vials per month

I expect that if the average
weather temperature is above a
certain threshold, the antiparos

are automatically bought

I expect that if I’m paying the
antiparos at the pet shop and it is
summer, then I can go to the bank

branch beside the pet shop and
interact with the ATM by only using

my voice

9
Every tenth day of the month I
send a bank transfer to pay my

rent

I expect that, if there are enough
money on my account, the rent

will be paid automatically

I expect that if I a.m. at paying my
rent on the 10th, I can login to the
banking app without logging in

10

When the gasoline price is low,
and around the beginning and
the half of the month, I fill the

tank

I expect that if I’m driving, the
fuel price is low and the tank is
below a certain threshold, the
navigator app will suggest me

the most convenient gas station

I expect that if I’m filling the tank in
the most convenient gas station, than
I can pay oil check without inserting

the PIN

4.2. Synthetic Data Generation

We followed these steps:

• We have defined a set of rules R;
• We have generated a dataset with the interactions defined in the rules and a random-

generated noise interactions;
• We have trained the algorithm and we have taken the resulting rules;
• We have compared these results with R.

In particular we have generated the dataset using a set of meta-parameters:

• action_delta_minutes is the delay time (in minutes) between two actions in the same
rule;

• action_probability is the probability to generate an action to the dataset;
• noise_sensors is the number of random interactions to generate;
• noise_occurrences is the number of occurrences of a noise sensor for each day;
• noise_probability is the probability to generate a noise sensor;
• time_scale is the variance of the Gaussian function used to generate the interaction

instant.

Given a rule r ⊂ M, for a particular action a and for each day, the interaction instant t
is generated using the formula:

t = tr(M) + norm(µ = 0, σ2 = time_scale)
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where tr(M) is the start time of the rule r and norm is a function that generates a random
Gaussian distributed variable that defines the offset from the rule (in seconds). We can
define the first and third quartile starting from the time_scale value:

Q1 := µ− 0.6745 ∗ σ

Q3 := µ + 0.6745 ∗ σ

An example of offset probability distribution can be found at Table 2.

Table 2. Example of offset probability distributions starting from time_scale values.

time_scale Q1 Q3 IQR

1 −0.6745 0.6745 1.349
50 −33.725 33.725 67.45

100 −67.45 67.45 134.9
500 −337.25 337.25 674.5

For example, with a time_scale = 100, we have 50% of chance (definition of IQR) to
generate a time in a range of 2 min and 15 s (≈135 s) from the rule starting time, and 68.27%
of chance to generate in a range of 3 min and 10 s (200 s).

For each meta-parameter, we define a set of values that we want to test for the specific
meta-parameter. In particular, we tested the algorithm with:

• action_delta_minutes: 1, 2 and 4 min;
• action_probability: 90%, 95%;
• noise_sensors: 5, 10, 20;
• noise_occurrences: 3, 5;
• noise_probability 30%, 50%, 70%.
• time_scale: 500.

With these values, we generate a total of 10 ∗ 108 = 1080 datasets.
The graph algorithm parameters that we define are the following:

• max_t: 300 min;
• sim_max_del: 24 h;
• mult: 0.95;
• min_rule_perc: 0.8;
• min_perc: 0.25.

Sample Behavior Graph Visualization

When the IoT cold data are sent to the ML block, the behavior graph is generated
(or updated). An example of behavior graph applied to an experimental scenario is the
following: Every 2 months, when the decalcification warning light on the coffee machine
turns on, I buy the decalcifier on Amazon (habit ID 1).

The behavior graph after 1 day is the following (Figure 5):
As we can see, the nodes are generated correctly based on the sensor name. In

particular:

• decalc_warn is the IoT signal that the coffee machine needs the decalcifier;
• buy_decalc is the IoT signal that the user buys the decalcifier;
• interaction_1 is a noise sensor that is not involved in this particular behavior.



