
WQM: An Aggregation-aware Queue Management
Scheme for IEEE 802.11n based Networks

Item Type Conference Paper

Authors Showail, Ahmad; Jamshaid, Kamran; Shihada, Basem

Citation Showail, A., Jamshaid, K., & Shihada, B. (2014). WQM.
Proceedings of the 2014 ACM SIGCOMM Workshop on Capacity
Sharing Workshop - CSWS ’14. doi:10.1145/2630088.2630097

Eprint version Post-print

DOI 10.1145/2630088.2630097

Publisher Association for Computing Machinery (ACM)

Journal Proceedings of the 2014 ACM SIGCOMM workshop on Capacity
sharing workshop - CSWS '14

Rights © ACM, 2014. This is the author's version of the work. It
is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was
published in Proceedings of the 2014 ACM SIGCOMM
workshop on Capacity sharing workshop. Available at http://
doi.acm.org/10.1145/2630088.2630097

Download date 25/08/2022 09:25:44

Link to Item http://hdl.handle.net/10754/362482

http://dx.doi.org/10.1145/2630088.2630097
http://hdl.handle.net/10754/362482


WQM: An Aggregation-aware Queue Management Scheme
for IEEE 802.11n based Networks

Ahmad Showail, Kamran Jamshaid, and Basem Shihada
CEMSE Division

King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

{ahmad.showail, kamran.jamshaid, basem.shihada}@kaust.edu.sa

ABSTRACT
Choosing the right buffer size in Wi-Fi networks is chal-
lenging due to the dynamic nature of the wireless environ-
ment. Over buffering or ‘bufferbloat’ may produce unac-
ceptable end-to-end delays, while static small buffers may
limit the performance gains that can be achieved with vari-
ous 802.11n enhancements, such as frame aggregation. We
propose WQM, a queue management scheme customized
for wireless networks. WQM adapts the buffer size based
on measured link characteristics and network load. Further-
more, it accounts for aggregate length when deciding about
the optimal buffer size. We implement WQM on Linux and
evaluate it on a wireless testbed. WQM reduces the end-to-
end delay by up to 8× compared to Linux default buffer size,
and 2× compared to CoDel, the state-of-the-art bufferbloat
solution, while achieving comparable network goodput. Fur-
ther, WQM improves fairness as it limits the ability of a sin-
gle flow to saturate the buffer.

1. INTRODUCTION
Recent measurement studies have uncovered signifi-

cant overbuffering in data networks. While big buffers
may potentially increase throughput by limiting packet
drops, large queues can result in high latency. This
phenomenon of ‘bufferbloat’ [3] can create delays up to
orders of seconds. With falling memory prices and the
fallacy ‘more is better’, this performance degradation
from large buffers can be observed in many network-
ing devices, including end-user equipment such as DSL,
cable routers or wireless Access Points (APs).

Addressing bufferbloat in wireless devices, such as
APs, is a significant challenge. First, the wireless link
capacity is not fixed. Wireless devices use a rate con-
trol algorithm to select their transmission rate based
on several variables, such as the distance between the
transmitter and the receiver and the channel noise floor.
For example, IEEE 802.11n link rate can vary from 6.5
Mb/s to 600 Mb/s. With over two orders of magnitude
variation in link rate, using a fixed buffer size can sig-
nificantly degrade the network performance. Second,
wireless is a shared medium and hence wireless link

scheduling is not independent. Thus, a node’s share of
the wireless channel depends on other wireless nodes in
the neighborhood that are also contending for channel
access. As a result, the usable link capacity is typically
much smaller than the physical link rate. This also
affects the amount of buffering needed in the network.
Finally, inter-service rate for a wireless packet transmis-
sion can vary, since packets may need to be retransmit-
ted multiple times before they reach their destination.

802.11n/ac standard specifications introduced MAC-
layer frame aggregation to improve network performance.
Using Aggregate MAC Protocol Data Unit aggrega-
tion (A-MPDU), a wireless node can transmit up to
64 subframes in a single channel access. The aggrega-
tion logic is left open to the vendor’s implementation.
Always transmitting a maximum-sized A-MPDU may
maximize throughput, but will increase delays if a node
needs to wait to assemble 64 MPDUs from higher layers.
In contrast, the current Linux implementation sends as
many frames as currently available in the buffers, result-
ing in A-MPDUs with variable frame sizes. As shown
in our previous work [8], A-MPDU frame aggregation
helps deflating the buffer which results in significant
queueing delay reduction. However, this reduction is
not always enough to achieve acceptable Quality of Ser-
vice (QoS).

