
Wrapper Generation Supervised by a Noisy Crowd

Valter Crescenzi, Paolo Merialdo, Disheng Qiu

Dipartimento di Ingegneria
Università degli Studi Roma Tre

Via della Vasca Navale, 79 – Rome, Italy

{crescenz, merialdo, disheng}@dia.uniroma3.it

ABSTRACT

We present solutions based on crowdsourcing platforms to
support large-scale production of accurate wrappers around
data-intensive websites. Our approach is based on super-
vised wrapper induction algorithms which demand the bur-
den of generating the training data to the workers of a
crowdsourcing platform. Workers are paid for answering
simple membership queries chosen by the system. We present
two algorithms: a single worker algorithm (alfη) and a mul-
tiple workers algorithm (alfred). Both the algorithms deal
with the inherent uncertainty of the responses and use an ac-
tive learning approach to select the most informative queries.
alfred estimates the workers’ error rate to decide at run-
time how many workers are needed. The experiments that
we conducted on real and synthetic data are encouraging:
our approach is able to produce accurate wrappers at a low
cost, even in presence of workers with a significant error
rate.

1. INTRODUCTION
The abundance of data contained in web pages has mo-

tivated many research efforts towards the development of
effective methods and tools for generating web wrappers,
i.e., rules that allow the extraction of data from web pages.
Supervised approaches to infer web wrappers have limited
scalability, mainly because they require a set of training
data, typically provided as labeled values. Unsupervised ap-
proaches (e.g. [3, 6]) have been investigated as an attempt
to “scale-up” the wrapper generation process by overcoming
the need of training data. Unfortunately, they have limited
applicability because of the low precision of the produced
wrappers.

Crowdsourcing platforms represent an intriguing opportu-
nity to “scale-out” supervised wrapper inference approaches.
These platforms support the assignment of mini-tasks to
people recruited on the Web, and thus allow the engagement
of a large number of workers to produce massive amounts of
training data.

Copyright© 2013 for the individual papers by the papers’ authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

However, generating wrappers with the support of crowd-
sourcing platforms introduces a number of challenges that
were not addressed in the literature: the mini-tasks submit-
ted to the platform should be extremely simple, since they
are performed by non-expert workers; their number should
be minimized to contain the costs.

We are developing a framework, alf [7], that addresses
the above issues to let the crowd effectively and efficiently su-
pervise the wrapper generation process.1 alf progressively
infers a wrapper by posing membership queries (MQ), which
are the simplest form of queries [1], since they admit only a
yes/no answer (e.g., “Is the string ‘John Wayne’ a value to
extract ? ”); alf implements an active learning algorithm to
select the queries that more quickly bring to the generation
of an accurate wrapper, thus reducing the costs [14]; and,
finally, here we extend alf to adopt a probabilistic model
that considers errors (wrong answers) introduced by inaccu-
rate workers [2, 15].

We have experimentally observed that with perfect work-
ers, i.e., workers that do not make any mistake in answering
the proposed membership queries, alf generates the correct
extraction rules reducing on average the number of queries
by 4× with respect to a random choice [7]. However, it
is well known that the workers recruited on crowd sourc-
ing platforms are far from being perfect. On an empirical
evaluation that we conducted on a popular crowdsourcing
platform, we experienced a significant number of incorrect
answers (around 10% on average) even for the simple mem-
bership queries posed by our system.

This paper extends our framework to manage workers that
may return incorrect answers. First, we introduce alfη,
which extends the underlying model of alf to deal with the
noisy answers of a single worker. The presence of errors
introduces the challenging issue of deciding when to stop
the learning process. Intuitively, when a worker is inaccu-
rate, the costs of acquiring her answers may become not
justified by the increment of quality in the inferred wrap-
per that these answers produce. alfη needs an estimation
of the worker’s error rate to reason on the optimal number
of queries that should be assigned to the worker. Unfor-
tunately, at most a rough estimation of the error rate is
available when the worker is engaged.

