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Abstract
Medical image segmentation is crucial for the diagnosis and analysis of disease. Deep convolutional neural network methods
have achieved great success in medical image segmentation. However, they are highly susceptible to noise interference during
the propagation of the network, where weak noise can dramatically alter the network output. As the network deepens, it
can face problems such as gradient explosion and vanishing. To improve the robustness and segmentation performance of
the network, we propose a wavelet residual attention network (WRANet) for medical image segmentation. We replace the
standard downsampling modules (e.g., maximum pooling and average pooling) in CNNs with discrete wavelet transform,
decompose the features into low- and high-frequency components, and remove the high-frequency components to eliminate
noise. At the same time, the problem of feature loss can be effectively addressed by introducing an attention mechanism.
The combined experimental results show that our method can effectively perform aneurysm segmentation, achieving a Dice
score of 78.99%, an IoU score of 68.96%, a precision of 85.21%, and a sensitivity score of 80.98%. In polyp segmentation, a
Dice score of 88.89%, an IoU score of 81.74%, a precision rate of 91.32%, and a sensitivity score of 91.07% were achieved.
Furthermore, our comparison with state-of-the-art techniques demonstrates the competitiveness of the WRANet network.
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Introduction

Intracranial aneurysm (IAS) is a common disease with a high
mortality rate, and timely and accurate identification and
treatment are essential for patients [1]. In medical imaging,
computed tomography and magnetic resonance angiography
are convenient, effective, and reliable methods for detecting
IAS. However, professionally trained physicians are required
to analyze and interpret them. Undoubtedly, this will be very
time consuming and increase the burden on doctors [2, 3].
Therefore, a robust and reliable artificial intelligence algo-
rithm model is urgently needed to improve this problem.

Medical image segmentation algorithms have been a hot
problem for research, which is a practical guide to facilitate
pathological assessment and subsequent disease diagnosis
and treatment and a very challenging task [4]. Traditional
medical image segmentation methods usually use features
such as grayscale values, shapes, and textures to segment
images; however, the best segmentation effect cannot be
achieved by relying on pixels and contours alone. In recent
years, with the rapid rise of artificial intelligence technol-
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ogy, the emergence of deep learning techniques has widely
advanced medical image segmentation, such as brain tumor
segmentation [5, 6], skin damage segmentation [7], aneurysm
segmentation [8, 9], and ventricular segmentation [10]. Com-
pared with traditional methods, it can capture meaningful
contextual information in images, which leads to more accu-
rate diagnosis and segmentation, laying the foundation for
further development of medicine [11].

In the field of computer vision, some advanced network
structures have been proposed, such as FCN [12], SegNet
[13], Deeplabv3+ [14], GoogleNet [15], Residual network
[16], and DenseNet [17]. Most of these network structures
are improved on the CNN structure [18] and have achieved
excellent performance. Compared with CNN methods, FCN
methods can classify images at the pixel level while pre-
serving the spatial information of the original image and
improving computational efficiency. SegNet consists of an
encoder, decoder, and pixel-level classification layers that
can independently compute the class probabilities of pix-
els.Deeplabv3+ improvesXception [19] anddepth-separated
convolution to improve the semantic performance of the seg-
mentation task. GoogleNet uses the Inception module to
break the limits of network depth andwidth to achieve deeper
feature extraction and multi-scale feature processing. Skip
connections are used for the Residual block in the Resid-
ual network to alleviate the gradient vanishing and network
degradation associated with increasing depth in deep neural
networks.DenseNet establishes dense connections at shallow
and deep layers to improve model performance by enabling
feature reuse through feature channel connections.

However, when dealing with medical image segmentation
tasks, the U-Net model reduces errors in feature extraction
by connecting the encoder and decoder through the skip
layer and has achieved great success in medical image seg-
mentation [20]. Inspired by the Residual network, He et
al. [21] proposed a Residual learning framework integrated
into the U-Net model to extract the features of the deeper
network. Zhang et al. [22] proposed a residual context net-
work (ConResNet) to improve the accuracy of pancreatic
and brain tumor segmentation. In addition, the proposed
attention module was initially used for image classification
[23] and recently also used for medical image segmentation
[24, 25]. Gu et al. [7] proposed a scale attention module
to obtain multiple-scale feature maps. Yu et al. [26] con-
structed a six-layer residual neural network to fully extract
the features of mechanical vibration signals and visualize
them using gradient and feature vector-based class activation
maps. Cao et al. [27] proposed a transformer-basedU-shaped
encoder–decoder structure called Swin-Unet,which fuses the
extracted contextual features with the multi-scale features of
the encoder through a jump connection to compensate for
the spatial loss caused by downsampling. Xu et al. [28] pro-
posed a novel adversarial discriminative network (segAN)

with a multi-scale L1 loss function that forces the critic and
segmenter to learn to capture both global and local features
of long- and short-range spatial relationships between pix-
els simultaneously, outperforming state-of-the-art methods
in terms of Dice scores and accuracy.

