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Wrapper‑based deep feature 
optimization for activity 
recognition in the wearable sensor 
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The Human Activity Recognition (HAR) problem leverages pattern recognition to classify physical 
human activities as they are captured by several sensor modalities. Remote monitoring of an 
individual’s activities has gained importance due to the reduction in travel and physical activities 
during the pandemic. Research on HAR enables one person to either remotely monitor or recognize 
another person’s activity via the ubiquitous mobile device or by using sensor‑based Internet of Things 
(IoT). Our proposed work focuses on the accurate classification of daily human activities from both 
accelerometer and gyroscope sensor data after converting into spectrogram images. The feature 
extraction process follows by leveraging the pre‑trained weights of two popular and efficient transfer 
learning convolutional neural network models. Finally, a wrapper‑based feature selection method 
has been employed for selecting the optimal feature subset that both reduces the training time and 
improves the final classification performance. The proposed HAR model has been tested on the three 
benchmark datasets namely, HARTH, KU‑HAR and HuGaDB and has achieved 88.89%, 97.97% and 
93.82% respectively on these datasets. It is to be noted that the proposed HAR model achieves an 
improvement of about 21%, 20% and 6% in the overall classification accuracies while utilizing only 
52%, 45% and 60% of the original feature set for HuGaDB, KU‑HAR and HARTH datasets respectively. 
This proves the effectiveness of our proposed wrapper‑based feature selection HAR methodology.

The word “Automation” has created a buzz around the world. Every industry is trying to automate its day-to-day 
tasks. As a result, it opens up a sizable market for invention and study on numerous subjects that aim to improve 
human existence through technology. To automate a process, it is important to analyze or recognize existing 
human activities. Human Activity Recognition (HAR) is one of the efficient ways to accomplice the challenges 
in this field. It is a colonist research area in computer vision that recognizes human activity through any mobile 
or IoT device  sensors1.

Wireless sensor networks, a result of recent advancements in sensing technology, offer an unobtrusive, 
privacy-friendly, and simple to install answer to home monitoring. Contact switches are utilised as sensors to 
determine if doors and cabinets are open or closed, and pressure mats are used to determine whether someone is 
sitting or lying  down2. Wearable sensor usage has also increased significantly recently, particularly in the medical 
sciences where there are many diverse applications for monitoring both psychological states and human activity. 
In the medical industry, it is feasible to keep an eye on patients’ vital statistics such body temperature, heart rate, 
brain activity, and muscle  movement3.
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Limitations of previous works. Current research on HAR is focused on deep learning and machine learn-
ing approaches because of its improved accuracy, robustness and speed compared to traditional  techniques4,5. 
Several distinct deep learning approaches have emerged over the last few decades, which introduces on various 
parts of the HAR pipeline. Present-day state of-the-art machine learning models require an adequately large 
dataset for training them in order to produce accurate results. A number of diverse datasets have been published 
to overcome this challenge. Previous studies have investigated the problems of HAR using popular machine 
learning algorithms such as Random Forest (RF), Support Vector Machine (SVM), etc. and deep learning archi-
tectures such as Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Recurrent Neural 
Network (RNN) and Artificial Neural Network (ANN) to name a few. Almost all machine learning algorithms 
face their main difficulty in the time-consuming feature engineering and human feature extraction process. 
The exigent need for optimized feature selection is the presence of redundant and less significant data among 
the complete set of available feature space. This increases the computation time for the model to train and the 
presence of noise reduces the performance. However, feature selection is not synonymous with dimensionality 
reduction since the former does not alter the attributes of the feature space but just removes them to reduce 
model complexity. Various research fields have seen the application of feature selection to solve numerous prob-
lems such as COVID-19  detection6, Indian spoken language  identification7,8 and speech emotion  recognition9. 
The robustness and accuracy that feature selection provides to select deep learning features is leveraged to iden-
tify human activities, which has seen little application of feature selection. The main advantages of feature selec-
tion are:

• Reduces the possibility for the model to train noise and redundant features.
• Improves accuracy of the model by eliminating less important data.
• The machine learning or deep learning models can train faster since they can train fewer number of datasets.

In the context of supervised learning, feature selection can be divided into the following broad categories:

• Filter method: The link between each input variable and the target variable is assessed using statistical tech-
niques using filter feature selection methods, and the scores obtained are then used to choose (filter) the 
input variables that will be incorporated in the model.

• Wrapper method: In the wrapper technique, features are chosen by treating them as a search problem, where 
many combinations are created, assessed, and contrasted with other combinations. Iteratively employing 
the subset of characteristics trains the algorithm. Recursive feature removal and genetic algorithm are a few 
examples.

• Embedded Method: By taking into account feature interaction and low computing cost, embedded techniques 
incorporated the benefits of both filter and wrapper approaches. These are quick processing techniques that 
are comparable to the filter approach but are more precise.

The goal of detecting various human activities is better suited to deep learning techniques because they automati-
cally train the features from the images or data. In this paper, two popular transfer learning models have been 
chosen for feature extraction due to the robustness and advancement of deep learning. Transfer learning is a 
type of supervised learning, where the input remains the same but the target output can be of some other nature.

As transfer learning model frameworks can yield a certain set of features, some of which may be identified 
to be  redundant10 using Binary Bat Algorithm (BBA). We have proposed a hybrid model using a combination 
of transfer learning  models11 and a wrapper optimizer algorithm based on BBA, to build an efficient model in 
order to identify human activities. The schematic diagram of our proposed work is also shown in Fig. 1. The 
entire framework can be further divided into three sub-modules. 