Then, to overcome this issue, we introduce alfred (alf
with redundancy), an algorithm that builds on alfη to find
the best solution according to the training data provided by
multiple workers. It adopts the conventional technique of
facing the presence of errors by engaging multiple workers

1A demo is available at http://alfred.dia.uniroma3.it.

1

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

8

for solving the same tasks. However, alfred decides the
number of workers during the learning process, at runtime,
and minimizes the costs engaging only the workers actu-
ally needed to achieve the desired quality. alfred exploits
the weighted consensus among multiple workers to estimate
their error rates so that better stopping conditions can be
crafted to take into account both the cost (quantified as
the number of queries) and the quality of the wrapper (as
estimated by a probabilistic model).

Contributions. Overall, the paper makes several contribu-
tions: (i) we extend our crowd based wrapper inference
framework [7] in order to manage noisy answers; (ii) we pro-
pose a principled approach to decide at runtime how many
workers should be engaged to deal with the presence of noisy
answers; (iii) we show how to estimate the workers’ error
rates during the learning; (iv) we set several termination
strategies aiming at a fair trade-off between output quality
and cost; (v) we report a set of preliminary experimental
results with both synthetic and real answers collected from
the crowd.

Paper outline. The paper is organized as follows: Section 2
formalizes our setting and presents the extension to our pre-
vious probabilistic model to deal with noisy answers; Sec-
tion 3 introduces alfη, the active learning algorithm for
a single noisy worker and Section 4 presents alfred, its
generalization to multiple workers. Section 5 reports the
experimental results. Section 6 discusses related work, and
Section 7 concludes the paper.

2. MODELING WRAPPER QUALITY AND

NOISY WORKERS
We focus on data-intensive websites whose pages are gen-

erated by scripts that embed data from an underlying data-
base into an HTML template. Let U = {p1, . . . , pn} be an
ordered set of pages generated by the same script. Given an
attribute of interest published in the pages, its values can
be extracted by means of an extraction rule (or simply rule).
The value extracted by a rule r from a page p, denoted by
r(p), is either a string occurrence from the HTML source
code of p, or a special nil value. A rule r over the pages in
U returns the ordered set of values r(p1), . . . , r(pn) and rep-
resents a concrete tool to build a vector of values, denoted
by r(U), indexed by the pages of U .

We propose a wrapper induction process that requires as
input the set U of pages to be wrapped, and only a sin-
gle initial annotation v0 (which is assumed correct) of the
attribute value to extract.2

The inference process starts by generating a space of hy-
pothesis, i.e., a set Rv0 of candidate rules that extract the
given initial annotations v0. We consider extraction rules
defined by means of expressions belonging to a simple frag-
ment of XPath; namely, we use absolute and relative XPath
expressions that specify paths to the leaf node containing
the value to be extracted. Absolute rules specify paths that
start either from the document root or from a node having
an ‘id’; relative rules start from a template node working as

2Such input annotation may be supplied either manually
or automatically by looking up in the page a golden value
from an available database. The approach can be easily
generalized to deal with multiple initial annotations.

pivot. Textual leaves that occur once in every input page
are considered template nodes [3].

The inference process evaluates the candidate rules inRv0

by posing questions to workers recruited from a crowdsourc-
ing platform: they are shown a page and asked whether a
given value v from that page corresponds to a value of the
target attribute. The goal is to select the rule working not
only on the annotated sample page from which it has been
generated, but also for all the other pages in the input col-
lection U . Each query is formed by picking up the value in
the set V R

v0 (U) of values extracted from pages in U by the
candidate rules Rv0 .

