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Abstract—This paper presents a novel hybrid wrapper and 

filter feature selection algorithm for classification problem using a 
memetic framework. It incorporates filter ranking method in the 
traditional genetic algorithm to improve classification 
performance and accelerate the search in identifying the core 
feature subsets. Particularly, the method adds or deletes a feature 
from a candidate feature subset based on the univariate feature 
ranking information. Our empirical study on commonly used 
datasets from the UCI repository and microarray datasets show 
that the proposed method outperforms existing methods in terms 
of classification accuracy, number of selected features and 
computational efficiency. Further, we investigate several major 
issues of memetic algorithm to identify a good balance between 
local and genetic search so as to maximize search quality and 
efficiency in the hybrid filter and wrapper memetic algorithm. 

Index Terms—Feature Selection, Filter, Wrapper, Memetic 
Algorithm (MA), Genetic Algorithm (GA), Hybrid Genetic 
Algorithm, Relief, Gain Ratio, Chi-Square 
 

I. INTRODUCTION 
EATURE selection has become the focus of many research 
areas in recent years.  With the rapid advance of computer 

and database technologies, datasets with hundreds and 
thousands of variables or features are now ubiquitous in pattern 
recognition, data mining, and machine learning [1-4]. To 
process such huge datasets is a challenging task because 
traditional machine learning techniques usually work well only 
on small datasets. Feature selection addresses this problem by 
removing the irrelevant, redundant, or noisy data. It improves 
the performance of the learning algorithm, reduces the 
computational cost and provides better understandings of the 
datasets. 

 Feature selection algorithms may be widely categorized 
into two groups: filter and wrapper methods [2, 4-10]. Filter 
methods evaluate the goodness of the feature subset by using 
the intrinsic characteristic of the data. They are relatively 
computationally cheap, since they do not involve the induction 
algorithm. However, they also take the risk of selecting subsets 
of features which may not match the chosen induction 
algorithm. Wrapper methods, on the contrary, directly use the 
induction algorithm to evaluate the feature subsets. They 
generally outperform filter methods in terms of prediction 
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accuracy, but are generally computationally more intensive. In 
summary, wrapper and filter methods can complement each 
other, in that filter methods can search through the feature 
space efficiently while the former provides good accuracy. In 
this paper, we propose a novel wrapper-filter feature selection 
algorithm (WFFSA) using a memetic framework [11-16], i.e., a 
combination of genetic algorithm (GA) [17-20] and local 
search (LS). Memetic algorithms (MAs) are population-based 
meta-heuristic search methods inspired by Darwinian’s 
principles of natural evolution and Dawkins’ notion of a meme 
defined as a unit of cultural evolution that is capable of local 
refinements. Recent studies on MAs have revealed their 
successes on a wide variety of real world problems. Particularly, 
they not only converge to high quality solutions, but also search 
more efficiently than their conventional counterparts [11-16].  

The goal of WFFSA is to improve classification performance 
and accelerate the search to identify important feature subsets. 
In particular, the filter method fine-tunes the population of GA 
solutions by adding or deleting features based on univariate 
feature ranking information. Hence, our focus here is on filter 
methods that are able to assess the goodness or ranking of the 
individual features. We denote such filter methods as filter 
ranking methods in this paper and investigate the proposed 
WFFSA for several filter ranking methods. Empirical study of 
WFFSA on several commonly used datasets from the UCI 
repository [21] and several microarray datasets indicates that it 
outperforms recent existing methods in the literature in terms of 
classification accuracy, selected feature size and efficiency. 
Further, we also investigate the balance between local and 
genetic search to maximize the search quality and efficiency of 
WFFSA. 

The rest of this paper is organized as follows. Section II 
describes the wrapper-filter feature selection algorithm based 
on a memetic framework. The experimental results and 
discussions are presented in Section III. Finally, Section IV 
concludes this study. 

II. WRAPPER-FILTER FEATURE SELECTION 
ALGORITHM—WFFSA 

 In this section, we introduce the proposed Wrapper-Filter 
Feature Selection Algorithm for classification problems which 
is depicted in Figure 1. In the first step, the GA population is 
initialized randomly with each chromosome encoding a 
candidate feature subset. Subsequently, on all or portion of the 
chromosomes, a local search or meme is applied in the spirit of 
Lamarckian learning [11, 14]. The mechanism to do local 
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improvement can be to reach a local optimum or to improve the 
solution. Genetic operators are then used to generate the next 
population. This process repeats until the stopping conditions 
are satisfied. We describe each component in detail as follows. 

A. Encoding Representation and Initialization 
 In the feature selection problem, a representation for 

candidate feature subset must be chosen and encoded as a 
chromosome. In most studies, a chromosome is a binary string 
of length equal to the total number of features so that each bit 
encodes a single feature (as shown in Figure 2). A bit of ‘1’ (‘0’) 
implies the corresponding feature is selected (excluded).  The 
length of the chromosome is denoted here as n. The maximum 
allowable number of bit ‘1’ in each chromosome is denoted as 
m. When prior knowledge about the optimal number of features 
is available, we may limit m to no more than the pre-defined 
value; otherwise m is equal to n. At the start of the search, a 
population size of p is randomly initialized. 