1. Conversion of both accelerometer and gyroscope sensor data into  spectrogram12 images.
2. Extraction of the deep features using two pre-trained transfer learning models.
3. Selection of optimal features using wrapper-based optimization method using  BBA13 and classification of 

each activity by the optimal feature subset.

We have experimented on three standard and recently developed HAR datasets as benchmark, which are: Human 
Activity Recognition Trondheim (HARTH)14, Khulna University-HAR (KU-HAR)15 and Human Gait DataBase 
(HuGaDB)16 using the proposed framework and the same has been mentioned in later sections of this paper.

This paper is structurally arranged as follows: A brief literature review to highlight prior efforts on sensor-
based data for the HAR problem is presented in Literature Analysis, whereas the architectural details of our 
proposed model along with the dataset description are presented in Materials and Methods. Experimental Results 
Section provides the experimental findings attained by the proposed HAR framework. Finally, the comprehensive 
summary of our work and future research are concluded in Conclusions & future works.

Motivation of proposed work. Researchers used several machine learning and CNN-based models in 
their work, as was discovered after examining the prior research on these datasets. For all three HAR datasets, no 
generic model was applied. The sensor-based HAR problem has been transformed into an image classification 
problem using a robust model that first transforms the sensor data into the corresponding spectrogram images. 
As per our knowledge, this type of transformation (from raw sensor data to spectrogram images) has been done 
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for the first time for solving HAR problem. Following the above transformation, we suggest a two-fold model 
in which

• For feature extraction from the spectrogram images, Efficientnet_b0 and Mobilenet_v3_Large, two well-
known transfer learning-based models, are applied.

• The best optimal feature subset from the retrieved feature set is chosen using the BBA. Finally, the classifica-
tion of human activities has been carried out using the optimal feature subset.

The contributions of the proposed research are as follows: 

1. The proposed work transforms the raw sensor data into its corresponding spectrogram images, which is 
done for the first time in the domain of sensor-based HAR.

2. The compact input images are fed as input to both Efficientnet_b0 and Mobilenet_v3_Large architectures for 
deep feature extraction from the penultimate layer of the networks since, due to the less amount of available 
data, an end-to-end classification scheme using CNN models fail.

3. The extracted features from the two pre-trained transfer learning models (trained with two different compact 
inputs) have been concatenated to form a final feature space, which is then fed into the BBA for the selection 
of an optimal feature subset.

4. The final classification on the optimal feature set is done by using K-nearest neighbor (KNN) classifier, thus 
achieving commendable results on the three publicly available HAR datasets that have been used to evaluate 
the proposed sensor-based HAR model.

Literature analysis
HAR is one the important and highly researched field of computer vision since its beginning. The aim of HAR 
system is to identify activities performed by a person. HAR finds application in various areas like health monitor-
ing, gesture based systems, intuitive interfaces for machines (gaming consoles), and surveillance-based security. 
It has evolved to the point where the recognized method can be generalized and has accurate recognition of 
human activity as  possible17.

The HAR methodology’s complexity is related to the various data inputs that can come from different modali-
ties such as videos, images, audio signals, wearable sensors and other sources. Based on various experiments 
performed by researchers, many HAR models have been developed in order to improve the overall performance 
and quality  metrics18. Several distinct deep learning approaches have emerged over the last few decades, each of 
which innovates on different areas of the HAR  pipeline19. Generally, deep learning methodologies emphasises on 
features whereas Reinforcement learning emphasises on feedback. On the other hand, traditional machine learn-
ing focuses on reaping the benefits of planting fruits and beans, whereas transfer learning can draw inferences 
from both. Recently, deep learning models are being used in various research areas of computer vision as well as 
pattern recognition domains. For solving HAR problem, Mukherjee et al.20 have developed an ensemble model 
named as EnsemConvNet in their work and achieved recognition accuracy of about 97% on WISDM dataset. 
Furthermore, Das et al.21 proposes a multi-modal HAR model called MMHAR-EnsemNet and able to achieve 
accuracy of about 99% on both UTD-MHAD and Berkeley-MHAD datasets. Bhattacharya el al.22 proposed a 
deep learning model, named as SV-NET, in order to recognize the human activities from video images. Banerjee 
et al.23 proposed a fuzzy integral-based CNN classifier model for skeleton-based HAR problem. Additionally, 
different applications of CNN models for solving image classification problems proposed by Bhattacharya et al.24, 
Chattopadhyay et al. 25,26. Channel equalization and channel selectivity in CNNs have been employed for the 

Figure 1.  Graphical representation of the proposed wrapper-based deep feature optimization framework for 
HAR problem.
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first time in HAR domain by Huang et al.27,28 in order to reactivate the channels that collapse due to normaliza-
tion. Huang et al.29 also optimized the CNN feature layers using feature activation to boost accuracy of their 
HAR model by inhibiting filters that contribute less towards classification  performance6, Mondal et al.30 and 
Chakraborty et al.31 in their respective work. Looking at wide applications of deep learning models, a hybrid 
model is proposed which is a combination of deep learning and wrapper-based optimization method for solving 
HAR problem from wearable sensor data. In the proposed model, two standard pre-trained transfer learning 
models such as  Mobilenet_v332 and  Efficientnet_b033 are being used for feature extraction and a BBA is used to 
optimize the original feature set. During the experiment, three publicly available HAR datasets are used to train 
and validate the model. The three HAR datasets, used in the present work, are as follows: 