To address these challenges, we designed and imple-
mented WQM, an aggregation-aware queue manage-
ment scheme for wireless networks. WQM identifies and
distinguishes between ‘good’ and ‘bad’ buffers. Good
buffers are buffers needed to absorb bursty traffic, while
bad buffers only contribute to network latency without
any noticeable improvement in throughput. WQM is
both practical and incrementally deployable; it uses ex-
isting data traffic as probe for network measurements
and does not incur any additional overhead. To ac-
count for channel variability, WQM periodically calcu-
lates the time needed to drain the buffer based on the
current transmission rate. It then adjusts the buffer
size to maintain the network QoS, reducing queueing
delays where necessary, while allowing sufficient buffers
to saturate available network capacity. Further, WQM

1



incorporates MAC behavior to get accurate estimates
of queue draining time. WQM is implemented in Linux
and our experimental results show that it reduces end-
to-end delay by up to 8× with a slight drop in network
throughput when compared to the default queue size
used in stock Linux. It also achieves lower latency when
compared to the recently proposed queue management
scheme called CoDel .

To the best of our knowledge, this is the first at-
tempt to address the buffer sizing problem for 802.11n
networks. Compared to other efforts in the wired and
the wireless domain, WQM is the only scheme that ac-
counts for frame aggregation when deciding about the
optimal queue size.

2. RELATED WORK
There is limited work addressing the buffer sizing

problem in the wireless space. Li et al. [6] propose A*
algorithm that adaptively sets AP buffer size in single-
hop wireless networks. A* uses the ratio between the
max. acceptable queueing delay and packet mean ser-
vice rate to find the optimal buffer size. This buffer size
is further tuned by monitoring buffer occupancy. A* op-
erates on AP buffers, and it is unclear if it can easily be
extended to multi-hop wireless networks. Moreover, to
calculate packet service time, A* attaches a timestamp
to every packet entering the queue. This overhead af-
fects the overall network performance. Finally, A* was
not evaluated using real 802.11n devices, and hence it is
unclear how it will react to various enhancements such
as frame aggregation. In fact, some performance eval-
uation studies show that A* may result in sub-optimal
performance when tested over more practical scenar-
ios [10].

Distributed Neighborhood Buffer [5] targets the buffer
sizing problem in Wireless Mesh Networks (WMNs).
The authors first calculate a cumulative neighborhood
buffer based on link interference constraints, and then
distribute it among competing nodes using a cost func-
tion to ensure efficient spectral utilization. This method
results in buffers as small as 1-3 packets at most mesh
nodes. However, this approach has several limitations.
First, it assumes fixed link rates and calculates the
buffer sizes accordingly. Second, the scheme targets
802.11 a/b/g radios; using these small buffers in 802.11n
may limit the level of frame aggregation. Finally, the
scheme is optimized for single TCP flows, and its per-
formance in multi-flow scenarios is not guaranteed.

Active Queue Management (AQM) techniques attempt
to prevent large queue buildup at intermediary hosts
through proactive, probabilistic packet drop. However,
these algorithms failed to gain traction because of the
complexity of correctly setting various configuration knobs.
Recently, a no-knobs AQM technique called CoDel (Con-
trolled Delay) [7] was proposed. Instead of measuring

Algorithm 1: WQM Operation Pseudo Code
Set the max. acceptable queuing delay limit1
Calculate the initial Binitial based on the current Tx rate (R)2
and the round trip delay for a single A-MPDU transmission
(ARTT ):
Binitial = R ∗ ARTT3
for every measurement interval do4

Calculate queue drain time Tdrain based on the total5
number of bits in the queue (BL) and the percentage of
time the channel is not busy (F )

Tdrain =
BL/R

F6

Adjust the queue size B based on whether the network is7
bloated or not
if Tdrain > limit and B > Bmin then8

if alarmhigh is ON then9
decrease queue size B10

else11
set alarmhigh to ON and alarmlow is OFF12

else if Tdrain < limit and B < Bmax then13
if alarmlow is ON then14

increase queue size B15

else16
set alarmlow to ON and alarmhigh is OFF17

the queue size, CoDel tracks the packet sojourn time
through the queue. This makes the algorithm indepen-
dent of link rates and reflects the user experience more
accurately. Once the minimum queueing delay exceeds
a threshold over a fixed time interval, the algorithm
goes into the dropping phase. Packet dropping stops
only when the queuing delay falls below the threshold.
Among its limitations, CoDel requires a timestamp per
packet and uses a head drop policy, thus consuming pro-
cessing and infrastructure resources. Nevertheless, we
believe that a buffer sizing algorithm such as WQM may
be used in conjunction with an AQM such as CoDel. We
intend to explore this interaction in future work.

