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ABSTRACT 

In this paper we propose a new family of circular distributions, obtained by wrapping discrete skew Laplace distribution 
on Z = 0, ±1, ±2, around a unit circle. In contrast with many wrapped distributions, here closed form expressions exist 
for the probability density function, the distribution function and the characteristic function. The properties of this new 
family of distribution are studied. 
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1. Introduction 

Circular data arise in various ways. Two of the most com- 
mon correspond to circular measuring instruments, the 
compass and the clock. Data measured by compass usu- 
ally include wind directions, the direction and orienta- 
tions of birds and animals, ocean current directions, and 
orientation of geological phenomena like rock cores and 
fractures. Data measured by clock includes times of arri- 
val of patients at a hospital emergency room, incidences 
of a disease throughout the year, where the calendar is 
regarded as a one-year clock. Circular or directional data 
also arise in many scientific fields, such as Biology, Ge- 
ology, Meteorology, Physics, Psychology, Medicine and 
Astronomy [1].  

Study on directional data can be dated back to the 18th 
century. In 1734 Daniel Bernoulli proposed to use the 
resultant length of normal vectors to test for uniformity 
of unit vectors on the sphere [2]. In 1918 von Mises in- 
troduced a distribution on the circle by using characteri- 
zation analogous to the Gauss characterization of the 
normal distribution on a line [2]. Later, interest was re- 
newed in spherical and circular data by [3-5]. 

Circular distributions play an important role in model- 
ing directional data which arise in various fields. In re- 
cent years, several new unimodal circular distributions 
capable of modeling symmetry as well as asymmetry 
have been proposed. These include, the wrapped versions 
of skew normal [6], exponential [7] and Laplace [8]. 

Wrapped distributions provide a rich and useful class 
of models for circular data.  

The special cases of the wrapped normal, wrapped Pois-  

son, wrapped Cauchy are discussed in [9]. We give a 
brief description of circular distribution in Section 2. In 
Section 3 we introduce and study Wrapped Discrete 
Skew Laplace Distribution. Section 4 deals with the es- 
timation of the parameters using the method of moments. 

2. Circular Distributions 

A circular distribution is a probability distribution whose 
total probability is concentrated on the circumference of 
a circle of unit radius. Since each point on the circum- 
ference represents a direction, it is a way of assigning 
probabilities to different directions or defining a direc- 
tional distribution. The range of a circular random vari- 
able Θ measured in radians, may be taken to be 0,2π  
or  π,  π . 

Circular distributions are of two types: they may be 
discrete - assigning probability masses only to a count-
able number of directions, or may be absolutely continuous. 
In the latter case, the probability density function  f θ  
exists and has the following basic properties. 

  0f θ 

 2π

0
d 1f θ θ

 1) 

  2) 

   2πf θ f θ k  , for any integer k. That is 3) 
 f θ π is periodic with period 2 . 

Wrapped Distributions 

One of the common methods to analyze circular data is 
known as wrapping approach [10]. In this approach, 
given a known distribution on the real line, we wrap it 
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around the circumference of a circle with unit radius. 
Technically this means that if X is a random variable on 
the real line with distribution function 
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, the ran- 
dom variable X of the wrapped distribution is defined 
by 

 mod 2πX X

w

w                 (1) 

and the distribution function of X  is given by 

   2π

0, 1, 2,

w
k

F θ F θ
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  2π ,k F k 

, 2π, 4π,θ  
 g θ

      (2) 

By this approach, we are accumulating probability 
over all the overlapping points  
So if  represents a circular density and 

x θ θ 　
 f x

 2π ,f θ k 

 the 
density of the real valued random variable, we have  

 

0 2π
k

g θ

θ





 

             (3) 

By this technique, both discrete and continuous 
wrapped distributions may be constructed. In particular, 
if X has a distribution concentrated on the points  

2π
x

m


k
0, 1, 2,k    

w

, and m is an integer, the prob- 

ability function of X  is given by 
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       (4) 

where “p” is the probability function of the random vari- 
able X. 

3. Wrapped Discrete Skew Laplace  
Distribution 

3.1. Discrete Skew Laplace Distribution 

Discrete Laplace distribution was introduced by [11] 
following [12], who defined a discrete analogue of the 
normal distribution. The probability mass function of a 
general Discrete Normal random variable Y can be writ- 
ten in the form 

  ,

2,

j

f k

0, 1,

P Y k
f j





 






2

k  

.          (5) 

where “f” is the probability density function of a normal 
distribution with mean µ and variance   [13]. 