B. Objective Function 
The objective function is simply defined by the classification 

accuracy: 
( ) ( )cFitness c J S=          (1) 

where Sc denotes the corresponding selected feature subset 
encoded in chromosome c, and the feature selection criterion 
function J(Sc) evaluate the significance for the given feature 
subset Sc, in this study, J(Sc) is specified as the classification 
accuracy for Sc. Note that when two chromosomes are found 
having similar fitness, i.e., the difference between their fitness 
is less than a small value of ε, the one with a smaller number of 
selected features is given higher chances of surviving to the 
next generation. 

C. Local Search Improvement Procedure 
Much work on the use of domain knowledge and heuristics 

has resulted in highly effective search [12, 14, 15]. Taking this 
cue, we consider here the use of filter ranking methods as 
memes or local search heuristics in our WFFSA. Later, we 
show in Section III that using filter ranking methods as memes, 
MA is capable of converging to improved classification 
accuracy and at lower number of selected features when 
compared to existing methods recently proposed in the 
literature. 

Given a candidate chromosome c, we define X and Y as the 
sets of selected and excluded features encoded in c, 
respectively. Both X and Y are ranked using the univariate filter 
ranking method and with the most important feature ranked the 
highest. In this study, we consider three different filter ranking 
methods, namely, ReliefF [5], Gain Ratio [22] and Chi-Square 
[6]. These methods rank features based on different criteria that 
include Euclidean distance, information entropy and chi-square 
statistics respectively. We further define two basic local search 
operators of the WFFSA local search improvement procedure: 

i) Add: select a feature from Y using the linear ranking 
selection [23] and move it to X. 

ii) Del: select a feature from X using the linear ranking 
selection [23] and move it to Y. 

The Add and Del operations are illustrated in Figure 3. Here, 
F5 and F4 are the highest and lowest ranked features in Y; F3 
and F6 are the highest and lowest ranked features in X. Using 
the Add and Del operations, F5 is the most likely feature to be 
moved to X while F6 is the most likely feature to be moved to Y. 
The two most likely resultant chromosomes after the Add and 
Del operations are also depicted in Figure 3.  

 The intensity of local search is quantified by the local search 
length l and interval w. Local search length defines the 
maximum number of Del and Add operations in each local 
search. Therefore, there are a total of l2 possible combinations 
of Add and Del operations applied on a chromosome. Local 
search interval specifies the w elite chromosomes in the 
population that undergo local search improvement procedure in 
each generation. The local search improvement procedure may 
be applied on a chromosome until a local optimum or an 
improvement is reached. The locally improved chromosome is 
evaluated and replaces the original chromosome if it is of 
higher quality. Here, we further investigate three different local 
search strategies that are characterized by different local search 
intensity. 

1) Improvement First Strategy 
In this strategy, a random choice from the l2 combinations of 

Del and Add operations is used to search on the candidate 
chromosome. The local search stops once an improvement is 
obtained either in terms of classification accuracy or a 
reduction in the number of selected features without 
deterioration in accuracy greater than ε. This procedure is 
outlined in Figure 4. 

 
2) Greedy Strategy 

 In contrast to the improvement first strategy, the greedy 
strategy carries out all possible l2 combinations of Del and Add 
operations and the best improved solution is used to replace the 
original chromosome in the population. The greedy strategy is 
outlined in Figure 5. 

3) Sequential Strategy 
We also consider the sequential strategy described in [16]. 

The Hybrid genetic algorithm (HGA) was reported in [16] to 
generate better search performances than GA, SFS (sequential 
forward search), SFFS (sequential forward floating search), 
PTA(l,r) (plus-l and take away-r) and multi-start algorithms. 
There, instead of using a filter ranking method, the Add 
operation searches for the most significant feature y in Y in a 

 
Fig. 2 Representation of chromosome as a binary bit string 

 
Fig. 3 Add and Del Operations 

 
Fig. 1 The Procedure of WFFSA 

 
Fig. 4 The procedure of improvement first strategy 

 
Fig. 5 The procedure of greedy strategy 
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sequential manner, i.e., { }( )arg max a Yy J X a∈= U , and 

moves it to X. In the same way, the Del operation searches for 
the least significant feature x from X in a sequential manner, 
i.e., ( )arg maxa Xx J X a∈= − , and moves it to Y.  