Figure 1 shows an example: suppose that we are inter-
ested to generate a wrapper that extracts the Title from the
fictional set of movie pages U = {p1, p2, p3} whose DOM
trees are sketched in Figure 1(left). Assume that the ini-
tial annotation v0 =‘City of God’ is supplied on the sample
page p1. Figure 1(right) shows the set Rv0 = {r1, r2, r3} of
candidate rules generated from this initial annotation. The
queries composed by the inference process use the values
V R
v0 (U) that appear as elements of the vectors extracted by

the rules in Rv0 from the pages in U .
The binary answer l, with l ∈ {−,+}, supplied by a

worker adorns the queried value v with either a positive
or a negative label, producing a labeled value denoted by
vl. An ordered set of k labeled values composes a train-
ing sequence (t.s.) denoted Lk−1, so that L0 = {v+0 } and
Lk+1 = Lk ∪ {vlk}.
Given a t.s. Lk, we introduce a probabilistic model for

estimating the probability P (r|Lk) of each candidate rule
r ∈ Rv0 of being correct for the whole set of input pages U ,
and the probability P (Rv0 |L

k) that the correct rule is not
present in Rv0 . These probabilities are updated after each
new labeled value vlk is observed, i.e., a worker labels with l

the value provided by a MQ on vk and the t.s. is expanded
to Lk+1 = Lk ∪ {vlk}.

Bayesian update rules compute the posterior probabili-
ties P (r|Lk+1) and P (Rv0 |L

k+1) starting from the proba-

bilities, P (r|Lk) and P (Rv0 |L
k) respectively, available be-

fore observing vlk. The process can be repeated treating each
posterior probability as the priors required by the next itera-
tion. The whole process is triggered using as a base case the
priors P(Rv0) of having generated the correct rule in Rv0 ,
and the probability P(r) that r is a correct rule. Assuming
that Rv0 is generated from a class of rules sufficiently ex-
pressive to include the target rule, we can fix P(Rv0) = 0,3

and uniformly set P(r) = 1
|Rv0

|
.

Bayesian update rules require the definition of the p.d.f.
P (vk|r, L

k). This is usually obtained by introducing a prob-
abilistic generative model to abstract the actual process
leading to the generation of t.s.. For the sake of simplicity,
we adopt the Classification Noise Process (CNP) model [2]
to describe inaccurate workers that may produce indepen-
dent and randommistakes with an expected error rate η, and
we assume that the next value to query is randomly chosen
according to a uniform p.d.f. over all values V R

v0 (U) \ Lk.
Let Pη(·) denote a p.d.f. over all possible t.s. in presence

of noise, it follows:

Pη(vlk|r, L
k) =P (vl

k
|r, Lk) · (1− η) + P (v−l

k
|r, Lk) · η (1)

3In [7], where we study the possibility of dynamically tun-
ing the expressiveness of the class, we have developed the
opposite assumption.

2

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

9

❳
❳

❳
❳
❳

❳
❳❳

rules
pages U

p1 p2 p3

Rv0

r1 City of God Inception Oblivion
r2 City of God Inception nil
r3 City of God nil Oblivion

r1 =/html/table/tr[1]/td
r2 =//td[contains(.,“Ratings:”)]/../../tr[1]/td
r3 =//td[contains(.,“Director:”)]/../../tr[1]/td

Figure 1: (Left) DOM of three sample pages; (Right) Extraction rules in Rv0 = {r1, r2, r3} with v0 =‘City of God’
and the set of values V R

v0 (U) they extract from pages in U = {p1, p2, p3}.

where (1−η) is the probability that a worker correctly labels
with l the provided value vk, and η is the probability that
she wrongly provides the opposite label, here denoted by −l.
P (vlk|r, L

k) is the corresponding noise-free p.d.f. and can be
expressed as in [7]:

P (vl
k
|r, Lk) =

{

1
|V R

v0
(U)|−|Lk|

, iff vk ∈ V l(r) \ Lk

0 , otherwise

where V l(r) is the subset of values in V R
v0 (U) that should

be labeled l if r is the correct rule. In our generative model
the values composing the t.s. Lk cannot be queried again,
therefore V R

v0 (U) \ Lk is the set of values that can be used
to generate new queries.

As we discuss in the next section, these probabilities are
used to effectively choose the next question, and to establish
a termination condition for the learning process.