More importantly, recent studies show that common image
noise will affect the networks judgment of final results to a
certain extent, proving the networks weak robustness [29,
30]. Robustness is closely related to standard downsampling
methods such asmax pooling and average pooling. The tradi-
tional downsampling technique cannot achieve the effect of
denoising and cannot improve the robustness of the model.
In signal processing, wavelet analysis is joint image com-
pression and denoising technology, which can separate the
low-frequency and high-frequency data information (some
image noise). It has beenwidely applied in the fields of image
processing [31, 32] and signal processing [33, 34].

Inspired by the above work, we proposed a residual atten-
tion network model (WRANet) based on wavelet integration
to suppress noise propagation, gradient vanishes, and net-
work feature reduction. During the downsampling period,
low-frequency information propagates through the network
to obtain higher-level features, while high-frequency infor-
mation is discarded as noise. We used different discrete
wavelets to remove image noise and evaluate the Dice coef-
ficient(Dice), intersection over union(IoU), precision (PR),
and sensitivity (SE) of the WRANet network on four data
sets.

Our main contributions are summarized as follows:

(1) In the encoder,we proposed a newdownsamplingmodule
with different wavelet functions instead of pooling layers
for downsampling to extract multi-scale tumor features
and remove noise efficiently.

(2) A jump connection layer is used between the encoder and
decoder, and a residual attentionmodel is incorporated to
mitigate the performance degradation caused by gradient
disappearance and feature information loss.

(3) In this paper, we tested on the aneurysm and polyp
datasets and demonstrated through experimental results
that WRANet achieves better segmentation performance
and is a very effective strategy.

Related work

Wavelets application

Wavelet analysis is widely used in signal analysis, image pro-
cessing, medical imaging and diagnosis, seismic exploration
data processing, etc. In image processing, discrete wavelet
transform (DWT) is usually used to decompose 2D images
[35]. DWT decomposes the image into LL, LH, HL, and
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HH subbands through high-low pass filters. Among them,
LL represents the low-frequency coefficient, representing the
primary structural information of the picture. At the same
time, LH, HL, and HH are the high-frequency coefficients,
describing the details of horizontal, vertical, and diagonal
coefficients, respectively.

In recent work, wavelets have also been integrated into
deep learning models for image reconstruction [36], down-
sampling operation [37], and noise suppression [38]. For
example, in [39], the author proposed a new wavelet hybrid
network (WH-NET) for single image defogging and DWT
as a feature extraction layer to achieve a multilevel rep-
resentation of fuzzy images. Liu et al. [40] proposed a
novelmultilevelwavelet convolutional neural networkmodel
(MWCNN), which introduced wavelet transform to reduce
the size of feature images and reconstructed high-resolution
feature images using inverse wavelet transform. Verma et al.
[41] proposed a wavelet-based convolutional neural network
architecture to detect SARS-NCOV, using mother wavelet
functions from different families to perform discrete wavelet
transform (DWT) and two-stage DWT decomposition to
suppress the noise in chest X-ray images. Kang et al. [42]
proposed a residual wavelet network, which synergistically
combined the expression ability of deep learning with the
denoising performance of the wavelet framework. Ma et al.
[43] used a trained iWave++ wavelet transform as a new end-
to-end method for optimizing images with lossy iWave++ to
achieve state-of-the-art compression efficiency compared to
deep network-based methods. Huang et al. [44] proposed a
wavelet-inspired reversible network (WINNet) by combin-
ing wavelet and neural network-based methods to construct
a denoising of the sparse coding process, thus recovering
the noisy image to a clean one. In our work, we use different
wavelet functions to replace themax-pooling layer for down-
sampling operation, aiming to eliminate the noise caused by
the upper-layer network and extract tumor multi-scale image
features to improve the interpretability of the network.The
experimental results confirmed that it improved the perfor-
mance and retained the details and texture features of the
original image.

Attentionmechanism

The attention mechanism is widely used in deep learning
models. It originates from human research on vision and
focuses on multiple details by generating context vectors.
It has been applied to different scenes, such as text trans-
lation [45], image description [46], and speech recognition
[47], and achieved great success.

Due to the excellent performance of the attention mecha-
nism, it is gradually applied to medical segmentation tasks.
Hu et al. [48] proposed a dense convolutional network with
a mixed attention mechanism to calibrate feature maps from

the upper layer using channel and spatial attention. Wang
et al. [49] proposed a mixed dilated attentional convolu-
tion (HDAC) framework for liver tumor segmentation to fuse
information from receptive fields of different sizes. Poudel
et al. [50] used a compound-scaled EfficientNet to cap-
ture multi-scale global features to resolve limited long-range
feature dependencies while exploiting an attention mecha-
nism to suppress noisy and useless features. Zhuang et al.
[51] designed amulti-mode cross-latitude attention (MCDA)
module to automatically capture valid information from all
dimensions of the multi-mode image, achieving excellent
segmentation performance in the CEREBRO spinal fluid
region. More importantly, we proposed a residual attention
network model (RAM), which is used to establish skip con-
nections and improve the context information fusion between
encoder and decoder to effectively utilize the context infor-
mation and the characteristics of the region of concern.