D. Evolutionary Operators 
In the evolution process, standard GA operators such as linear 

ranking selection, uniform crossover and mutation operators 
based on elitist strategy may be applied. However, if prior 
knowledge on the optimum number of features is available, the 
number of bit ‘1’ in each chromosome may be constrained to a 
maximum of m in the evolution process. Since the standard 
uniform crossover and mutation operators may violate this 
constraint, restrictive crossover and mutation are proposed here. 
In restrictive crossover, the crossover operations are applied 
only on alleles with bit ‘1’ and in either of the two parent 
chromosomes. We outline the restrictive crossover in Figure 6. 
Based on the same principles, the restrictive mutation operator 
is outlined in Figure 7. 

E. Computational Complexity 
In this section, we analyze the computational complexity of 

the proposed WFFSA. The ranking of features based on the 
filter methods have linear time complexity in terms of feature 
dimensionality, they are conducted offline and the obtained 
rank list may be reused for each local search in WFFSA. 
Consequently, the computational for feature ranking is a 
one-time offline cost and is considered to be negligible 
compared to that of fitness evaluation in equation (1). Hence, 
we define the computational cost of a single fitness evaluation 
as the basic unit of computational cost in our analysis. 

The computational complexity for GA can be derived 
as ( )pgΟ , where p is the size of population and g is the number 
of search generations. The expected computational complexity 
of WFFSA with improvement first strategy is ( )2 / 2pl wgΟ . 

Here we assume that each l2 combinations of Add and Del 
operation has equivalent likelihood to obtain the first 
improvement, therefore the average trails to obtain the first 
improvement is l2/2. In a single search generation, l2w/2 fitness 
function calls are incurred. The ratio of local to genetic search 
is thus l2w/2p. 

In the greedy strategy, local search evaluates all possible l2 
combinations of Add and Del operations to attain the best 
possible locally improved solution. The computational 
complexity is thus ( )2pl wgΟ . In a single search generation, l2w 

fitness function calls are incurred and the ratio for local to 
genetic search is l2w/p. 

For the sequential strategy proposed in HGA [16], a total of 
[|Y|+(|Y|-l)]l/2 and [|X|+(|X|-l)]l/2 calls to the fitness function 
are incurred on the Add and Del operations, respectively. Since 

|X|+|Y|=n, the total classification calls in the local search is 
(n-l)lw/2. The computational complexity of sequential strategy 
is thus ( )( )/ 2p n l lwgΟ − . The ratio for local to genetic search 

is then (n-l)lw/2p.  
Since we are working with classification problems where n 

>> l, it is easy to determine that (n-l)lw/2 >> l2w > l2w/2. 
Consequently, the sequential local search strategy in HGA [16] 
would require significantly more computations, hence 
incurring more time than both the improvement first and greedy 
strategies of the WFFSA. 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 
In this section, we present an experimental study of WFFSA 

on commonly used benchmark and biological datasets.  In 
particular, we focus on four UCI datasets having more than 15 
features and four microarray datasets (ALL/AML [24], Colon 
[25], NCI60 [26], SRBCT [27]) having thousands of features in 
our study.   

In the WFFSA, we employed a population size of 30 and 
stopping criterion of 6000 fitness function calls for UCI 
datasets. On microarray datasets, as the feature size are 
significantly larger, the population size is increased to 50 or 
100 and the stopping criterion to 10000 or 20000. Further, the 
maximum number of selected features is unconstrained for the 
UCI datasets, i.e., m=n. On the other hand, it has been shown in 
the literature [8, 24-28] that microarray datasets could be 
learned with high accuracies with only hundreds or tens of 
features. In effect, we make use of this prior knowledge to 
constrain the maximum number of selected features m as 
depicted in Table 1. In effect, the restrictive crossover and 
mutation operations are applied on the microarray datasets. In 
our experimental setup, we employ crossover and mutation 
probabilities of pc=0.6 and pm=0.1, respectively. Linear ranking 
selection [23] with selection pressure of 1.5 is used for 
selection. The threshold ε to determine fitness similarity 
between two chromosomes is configured as 0.001 for UCI 
datasets and 0.02 for microarray datasets. The fitness of a 
chromosome or selected feature subset is evaluated using the 
1-nearest neighbor (1NN) classifier and the leave-one-out cross 
validation (LOOCV). Here we use the classification accuracy 
estimated from LOOCV and the number of selected features as 
performance measures. It is worth noting that the 
configurations of the parameter used here have been 
investigated empirically for the datasets considered and are 
summarized in Table 1. 