3. LEARNING EXTRACTION RULES
The probabilistic model developed in the previous sec-

tion aims at computing, observed a t.s. Lk, the probability
P (r|Lk) that a given extraction rule r within a set of candi-
date rules Rv0 is correct. In this section we present alfη, an
active learning algorithm that exploits these probabilities to
minimize the number of queries to the crowd workers.

Listing 1 alfη: Active Learning Algorithm for a Single
Noisy Worker

Input: a set of pages U
Input: the set of candidate rules Rv0

Input: a worker w and its associated error rate ηw

Output: a teaching sequence Lk

1: let k = 1; let L1 = {v+0 };
2: while (not haltalf(L

k)) do
3: vk ← chooseQuestion(Lk);
4: l← getAnswer(w, vk);
5: Lk+1 ← Lk ∪ {vlk};
6: compute P (r|Lk+1), ∀r ∈ Rv0 ;
7: k ← k + 1;
8: end while
9: return Lk;

Listing 1 contains the pseudo-code of the alfη algorithm:
it processes a t.s. Lk built by actively asking to a worker
(here modeled by means of the subprogram getAnswer())
the label of a value chosen by the subprogram choose-

Question(); alfη computes a p.d.f. describing the prob-
ability of correctness over the rules in Rv0 .

In every iteration (lines 2–8), the worker is asked to label
a new value vk (lines 3–4) and the t.s. is expanded (line 5).
Then the probability P (r|Lk+1) is updated (line 6).
chooseQuestion() selects the next value to be labeled

by the worker, i.e., the next membership query. The chosen
value is that on which rules most disagree, appropriately
weighted according to their probability. This is equivalent
to compute the vote entropy [14] for each v ∈ V R

v0 (U):

H(v) = −[P (v+|Lk) logP (v+|Lk)+P (v−|Lk) logP (v−|Lk)]

where: P (v+|Lk) =
∑

r∈Rv0
:r(pv)=v P (r|Lk)

and P (v−|Lk) =
∑

r∈Rv0
:r(pv) 6=v P (r|Lk)

are the probabilities that v is respectively either a value to
extract or an incorrect value (pv denotes the page contain-
ing v). Intuitively, the entropy measures the uncertainty
of a value and querying the value with the highest entropy
removes the most uncertain value:

chooseQuestion(Lk) { return argmaxv∈V R
v0

(U) H(v); }

Since different termination policies can be appropriate de-
pending on the budget constraints and on the quality tar-
gets, we propose several implementations of haltalf(L

k).

haltr: A simple policy is to stop when the probability of
the best rule overcomes a threshold λr:

haltr(L
k) { return (maxr∈Rv0

P (r|Lk) > λr); }

The main limitation of this strategy is that it does not take
into account the costs.

haltMQ: A simple policy to upper bound the costs is to
stop as soon as the algorithm runs out of a “budget” of
λMQ membership queries.

haltMQ(L
k) { return (|Lk| > λMQ); }

The main limitation of this strategy is that it does not con-
sider the quality of the output rules.

haltH : A trade-off between quality and cost can be set by
posing only queries that contribute enough to the quality of
the inferred rules, and stopping as soon as the costs are con-
sidered not correctly rewarded by the increment of quality in
the output rules. It turns out that this can be easily mod-
eled in term of the maximum entropy. haltH terminates
as soon as the maximum entropy of the values is below a
threshold λH , i.e., no value is uncertain enough to deserve
a query:

haltH(Lk) { return (maxv∈V R
v0

(U) H(v) < λH); }

3

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

10

Whichever is the termination policy adopted by alfη, its
efficacy in achieving an optimal trade-off between quality
and the costs for the learning tasks is strongly affected by a
correct estimation of the worker’s error rate, η. An incorrect
evaluation of η can lead to a waste of queries (when the
error rate is overestimated), or to a quality loss (when it
is underestimated), as confirmed by the experiments with
different termination policies (reported in Section 5.2).