1. HARTH[9] dataset
2. KU-HAR[10] dataset
3. HuGaDB[11] dataset

HARTH dataset was recently introduced by Aleksej Logacjov et al.14 in November 2021. The primary goal of their 
research is to present a new accelerometer-based publicly available HAR dataset which can be considered as a 
free-living dataset because accelerometer-based HAR datasets are very less according to Stricker and Micucci 
et al.34. The recent survey confirmed this, revealing that only 30 out of 142 accelerometer-based datasets were 
publicly  available35. The authors trained the dataset by using state-of-the-art machine learning models and were 
able to achieve the best F1-score of 81% by using a SVM classifier. Like the HARTH dataset, we have selected 
the KU-HAR dataset which got recently developed in March 2021 by Niloy Sikder et al.15. Their main aim was to 
introduce a new smartphone sensor data (based on both gyroscope and accelerometer) with new activity classes 
that will assist researchers in developing more delicate models for designing a real-world HAR framework. They 
achieved nearly 90% accuracy by using RF classifier.

Apart from the HARTH and KU-HAR datasets to test the robust behaviour of our proposed model, we have 
selected the standard HuGaDB dataset which was introduced by Roman Chereshnev et al.16 in July 2017. This is 
a human gait data collection made freely available in UCI Machine Learning repository. Gochoo et al.36 applied 
hierarchical feature-based technique to extract the feature which is then optimized using Stochastic gradient 
descent (SGD) technique and attained 92.50% accuracy. A hybrid feature selection model using deep belief net-
works was proposed by Madiha Javeed et al.37 and able to achieve 92.5% accuracy on HuGaDB dataset. Bin Fang 
el al.38 applied CNN-based model and achieved 79.24% accuracy. Yingnan Sun et al.39 proposed a novel ANN 
based classification model for real-time gait analysis and achieved 88% accuracy. Girja Kumari et al.40 used LSTM 
based deep learning classifier model in their proposed work and achieved 91.1% accuracy on HuGaDB dataset. 
Several researchers used the same dataset for their research. A brief summarization of existing HAR models, 
developed in the literature, for HARTH, KU-HAR and HuGaDB datasets are included in Table 1.

Materials and methods
Dataset description. In our proposed work, we have experimented with three publicly available HAR 
datasets: 

1. HARTH14 dataset
2. KU-HAR15 dataset
3. HuGaDB16 dataset

The detailed discussion related to the above-mentioned HAR datasets is described below.

HARTH dataset. The HARTH dataset is accessible to the general public. A total of 22 individuals who wore two 
three-accelerometers on their lower back, and thigh provided the acceleration data for this report. The HARTH 
dataset has 12 human activities or classification labels. Activities and their corresponding IDs are described in 
Table 2 whereas the number of samples per activity class present in HARTH dataset are shown in Fig. 2.

Table 1.  A tabular summary of different HAR methodologies and their corresponding performances (in terms 
of accuracy) achieved till date for HARTH, KU-HAR and HuGaDB datasets.

Dataset Study Method Accuracy(%)

HARTH Logacjov et al.14 SVM-based classification model 81

KU-HAR Sikder and  Nahid15 RF-based classification model 89.67

HuGaDB

Filtjens et al.41 Multi-stage spatial-temporal graph convolutional network (MS-GCN) 83.8

Gochoo et al.36 Hierarchical feature-based technique with SGD 92.5

Javeed et al.37 A Hybrid features selection model using deep belief networks 92.5

Fang et al.38 CNN model 79.24

Sun et al.39 ANN based method for real-time gait analysis 88

Kumari et al.40 LSTM model 91.1
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KU‑HAR. A set of 90 participants (involving 75 men and 15 women) submitted data on 18 different activities 
using the smartphone sensors, such as the accelerometer and gyroscope. Activities and their corresponding IDs 
are described in Table 3 whereas the number of samples per activity class present in KU-HAR dataset are shown 
in Fig. 3.

HuGaDB Dataset. This dataset includes continual recordings of a variety of activities, including standing up, 
walking, and utilizing the stairs, etc.. The data was gathered using a six-wearable body sensor system, which 
included inertial sensors placed on the thighs, feet, and right and left shins. Two EMG sensors were also attached 
to the quadriceps to track muscle activation as well. Activities and their corresponding IDs are described in 
Table 4 whereas the number of samples per activity class present in HuGaDB dataset are shown in Fig. 4.

Figure 2.  Class-wise distribution of human activities in the HARTH dataset.

Table 2.  A tabular representation of the classes of human activities performed in the HARTH dataset.

Activity ID Activity

ACT_0 Walking

ACT_1 Running

ACT_2 Shuffling

ACT_3 Stairs (ascending)

ACT_4 Stairs (descending)

ACT_5 Standing

ACT_6 Sitting

ACT_7 Lying

ACT_8 Cycling -Sit

ACT_9 Cycling-Stand

ACT_10 Cycling-Sit-Inactive

ACT_11 Cycling-Stand-Inactive

Figure 3.  Class-wise distribution of human activities in the HARTH dataset.
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Table 3.  A tabular representation of the classes of human activities performed in the KU-HAR dataset.