A. Comparison of Filter, GA and WFFSA 
The search performances of the filter ranking methods, GA 

and, WFFSA using several filter ranking methods and local 
search strategies on the eight datasets considered are 
summarized in Table 2. The comma delimited pair wise 
numeric values in the table represent the classification accuracy 
and the corresponding number of selected features. Due to the 

 
Fig. 7 The procedure of restrictive mutation 

 
Fig. 6 The procedure of restrictive crossover 

 

TABLE 1 
DATASETS AND PARAMETERS USED FOR EXPERIMENTS 
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stochastic nature of GA and WFFSA, the average results for ten 
independent runs are reported. The parentheses highlights the 
best result found across the ten runs. For each dataset, the 
bold-faced and bold-italic-faced representations in Table 2 
emphasize the best average performance and the best solution 
found among all methods, respectively. Six WFFSAs obtained 
based on the three filter ranking methods (i.e., ReliefF—

WFFSA-R or Gain Ratio — WFFSA-G or Chi-Square —

WFFSA-C) and two local search strategies (i.e., Improvement 
First or Greedy) have been investigated. In the WFFSAs, the 
local search length l and interval w in improvement first and 
greedy strategies are configured as l=4, w=1 and l=4, w=5, 
respectively. 

We discuss the performances for the various feature 
selection algorithms considered. On filter ranking methods, the 
t features with highest rank are chosen to induce the 1NN 
LOOCV classification. We increase t from 1 to m and the 
optimal value is determined when the best classification 
accuracy is obtained. The best classification accuracy and the 
corresponding t value for each filter ranking methods are 
reported in Table 2 (i.e., columns 3-5). It can be observed that 
WFFSAs outperform all three filter ranking methods and GA in 
terms of classification accuracy. The improvement in 
performance is more significant for the Sonar, Colon and 
NCI60 datasets. Moreover, WFFSAs reduce the number of 
selected features significantly. On the ALL/AML and SRBCT 
datasets, WFFSAs use less than one-third of the features 
required by GA and filter ranking methods to arrive at the 
improved classification accuracy. The best solutions found on 
all eight datasets shown in column 2 were attained by WFFSAs. 
We also study the performance of WFFSA for three different 
filter ranking methods since it was shown in [11] that 
inappropriate use of meme may result in the MA performing 
poorer than standard GA. The results in Table 2 indicate that 
WFFSA-R performs better than the other counterparts on 7 out 
of the 8 datasets in terms of average performance. For ReliefF 
filter ranking method, the feature goodness is evaluated by its 
ability to distinguish the near hit (nearest neighbors from the 
same class) and near miss (nearest neighbors from different 
classes). Therefore, it makes good sense that features with high 
score in ReliefF are more likely to help 1NN identify the 
correct nearest neighbor, hence generating good classification 
accuracy. On the other hand, Gain Ratio and Chi-Square do not 
appear to possess such mechanisms to compliment 1NN, hence 
being less effective here. 

Further, we compare the results obtained by WFFSAs to the 
recently proposed HGA(3) [16] for the UCI datasets in Table 3. 
The best average performance and the best solution for each 
dataset are highlighted using bold typeface representation. The 
results indicate that WFFSAs generate the best solutions on all 
four datasets and give competitive results to existing methods 

in terms of average performance. Even so, it is worth noting 
that HGA(3) consumed more than 200000 fitness function calls 
to arrive at the competitive performance on these UCI datasets. 
In contrast, WFFSA incurs less than 6000 fitness function calls 
to arrive at superior or competitive performances. 

To illustrate the generality and efficacy of the WFFSA 
framework, we consider also the use of different induction 
algorithms, particularly standard 1NN and Support Vector 
Machine with Radius Margin Bound (SVM) [29], and compare 
their performances with other recent studies in the literature 
using internal and external cross-validation schemes on the real 
world microarray datasets. In external cross-validation each 
dataset is randomly split into k stratified folds with k-1 folds for 
training and 1 fold for testing. The performance of the final 
selected features obtained is measured on the unseen testing 
data. The procedure is repeated k times. The best average 
performance and/or the best solution are reported in Table 4. 
Table 4 indicates that WFFSAs displays superior performances 
on most of the microarray datasets in comparison to the existing 
counterparts.   

B. Study on Local Search Strategies 
Over the recent years, much work has shown that an 

appropriate balance between local and genetic search is 
necessary for efficient memetic search [11-15]. In this 
subsection, we examine the balance between local and genetic 
search using different local search strategies, which are 
characterized by different intensities of genetic and local 
searches. Ten independent runs of WFFSA with different 
combinations of strategy, local search length l and interval w 
are conducted on two representative UCI and microarray 
datasets, i.e., the Sonar and Colon datasets. The results 
obtained are summarized in Tables 5 and 6. The local search 
heuristic or filter ranking method used is ReliefF, since it is 
shown to give better search performance than the other 
counterparts. 

The results in Tables 5 and 6 indicate that WFFSA for l = 4 
and w = 1 obtains the best average accuracy on the 
improvement first strategy. On the Sonar dataset, WFFSA for l 
= 4 and w = 1 and using the improvement first strategy is found 
to perform significantly better than the other configurations of 
WFFSAs statistically, using the two-tailed paired t-test at 
significance level of 0.05. On the Colon dataset, the superiority 
of WFFSA for l = 4, w = 1 and an improvement first strategy is 
however not statistically conclusive using the same t-test. 