In our experimental evaluation, we use as a termination
policy the following combination:

haltalfη (W,Lk) = haltH(Lk) or haltMQ(L
k).

This policy leverages the same trade-off between quality and
cost as in haltH , but focuses on the cost side by limiting
through haltMQ the budget allocated for each worker.

4. INFERENCE WITH A NOISY CROWD
We now introduce another algorithm, alfred, that fol-

lows the conventional approach based on redundancy [15]
to deal with inaccurate workers. alfred improves alfη
robustness by dynamically recruiting additional workers to
whom it dispatches redundant tasks. It combines the an-
swers provided by a set W of multiple workers on the same
task to estimate the workers’ error rate, as well as to find
the most likely rule, at the same time.

Our probabilistic model can easily deal with multiple work-
ers by appending the t.s. Lw of every worker w ∈ W into a
unique t.s., denoted by L = ⊎w∈WLw, which is then used to
train alfη. However, this approach raises two issues: (i) it is
not clear how many workers should be involved in the learn-
ing process to achieve a good trade-off between output qual-
ity and cost; (ii) a correct estimation of the workers’ error
rates strongly affects alfη performances, and each worker
could have an error rate radically different from others.

To overcome these issues, alfred dynamically chooses the
amount of redundancy needed, and it exploits the cumula-
tive knowledge both to find the solution on which most of
the weighted workers consensus converges, and to estimate
the workers’ error rates.

Listing 2 illustrates alfred pseudo-code: the main loop
(lines 2–15) alternates two phases. First, the workers are
engaged (lines 3–8): each worker w trains an alfη instance,
thus producing a t.s. Lw. In this phase, the worker is as-
sociated with an initial error rate (line 5).4 The second
phase (lines 10–14) starts as soon as the first phase has ac-
cumulated enough workers (at least W0). The goal of this
phase is to leverage all the t.s. provided by the workers in
order to compute both the p.d.f. of the rules P (r|L) and the
individual error rate ηw of each worker w ∈W .

Our solution is inspired by the work on Truth Finding
Problems [10], and exploits the mutual dependency between
the probability of correctness of the rules and the error rates
of the workers answering the MQ. The error rate is defined
in term of probability as follows:

ηw =

∑
vl
k
∈Lw

{
1− P (v+k |L) , iff l = +
P (v+k |L) , iff l = −

|Lw|

4We use the average error rate empirically estimated in our
experiment with real workers; another option is to derive
this value from the workers ranks provided by the crowd-
sourcing platform.

Listing 2 alfred: Active Learning Algorithm with Multi-
ple Noisy Workers

Input: a set of pages U
Input: the set of candidate rules Rv0

Parameter: number of initial workers W0

Parameter: a threshold λη for error rates convergence

Output: the most probable extraction rule r ∈ Rv0

1: let W = ∅; // set of engaged workers
2: repeat

3: repeat
4: let w = engageWorker();
5: let ηw = getErrorRate(w);
6: let Lw = alfη(U,Rv0 , w);
7: W ←W ∪ {w};
8: until (|W | < W0); // wait for workers

9: let L = ⊎w∈WLw; // append all t.s.
10: repeat
11: compute P (r|L) by using ηw, ∀r ∈ Rv0 ;
12: let ηprev

w = ηw, ∀w ∈W ; // save previous η

13: compute ηw by using P (r|L), ∀w ∈W ;
14: until (

∑
w∈W (ηw − ηprev

w)2 > λη · |W |);

15: until (haltalfred(W,L));

16: return argmaxr∈Rv0
P (r|L);

and it can be interpreted as the probability of the worker
of correctly answering a MQ, estimated by averaging over
all the MQ in the t.s. Lw that she has provided. Since also
the probability is defined in term of error rates, as shown
in Eq. 1, their computation is interleaved (lines 11 and 13)
until their values do not significantly change anymore.5

The termination condition of alfred can be set accord-
ing to different policies by specifying haltalfred. In our
implementation, in order to take into account both budget
constraints and quality targets, we used the following com-
bination:

haltalfred(W,L) = haltr(L) or haltMQ(L)

Observe that the recruitment of new workers negatively
influences the latency of the system. A strategy to contain
the latency of the system is to recruit bulk workers, but this
is beyond the scope of the present paper.