Sensors 2022, 22, 6980 13 of 24

Figure 5. Example: Behavior graph after 1 day.

All the edges are dashed and gray, based on the value of the adjacency matrix.
After 2 months the graph (Figure 6) remains the same, except for the color of the

edges, indicates that the adjacency matrix value is growing, and for adding another noise
interaction (interaction_2).

Figure 6. Example: Behavior graph after 2 months.

After 4 months from the first day, the graph (Figure 7) change and the edges become
greater than the min_rule_perc (0.8 for this example). The algorithm creates a graph with
all the nodes with an edge greater than the min_rule_perc value, divides the graph in N
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subgraph, one for every connected component, and calculates the largest path between the
first node (in time) and the last one (and colors this path with red).

Figure 7. Example: Behavior graph after 4 months.

For this example, the extracted rule is:

{
"triggers": [

{ "tn": "decalc\_warn", "av": "TRUE", "cr", "=" }
],
"actions": [

{ "tn": "buy\_decalc", "pv": "TRUE" }
]

}

4.3. Habits Mining Validation Definition and Results

We have run the algorithm with all the 1080 datasets, and we calculated the score for
each rule. Given the original set of rules R0 ⊂ R and the set of calculated rules Rc ⊂ R, the
score for each calculated rule rc is calculated with the following schema:

• we find, if exists, a rule r0 ⊂ R0 similar to rc;
• if r0 does not exists, the score is 0;
• if the trigger of rc is equal to the trigger of r0, the score starts from 2;
• if the trigger of rc is different to the trigger of r0 but appears into the list of actions of

r0, the score starts from 1;
• if the trigger of rc is different to the trigger of r0 but appears into the list of actions of

r0 with different starting time, the score starts from 0.5;
• for each action of rc, if it exists in the list of actions of r0, we add 0.5 to the score.

The total score is calculated:

max_score = 2 + 0.5 ∗ #a0

where #ao is the size of the list of actions of r0.
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For each dataset, the MSEP is evaluated as follows:

MSEP = (
max_score− score

max_score
)2

The training and evaluation phases of our algorithm were performed on a local
machine with the following features: MacBook Pro 15-inch (2016), Intel Core i7-6820HQ
2.70 GHz as the CPU, 16 Gb of RAM. After the test execution, the MSEP that we reached
with the 1080 datasets is 0.04 (accuracy of 96%).

To better analyze the result, we calculated an MSEP for each value of each parameter.
We found that no properties affect the result, as the MSEP remains stable for different
dataset and parameters.

5. Discussion

In Table 3 we report the requirement that we listed in Section 3.3, demonstrating
whether our approach satisfies or not each of this, with a brief comment on the reason.

Table 3. Requirements satisfaction.

Req ID Requirement Satisfied Comment

1 A sensed value should be independent from the specific
device that generates the reading Yes WoX satisfies this

requirement

2 Mined habits should be identifiable over different
physical setups Yes WoX satisfies this

requirement

3
A habits-matching layer should be flexible enough to

recognize with a certain precision a typical habits even if
not all the exact conditions occur

Yes The ML block satisfies this
requirement

4
Authorization-based services should be informed about
the opening (or closing) of a secure session for a specific

user, fired by the detection of a habit
Applicable

WoX satisfies this
requirement, but it has not

been tested yet

5
Both temporal and spatial information should be

provided to open a contextual secure session in time and
space

Applicable Not yet provided

6
The user should tell authorization-based services who
s/he claim to be, prior to use the service in frictionless

mode
Applicable Not yet implemented

7 The way the user claims to be himself should be constant
among the different auth-based scenarios Applicable Not yet implemented

8
The way the user claims to be himself should be

independent from the media used (i.e., mobile-based BLE
or WiFi, smartcard)

Yes WoX satisfies this
requirement

9
A spatio-temporal matching engine should fuzzy-match
different units of time and taxonomies of locations, both

hierarchical and flat
Applicable

There are some already
studied algorithms [47]

satisfying this requirement.