3. APPROACH
WQM is a practical, adaptive, and lightweight algo-

rithm customized for wireless networks. In this section,
we describe the algorithm and show how to choose var-
ious WQM parameters.

3.1 Operation
The operation of WQM can be divided into an ini-

tial stage and an adjustment stage as shown in Algo. 1.
In the initial stage, WQM selects a initial buffer size,
Binitial. This size is calculated using a variation of the
Bandwidth Delay Product (BDP) [11]: the buffer size
should be greater than or equal to the product of the
bottleneck link capacity with effective end-to-end de-
lay. Since it is not always possible to obtain the end-to-
end delay, WQM initializes the buffer using a single-hop
RTT that is known. Then, it uses an adaptation algo-
rithm to increase the buffer size if the actual RTT is
found larger. This should minimize latency for short
bursts of traffic and maximize utilization without sac-

2



Figure 1: 802.11n MAC overhead per A-MPDU
transmission.

rificing latency for longer-running traffic. Hence, the
initial queue size can be calculated as:

Binitial = R ∗ARTT (1)

where Binitial is the initial buffer size, R is the current
transmission rate, and ARTT is round-trip delay for a
single A-MPDU transmission as illustrated in Fig. 1.

After assigningBinitial, the adjustment phase of WQM
kicks in. In this phase, the buffer size is tuned to match
the current network load. Every given period of time,
the queueing delay is calculated using:

Tdrain =
(BL/R)

F
(2)

where Tdrain is the queue draining time, BL is the
queue backlog in bits, and F is the percentage of time
the channel is free for the sender to transmit. We divide
the queue drain time by the estimate of channel free
time to account for the fact that the wireless channel is
a shared medium.

If Tdrain exceeds the predefined maximum limit for
two consecutive measurement intervals, then this indi-
cates that the buffer is bloated. As a result, the buffer
size is decreased to limit the amount of buffering and
hence limit the queueing delay. Alternatively, if Tdrain
is lower than limit for two consecutive measurement
intervals, then the buffer size is increased. Observing
the network statistics over two consecutive cycles before
taking a corrective action helps account for temporary
bursty traffic. This corrective action cannot alter the
buffer beyond a minimum and a maximum size, i.e.,
Bmin ≤ B ≤ Bmax, as described in Sec. 3.2 below.

Finally, we note that a larger Binitial may be needed
to achieve maximum utilization for multi-hop networks.
However, we prefer low latency by starting with a smaller
than optimal buffer size that will eventually grow in
the adjustment phase. As shown in our experimental
analysis, this approach works well with long-lived flows.
Evaluation with short flows is part of our future work.

3.2 Parameter Analysis
We define upper and lower bounds for the buffer size

(Bmax and Bmin, respectively) and the maximum al-

lowed queueing delay limit. To find Bmax, consider a
802.11n network with a single TCP stream from the
sender to the receiver. Assume that the maximum pos-
sible transmission rate is λ packets/s.1 Assuming that
the stream is in the TCP congestion avoidance phase,
the TCP congestion window will grow until it reaches
Wmax when a packet loss happens. As a result, the
sender halves its TCP congestion window. Hence, it

waits for Wmax/2
λ before going to the transmit phase

again. The buffer B drain time is B/λ s. The ideal sce-
nario is to have the sender transmitting just before the
buffer gets empty to make sure the link is fully utilized,

i.e.Wmax/2
λ ≤ B/λ, or

B ≥ Wmax

2
(3)

Also, to maintain full link utilization, sender transmis-
sion rate (i.e.cwnd/ARTT ) should be at least λ . Hence,
Wmax/2
ARTT ≥ λ, or,

Wmax

2
≥ ARTT · λ (4)

From Eq. (3) and (4),

B ≥ λ ·ARTT (5)