Activity ID Activity

ACT_0 Stand

ACT_1 Sit

ACT_2 Talk sit

ACT_3 Talk stand

ACT_4 Stand sit

ACT_5 Lay

ACT_6 Lay Stand

ACT_7 Pick

ACT_8 Jump

ACT_9 Push-Up

ACT_10 Sit-Up

ACT_11 Walk

ACT_12 Walk-Backward

ACT_13 Walk-Circle

ACT_14 Run

ACT_15 Stair-Up     

ACT_16 Stair-Down

ACT_17 Table-Tennis

Figure 4.  Class-wise distribution of human activities in the HuGaDB dataset.

Table 4.  A tabular representation of the classes of human activities performed in the HuGaDB dataset.

Activity ID Activity

ACT_0 Walking

ACT_1 Running

ACT_2 Going-up

ACT_3 Going down

ACT_4 Sitting

ACT_5 Sitting down

ACT_6 Standing-up

ACT_7 Standing

ACT_8 Bicycling

ACT_9 Up by elevator

ACT_10 Down by elevator

ACT_11 Sitting in car



7

Vol.:(0123456789)

Scientific Reports |          (2023) 13:965  | https://doi.org/10.1038/s41598-022-27192-w

www.nature.com/scientificreports/

Proposed model. A diagrammatic illustration of the entire proposed HAR framework, from data acquisi-
tion, transfer  learning11 to final classification using wrapper-based deep feature selection algorithm has been 
given in Fig. 5.

The entire framework can be subdivided into three phases: 

1. Data Pre-processing: Transform the raw sensor time-series data into spectrogram images.
2. Feature Extraction: Extract deep features using two popular transfer learning model (Mobilenet_v3_Large 

and Efficientnet_b0) followed by concatenation of extracted features.
3. Feature Selection: Application of wrapper-based deep feature selection using BBA and classification of the 

target activities performed.

Data pre‑processing. We employ two widely used transfer learning models that need images for training; as a 
consequence, raw sensor data are transformed into spectrogram images. As mentioned earlier, three recently 
developed HAR datasets such as HARTH, KU-HAR, and HuGaDB are being used in this work. The two sensor 
values (acceleration and gyroscopic) are present in all three HAR datasets. First, all sensor readings have been 
gathered activity-wise in the various data arrays using the raw data that has been received from the file. Both 
the generation of spectrogram images as well as activity-wise data arrays need the division of data arrays into 
numerous data frames (300 rows, in our case). The dataset’s smallest activity data length is calculated among 
the activities that are regarded to have the most rows overall during this splitting. The prior step is crucial for 
ensuring a balanced distribution of samples among each activity class. The purpose of this step is to encode a 
spectrogram from time series data using the  Pylab42 Python package. Figures 6, 7 and 8 show samples of spec-
trograms generated for each human activities from the HARTH, KU-HAR and HuGaDB datasets respectively.

Feature extraction. Spectrogram images generated in the previous phase are fed to the Mobilenet_v3_Large 
and Efficientnet_b0 CNN transfer learning models. Following this, the extracted features are saved for each 
model separately for building the further phases of the total framework. Transfer learning models are trained on 
millions of image data samples as a result of which they can classify image or similar data with high performance. 
Hence, the sensor data modalities are converted to spectrogram images to leverage the pre-trained weights of the 
transfer learning CNN models.

Efficientnet. The new model, termed Efficientnet, has been introduced by  Google33 with the primary goal of 
introducing one that is more effective than the current state-of-the-art results. Usually, the models are made with 
an excessively high resolution, or they are overly deep and wide. The Google study describes a scaling strategy 
called compound scaling, which claims that intentionally scaling all three model attributes-depth, breadth, and 
resolution-at the same time produces better results than scaling any one of them alone. The fused-MB convolu-

Figure 5.  A graphical visualization of the entire proposed wrapper-based deep feature optimization framework 
for HAR.
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Figure 6.  Spectrogram images for various human activities from the HARTH dataset.

Figure 7.  Spectrogram images for various human activities from the KU-HAR dataset.

Figure 8.  Spectrogram images for various human activities from the HuGaDB dataset.
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tional layers are typical of the EfficientnetV2, which can employ current GPU/CPU accelerators and has fewer 
parameters and FLOPS. The original Efficientnet model has eight different blocks from b0 to b7 as shown in 
Fig. 9. Any network’s stem is its primary component. From there, all experiments start with the architecture of 
the network, which is a trait shared by all eight models, and then with the network’s final layers. Each of them 
has seven blocks after that. To train our spectrograms, we use the Efficientnet_b0 base model, which comprises 
seven inverted residual blocks, each with a different configuration. These blocks also incorporate excitation, 
squeeze, and swish activation. Each of them comprises seven blocks after that. In addition, each of these blocks 
has a different number of sub-blocks, whose total number rises from Efficientnet_b0 to Efficientnet_b7.

Mobilenet_v3. Mobilenet43 is a type of convolutional neural network which is built for embedded vision sys-
tems and mobile applications. It is based on a streamlined architecture that employs depth-wise separable con-
volutions to construct lightweight deep neural networks with low latency for embedded and mobile devices. To 
cut down on the number of parameters, a depth-wise convolution has been  implemented44. The procedure has 
been equally divided into two  parts45, 

1. The depth-wise convolution
2. The point-wise convolution

Every channel’s image input of shape (256 × 256) is filtered by depth-wise convolution then the point-wise convo-
lution is put in a 1 × 1 convolution to integrate the output results of the previous layer. This results in a significant 
reduction in both model complexity as well as computational power. To improve the Mobilenet architecture, a 
upgraded version was introduced in 2019 named as Mobilenet_v3. and it was built by removing complex lay-
ers with employing the H-swish function rather than standard ReLU. Figure 10 summarizes the architecture of 
Mobilenet_v3 model used in the present work.