Ourmethod

Overview

The WRANet model mainly comprises an encoder, decoder,
and RAM module. We proposed a new downsampling strat-
egy to mine more compelling features in the image, which
used a two-dimensional discrete wavelet transform (DWT)
instead of the maximum pooling layer to extract features and
remove noise. The decoder integrates the image information
extracted by the encoder in the decoder. The bilinear inter-
polation method is used to restore the image information to
reduce the loss of image features. We proposed a residual
attention module (RAM) to use better image features, which
can automatically focus on areas with significant features
while ignoring irrelevant sites during training. Meanwhile,
the residual structure can alleviate the problems of feature
loss, gradient explosion, and network degradation. Figure 1
shows our proposed WRANet architecture.

In thiswork,we use bold letters and letters to denotematri-
ces and scalars, e.g., input imageX, residual attentionmodule

output xo, and wavelet transform functionsψ (x), and
∼
ϕ (x),

etc.

Downsamplingmodule

Figure 2 shows the details of the downsampling module. We
designed a discrete wavelet transform layer for feature sam-
pling and applied it to improve the performance of the deep
neural network for aneurysm image segmentation.Max pool-
ing is a standard downsampling method in a deep neural
network, but it is easy to destroy the structure information
of the feature graph. Therefore, we integrate a 2D discrete
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Fig. 1 Our proposed wavelet residual attention network (WRANet). 1 × 1 and 3 × 3 represent the size of the convolution kernel, while 64, 128,
256, 512, and 1024 represent the number of output channels. We use 4 downsampling modules, 4 upsampling modules, and 4 residual attention
modules

Fig. 2 Details of
downsampling module (DWT
represents discrete wavelet
transform, wavelet subsampling
in the WRANet network filters
out noise and facilitates
information propagation)

wavelet transform into the network to replace the max-
pooling layer, which can extract features more effectively
and remove unnecessary noise information. The subsampled
module we have rewritten can be adapted to various orthog-
onal and biorthogonal wavelets, such as Haar, Daubechies,
Symlets, biorthogonal, and reverse biorthogonal. We first
introduce the basic theory of 2D discrete wavelet transform.

2D discrete wavelet transform is closely related to scale
function ϕ (x), and wavelet function ψ (x), which form the
stable basis of signal space R. In discrete wavelet transform,
scale and wavelet function correspond to low-pass filter l =
{li }i∈z , and high-pass filter h = {hi }i∈z , and low-pass and
high-pass filter decompose data to obtain low-frequency and
high-frequency information. Haar, Daubechies, and Symlets
are orthogonal wavelets. The corresponding l = {li }i∈z value
varies with the corresponding wavelet scale S.We choose the
size of the scale S is 1 ≤ S ≤ 7, when S = 1 is Haar wavelet.

Its filter length is 2S, while the high-pass filter can be defined
as:

hi = (−1)i l2n+1−i , (1)

where, n ∈ {0, 1, 2, 3...}, i denotes the size of the filter, z
denotes a positive integer.

Biorthogonal and reverse biorthogonal wavelets are
biorthogonal. If the two dual wavelet functions ψ (x), and
∼
ψ (x) satisfy:

ψm,n (x) ,
∼

ψ j,k (x) = δ (m − n) δ (n − k) , (2)

Thenψ (x), and
∼
ψ (x) are biorthogonal, and the correspond-

ing scale functions and must also satisfy:

ϕ j,m (x) ,
∼

ϕ j,n (x) = δ (m − n) , (3)
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Fig. 3 2D discrete wavelet
transform decomposes
aneurysm image

where j represents the scale ofwavelet. Thenψ (x) and
∼
ϕ (x)

are a pair of orthogonal wavelet bases, and there is orthog-
onality between them. After constructing the biorthogonal
wavelet, the original two basis functions are changed into

four. Accordingly, l,
∼
l , h, and

∼
h together constitute orthog-

onal filter banks, and filter banks can be used for image
reconstruction. Similarly, we choose the size of scale S as
1 ≤ S ≤ 4, and different scales correspond to different val-
ues of l = {li }i∈z of the low-pass filter. A high-pass filter can
be defined as:

hi = (−1)i
∼

l2n+1−i , (4)
∼
hi = (−1)i l2n+1−i , (5)

2D-DWT of the image can be described as follows: first,
1D-DWT is performed on each row of the image to obtain the
low-frequency component L and high-frequency component
H of the original image in the horizontal direction; second,
1D-DWT is performed on each column of the obtained data
to obtain the low-frequency component LL of the original
image in the horizontal and vertical directions. Low fre-
quency in the horizontal direction and high frequency in
the vertical direction LH, high frequency in the horizontal
direction and vertical direction HL, and low frequency in the
horizontal and vertical direction HH. Given 2D image X, its
2D-DWT can be defined as:

⎧
⎪⎪⎨

⎪⎪⎩

XLL = lXlT ,

XLH = lXhT ,

XHL = hXlT ,

XHH = hXhT ,

(6)

After the input image X executes the lower sampling
block, its output consists of four parts. Where XLL is the
low-frequency component, representing the primary charac-
teristic information of the image;XHL,XHH, andXLH are the

three high-frequency components, representing the vertical,
diagonal, and horizontal detail components of the input data
X, respectively, which reflect the noise of the image.