Hence, the maximum buffer size Bmax is equal to
the BDP using the maximum possible transmission rate
and the corresponding packet RTT. Mainly, ARTT rep-
resents the transmission delay as in wireless networks
propagation delay is negligible. Fig. 1 shows the MAC
overhead of a single A-MPDU transmission over 802.11n
network. As per this figure, ARTT is the sum of the
TCP segment transmission time Td−DATA and the TCP
ACK transmission time Td−ACK which can be calcu-
lated as per the following equations:

Td−DATA =TBO + TDIFS + 2 ∗ TPHY + TSIFS + TBACK

+K ∗ (TMAC + TDATA)
(6)

Td−ACK =TBO + TDIFS + 2 ∗ TPHY + TSIFS + TBACK

+K/2 ∗ (TMAC + TTCP−ACK)
(7)

The system parameters for our 802.11n network are
listed in Table 1. A single A-MPDU may contain K
TCP segments, for a total size of 64kB or 64 MPDUs,
each with its own MAC header. Hence, a transmission
duration of K∗(TDATA+TMAC) is added per A-MPDU.
Assuming that TCP delayed acknowledgement is used,
only K/2 segments are acknowledged. The maximum
buffer size is needed when the sender transmits with the
highest possible Tx rate (600 Mb/s for IEEE 802.11n)
and all frames are sent with maximum A-MPDU length
(K = 64 subframes). Using Eq. 6 and 7, we calcu-
late the RTT of transmitting a single maximum-sized
1We use packets instead of bits for ease of exposition.

3



Parameter Value
Tslot slot time = 9µs
TSIFS Short interframe space = 16 µs
TDIFS DCF interframe space = 34 µs
TPHY Preamble and header Tx time = 33 µs
CWmin min. contention window size = 15
CWmax max. contention window size = 1023
TBO avg. back-off interval

= (CWmin − 1) ∗ Tslot/2
R physical rate (Mb/s)
Rbasic basic physical rate = 6 Mb/s
K max. A-MPDU length
TMAC MAC header Tx time = LMAC/R
LMAC MAC overhead = 38 B = 304 b
TDATA data frame Tx time = LDATA/R
LDATA data frame size = 1500 B = 12000 b
TTCP−ACK TCP ACK Tx time = LTCP−ACK/R
LTCP−ACK TCP ACK length = 40 B = 320 b
TBACK Block ACK Tx time = LBACK/Rbasic
LBACK Block ACK frame size = 30 B = 240 b

Table 1: System parameters of IEEE 802.11n [4].

A-MPDU to be about 1.9 ms at 600 Mb/s link rate.
Using Eq. 5, Bmax = 95 packets. As a lower bound, the
minimum buffer size Bmin should be equal to the A-
MPDU length allowed by the link rate. This is because
permitting the buffer to be smaller than the number
of subframes in a single A-MPDU will result in sending
smaller A-MPDUs which impacts the network goodput.

We now compute a lower bound on the allowed queue-
ing delay limit. For 802.11n networks with frame ag-
gregation, the maximum allowable A-MPDU size varies
with the link rate. Consider a wireless channel with high
interference where the rate control algorithm chooses to
transmit at the lowest possible data rate (6.5 Mb/s for
802.11n radios). The ath9k release used in our exper-
iments does not support A-MPDU aggregation at 6.5
Mb/s, as transmitting a large A-MPDU at this link rate
may violate the 4 ms frame transmit duration regula-
tory requirement in the 5 GHz band. As a result, limit
should be greater than or equal to the transmission time
of one frame at the lowest possible rate. As per Eq. 6
and 7, limit should be greater than or equal to 2.5 ms.
We tested this value in our testbed experiments over
multiple scenarios and found that it allows for signifi-
cant reduction in latency while preserving overall net-
work throughput.