5. EXPERIMENTAL EVALUATION
We use a dataset composed of 5 collections of pages: ac-

tor and movie pages from www.imdb.com; band and album
pages from www.allmusic.com; stock quote pages from www.-
nasdaq.com. For each collection we selected about 10 at-
tributes, for a total of 40 attributes. Then we manually
crafted a golden XPath rule for each attribute. We ran-
domly selected a training sample set of 500 pages from each
collection of pages, and another (disjoint) test set of 2, 000
pages. Our algorithm was run on the training sample, and
the output extraction rules were evaluated on the test set.
We compared the (non-null) values extracted by the golden
rules against those extracted by the rules generated by our

5We have empirically observed the convergence of the algo-
rithm. A formal proof is left as future work.

4

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

11

 4

 6

 8

 10

 12

 14

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
Q

η
∗

HALTr
HALTH

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F

η
∗

HALTr
HALTH

HALTMQ

Figure 2: alfη (η = 0.09) sensitivity to worker error
rate η∗: Cost (left) and quality (right) of the output
wrapper.

algorithm. For every generated rule r, and given a test set
of pages U , we computed precision (P), recall (R), and
F-measure (F) at the value level w.r.t. the corresponding

golden rule rg, as follows: P =
|rg(U)∩r(U)|

|r(U)|
; R =

|rg(U)∩r(U)|

|rg(U)|
;

F = 2 P ·R
P+R

.
We report the results of two sets of experiments: the first

one was conducted to test alfη with a single worker, in the
second set of experiments we consider alfred in presence
of multiple workers. We evaluate our algorithms by using
synthetic workers following the CNP probabilistic model [2],
i.e., workers making random and independent errors with a
fixed error rate η∗.

In order to estimate the error rate distribution over a pop-
ulation of real workers, we also conducted a preliminary ex-
periment with workers engaged by means of CrowdFlower,
a meta platform that offers services to recruit workers on
AMT.

5.1 Experiments with AMT Workers
The main intent of this preliminary experiment was to

evaluate the error rate distribution of a population of real
workers recruited on a crowdsourcing platform. We submit-
ted 100 tasks to 100 distinct workers. Each task was paid 10¢
and consisted on a set of 20 MQ to generate the extraction
rules for several attributes of our dataset. The ground truth
was straightforwardly obtained by the results of our golden
extraction rules. We used alfη configured with haltr as
termination condition (λr = 0.8), and with η = 0.1.

The average error rate of an AMT worker was η̂ = 0.09,
with a standard deviation of σ̂η = 0.11. About 1/3 of the
workers responded correctly to all the queries, and the re-
sponse time for each MQ was around 7 seconds. On average
the number of MQ posed by the system to infer a rule was
4, and each task contained enough queries to learn 5 rules.

The information obtained from this experiment was then
used to set up realistic configurations of the synthetic work-
ers for the other experiments: the average error rate empir-
ically observed η̂ is used to set alfη’s parameter η = η̂ as
well as the initial worker error rate estimation of alfred,
ηw = η̂; also, the synthetic workers used to test alfred are
created using the same error rate distribution observed on
real workers.