In training the network, we discard the high-frequency
information of the image and only keep the low-frequency
information for transmission in the network. Taking the Haar
wavelet as an example, Fig. 3 shows the decomposition pro-
cess of the 2D discrete wavelet for aneurysm images.

Residual attentionmodule

In our network, the design of the residual attention module
is inspired by AG [24], which used an attention gate to recal-
ibrate the feature graph. In addition, the addition of residual
structure also avoids feature loss, as shown in Fig. 4.

Let xg represent the advanced features from the decoder,
the size of the input feature graph is C × H × W , xl is
from the low-level features of the encoder, and the size of
the input feature graph is C × H × W , where C represents
the feature channel, H andW represent the height and width
of the image, respectively. First, we used 1 × 1 convolution
to reduce the dimension of the input feature graph of the
two parts so that the number of channels is the same. Then
after the batch normalization layer (to ensure relatively sta-
ble data distribution and accelerate network convergence),
the results of the two parts are added together, and the ReLU
activation function is performed (to increase the nonlinear
relationship between each layer). One-dimensional convolu-
tion is used to reduce the number of feature channels to 1.
After the Sigmoid function, the pixel-level attention coeffi-
cient α is obtained and multiplied by xl to obtain the feature
map after calibration. The attention coefficient is as follows:

α = σ2

(
φT

(
σ1

(
xgWT

g + xlWT
l

)))
, (7)
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Fig. 4 Residual attention
module

For a givenmatrixφ, T denotes its transpose.σ1 represents
ReLU function, and σ2 represents Sigmoid function so that
the value of α falls in (0,1). α assigned different weights to
eachpixel feature to ensure the interaction between all feature

image pixels. Therefore, the recalibrated feature graph
∧
x is

expressed as:

∧
x = α · xl , (8)

where the number of output channels of
∧
x isC , and its value is

64, 128, 256, and 512, respectively, at different convolution
layers of the encoder. In addition, the residual connection
is used to improve information transmission during network
training, and the output is as follows:

xo = ∧
x +xl , (9)

Upsamplingmodel

Figure 5 shows the details of the upsampling module. In this
work, the bilinear interpolation method is used to enlarge
the feature graph, and 3 × 3 convolution with a step size of
1 and ReLU function can increase the nonlinear expression
ability of the network. Therefore, the primary purpose of the
upsampling module proposed is to avoid feature loss and
improve the network’s performance.

In the decoding process, after each layer of convolution,
the number of channels in the feature graph will be reduced
by half, and after the upsampling module, the size of the
feature graph will be twice that of the previous layer. Finally,

the network output will be changed to the original input size.
We let X be the input of the module so that the output xh+1

can be defined as:

xh+1 = BR
(
C1
3×3

(
U2 (xh)

))
, (10)

where C represents the 3 × 3 convolution layer with a step
size of 1,U2 represents the upsampling layer with a step size
of 2, andBR represents the BN layer and the ReLU activation
layer.

Hybrid loss function

In the medical image segmentation task, the loss function
comprises classification and segmentation loss [52]. In this
paper, to improve the segmentation performance of medi-
cal images, the cross-entropy loss function and Dice loss
function are combined as the loss function of this paper.
Cross-entropy loss describes the distance between the pre-
dicted value and ground truth, while Dice loss measures
the degree of consistency between the predicted value and
ground truth. Cross-entropy loss LBCE and Dice loss func-
tion LDice are shown below:

LBCE= − 1

n

n∑

i=1

[
yi · log (pi ) + (1 − yi ) log (1 − pi )

]
,

(11)

LDice= 1 − 2
∑n

i=1 pi yi∑n
i=1 (pi + yi ) + λ

, (12)

Fig. 5 Upsampling model
structure
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where n represents the number of pixels, yi represents the
real label of the i-th pixel, and pi represents the prediction
probability of the i-th pixel belonging to the tumor location.
To prevent the denominator from being zero, a smoothing
factor λ is added. Although Dice losses are highly compat-
ible with class-unbalanced data, it is challenging to achieve
good segmentation performance using Dice losses alone in
network training. Due to the pixel imbalance between tumor
and normal tissue in medical images, to segment tumor sites
more accurately, we combined the advantages of the two-loss
functions to construct a mixed loss function Lseg, which is
defined as follows:

Lseg = α · LBCE + β · LDice, (13)

where, LBCE is the cross-entropy loss, LDice is the Dice loss,
α and β are the hyperparameters in the mixed loss function,
α, β ∈ [0, 1]. In this paper, α= 0.4, β= 0.6 are selected.