10 Non personal sensing devices spread across the smart
city should feed personal habits scenarios No

It must be found a method
for data incoming public

IoT infrastructure to trigger
user-specific rules

We can now perform a comparison between the proposed approach with others
falling in the broader field of biometric-based continuous authentication. Ref. [48] is a
recent (2021) review in which three categories of continuous authentication are taken into
account: physiological-based (such as fingerprint, iris, voice, face), behavioral-based (such
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as keystroke dynamics, touch dynamics, motion dynamics, etc.), and context-aware factors
(such as physical location, IP-addresses, device-specific data, browsing history, etc.).

Table 4 report the list of biometric technologies identified in [48] and useful to perform
continuous authentication. A specific comment is placed for each category, to discuss the
comparison with our work.

Table 4. Comparison and discussion of our approach against existing studies

CA type Techniques Studies Obtrusiveness Discussion

Physiological

Face [49–54] User should stay still in front of camera

Voice [55–59] User should talk, even if the use case does not foresee voice
interaction

EEG [60–62] Electrodes must be placed on the user’s scalp

ECG [63–65] User must at least wear a wearable device (e.g., Apple
Watch)

Eye movement [66–69] A still camera in front of user’s face is needed for eye
tracking

Eye blink [70] As above
BioAura [71] Wearable medical devices should be continuously worn

Multimodal [72–78] A combination of the above methods is even more
cumbersome

Behavioral

Motion Dynamics [79–88]
Gait-based authentication is not so invasive if only a

smartphone is needed. Anyway, a smartphone is always
needed in the user’s pocket.

Touch Dynamics [89–101] Limited to recognizing the user when a touch screen is
involved (gestures, swipes, or tapping on the screen)

Stylometry
Dynamics [102–106] Limited to use cases when writing is demanded to the user

Keystroke
Dynamics [107–113] Limited to use cases where a keyboard (physical or virtual) is

involved
Eye movement [66–69] Eye tracking equipment is needed

Eye blink [70] As above
BioAura [71] Wearable medical devices should be continuously worn

Context-based

File system,
Network Access,

GPS, Online
activity, app usage,

Bluetooth, Wi-Fi

[114–120]
Very close to this paper idea, no encumbrance, but the

current studies do not include the interaction with smart
environments

WoX+

User daily habits
mined from smart
environments like
smart home and

smart cities

This work No obtrusiveness because the system adapts with any
personal data source incoming from the environments

Performance Discussion

To test the technical performance of the machine learning algorithm, we tested the
system with different datasets with a single date. This test simulates the daily IoT data sent
from the WoX+ module to generate the user habits rules. The datasets differ from each
other by the quantity of different row stored inside them. We tested using 5, 10, 15, 20, 30
and 50 sensors and 5, 10, 20, 50 interactions and the results are shown below (Table 5).
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Table 5. Performance calculus for a single day of data.

ID Number of Sensors Number of
Interactions Mining Time (ms)

1 5 5 1275
2 5 10 2047
3 5 20 2236
4 5 50 4434
5 10 5 1490
6 10 10 1950
7 10 20 2398
8 10 50 4269
9 15 5 1164
10 15 10 2247
11 15 20 2718
12 15 50 3258
13 20 5 1402
14 20 10 2205
15 20 20 2944
16 20 50 3468
17 30 5 1102
18 30 10 1608
19 30 20 2824
20 30 50 3816
21 50 5 1331
22 50 10 1608
23 50 20 2266
24 50 50 3132

We analyzed the results of these tests and found that the number of sensors in a dataset
does not affect the mining time. However, the number of interactions in a dataset (equals to
the number of dataset rows) affects the time spent to execute a single-day algorithm. This
difference is caused by the nature of the graph algorithm: the graph with N nodes is defined
as a matrix of size N × N. For this reason, increasing N, cause a quadratic increase in the
execution time. The experimental increasing is not quadratic thanks to two optimizations:
the min_perc removes all the interactions with low probability and, if a row is full of zeros,
the algorithm removes it, reducing the size of the matrix.