5.2 Single Noisy Worker
The main goal of the experiment was to evaluate the ef-

fects of the workers’ mistakes on alfη, our algorithm in
absence of redundancy. In figure 2 we show the effects
of an inaccurate worker with different termination strate-
gies, by setting η = η̂ = 0.09. We simulated workers with

3

10

100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
Q

η

HALTr
HALTH

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F

η

HALTr
HALTH

HALTMQ

Figure 3: alfη sensitivity to the expected worker
error rate η with a noisy worker η∗ = 0.09: Cost
(left) and quality (right) of the output wrapper.

an error rate η∗ increasing from 0.05 to 0.4. The thresh-
olds of the three termination conditions considered, haltr,
haltMQ and haltH were set to λr = 0.8, λMQ = 5 and

λH = 0.2, respectively.
As the error rate η∗ of the worker increases, the results

degrade with every termination strategy, as expected. How-
ever, haltH detects the wider presence of uncertain values,
and tries to compensate with a greater number of queries;
conversely, since haltr focuses only on the most likely rule,
it poses a rather steady number of queries, and the output
quality is more seriously compromised.

We then empirically evaluated how an incorrect setting
of the parameter η, i.e., the expected worker error rate, in-
fluences alfη performances. We used a single worker with
η∗ = η̂ = 0.09, and repeated several inference processes,
configuring alfη with η ranging from η = 0 to 0.4 as re-
ported in Figure 3.

When the system overestimates the accuracy of worker
(η < η∗) we observe a reduction of the number of MQ, but
the quality of the wrapper drops. The system trusts the
workers and terminates quickly, thus posing less questions
than actually needed. When the system underestimates the
worker accuracy (η > η∗), some MQ are wasted since the
system does not trust the worker. With an η larger than η∗

by +0.3, haltr requires more than 40 MQ, i.e., 5× those
required when η = η∗. Observe that many MQ are wasted
since the F -measure gain is less than 5%.

average max
|W | F #MQ |W | #MQ σF

alfη 1 0.92 7.58 1 11 0.17

Table 1: alfη inference with synthetic workers

Table 1 reports alfη results when the termination policy
haltalfη

has been instantiated by setting the parameters
λH = 0.2 and λMQ = 10. alfη requires just a few queries

(#MQ = 7.58) to learn rather accurate wrappers (F =
0.92). However, there is a significant standard deviation
(σF = 17%) in the output quality that makes the algorithm
not that robust to workers’ errors.

5.3 Multiple Noisy Workers
As discussed in Section 4, alfred builds on alfη, and

recruits additional workers to estimate their error rate and
to find the correct rule at the same time. We rely on the ter-
mination strategy of the outer algorithm (haltalfred) to
achieve the target quality, while for the inner alfη instance
we use the same termination policy (haltalfη

) focused on

5

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

12

average max
|W | F #MQ |ηw − η∗| |W | #MQ σF

alfredno 2.33 1 18.6 — 9 83 0.01
alfred 2.07 1 16.1 0.8% 4 44 0.01
alfred∗ 2.05 1 16.07 0% 4 40 0.01

Table 2: alfred inference with synthetic workers

the costs as in the previous experiment. To evaluate alfred
performances, we organized as many tasks as the number of
attributes of our experiment (40). For each task we exe-
cuted alfred (with λη = 10−4) by recruiting workers from
a virtual population with the same error rate distribution
observed over the real workers (the results have been aver-
aged over 20 executions).

alfred’s results in Table 2 demonstrate the role played
by the workers’ error rate estimation. We compare the al-
gorithm against a baseline (alfredno) in which the error
rate estimation is disabled (we just set ηw = η̂), and against
a bound (alfred∗) in which an oracle sets ηw = η∗. The
workers’ error rate estimation is precise (|ηw − η∗| = 0.8%
when the learning terminates), and it allows the system to
save queries (16.1 vs 18.6 on average). The average num-
ber of MQ posed by alfred to learn the correct rule is
only a negligible amount larger than the lower bound set by
alfred∗. The costs are more than twice those paid running
alfη with a single worker (16.1 vs. 7.58). However, notice
that alfred always concluded the tasks with a perfect re-
sult, and that it is robust to workers’ error rates (σF = 1%).
alfred terminates in most of the cases (94%) engaging

only 2 workers, and seldom recruited 3 and 4 workers (5%
and 1%, respectively). Overall, alfred was able to recruit
more workers, thus paying their answers, only when needed
to achieve the target quality of the output wrapper.