Experimental results

In this work, we used three data sets containing different
aneurysm diameters to verify the segmentation performance
of the WRANet network for three aneurysms of differ-
ent sizes. To evaluate the proposed model, the segmenta-
tion results were compared with U-Net [20], SegNet [13],
DeepLabv3+ [14], ResUnet [21], R2U-net [53], Swin-Unet
[27], Att-UNet [24], CE-Net [54], andHarDNet-MSEG [55].

Implementation details and evaluationmethods

In this work, we used a combination of Dice and cross-
entropy functions as a loss function for theWRANet network,
which was implemented based on the Pytorch framework
under a GPU server with two Intel(R) Xeon(R) Gold 6226R
CPUs. It runs at 2.9 Ghz, has 384G of RAM, and has two
Tesla V100 GPUs with 32GB of RAM. Adam method [56]
was used to optimize the parameters of this model, β1 = 0.9,
β2 = 0.999, eps = 1e−8, weight decay = 5e−4, the initial
learning rate was 0.0001, batch size was 4, and iteration was
200 times. We used fivefold cross-validation and a final eval-
uation of the test set.

To evaluate the segmentation performance of the model,
the following indicators are used for evaluation, including
Dice coefficient (Dice), intersection over union (IoU), preci-
sion (PR), and sensitivity (SE). They are defined as follows:

Dice = 2 | Rgt
⋂

Rpred |
| Rgt | + | Rpred | , (14)

IoU = | Rgt
⋂

Rpred |
| Rgt

⋃
Rpred | , (15)

PR = TP

TP + FP
, (16)

SE = TP

TP + FN
, (17)

where, Rgt represents the tumor region, Rpred represents the
segmentation result predicted by the model, and TP, FP, FN,
and TN refer to a true positive, false positive, true negative,
and false negative.

Aneurysm dataset

We follow the principles of the Declaration of Helsinki to
conduct our research and have received approval from the
Ethics Committee of the Affiliated Hospital of Qingdao Uni-
versity.

We collected 3D-TOF-MRA images of 953 patients with
unruptured cystic aneurysm (IAS positive) and 150 regular
patients without aneurysm (IAS negative) who underwent
physical examination or visited the Affiliated Hospital of
Qingdao University from January 2013 to May 2020. After
the assessment, exclusion, and screening, 679 patients were
identified for the study, including 579 IAS positive (the num-
ber of aneurysms was 636) and 100 IAS negative.

Since each patient contained an unbalanced number of
sections, we selected five sections from each patient’s image
for the experiment. The aneurysm was annotated manually
by experienced doctors as the ground truth. The size of the
slice was adjusted to 256 × 256. To verify the segmentation
performance of the model for aneurysms of different sizes,
wemanually selected three different data sets and divided the
training set and test set into a 7:3 ratio. Aneurysm images in
the training set and test set were not repeated. IAS1 included
89 cases with aneurysms and 20 cases without aneurysms,
IAS2 included 290 cases with aneurysms and 50 cases with-
out aneurysms, and IAS3 included 200 cases with aneurysms
and 30 cases without aneurysms. The images collected in
this paper are from three different equipment manufacturers
(Philips, Siemens, and GE), and their details are shown in
Table 1.

CVC-ClinicDB [57] is an open polyp dataset consisting
of 612 images with a resolution of 384 × 288, which we
cropped to a size of 256 × 256 and used as input to the
model.

Results and discussion

In this subsection, first, we compare WRANet and SOTA
methods’ segmentation performance. Second, we perform
adequate ablation experiments to verify each component’s
contribution inWRANet and compare the number of param-
eters, FLOPs, and inference times. Finally, we validate the
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Table 1 Aneurysm datasets
overview

IAS1 IAS2 IAS3

Size (mm) Size > 7 3 ≤ Size ≤ 7 Size < 3

Number of IAS 93 (14.6%) 329 (51.7%) 214 (33.7%)

Male (age) 245 (36.1%), 62 ± 12

Female (age) 434 (63.9%), 65 ±11

Field strength 315 (49.5%), 1.5T

Field strength 321 (50.5%), 3.0T

Device (Philips) 190 (29.9%)

Device (Siemens) 69 (10.8%)

Device (GE) 377 (59.3%)

generalization performance of the WRANet method with a
public dataset.

Comparison with SOTA models. In this work, we used
three datasets containing different aneurysm diameters and
the CVC-ClinicDB dataset to validate the segmentation per-
formance of the WRANet network for three different sizes
of aneurysms. To evaluate the performance of the proposed
model, all comparison methods use the same training dataset
as the proposed method and compare their segmentation
results with U-Net [20], SegNet [13], DeepLabv3+ [14],
ResUnet [21], R2U-net [53], Swin-Unet [27],Att-UNet [ 24],
CE-Net [54], and HarDNet-MSEG [55] for comparison. Our
WRANet and most of the above segmentation methods are
based on CNN, attention mechanism, and residual structure,
while the Swin-Unet model is constructed based on Trans-
former structure. Table 2 shows the experimental results for
different diameter-size aneurysm datasets, and Table 3 shows
the results for the CVC-ClinicDB dataset.