6. Conclusions

In this paper, we have presented WoX+, a meta-model for the IoT. It is the evolution
of WoX, a previous work of the authors. WoX is a model-driven approach for the IoT,
allowing the definition of top-down IoT rules using very simple high-level concepts that
any stakeholder can understand. The defect of WoX is that IoT rules, defined by triggers
(i.e., relations between topic values) and reactions, must be known a priori. We expect
instead that smart environments should automatically detect rules from the evidence given
by IoT cold data. Therefore, we created WoX+, which is the meta-model for WoX. WoX+
can mine rules from previously recorded data and instance automatically such rules. In
the smart city, such rules can represent customized user habits, i.e., particular sequences of
actions, motions and states, with a repetitive time pattern that distinctively identify each of
us among other persons. If conveniently captured, such habits can be used to continuously
identify us along our pathway in the smart city.

To investigate this possibility, we asked 10 persons to give us a habit they have
involving digital payments. The choice of the payments domain is due to the need for such
use cases to be authorized. We modeled the 10 habits using WoX concepts and manually
generated the rules, then we used such rules to generate a synthesized dataset. We used the
dataset to feed the ML block of WoX+ which successfully reconstructed and instanced the
rules. In particular, we gave a score based on how much similar they are, and we divided
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the score with the maximum possible score. Results show that the error in reconstructing
the rules is acceptable (MSEP 0.04%). Moreover, we also asked the cohort to suggest
a similar payment scenario they expect that a smart environment should automatically
authorize because of the previously recorded habit. By replying to all the questions, the
cohort confirmed that a continuous authentication layer based on habit-base behavioral
biometrics can be effective to enhance the security-UX trade-off in the smart city.

More in general, we discovered that WoX+’s meta-model-driven approach led to two
main benefits to better trade-off security and UX aspects in the smart city:

• the first is that mining user habits can automatize actions related to security aspects;
• the second is that the occurrence of the habit can be used as a proof of the user’s

identity, and then unlock the frictionless fruition of secured services in the smart city.

The algorithm we have described is at the early stage of development, so it has relevant
limits. We identified such technical limitations:

• there is no difference between weekdays and holidays;
• the system is not able to find periodical events or seasonal behavior;
• the system generates rules strictly related to the datetime information;

These limitations reduce the number of habits that the algorithm can discover: for
example, we must specify the largest time period (in the experimental cases is 2 months)
after which an event must be re-executed to become a habit. Choosing a lower value may
cause the loss of some habits with greater periodicity; however, a higher value will cause
the necessary data increment (and a large period) to find the habits. In the experiment, we
considered the greatest time period value before executing the training phase.

From a technical point of view, next research efforts involve the improvement of the
similarity between two actions: we want to better understand the link between a rule
extracted by the ML block and the current action of the user. This improvement will
simplify the user authentication.

With regards to the validation of the approach, a new experiment is needed. In this
paper, we have generated a synthesized dataset, because of the difficulty to find suitable
dataset on the Internet. The next experiment will generate this dataset by sensing the IoT,
hence capturing the habits using real data.

Although listening to user expectations is useful to understand the requirements of a
behavioral biometrics system, future research efforts must include the implementation of
the 10 continuous authentication expectations of the cohort, to check and measure on the
field the capability of WoX+ in meeting user expectations.
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data IoT data sent to the system
M WoX+ Model
cr WoX+ trigger criteria
s_id Sensor identifier
d Interaction date
t Interaction time
max_t Max time delay
sim_max_del SImilarity Max Delay
mult Multiplication factor
min_rule_perc Minimum rule percentage
min_perc Minimum percentage
n Node
I(i, j, d) Interaction
E(i, j, d) Edge
D(d) Subset of dataset with date as d
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