TABLE 3 
RESULTS BY WFFSAS AND OTHER METHODS ON UCI DATASETS 

TABLE 2 
COMPARISON RESULTS OF FILTER, GA, AND WFFSA METHODS 

TABLE 4 
RESULTS BY WFFSAS AND OTHER METHODS ON MICROARRAY  DATASETS 

TABLE 5 
RESULTS OF DIFFERENT LOCAL SEARCH STRATEGIES, LENGTH AND INTERVAL 

ON SONAR DATASET 
 

TABLE 6 
RESULTS OF DIFFERENT LOCAL SEARCH STRATEGIES, LENGTH AND INTERVAL 

ON COLON DATASET 
 

TABLE 7 
RESULTS OF DIFFERENT LOCAL STRATERGIES ON ALL EIGHT DATASETS 
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Fig. 8 (a) 

 
Fig. 8 (b) 

Fig. 8 Search trace (average of 10 independent runs) of GA, WFFSA-R 
Improvement First (l=4,w=1), WFFSA-R Greedy (l=4,w=5), MA-S 
(l=4,w=1) and MA-S (l=4,w=5) on (a) Sonar dataset (b) NCI dataset 

Overall, we note that WFFSA with improvement first strategy 
generally performs better than using the greedy strategy. 
WFFSA obtains better results when local search is applied only 
to the single or five elite chromosomes instead of the entire 
population. In line with the observations in [12, 14], conducting 
local search on all chromosomes can result in unnecessary 
computation. Since the computational budget is often limited 
(i.e., based on the maximum number of fitness function calls 
allowed), the genetic search will be reduced proportionally due 
to possible redundant computation spent on local search. 
Without sufficient genetic search, the memetic algorithm is 
more likely to be trapped in the local optimum and hence may 
lead to poor search quality under limited computational budget. 

We also compare WFFSA-R with a memetic algorithm 
based on sequential strategy (MA-S). In MA-S, we configure l 
= 4 and w = 5. The comparison results are reported in Table 7. 
On all the datasets, both WFFSA-R with improvement first 
strategy or greedy strategy, (they are labeled as WFFSA-R First 
and WFFSA-R Greedy in Table 7) displays significantly better 
performance than MA-S statistically using two-tailed paired 
t-test at significance level of 0.05. The superior performance of 
WFFSA over MA-S is more obvious on the microarray datasets 
where n >> l.  So far, the results obtained further strengthen the 
importance of balance tradeoff between local search and 
genetic search for efficient MA search. A search dominated by 
either genetic search (e.g., GA) or local search (MA-S) would 
generally not perform effectively. The WFFSA for l = 4 and w 
= 1 based on the improvement first strategy thus gives the most 
appropriate tradeoff of local and genetic search than GA, MA-S 
and all other configurations considered in our present study. As 
shown in Figure 8, the average search trends of WFFSA-R First, 
WFFSA-R Greedy, MA-S (l = 4, w = 1) and MA-S (l = 4, w = 5) 
on the Sonar and NCI datasets suggest that WFFSA-Rs search 
more efficiently than GA and MA-S under limited 
computational budget. 

IV. CONCLUSIONS 
In this paper, we have proposed a novel hybrid filter and 

wrapper feature selection algorithm based on a memetic 
framework. We use filter ranking method as local search 
heuristic in the memetic algorithm. The experimental results 
presented show that the proposed method searches more 
efficiently and is capable of producing good classification 
accuracy with small number of features simultaneously. Most 
importantly, it outperforms GA, MA with sequential local 
search as well as many existing algorithms in the literature. 
Further, our study on various local search strategies, local 
search length and interval allow us to identify a suitable balance 
tradeoff of genetic and local search in the memetic search. This 

allows us to maximize the effectiveness and efficiency of the 
proposed hybrid filter and wrapper feature selection algorithm 
for classification problem using a memetic framework.  
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Procedure of WFFSA 
1 Begin 
2  Initialize: Randomly generate an initial  population of feature subsets; 
3  While (Stopping conditions are not satisfied) 
4   Evaluate all feature subsets encoded in the population; 
5   For each subset chosen to undergo the local improvement process
6 Perform local search and replace it with locally improved 
 solution in the spirit of Lamarckian learning; 
7            End For 
8 Perform evolutionary operators based on selection, crossover, and  
  mutation; 
9  End While 
10 End 

Fig. 1 The Procedure of WFFSA 
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Fig. 2 Representation of chromosome as a binary bit string 
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Fig. 3 Add and Del Operations 
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Procedure Improvement First Strategy 
1 Begin 
2  Initialize l and w; 
3  For each chromosome c among the w elitists 
4   For ( j = 1 to l2 )  
5    Generate a unique random pair (k,d); 
6    Repeat k times of Add operation; 
7    Repeat d times of Del operation; 
8    Calculate fitness of improved chromosome c′ using F(c′)=J(c′); 