WRANet segmentation performance analysis. Based on
the results in Table 2, our proposed WRANet method out-
performs most of the methods on several metrics, indicating
our proposed module’s validity. Specifically, by compar-
ing with other Dice, IoU, PR, and SE metrics methods,
our method outperformed all comparative methods on the
aneurysm dataset. Compared to the baseline method, the U-
Net model, Dice, IoU, PR, and SE scores improved by 2.42,
2.42, 5.9, and 4.29%, respectively, when the aneurysm diam-
eter was>7mm. When the aneurysm diameter was between
3 and 7mm, Dice, IoU, PR, and SE scores improved by 3.26,
2.48, 8.68, and 5.04%, respectively.When the diameter of the
aneurysm was less than 3mm, Dice, IoU, PR, and SE scores
improved by 1.64, 0.39, 1.66, and 1.93%, respectively. This
good performance was achieved thanks to the stability of
U-Net and the effectiveness of the proposed module, which
shows that our method is better segmented and has a lower
false alarm rate, revealing that our proposed module is very
effective.

To demonstrate the superiority of our method, we have
also performed an experimental comparison on the public
dataset CVC-ClinicDB. In Table 3, we perform a similar
comparison of the CVC-ClinicDB dataset with other meth-
ods. Table 3 shows that ourmethod significantly improves the
Dice, PR, and SEmetrics, with Dice, IoU, PR, and SE scores
improving by 1.28, 1.49, 1.86, and 3.42%, respectively. Com-
pared to the baseline methodU-Net, the robustness of feature
extraction was enhanced by different wavelet basis functions
for feature extraction.

To further demonstrate the performance of WRANet,
we used nine SOTA models for comparison. Notably, our
network still achieves better segmentation performance for
aneurysm diameters smaller than 3mm, demonstrating that
the wavelet downsampling module plays a vital role in
extracting features and that the RAM module pays more
attention to the tumor region and can distinguish to a large
extent between the boundaries of tumor and normal tissue.As
can be seen in Tables 2 and 3,WRANet achieved the best seg-
mentation performance with Dice, IoU, PR, and SE of 78.99,
68.96, 85.21, and 62.64%, respectively, in the aneurysm
dataset IAS2 and 62.64, 51.83, 72.87, and 65.17%, in the
aneurysm dataset IAS3 Dice, IoU, PR, and SE were 39.71,
30.40, 46.37, and 40.54% respectively, and in the CVC-
ClinicDB dataset, Dice, IoU, PR, and SE were 88.89, 81.74,
91.32, and 91.07%, respectively. However, the DeepLabv3+
network achieved the worst performance on the Dice metric
on all datasets.

Ablation studies. We conducted ablation studies separately
to verify the effectiveness of the loss function and wavelet
transform.When performing feature extraction, some feature
information is always lost to a greater or lesser extent, and
how to reduce the loss of information during feature propa-
gation is the main task considered in this paper. Therefore,
we investigate how the wavelet transform affects the net-
work’s performance in feature extraction. As different types
of wavelets have different scale functions, which results in
different extracted features,whichwill have amassive impact
on themodel’s performance.We usedwavelet basis functions

123



Complex & Intelligent Systems

Ta
bl
e
2

Q
ua
nt
ita

tiv
e
co
m
pa
ri
so
n
of

th
e
an
eu
ry
sm

da
ta
se
tw

ith
th
e
SO

TA
m
et
ho

d

M
od
el
s

IA
S1

IA
S2

IA
S3

D
ic
e
(%

)
Io
U
(%

)
PR

(%
)

SE
(%

)
D
ic
e
(%

)
Io
U
(%

)
PR

(%
)

SE
(%

)
D
ic
e
(%

)
Io
U
(%

)
PR

(%
)

SE
(%

)

U
-N

et
(b
as
el
in
e)

[2
0]

76
.5
7

66
.5
4

79
.3
1

76
.6
9

59
.3
8

49
.3
5

64
.1
9

60
.1
3

38
.0
7

30
.0
1

44
.7
1

38
.6
1

Se
gN

et
[1
3]

74
.5
2

63
.9
7

76
.8
7

71
.5
9

48
.1
9

32
.9
0

52
.9
2

37
.7
5

26
.7
8

20
.3
6

25
.9
4

36
.2
8

D
ee
pL

ab
v3
+
[1
4]

68
.4
9

56
.9
3

78
.4
0

68
.2
1

43
.1
5

32
.1
9

41
.9
3

55
.8
6

25
.1
6

17
.4
1

21
.3
8

37
.1
2

R
es
U
ne
t[
21

]
76
.1
2

65
.3
2

75
.4
9

78
.9
7

60
.1
4

49
.6
3

62
.9
9

64
.3
8

32
.6
9

24
.8
9

41
.4
9

32
.9
3

R
2U

-n
et
[5
3]

72
.8
8

62
.5
8

81
.0
1

75
.8
5

57
.5
4

47
.6
4

72
.4
7

60
.0
4

34
.1
7

28
.4
3

42
.7
6

38
.2
2

A
tt-
U
N
et
[2
4]