4. EXPERIMENTAL ANALYSIS

4.1 Implementation Details
WQM controls the Transmit Queue length (txqueue-

len) at the queueing discipline (qdisc) using the ifconfig

utility. An important parameter in WQM is the fre-
quency of obtaining channel statistics. To synchronize
WQM with the rate control algorithm, we use the same
look-around interval as Minstrel [9], the default Linux
rate control algorithm, as the transmit rate stays fixed
over this interval. Every 100msWQM obtains a sample
of the current transmission rate, the buffer backlog, and
the average A-MPDU length. WQM uses the transmis-
sion rate to estimate the queueing time. If this queue-
ing time is longer than the desired target, then queue
size is reduced to lower the queueing delay. However,
the queue should not be smaller than the maximum
number of sub-frames per aggregate as this will only
decrease the throughput without delay reduction. On
the other hand, if the draining time is less than target,
WQM can safely increase the queue size. Our WQM
implementation uses a conservative approach in which
the buffer size grows linearly (i.e., increases the size by
one), but decreases by half. We thus strictly prefer low
delay over high goodput. In future work, we plan to
evaluate other increase and decrease policies, and their
impact on network performance and stability.

4.2 Experimental Setup
We have implemented WQM in Linux and evaluated

it in a wireless testbed composed of 10 small form-factor
Shuttle computers with Intel E7500 Core 2 Duo proces-
sors and 1 GB of RAM. Each Shuttle box is equipped
with TP-Link WDN4800 (Atheros AR9380), which is a
dual-band, 3-stream MIMO 802.11n wireless card. We
use the 5 GHz U-NII (Unlicensed National Information
Infrastructure) radio band to avoid interference with
our campus production network. The nodes are placed
approximately 10 m apart. We patched the stock 3.9.10
Linux kernel with web10g [2] to monitor various TCP
statistics of interest, such as congestion window and
RTT. The default TCP version in our Linux distribu-
tion is TCP Cubic. We run netperf [1] to simulate a
large file transfer.

4.3 Experimental Evaluation
We compare the performance of WQM with both the

default Linux configuration (txqueuelen=1000 packets)
and CoDel. We note that WQM and CoDel can com-
plement each other since the former does not implement
a selective drop policy. In the first set of experiments,
we run a single flow and measure the overall network
goodput and latency. To evaluate WQM performance
in multi-hop wireless networks, we vary the number of
hops between the sender and the receiver from one to
three. It is worth mentioning that both WQM and
CoDel are deployed at the source and all subsequent
relay nodes. The CDF for RTT over various topologies
is shown in Fig. 2. The corresponding average goodput
is shown in Fig. 3. These results are averaged over three

4



(a) One hop (b) Two hops (c) Three hops

Figure 2: RTT CDF for a single flow while vary-
ing the hop count.

Figure 3: Goodput of a single flow while varying
the hop count.

runs and error bars represents max. and min. values.
For all scenarios, WQM manages to reduce the network
latency by around 5× compared to the 1000 packets
buffer and 2× compared to CoDel. For example, in the
three-hops scenario, WQM reduces the average delay
from 224.4 ms using default queues to only 49.47 ms
at the cost of less than 10% goodput reduction. The
three hops average delay with CoDel is 90.428 ms, al-
most twice of WQM with about 5% drop in goodput.
We attribute this reduction to the aggressive behaviour
of WQM AIMD.

We also evaluate WQM over multi-flow scenarios. We
increase the number of concurrent flows from one to
three and then five, and measure goodput and latency
over a single hop topology. We plot the RTT CDF
for the three scenarios in Fig. 4. We also show the
average per flow goodput in Fig. 5. Again, bar errors
represent max. and min. values over three runs. In
all scenarios, WQM reduces the network latency by at
least 5× compared to the 1000 packets buffer at the
cost of 15% reduction in throughput in the worst case.
Compared to CoDel, WQM reduces the delay by almost
2×. Goodput results of WQM and CoDel are within
error bounds of each other. Note that as the number of
flows increases, the default scheme suffers from severe
unfairness (including starvation) between the flows, as

(a) One flow (b) Three flows (c) Five flows

Figure 4: RTT CDF of various concurrent flows
over a single hop topology.

Figure 5: Average goodput with concurrent
flows over a single hop topology.

reflected by the error bars. Jain’s Fairness Index value
for the default case is 0.77, compared to 0.99 for both
WQM and CoDel. Large buffers in the default scheme
lead to severe unfairness because one or more flows can
fill up the buffer quickly while starving others. Both
WQM and CoDel prevent this behavior by controlling
the number of buffered packets.