Mobilenet_v3 is defined as two models: Mobilenet_v3_Large and Mobilenet_v3_Small. In terms of both 
performance and accuracy, Mobilenet_v3_Large model gives better result. In the present work, we have selected 
Mobilenet_v3_Large model to train our model.

Selection of optimal features using BBA. In our proposed paper we have utilized the wrapper function over a 
filter based methodology for the selection of features due to the following reasons:

Figure 9.  Block diagram illustration of the Efficientnet model used in the proposed HAR framework.

Figure 10.  Architectural representation of the Mobilenet_v3 CNN model employed in the proposed work.
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• The filter based methods use statistical methods hence there is no interaction with the model for the opti-
mal selection of feature subsets. Contrary to this, the wrapper methodologies interact with the models by 
comparing every conceivable feature combination to the evaluation criterion by employing a greedy search 
methodology.

• While filter selection takes into account each feature separately, wrapper-based approaches take into account 
the dependencies between the features throughout the entire feature space, which results in improved com-
putational performance.

Following the extraction of both model features of tensor size 1000, which is equal to the final linear layer of the 
two transfer learninig moedels, a single feature vector is created of tensor size 2000, which is then fed to the  BBA46 
wrapper function to select the best optimal feature subset followed by the final classification of human activities 
using a k-nearest neighbours classifier. The KNN  algorithm47 is a supervised learning classifier that employs 
proximity to produce classifications or predictions about the grouping of a single feature point. Although it can 
be applied to classification or regression issues, it is commonly employed as a classification algorithm because it 
relies on the idea that comparable points can be discovered close to one another. The details of our experimental 
outcomes are included in the Results section.

Binary Bat Algorithm (BBA). Yang et al.’s48 Bat Algorithm (BA), a novel meta-heuristic approach for continu-
ous optimization, was based on the remarkable ability of microbats to detect their food and differentiate between 
various bug species-even in total darkness. Such an approach has shown to be more successful than several 
well-known optimization techniques drawn from nature. The basic BA flowchart is shown in Fig. 11. As per BA, 

1. Each bat randomly assigned a frequency between [ femin , femax].
2. Every bat is associated with velocity ( Vt

j  ) and position Ptj  in search space at each iteration t , with respect to 
frequency fej.

3. Hence, at each iteration, we need to update fej , Vj and Pj as per following equations.

where, β is random value which lies between [0, 1] and P ∗ is current best.
Later, BBA was introduced by Nakamura et al.48. They changed the equation position of the basic BA and 

replaced with binary vectors by using one of the transfer functions, and otherwise it is structurally similar to the 
basic BA. The optimal result has been selected among the 2n possibilities.

Therefore, Eq. (3) of BBA can be replaced with Eq. (4), which is as follows:

(1)fej = femin +
(

femax − femin

)

β

(2)Vt
j = Vt−1

j +

(

Pt−1

j − P∗
)

fej

(3)Ptj = Vt
j + Pt−1

j

(4)TF(Vt
j ) =

1

1+ e
−Vt

j

(5)Ptj =

{

1 if TF(Vt
j ) > α

0 if otherwise

Figure 11.  Flowchart representation of the meta-heuristic BBA used for feature selection in our proposed work.
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In Eq. (5), the value ’1’ indicates the feature is selected whereas ’0’ indicates that the feature is not selected, and 
α is Uniform (0, 1).

In the present work, we have chosen meta-heuristic BBA for the purpose of deep feature optimization due 
to the following reasons: 

1. It is accurate and very efficient algorithm to solve complex problems.
2. Efficient to solve multi-stage, multi-machine , multi-product scheduling problems.
3. The nature of automatic zooming effective parameter control, the frequency tuning and echolocation are 

grate thins to solve wide range of problems with quick time in promising optimal solution.

Ethics approval and consent to participate. All experiments and methods were carried out in accord-
ance with relevant guidelines and regulations.

Results
Evaluation metrices. The performance of our proposed wrapper-based deep feature optimization HAR 
framework has been evaluated using four well-known evaluation metrics  Accuracy49,  Precision49,  Recall49, and 
F1-score49. Training and validation loss are also one of the most used statistic for evaluating the efficiency of any 
deep neural networks; as a result, it is also employed in our proposed work. The next subsections compare our 
proposed model to previous preceding frameworks and architectures in-depth.

To create the aforementioned assessment metrics, simple parameters like True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN) can be employed.

The model’s performance is shown in accuracy for all activity classes. The ratio of the number of accurate 
predictions to all testing samples is calculated.

Precision is also called as positive predictive value. It depicts the model’s accuracy in classifying a sample as 
positive.

Sensitivity is also known as recall. The recall shows how well the model can identify positive samples.

A model’s recall and accuracy are combined by the F1-score, which also calculates the harmonic mean of the 
model’s recall and precision.