73
.6
4

63
.2
9

73
.5
2

75
.1
3

57
.3
6

46
.7
9

59
.0
1

61
.5
7

35
.4
9

25
.9
7

42
.9
9

38
.9
8

C
E
-N

et
[5
4]

75
.4
5

64
.8
3

77
.3
1

79
.1
5

51
.7
8

40
.5
9

63
.0
7

55
.7
6

36
.5
3

29
.3
8

44
.7
7

35
.4
2

H
ar
D
N
et
-M

SE
G
[5
5]

68
.7
3

56
.3
9

65
.3
6

75
.1
6

47
.8
2

44
.7
8

52
.4
5

62
.4
5

27
.9
3

20
.5
4

32
.2
0

36
.5
6

Sw
in
-U

ne
t[
27

]
77
.5
2

66
.5
9

85
.1
6

79
.0
8

61
.3
8

50
.5
9

72
.5
2

62
.0
1

39
.0
3

29
.7
6

45
.9
2

39
.5
8

W
R
A
N
et

78
.9
9

68
.9
6

85
.2
1

80
.9
8

62
.6
4

51
.8
3

72
.8
7

65
.1
7

39
.7
1

30
.4
0

46
.3
7

40
.5
4

B
ol
d
re
pr
es
en
tt
he

op
tim

al
ex
pe
ri
m
en
ta
lr
es
ul
ts

Table 3 Quantitative comparison of the CVC-ClinicDB dataset with
the SOTA method

Models Dice (%) IOU (%) PR (%) SE (%)

U-Net (baseline) [20] 87.61 80.25 89.46 87.65

SegNet [13] 77.59 66.43 88.44 77.82

DeepLabv3+ [14] 78.26 66.57 84.58 83.33

ResUnet [21] 88.18 80.93 89.04 88.34

R2U-net [53] 87.91 80.41 90.56 88.25

Att-UNet [24] 88.32 81.13 89.23 88.50

CE-Net [54] 88.26 81.36 89.19 88.05

HarDNet-MSEG [55] 87.59 82.08 89.60 90.38

Swin-Unet [27] 88.35 81.06 89.65 90.72

WRANet 88.89 81.74 91.32 91.07

Bold represent the optimal experimental results

Table 4 Based on a comparison between different wavelet variants and
RAM modules

Moedls Dice (%) IoU (%) PR (%) SE (%)

U-Net (baseline) 76.57 66.54 79.31 76.69

+RAM 76.92 67.34 82.06 76.59

+haar 76.29 66.73 83.70 77.01

+db2 77.95 67.94 83.40 77.47

+db3 77.71 68.09 82.95 78.33

+db4 76.97 67.42 83.53 78.08

+db5 77.61 67.91 84.65 77.24

+db6 77.39 67.69 85.03 77.64

+db7 76.94 67.29 84.10 77.47

+sym2 78.23 68.85 84.49 78.57

+sym3 77.18 67.65 84.07 77.57

+sym4 77.68 68.13 84.04 77.62

+sym5 77.63 68.00 82.64 78.70

+sym6 78.72 68.46 84.93 80.31

+sym7 78.65 68.39 84.86 78.52

+bior1.1 78.41 68.66 82.41 79.07

+bior2.2 77.14 67.90 85.18 76.03

+bior3.3 78.48 68.87 83.66 78.85

+bior4.4 78.10 68.67 83.08 78.94

+rbio1.1 77.65 67.97 83.48 78.58

+rbio2.2 77.08 67.25 82.40 78.77

+rbio3.3 75.46 65.83 83.73 75.26

+rbio4.4 78.29 68.73 83.45 79.78

+RAM+sym6+LBCE 78.16 68.67 82.97 79.64

+RAM+sym6+LDice 78.63 68.89 84.71 77.97

+RAM+sym6+Lseg 78.99 68.96 85.21 80.98

Bold represent the optimal experimental results
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replacing the maximum pooling layer in the U-Net network
to investigate their respective performance, such as haar, db,
sym, bior, and rbio. We used U-Net as a baseline model to
compare with our proposed WRANet, and the experimen-
tal results are shown in Table 4. Since direct observation of
the model segmentation result images does not accurately
judge the model structure, minor differences are not directly
observable using the naked eye. Therefore, we used a series
of evaluation metrics to assess the model performance, such
as the Dice coefficient, IoU, PR, and SE.