   //|•| denotes the cardinality of a vector 
9    If ((F(c′) > F(c)) or (| F(c′) - F(c)| < ε and | c′| < |c|))  
10     Replace the genotype c with the improved c′; 

11     Break and consider the next elite chromosome; 
12    End If 
13   End For  
14  End For 
15 End 

Fig. 4 The procedure of improvement first strategy 
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Procedure Greedy Strategy 
1 Begin 
2  Initialize l and w; 
3  For each chromosome c among the w elitists 
4   cbest = c; 
5   For each of the l2 combinations (k,d) 
6    Repeat k times of Add operation; 
7    Repeat d times of Del operation; 
8    Calculate fitness of improved chromosome c′ using F(c′)=J(c′); 
9    If ((F(c′) > F(cbest)) or (| F(c′) - F(cbest)| < ε and | c′| < |cbest|)) 
10     cbest = c′ ; //update the best improved chromosome 
11    End If 
12   End For  
13   Replace the genotype c with the best improved cbest; 
14  End For 
15 End 

Fig. 5 The procedure of greedy strategy 
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Procedure Restrictive Crossover 
1 Begin 
2  Randomly select two parents p1 and p2; 
3  Randomly generate a number r within [0,1]; 
4  If (r < pc)        //pc denotes the crossover probability 

 //ensure the number of bit ‘1’ in the offspring dose not exceed m 
5   k = Min( |p1| , |p2| );    // |p1|, |p2| < m 
6   For ( i = 1 to k ) 
7     Locate the allele L1 of the ith bit ‘1’ in p1; 
8    Locate the allele L2 of the ith bit ‘1’ in p2; 
9    Crossover p1 and p2 in positions L1 and L2 with probability 0.5;
10   End For  
11  End If 
12 End 

Fig. 6 The procedure of restrictive crossover 
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Procedure Restrictive Mutation 
1 Begin  
  // mutating chromosome c; pm denotes the mutation probability 
2  For ( i = 1 to |c| ) 
3   Locate the position L1 of the ith bit ‘1’ in c; 
4   Randomly select a bit ‘0’ with position L0; 

5  Swap positions L1 and L0 with probability pm; 
6  End For 
7  For ( i = 1 to m-|c|) 
8   Randomly flip a bit ‘0’ with probability pm; 
9  End For 
10 End 

Fig. 7 The procedure of restrictive mutation 
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(a) 

(b) 
Fig. 8 Search trace (average of 10 independent runs) of GA, WFFSA-R 
Improvement First (l=4,w=1), WFFSA-R Greedy (l=4,w=5), MA-S 
(l=4,w=1) and MA-S (l=4,w=5) on (a) Sonar dataset (b) NCI dataset
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TABLE 1 
DATASETS AND PARAMETERS USED FOR EXPERIMENTS 

Dataset Num of 
Features, n 

Num of 
Instances 

Num of 
Classes 

Population 
Size pc , pm 

Maximum Number of 
Selected Features, m 

Feature Subset 
Evaluation 

Stopping 
Criterion * 

Vehicle 18 846 4 30 0.6, 0.1 18 1NN, LOOCV 6000 
WDBC 30 569 2 30 0.6, 0.1 30 1NN, LOOCV 6000 

Ionosphere 34 351 2 30 0.6, 0.1 34 1NN, LOOCV 6000 
Sonar 60 208 2 30 0.6, 0.1 60 1NN, LOOCV 6000 

ALL/AML 1000 72 2 50 0.6, 0.1 Constrained to 50  1NN, LOOCV 10000 
Colon 1000 62 2 50 0.6, 0.1 Constrained to 50 1NN, LOOCV 10000 
NCI60 1000 60 9 50 0.6, 0.1 Constrained to 50 1NN, LOOCV 10000 
SRBCT 2308 83 4 100 0.6, 0.1 Constrained to 50 1NN, LOOCV 20000 

* Here the stopping criterion is the maximum number of fitness function calls 
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TABLE 2 
COMPARISON RESULTS OF FILTER, GA, AND WFFSA METHODS 

WFFSA-R* WFFSA-G* WFFSA-C* 

Dataset Best 
Found ReliefF Gain 

Ratio 
Chi 

Square GA 
First** Greedy** First Greedy First Greedy 

Vehicle 
(846×18) 75.06, 12 72.81, 12 70.33, 16 72.22, 15 74.88, 10.2

(75.06, 12)
75.00, 11.3
(75.06, 12)

75.06, 12 
(75.06, 12)

74.98, 11.5 
(75.06, 12) 

75.04, 11.7 
(75.06, 12) 

75.06, 12 
(75.06, 12) 

75.04, 11.7
(75.06, 12)

WDBC 
(569×30) 98.24, 12 96.49, 4 96.31, 29 96.31, 29 97.82, 14.7

(98.23, 19)
97.96, 13 

(98.24, 14)
98.14, 13.9
(98.24, 14)