6. RELATED WORK
Wrapper induction for extracting data from web pages has

been subject of many researches [5]. A wrapper inference
approach tolerant to noise in the training data has been
proposed in [8], however it applies only for domains where
it is possible to automatically obtain a set of annotations.

Active learning approaches [14] have recently gained inter-
est as they can produce exponential improvements over the
number of samples wrt traditional supervised approaches [4].
The advent of crowdsourcing platforms has led to new chal-
lenges. The main issue is to learn from noisy observations
generated by non expert users.

Wrapper induction techniques that rely on active learn-
ing approaches have been proposed in [11, 13]. These studies
rely on a more complicated user interaction than ours, since
the user has to choose the correct wrapper within a set of
ranked solutions. Also, they do not consider the presence
of noise in the training data. Many works have studied the
problem of learning with noisy data coming from crowd-
sourcing platform workers, e.g., [9, 12, 15]. [15] shows that
when labeling is not perfect, selective acquisition of multiple
good labels is crucial and that repeated-labeling can improve
label quality and model quality. [12] proposes a crowdsourc-
ing assisted system, CDAS, for data analytics tasks; the sys-
tem faces the presence of noisy answers by submitting re-
dundant tasks and adopts a voting strategy to estimate the
correct solution. Compared to our approach, the number of

workers as well as their accuracies are statically determined,
based on the workers’ historical performances.

In our previous work [7], we studied wrapper inference
with a single and perfect worker.

7. CONCLUSIONS
We presented wrapper inference algorithms specifically

tailored for working with the support of crowdsourcing plat-
forms. Our approach allows the wrappers to be generated
by posing simple questions, membership queries, to work-
ers engaged on a crowdsourcing platform. We proposed two
algorithms that consider the possibility of noisy answers:
alfη recruits a single worker, alfred can dynamically en-
gage multiple workers to improve the quality of the solution.
We showed that alfred can produce high quality wrappers
at reasonable costs, and that the quality of the output wrap-
per is highly predictable.

8. REFERENCES
[1] D. Angluin. Queries revisited. Theor. Comput. Sci.,

313(2):175–194, 2004.

[2] D. Angluin and P. Laird. Learning from noisy
examples. Mach. Learn., 2(4):343–370, Apr. 1988.

[3] A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. In SIGMOD 2003.

[4] M.-F. Balcan, S. Hanneke, and J. W. Vaughan. The
true sample complexity of active learning. Machine
Learning, 80(2-3):111–139, 2010.

[5] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F.
Shaalan. A survey of web information extraction
systems. IEEE Trans. Knowl. Data Eng.,
18(10):1411–1428, 2006.

[6] V. Crescenzi and P. Merialdo. Wrapper inference for
ambiguous web pages. JAAI, 22(1&2):21–52, 2008.

[7] V. Crescenzi, P. Merialdo, and D. Qiu. A framework
for learning web wrappers from the crowd. In WWW
2013.

[8] N. N. Dalvi, R. Kumar, and M. A. Soliman.
Automatic wrappers for large scale web extraction.
PVLDB, 4(4):219–230, 2011.

[9] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the world-wide web.
Commun. ACM, 54(4):86–96, Apr. 2011.

[10] X. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava.
Solomon: Seeking the truth via copying detection.
PVLDB, 3(2):1617–1620, 2010.

[11] U. Irmak and T. Suel. Interactive wrapper generation
with minimal user effort. In WWW 2006.

[12] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and
M. Zhang. Cdas: a crowdsourcing data analytics
system. In VLDB 2012.

[13] I. Muslea, S. Minton, and C. A. Knoblock. B. Settles.
Active learning with multiple views. JAIR 2006.

[14] Active learning literature survey. CS Tech. Rep. 1648,
University of Wisconsin–Madison, 2009.

[15] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? Improving data quality and data
mining using multiple, noisy labelers. In KDD 2008.

6

DBCrowd 2013: First VLDB Workshop on Databases and Crowdsourcing

13