Table 4 shows different wavelet basis functions as the
scores of various indicators of the pooling layer, and wavelet
’sym6’ achieved the highest Dice, IoU, PR, and SE scores.
’Daubechies’ wavelet can improve the performance of the
network at low order (’db2’), and the Dice score is 77.95%.
However, it will reduce the learning ability of the network
with the increase of the order, resulting in a decrease in per-
formance, such as high order ( ’db7’) ’Daubechies’ wavelet
has a Dice score of 76.94%. However, the ’Symlets’ wavelet
was accompanied by an increase in order (’sym6’), and
the performance of the network became better with a Dice
score of 78.72%; the lower the order (’sym3 ’, ’sym4’, and
’sym5’), the worse the network performs, with Dice scores
of 77.18, 77.68, and 77.63%.The biorthogonal wavelets
’Biorthogonal’ and ’Reversebior’ also improved the seg-
mentation performance. The downsampling process using
symmetric wavelets generally performs better than asym-
metric wavelets. We choose Lseg as the loss function to
study wavelet denoising performance. To make the exper-
iment more convincing, we study the influence of LBCE and
LDice on the accuracy of segmentation results, respectively.
In addition, we also introduce a RAM module, which can
make the feature maps more focused on the target region,
making its predictions more closely match the ground truth.

We validate our proposed method on private and public
datasets, respectively. In addition, we found that it is more
effective to perform thewavelet downsampling process in the
encoder stage because its feature map is more concentrated,
which can extract more helpful feature information, remove
unnecessary noise, reduce the false positive rate, and improve
the network of robustness and segmentation performance.

Complexity analysis. We analyzed the number of param-
eters, FLOPs, and inference time for the WRANet and
SOTA models, and the analysis results are shown in Table 5.
Although the WRANet method has higher complexity, it has
fewer parameters and a shorter inference time than R2U-
net, Att-UNet, HarDNet-MSEG, and Swin-Unet, due to its
improved performance in aneurysm and polyp segmentation,
making it acceptable in our study.

Visualization of segmentation results. Figures 6, 7, and 8
show the segmentation visualization results for the IAS1,
IAS2, and IAS3 datasets. It is clear that our method yields

more accurate results. The first column represents the origi-
nal image, the second column represents Ground Truth, and
the remaining columns are U-Net, SegNet, DeepLabv3+,
ResUnet, R2U-net, Att-UNet, CE-Net, HarDNet-MSEG,
and WRANet. Visually, our WRANet achieves good seg-
mentation performance while accurately identifying tumor
locations. It can be seen in the IAS3 data set that when the
aneurysm is small, our method still achieves better perfor-
mance, while the SegNet, U-Net, ResUnet, and R2-Unet
models cannot accurately segment the aneurysm. The pro-
posed model can learn more detailed features from the
dataset. Thus, the results show better performance compared
to other SOTA models.

Figure 9 represents the visual segmentation results for the
CVC-ClinicDB dataset. As shown in Fig. 9, the U-Net, Att-
UNet, and Swin-Unet methods have inaccurate boundaries
for polyp segmentation, and our WRANet method performs
better visually. This indicates that our proposedRAMmodule
and wavelet feature extraction layer play an important role
in extracting more complete tumor features and improving
tumor segmentation accuracy.

Conclusion

In this paper, we proposed a wavelet residual attention
network WRANet to improve aneurysm segmentation per-
formance. We design a discrete wavelet transform layer
(DWT) to replace conventional downsampling operations
(max pooling and average pooling) to capture tumor fea-
tures and remove noise information effectively. We used the
RAM module to capture contextual information and fuse
multi-scale features, which can recalibrate attention weights
to make the network paymore attention to tumor regions, use
skip connections to enhance fusion features, and make full
use of standard features to improve the generalization perfor-
manceof themodel,which reflects the superiority of attention
mechanism and residual connection. In addition, the pro-
posed method overcomes the propagation of high-frequency
noise of images in the network and the loss of information to
a certain extent. Compared with the standard U-Net and its
variants ResUnet, Att-UNet, and R2U-net, the performance
of the WRANet network is significantly improved.

The experimental results of image segmentation on the
IAS1, IAS2, and IAS3 datasets containing different tumor
sizes show that the WRANet network improves the segmen-
tation performance of small tumors and has the potential to
help doctors improve the efficiency of diagnosis in clinical
practice. It can be seen that the proposedWRANet network is
a promisingmethod formedical segmentation. The technique
can be easily applied to 3D medical image segmentation in
future work.
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Table 5 Complexity
comparison of our WRANet
against SOTA methods model

Methods Parameters (M) FLOPs (B) Inference time (s)

U-Net [20] 8.6 0.3 0.2826

SegNet [13] 29.4 0.6 0.2893

DeepLabv3+ [14] 31.6 0.8 0.3081

ResUnet [21] 13.9 0.5 0.2917

R2U-net [53] 39.1 2.4 0.5863

Att-UNet [24] 34.9 1.1 0.3119

CE-Net [54] 29.0 0.1 0.3529

HarDNet-MSEG [55] 35.4 0.2 0.4127

Swin-Unet [27] 37.2 2.3 0.5025

WRANet 34.6 1.1 0.3046

Bold represent the optimal experimental results

Fig. 6 Segmentation visualization results for each SOTA model on dataset IAS1

Fig. 7 Segmentation visualization results for each SOTA model on dataset IAS2

Fig. 8 Segmentation visualization results for each SOTA model on dataset IAS3
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Fig. 9 Segmentation visualization results for each SOTA model on dataset CVC-ClinicDB
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