97.98, 11.8 
(98.24, 14) 

97.93, 13.2 
(98.07, 11) 

97.88, 12 
(98.24, 15) 

98.00, 12.7
(98.24, 12)

Ionosphere 
(351×34) 96.01, 8 91.74, 7 90.88, 13 92.31, 7 94.13, 12.5

(94.87, 13)
95.00, 7.5 
(95.73, 8) 

94.96, 9.7 
(95.44, 8) 

95.13, 8.9 
(96.01, 8) 

95.19, 8.9 
(95.44, 7) 

95.01, 8.9 
(95.44, 7) 

94.73, 10.4
(95.16, 9) 

Sonar 
(208×60) 97.6, 22 88.46, 15 88.94, 31 89.90, 30 93.89, 27.7

(95.19, 25)
96.30, 24 

(97.12, 19)
95.63, 24.6
(96.63, 24)

94.95, 25.2 
(97.6, 22) 

95.22, 24 
(96.63, 24) 

95.82, 24.6 
(96.63, 24) 

95.24, 26.4
(96.15, 26)

ALL/AML 
(72×1000) 100, 2 98.61, 16 98.61, 17 98.61, 18 100, 26.5 

(100, 20) 
100, 5.1 
(100, 2) 

100, 8.3 
(100, 4) 

100, 5.5 
(100, 3) 

100, 6.3 
(100, 4) 

100, 6.1 
(100, 2) 

100, 7.9 
(100, 3) 

Colon 
(62×1000) 100, 14 83.87, 17 90.32, 24 87.10, 17 94.52, 37 

(95.16, 31)
97.9, 10.9 
(100, 14) 

97.26, 16 
(100, 20) 

96.29, 11.9 
(98.39, 11) 

97.9, 14.9 
(100, 17) 

95.97, 10 
(98.39, 15) 

96.94, 17.8
(100, 16) 

NCI60 
(60×1000) 85.25, 14 65.57, 16 59.02, 31 65.57, 28 77.54, 38.6

(80.33, 40)
82.30, 22.7
(85.25, 19)

79.67, 23.8
(81.97, 24)

82.13, 21.5 
(85.25, 18) 

81.31, 27.5 
(85.25, 33) 

81.15, 21.8 
(85.25, 14) 

81.48, 26.5
(85.25, 22)

SRBCT 
(83×2308) 100, 7 100, 38 100, 20 100, 43 99.64, 43.3

(100, 39) 
100, 15.1 
(100, 7) 

100, 18.7 
(100, 11) 

99.76, 17.1 
(100, 8) 

100, 21.8 
(100, 16) 

99.76, 14.9 
(100, 9) 

99.88, 17.9
(100, 8) 

The value delimited by comma in each grid shows the classification accuracy and the corresponding number of selected features respectively. The values in the 
parentheses are the best results obtained. Bold typefaces emphasize the best average performance in each row. Bold italic typefaces emphasize the best solution 
found among all the methods. * Here WFFSA-R, WFFSA-G, and WFFSA-C denote WFFSA with local search heuristic of ReliefF, Gain Ratio, and Chi-Square, 
respectively. ** First represents the improvement first strategy with length l = 4 and interval w = 1.Greedy represents greedy strategy with l = 4 and w = 5. 
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TABLE 3 
RESULTS BY WFFSAS AND OTHER METHODS ON UCI DATASETS 

Dataset WFFSA Results obtained from the 
literature 

Vehicle 75.06, 12 
(75.06, 12) 

WFFSA+1NN
LOOCV 

73.52,7 
(73.52, 7) 

HGA(3)+1NN 
LOOCV [14] 

WDBC 98.14, 13.9 
(98.24, 12) 

WFFSA+1NN
LOOCV 

93.85, 24 
(93.85, 24) 

HGA(3)+1NN 
LOOCV [14] 

Ionosphere 95.19, 8.9 
(96.01, 8) 

WFFSA+1NN
LOOCV 

95.56, 7 
(95.73, 7) 

HGA(3)+1NN 
LOOCV [14] 

Sonar 96.30, 24 
(97.6, 22) 

WFFSA+1NN
LOOCV 

96.34, 24 
(97.12, 24) 

HGA(3)+1NN 
LOOCV [14] 

Bold and bold italic typefaces represent best average performance and best solution 
found among the methods, respectively. 
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TABLE 4 
RESULTS BY WFFSAS AND OTHER METHODS ON MICROARRAY  DATASETS 

Dataset WFFSA Results obtained from the 
literature 

97.34, 30.5 
(98.57, 30.8) 

WFFSA+SVM
10-fold CV 

97.34, 31 
(97.68, 50) 

SVM+LS bound 
.632+ bootstrap [23]ALL/AML 100, 5.1 

(100, 2) 
WFFSA+1NN

LOOCV  (100, 8) SVM-RFE 
Holdout [8] 