Experimental results. Tables 5 and 6 provide the results of the experiment attained by the proposed wrap-
per-based deep feature optimization HAR framework. Table 5 shows how the number of features decreases with 
the use of the BBA, which chooses the most pertinent features from all those obtained from both the Mobilenet_
v3 Large and Efficientnet_b0 models. If we examine the reduction of concatenated features by dataset, it can 
be found that almost 52% of HuGaDB dataset, 45% of KU-HAR dataset, and 60% of HARTH dataset has been 
optimally selected by the BBA. Furthermore, the overall classification accuracy of the proposed model has also 
been improved in case of all the three HAR datasets. Table 6 illustrates the increment in the overall classifica-

(6)Accuracy =
TP + TN

TP + TN + FP + FN
× 100

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

(9)F1− score =
2

(

1

Recall

)

+
(

1

Precision

)

Table 5.  Epoch size along with the number of features selected before and after applying BBA based feature 
selection method for all the three HAR datasets.

Dataset Model #Runs with epoch #Features before using BBA #Features after using BBA

HARTH

Mobilenet_v3_large 40 960 471

Efficientnet_b0 40 1280 464

Concatenated feature vector 40 2240 906

KU-HAR

Mobilenet_v3_large 40 960 499

Efficientnet_b0 40 1280 721

Concatenated feature vector 40 2240 1249

HuGaDB

Mobilenet_v3_large 40 1280 621

Efficientnet_b0 40 960 423

Concatenated feature vector 40 2240 1067
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tion accuracies achieved by the proposed wrapper-based deep feature optimization framework for all the HAR 
datasets. It can be observed from Table 6 that increments of about 20%, 21% and 6% in the overall classification 
accuracies have been noted for HARTH, KU-HAR and HuGaDB datasets respectively which is quite impressive. 
The proposed HAR model has also been assessed using other common performance measures such as F1-score, 
Recall, and Precision, which are presented in Table 7. It can be noticed from Table 7 that the application of 
wrapper-based feature selection using BBA on the concatenated feature vector produces Precision, Recall and 
F1-score of 0.90, 0.89 and 0.89 respectively for HARTH dataset, 0.97, 0.96 and 0.96 respectively for KU-HAR 
dataset, and 0.94, 0.93 and 0.93 respectively for HuGaDB dataset.

Loss plot. The loss plot gives us a summary of the training process and the network’s learning process. The 
loss function is used to determine the quantitative loss measure at the designated epoch across all data items 
throughout the course of an epoch. Figures 12, 13, and 14 show the train and validation loss plots of the combi-
nation of each model performed on the HARTH, KU-HAR, and HuGaDB datasets respectively. The models are 
trained using each HAR datasets for 40 epochs, as is already indicated. Figures 12, 13, and 14 show that the loss 
values decreases with respect to epoch, indicating that the models are picking up on the input item and increas-
ing the prediction probability. Figures 12 and 13 show that the training loss curve converges after 35 epochs for 
both HARTH, KU-HAR datasets, whereas Figure 14 shows that the training loss curve for the Efficientnet_b0 
model converges after 35 epochs whereas in case of Mobilenet_v3 model, the loss converges after 20 epochs.

Analysis of confusion matrix. A snippet of the classification problem’s prediction outcomes is called a 
confusion matrix. Each activity class’s share of successful and failed predictions is indicated with count values. 
Figure 15 illustrates how the magnitude of the confusion relies on the number of activity classes contained in the 
HAR dataset. The confusion matrix for HARTH and HuGaDB datasets is 12 by 12, whereas the confusion matrix 
for KU-HAR dataset is 18 by 18. Each row in the confusion matrix stands for an anticipated activity class. Every 
column in the confusion matrix corresponds to a unique class. The diagonal numbers indicate how frequently 
the samples are successfully categorised. The samples that the model is unable to correctly categorise are the 
numbers that are not on the diagonal.

According to the confusion matrix (Fig. 15a) for the HARTH dataset, it can be seen that two instances of ‘Run-
ning’ activity class are mistaken for ‘Walking’ and ‘Climbing stairs’ classes, which are both continuous activities 
that involve a person moving from one place to another. Other activity classes, on the other hand, are correctly 
classified. Out of 52 samples in the KU-HAR dataset, the confusion matrix (shown in Fig. 15b) illustrates that 
five times the ‘Pick’ activity class which contain vertical acceleration, are incorrectly classified as ‘Talk-Sit’, ‘Stand-
Sit’, and ‘Run’ activity classes. The other activity classes in the KU-HAR dataset are all accurately categorised. 

Table 6.  Classification accuracies attained for each HAR datasets before and after applying BBA based feature 
subset selection.

Dataset Model Accuracy without wrapper(%) Accuracy after wrapper(%)

HARTH

Mobilenet_v3_large 60 87

Efficientnet_b0 68 86

Concatenated feature vector 68 88.89

KU-HAR

Mobilenet_v3_large 73 97

Efficientnet_b0 78 96

Concatenated feature vector 77 97.97

HuGaDB

Mobilenet_v3_large 88 93

Efficientnet_b0 88 92

Concatenated feature vector 88 93.82

Table 7.  Recall, Precision and F1-score values achieved after using BBA-based feature selection method for 
three HAR datasets.