Using Equation (5), for any continuous random vari- 
able X on R, we can define a discrete random variable Y 
that has integer support on Z. When the skew Laplace 
density 

          (6) 

where,   , are inserted into Equation (5), the prob- 
ability mass function of the resulting discrete distribution  
takes an explicit form in terms of the parameters p* = 

e




 and 

1
* eq 




* (0,1)p 
* (0,1)q   * *,p q

. 

Definition 3.1 A random variable Y has a discrete 
skew Laplace distribution with parameters  

and  denoted by DSL , if 

  
  * * *
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*
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The characteristic function of Y is given by 

 
 

* *

* *

1 (1 )
,

1 (1 )it it

p q
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1, 2, ,0Z

        (8) 

In this paper, we study the probability distribution ob-
tained by wrapping discrete skew Laplace distribution on 

 

thm

2π (mod 2π )

 around a unit circle.  
As we know, reduction modulo 2π wraps the line onto 

the circle, reduction modulo 2πm (if m is a positive in- 
teger) wraps the integers onto the group of root of 1, 
regarded as a subgroup of the circle. That is, if X is a 
random variable on the integers, then Θ, defined by  

X m   

is a random variable on the lattice 
2πr

m
0,1, , 1r m 

*p *q

,  

on the circle. The probability function of Θ is given by 
Equation (4). 

In particular, if X has a discrete skew Laplace distribu-
tion with parameters  and , then the probability  

distribution of the wrapped random variable 
2πr

m
  is 

given by 
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 0,1, , 1 and  , 0,1r m p q   
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and we denote it by 

WDSL  ,  ,  p q m

~  ( ,0, )WDSL p m

. 

Following are the graphs of wrapped discrete skew 
Laplace distribution for various values of κ, σ and m. In 
Figure 1, the graph of the pdf of wrapped discrete skew 
Laplace distribution for κ = 0.25, σ = 1 and for m = 5, 10, 
20, 30, 40, 50 and 100 are given. 

In Figure 2, the graph of the pdf of wrapped discrete 
skew Laplace distribution for κ = 0.5, σ = 1 and for m = 5, 
10, 20, 30, 40, 50 and 100 are given. The graph of the 
pdf of wrapped discrete skew Laplace distribution for κ = 
0.25, σ = 1 and for m = 5, 10, 20, 30, 40, 50 and 100 are 
given in Figure 3. 

for and  1 , , 1r m 
Again, we have 

3.2. Special Cases  

When either “p” or “q” converges to zero, we obtain the 
following two special cases:  with Hence  represents a probability distribution. w

Definition 3.2 An angular random variable “Θ” is 
said to follow wrapped skew Laplace distribution on in-
tegers with parameters p, q and m if its probability mass 
function is given by 

 0,1p  is a wrapped geometric distribution with 
probability mass function 

 

      
 

 
 

1 1r m

m m

p q

p q

 
 

  

1 1

1 1 1

m r m

w

q pp q
p θ

pq

   


 
 (10) 

12π
Θ ,  0,1, , 1.

1

r

m

p pr
P r m

m p

       


~ (0, , )WDSL q m

    (11) 

while   with  is a wrapped 
geometric distribution with probability mass function 

 0,1q

 

 

Figure 1. Wrapped discrete skewed Laplace distribution for ,  and for different values of “m”. = 1σ = 0.25κ
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Figure 2. Wrapped discrete skewed Laplace distribution for ,  and for different values of “m”. = 1 = 0.25κσ
 

 

Figure 3. Wrapped discrete skewed Laplace distribution for ,  and for different values of “m”. = 1 = 0.25κσ
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when p = q, we have 
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which is the probability mass function of wrapped dis-
crete Laplace distribution. 

3.3. Distribution Function of WDSL  

The distribution function,  is given by  F θ
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3.4. Probability Generating Function and  
Characteristic Function of WDSL   

The probability generating function of WDSL , ,p q m
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On simplification it reduces to 
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Proposition 3.1 If Θ ~ WDSL( , , )p q m  then 1 2ΘdΘ Θ  
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3.6. Stability with Respect to Geometric 
Summation 
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Now we show that the above function coincides with 
the characteristic function of   ,  ,  WDSL s r m  distri- 
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That is, 
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Remark 3.1. Wrapped discre

tion is infinitely divisible since a circul
able obtained by wrapping an infinitely 
variable is infinitely divisible by [1,11] . 

3.7. Trigonometric Moments 

The thn  trigonometric moment of the WDSL  ,  ,  p q m   

is given by 
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The circular variance, 
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Using Equations (33)-(34) and for a fixed value of “m” 
we can find estimates for “p” and “q”.  

We have, 
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Substituting the value of “p” in terms of “q” in Equa- 
tion (33) or in Equation (34) we will get an equation in 
“q” and solving that we can find the estimate of “q” and 
thus “p”. 
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