Finally, we analyze the performance of WQM over
both multi-hop and multi-flow scenarios. In this exper-
iment, nodes are organized in a parking lot topology,
as shown in Fig 6, where three flows starts simultane-
ously from the same source but are destined to differ-
ent nodes in the network. This experiment is repeated
several times while enabling and disabling the rate con-
trol algorithm, Minstrel. When disabled, the rate is set
manually to either 6.5, 13, 65 or 144.4 Mb/s. The aver-
age delay per flow as well as the total goodput achieved
by the three flows are shown in Fig. 7. Error bars rep-
resent max. and min. values over at least three runs.
When compared to the default buffering scheme, we find
that WQM reduces the end-to-end delay by 8× for the
one hop flow, 6× for the two hops flow and at least 4×
for the three hops flow regardless of the transmission
rate. This reduction in queuing delay does not come at
the price of significant goodput reduction. This is an-
other proof that such a large buffer is not needed.WQM

5



Source 1st Hop 2nd Hop 3rd Hop 

Flow # 1 

Flow # 2 

Flow # 3 

Figure 6: Parking lot topology illustration.

(a) One hop flow (b) Two hops flow

(c) Three hops flow (d) Net goodput

Figure 7: Average end-to-end delay per flow and
total goodput in the parking lot topology.

outperforms CoDel in terms of delay and goodput in all
the cases. For example, WQM reduces the queueing de-
lay by 2× compared to CoDel when Minstrel is enabled
while achieving slightly better goodput.

5. CONCLUSIONS AND FUTURE WORK
Enhancements in 802.11n/ac standards, such as frame

aggregation, exacerbate the challenges of optimal buffer
sizing in wireless networks. In this paper, we designed a
practical, adaptive, and lightweight wireless queue man-
agement scheme called WQM. It chooses the queue size
based on network load, channel condition, and frame
aggregation level. WQM is implemented in Linux and
tested on a wireless testbed. Our results show that
WQM can reduce the end-to-end latency by a factor
of 8× compared to the default Linux configuration. In
the worst case, this reduction comes at the cost of less
than 15% drop in goodput. Further, WQM outper-
forms CoDel in terms of delay reduction. Finally, we
show that WQM improves flow fairness with respect to
the default case.

We are pursuing a number of interesting avenues for

future work. We are currently evaluating WQM us-
ing a combination of both short and long-lived flows
across multiple topologies. We also plan to do a for-
mal analysis of various increase/decrease heuristics in
setting the buffer size as used in WQM. Further, we
plan to evaluate WQM using flow separation as well as
by replacing its drop tail approach with selective drop
algorithms. Finally, we would like to study the inter-
action between TCP pacing and frame aggregation and
its consequences for bufferbloat in wireless networks.

6. ACKNOWLEDGMENTS
We thank our shepherd Bob Briscoe and the anony-

mous reviewers for their helpful suggestions.

7. REFERENCES
[1] Netperf. http://www.netperf.org/netperf/.
[2] The Web10g Project. http://www.web10g.org/.
[3] J. Gettys and K. Nichols. Bufferbloat: dark

buffers in the internet. Commun. ACM,
55(1):57–65, Jan. 2012.

[4] IEEE LAN/MAN Standards Committee. IEEE
802.11 Wireless LAN Medium Access Control and
PHYsical layer specifications. IEEE, 2012.

[5] K. Jamshaid, B. Shihada, A. Showail, and
P. Levis. Deflating link buffers in a wireless mesh
network. Ad Hoc Networks, 16(0):266 – 280, 2014.

[6] T. Li, D. Leith, and D. Malone. Buffer sizing for
802.11-based networks. IEEE/ACM Transactions
on Networking, 19(1):156 –169, Feb. 2011.

[7] K. Nichols and V. Jacobson. Controlling queue
delay. Queue, 10(5):20:20–20:34, May 2012.

[8] A. Showail, K. Jamshaid, and B. Shihada. An
empirical evaluation of bufferbloat in IEEE
802.11n wireless networks. In Wireless
Communications and Networking Conference
(WCNC), 2014 IEEE, April 2014.

[9] D. Smithies and F. Fietkau. Minstrel rate control
algorithm. http://wireless.kernel.org/en/
developers/Documentation/mac80211/

RateControl/minstrel.
[10] D. Taht. What I think is wrong with eBDP in

debloat-testing.
https://lists.bufferbloat.net/pipermail/

bloat-devel/2011-November/000280.html.
[11] C. Villamizar and C. Song. High performance

TCP in ANSNET. SIGCOMM Comput.
Commun. Rev., 24(5):45–60, Oct. 1994.

6