Dataset Model Recall after wrapper Precision after wrapper F1-score after wrapper

HARTH

Mobilenet_v3_large 0.87 0.89 0.87

Efficientnet_b0 0.86 0.89 0.85

Concatenated feature vector 0.89 0.90 0.89

KU-HAR

Mobilenet_v3_large 0.97 0.97 0.97

Efficientnet_b0 0.96 0.97 0.97

Concatenated feature vector 0.96 0.97 0.96

HuGaDB

Mobilenet_v3_large 0.93 0.93 0.93

Efficientnet_b0 0.92 0.92 0.92

Concatenated feature vector 0.93 0.94 0.93
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Figure 12.  Graph showing the Loss plot generated by (a) Efficientnet_b0 and (b) Mobilenet_v3_Large transfer 
learning models on HARTH dataset.

Figure 13.  Graph showing the Loss plot generated by (a) Efficientnet_b0 and (b) Mobilenet_v3_Large transfer 
learning models on KU-HAR dataset.

Figure 14.  Graph showing the Loss plot generated by: (a) Efficientnet_b0 and (b) Mobilenet_v3_Large transfer 
learning models on HuGaDB dataset.
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For the confusion matrix (shown in Fig. 15c) for the HuGaDB dataset, it can be examined that due to the linear 
acceleration of both activities, out of 15 samples, the ‘Down-By-Elevator’ activity class is incorrectly identified as 
‘Running’ activity class for 6 times out of 15 samples whereas the ‘Running’ activity class is incorrectly classified 
as ‘Down-By-Elevator’ class in three times out of 15 times.

BBA parameter setting. BBA used the concatenated feature vector from both the transfer learning models 
to choose the best feature subset. Execution parameters for BBA are shown below:

• Number of agents: 30
• Number of iterations: 100
• Validation data percentage: 20%

Figure 16 illustrates how the average model fitness rose for each iteration. Figure 16a shows the convergence 
curve for the HARTH dataset whereas Figs. 16b and c show the convergence curves for the KU-HAR and 
HuGaDB datasets respectively. It can be examined from Figure 16a that the convergence curve becomes flat 
after 20 iterations whereas in case of the KU-HAR and HuGaDB datasets, the convergence curve becomes flat 
after 80 iterations.

Comparison with existing models. Table  8 compares the performance of our wrapper-based deep 
feature optimization HAR model with few earlier HAR models proposed till date for the three HAR datasets. 
As shown in Table 8, our proposed wrapper-based deep feature optimization HAR model obtains classifica-
tion accuracies of 88.89%, 97.86%, and 93.26% for HARTH, KU-HAR, and HuGaDB datasets respectively. The 
results indicated that the wrapper-based deep feature optimization model, proposed for HAR problem, performs 
significantly better than all the earlier efforts on HAR.

Comparison with other optimization algorithms. Utilizing five well-known metaheuristic optimi-
zation algorithms, including the Cuckoo Search Algorithm (CSA)50, Equilibrium Optimizer (EO)51, Genetic 
Algorithm (GA)52, Gravitational Search Algorithm (GSA)53, and Grey Wolf Optimizer (GWO)54, the proposed 
BBA-based deep feature optimization model has been tested in the current work. Table 9 enlists the perfor-
mance results achieved by applying all the above meta-heuristic optimization algorithms. It can be noticed from 

Figure 15.  Graph showing the confusion matrices generated by our proposed HAR framework on: (a) 
HARTH, (b) KU-HAR and (c) HuGaDB datasets.

Figure 16.  Convergence curves to show average fitness over iterations after applying BBA on concatenated 
feature set for: (a) HARTH dataset, (b) KU-HAR dataset and (c) HuGaDB dataset.
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Table 9 that for both the HuGaDB and KU-HAR datasets, the proposed wrapper-based BBA has given the best 
classification accuracy with the least number of selected optimal features. However, in case of HARTH dataset, 
the CSA selects only 1 feature less than as compared to the proposed BBA but despite that our proposed model 
produces an accuracy gain of approximately 2%. This justifies the trade-off between classification accuracy and 
the number of optimal features selected which is negligible compared to the former. Following a comparison of 
the number of selected optimal features with the corresponding classification accuracies, it can be said that the 
BBA is one of the best-suited wrapper algorithm for each of the three HAR datasets.

Statistical significance test: McNemar’s test. In the preceding section, we thoroughly examined the 
performance of our proposed model on three HAR datasets and found that the proposed framework of the two 
base models outperforms each of them in terms of accuracy. To specifically show the effectiveness of our recom-
mended Wrapper based classification model over the basic models, we ran a statistical significance  test55 known 
as the McNemar’s  test56.

The results of McNemar’s test performed on the three HAR datasets-HARTH, KU-HAR, and HuGaDB data-
sets are presented in Table 10. McNemar’s test’s p-value should ideally be below 5% in order to reject the null 
 hypothesis57, and Table 10 clearly shows that this is the case in every scenario where the p value is less than 0.05. 

Table 8.  Performance comparison (in terms of classification accuracies) of our proposed wrapper-based deep 
feature optimization method with some existing HAR works implemented on the HARTH, KU-HAR, and 
HuGaDB datasets. Bold indicates the least number of features selected and highest values of accuracy, Recall, 
Precision and F1-score attained for each of the HAR datasets.