86.01, 31.0 
(87.38, 31.2) 

WFFSA+SVM
10-fold CV 

84.77, 31 
(84.95, 46) 

SVM+LS bound 
.632+ bootstrap [23]Colon 97.9, 10.9 

(100, 14) 
WFFSA+1NN

LOOCV (100,16) SVM-RFE 
Holdout [8] 

98.53, 90.5 
(100, 89.6) 

WFFSA+SVM
10-fold CV (~95.00, 150) SVM+Max Minority

4-fold CV [27] SRBCT 100, 15.1 
(100, 7) 

WFFSA+1NN
LOOCV (100, 96) ANN+PCA 

3-fold CV [26] 
66.43, 485.3 
(72.19, 485) 

WFFSA+SVM
4-fold CV (66.66, 150) SVM+Sum Minority

4-fold CV [27] NCI60 82.30, 22.7 
(85.25, 14) 

WFFSA+1NN
LOOCV  (85.25,13) GA+MLHD 

LOOCV [25] 
Bold and bold italic typefaces represent best average performance and best solution 
found among the methods, respectively. Non-shaded and shaded tables represent 
using Internal or External cross validation, respectively. External cross-validation 
is repeated 10 times for each dataset. 
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TABLE 5 
RESULTS OF DIFFERENT LOCAL SEARCH STRATEGIES, LENGTH AND INTERVAL 

ON SONAR DATASET 
 Improvement First Strategy Greedy Strategy 

 w = 1 w = 5 w = P w = 1 w = 5 w = P
l = 2 95.77, 26.3 94.95, 26.7 95.10, 26.1 94.86, 28.3 95.14, 25.3 94.52, 28.3
l = 4 96.30, 24 95.67, 24.7 95.38, 22.9 94.8, 23.2 95.63, 24.6 94.13, 26
l = 8 95.53, 21.4 95.24, 24.4 95.43, 25.5 94.91, 20.5 95.10, 25 94.04, 28.1

TABLE 6 
RESULTS OF DIFFERENT LOCAL SEARCH STRATEGIES, LENGTH AND INTERVAL 

ON COLON DATASET 
 Improvement First Strategy Greedy Strategy 

 w = 1 w = 5 w = P w = 1 w = 5 w = P
l = 2 97.26, 17.9 97.10, 16.9 95.97, 22.2 96.13, 15 96.29, 14.7 95.65, 20.8
l = 4 97.9, 11.5 97.42, 12.9 97.10, 14.6 96.45, 12.6 97.26, 16 95.65, 19.9
l = 8 96.77, 10.5 97.26, 10.4 97.10, 13.1 96.45, 10.9 96.94, 14.1 95,32, 15.8

TABLE 7 
RESULTS OF DIFFERENT LOCAL STRATERGIES ON ALL EIGHT DATASETS 

Dataset 
WFFSA-R  

First 

w = 1, l = 4 

WFFSA-R  
Greedy 

w = 5, l = 4 

MA-S* 

w = 1, l = 4 
MA-S* 

w = 5, l = 4 

Vehicle 
(846×18) 

75.00, 11.25 
(75.06, 12) 

75.06, 12 
(75.06, 12) 

74.84, 10.5 
(75.06, 12) 

74.60, 10.6 
(75.06, 12) 

WDBC 
(569×30) 

97.96, 13 
(98.24, 14) 

98.14, 13.9 
(98.24, 14) 

97.80, 14.7 
(98.07, 14) 

97.47, 13.7 
(97.72, 12) 

Ionosphere 
(351×34) 

95.00, 7.5 
(95.73, 8) 

94.96, 9.7 
(95.44, 8) 

94.27, 11 
(95.44, 10) 

93.48, 12.8 
(94.59, 12) 

Sonar 
(208×60) 

96.30, 24 
(97.12, 19) 

95.63, 24.6 
(96.63, 24) 

93.65, 26.5 
(95.67, 25) 

91.73, 28.4 
(93.75, 32) 

ALL/AML 
(72×1000) 

100, 5.1 
(100, 2) 

100, 8.3 
(100, 4) 

100, 27.2 
(100, 16) 

100, 44 
(100, 44) 

Colon 
(62×1000) 

97.9, 11.5 
(100, 14) 

97.26, 16 
(100, 20) 

91.94, 31.4 
(95.16, 19) 

82.26, 18 
(82.26, 18) 

NCI60 
(60×1000) 

82.30, 22.7 
(85.25, 19) 

79.67, 23.8 
(81.97, 24) 

74.36, 36 
(77.05, 36) 

68.85, 34 
(68.85, 34) 

SRBCT 
(83×2308) 

100, 15.1 
(100, 7) 

100, 18.7 
(100, 11) 

93.13, 39 
(96.39, 33) 

87.83, 35.5 
(91.57, 23) 

* MA-S denotes memetic algorithm based on sequential local search strategy. 