Dataset Researcher Accuracy(%)

HARTH
Logacjov et al.14 81

Proposed wrapper-based deep feature optimization HAR framework 88.89

KU-HAR
Sikder and  Nahid15 89.67

Proposed wrapper-based deep feature optimization HAR framework 97.86

HuGaDB

Gochoo et al.36 92.5

Logacjov et al.14 81

Filtjens et al.41 83.8

Javeed et al.37 92.5

Fang et al.38 79.25

Sun et al.39 88

Kumari et al.40 91.1

Proposed wrapper-based deep feature optimization HAR framework 93.82

Table 9.  Comparison of our proposed BBA based feature selection methodology with various well-known 
meta-heuristic feature selection algorithms used in the literature. (Here, bold indicates the least number of 
features selected and highest values of accuracy, Recall, Precision and F1-score attained for each of the HAR 
datasets).

Dataset Optimization algorithm Used Number of features selected Accuracy (%) Recall Precision F1-Score

HARTH

Cuckoo Search Algorithm(CSA)50 905 87.3 0.873 0.889 0.873

Equilibrium Optimize(EO)51 1105 88.29 0.883 0.891 0.888

Genetic Algorithm(GA)52 1066 88.48 0.885 0.894 0.883

Gravitational Search Algorithm (GSA)53 1135 87.48 0.875 0.894 0.883

Grey Wolf Optimizer(GWO)54 1346 88.49 0.885 0.891 0.888

Proposed Model (BBA) 906 88.89 0.889 0.901 0.888

KU-HAR

Cuckoo Search Algorithm(CSA)50 1208 97.54 0.975 0.956 0.955

Equilibrium Optimize(EO)51 1125 97.76 0.955 0.958 0.958

Genetic Algorithm(GA)52 1157 97.65 0.956 0.957 0.958

Gravitational Search Algorithm (GSA)53 1106 97.86 0.959 0.959 0.959

Grey Wolf Optimizer(GWO)54 1470 97.76 0.958 0.958 0.957

Proposed Model (BBA) 1049 97.97 0.965 0.965 0.965

HuGaDB

Cuckoo Search Algorithm(CSA)50 1113 91.57 0.916 0.922 0.916

Equilibrium Optimize(EO)51 1100 91.01 0.910 0.916 0.911

Genetic Algorithm(GA)52 1047 91.57 0.916 0.922 0.916

Gravitational Search Algorithm(GSA)53 1122 91.01 0.910 0.916 0.911

Grey Wolf Optimizer(GWO)54 1423 91.01 0.910 0.915 0.912

Proposed Model (BBA) 1017 93.82 0.939 0.943 0.939



16

Vol:.(1234567890)

Scientific Reports |          (2023) 13:965  | https://doi.org/10.1038/s41598-022-27192-w

www.nature.com/scientificreports/

Therefore, in every instance, the null hypothesis is rejected. As may be deduced from the aforementioned statis-
tical tests, the findings obtained by the base models and suggested ensemble model are statistically significant, 
i.e., not equal. This explains why the proposed HAR framework integrates the supplementary details supplied by 
the individual classifiers and produces better predictions, setting the overall wrapper-based feature optimization 
model apart from all of the individual transfer learning models.

Conclusions & future works
HAR is still one of the challenging research areas for the research community due to the dynamic nature of the 
data since there is no predefined number of human activities list. Three distinct HAR datasets, namely, HARTH 
containing 12 human activities, KU-HAR containing 18 human activities, and HuGaDB containing 12 human 
activities, have been utilized in this study. It is to be noted that all the three HAR datasets, used in the present 
work, have a different collection of human activities. Developing distinct techniques for each HAR datasets is 
not feasible. Therefore, the goal is to create a generic HAR model that applies to any acceleration and gyroscope 
based sensor data. Here, a combination of two distinct kinds of transfer learning models along with a wrapper-
based feature selection approach are used to achieve the same goal. The three recently developed benchmark 
HAR datasets namely, HARTH, KU-HAR, and HuGaDB, are used to test the proposed model, and the classifi-
cation accuracies are found to be 88.89%, 97.9%, and 93.82%, respectively. The experimental results performed 
better than most recent state-of-the-art findings. It is to be noted that almost 52%, 45% and 60% of original 
number of deep features for HuGaDB, KU-HAR and HARTH datasets respectively, have been selected by the 
present wrapper-based feature selection method using BBA. On the other hand, a total of about 21%, 20% and 
6% improvement in the overall classification accuracies have been attained by the proposed wrapper-based deep 
feature optimization methodology on HuGaDB, KU-HAR and HARTH datasets respectively. This is one of the 
major advantages of our proposed HAR framework.

The proposed model can be tuned in future by applying the following approaches:

• Filter method can be used to rank the features and instead of sending all features to the wrapper, they can be 
sent ranked-wise.

• The proposed model can be integrated with different type IoT and smartphone devices for real-time HAR 
prediction.

• The proposed HAR model can be validated on other publicly available datasets available in literature.

The primary contribution of this work is the proposed two-fold architecture model, which outperforms the 
prior state-of-the-art HAR models proposed in the literature. It offers a strong basis for combining a transfer 
learning deep feature extraction model with a wrapper-based feature selection approach that has already been 
trained for HAR. In the coming future, it may be integrated with many IoT and smartphone platforms, which is 
advantageous in a variety of fields like mobile app development, healthcare, and many more.

Data availability
No datasets are generated during the current study. The datasets analyzed during this work are made publicly 
available in this published article.

Code availability
The source codes related to the current work are made publicly available at: https:// github. com/ ghosh raghu 2610/ 
HAR_ WITH_ TRANS FER_ AND_ WRAPP ER. git.
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