
Wren: Nonblocking Reads in a Partitioned

Transactional Causally Consistent Data Store

Kristina Spirovska

EPFL

kristina.spirovska@epfl.ch

Diego Didona

EPFL

diego.didona@epfl.ch

Willy Zwaenepoel

EPFL

willy.zwaenepoel@epfl.ch

Abstract—Transactional Causal Consistency (TCC) extends
causal consistency, the strongest consistency model compatible
with availability, with interactive read-write transactions, and is
therefore particularly appealing for geo-replicated platforms.

This paper presents Wren, the first TCC system that at the
same time i) implements nonblocking read operations, thereby
achieving low latency, and ii) allows an application to efficiently
scale out within a replication site by sharding.

Wren introduces new protocols for transaction execution,
dependency tracking and stabilization. The transaction protocol
supports nonblocking reads by providing a transaction with a
snapshot that is the union of a fresh causal snapshot S installed
by every partition in the local data center and a client-side cache
for writes that are not yet included in S. The dependency tracking
and stabilization protocols require only two scalar timestamps,
resulting in efficient resource utilization and providing scalability
in terms of replication sites. In return for these benefits, Wren
slightly increases the visibility latency of updates.

We evaluate Wren on an AWS deployment using up to 5
replication sites and 16 partitions per site. We show that Wren
delivers up to 1.4x higher throughput and up to 3.6x lower latency
when compared to the state-of-the-art design. The choice of an
older snapshot increases local update visibility latency by a few
milliseconds. The use of only two timestamps to track causality
increases remote update visibility latency by less than 15%.

I. INTRODUCTION

Many large-scale data platforms rely on geo-replication to

meet strict performance and availability requirements [1], [2],

[3], [4], [5]. Geo-replication reduces latencies by keeping a

copy of the data close to the clients, and enables availability

by replicating data at geographically distributed data centers

(DCs). To accommodate the ever-growing volumes of data,

today’s large-scale on-line services also partition the data

across multiple servers within a single DC [6], [7].

Transactional Causal Consistency (TCC). TCC [8] is an

attractive consistency level for building geo-replicated data-

stores. TCC enforces causal consistency (CC) [9], which is the

strongest consistency model compatible with availability [10],

[11]. Compared to strong consistency [12], CC does not suffer

from high synchronization latencies, limited scalability and

unavailability in the presence of network partitions between

DCs [13], [14], [15]. Compared to eventual consistency [2],

CC avoids a number of anomalies that plague programming

with weaker models. In addtion, TCC extends CC with inter-

active read-write transactions, that allow applications to read

from a causal snapshot and to perform atomic multi-item

writes.

Enforcing CC while offering always-available interactive

multi-partition transactions is a challenging problem [7]. The

main culprit is that in a distributed environment, unavoidably,

partitions do not progress at the same pace. Current TCC

designs either avoid this issue altogether, by not supporting

sharding [16], or block reads to ensure that the proper snapshot

is installed [8]. The former approach sacrifices scalability,

while the latter incurs additional latencies.

Wren. This paper presents Wren, the first TCC system that

implements nonblocking reads, thereby achieving low latency,

and allows an application to scale out by sharding. Wren

implements CANToR (Client-Assisted Nonblocking Trans-

actional Reads), a novel transaction protocol in which the

snapshot of the data store visible to a transaction is defined as

the union of two components: i) a fresh causal snapshot that

has been installed by every partition within the DC; and ii)
a per-client cache, which stores the updates performed by the

client that are not yet reflected in said snapshot. This choice

of snapshot departs from earlier approaches where a snapshot

is chosen by simply looking at the local clock value of the

partition acting as transaction coordinator.

Wren also introduces Binary Dependency Time (BDT), a

new dependency tracking protocol, and Binary Stable Time

(BiST), a new stabilization protocol. Regardless of the number

of partitions and DCs, these two protocols assign only two

scalar timestamps to updates and snapshots, corresponding

to dependencies on local and remote items. These protocols

provide high resource efficiency and scalability, and preserve

availability.

Wren exposes to clients a snapshot that is slightly in the

past with respect to the one exposed by existing approaches.

We argue that this is a small price to pay for the performance

improvements that Wren offers.

We compare Wren with Cure [8], the state-of-the-art TCC

system, on an AWS deployment with up to 5 DCs with 16

partitions each. Wren achieves up to 1.4x higher throughput

and up to 3.6x lower latencies. The choice of an older snapshot

increases local update visibility latency by a few milliseconds.

The use of only two timestamps to track causality increases

remote update visibility latency by less than 15%.

We make the following contributions.

1) We present the design and implementation of Wren, the

first TCC key-value store that achieves nonblocking reads,

efficiently scales horizontally, and tolerates network partitions

1

between DCs.

2) We propose new dependency and stabilization protocols that

achieve high resource efficiency and scalability.

3) We experimentally demonstrate the benefits of Wren over

state-of-the-art solutions.

Roadmap. The paper is organized as follows. Section 2

describes TCC and the target system model. Section 3 presents

the design of Wren. Section 4 describes the protocols in Wren.

Section 5 presents the evaluation of Wren. Section 6 discusses

related work. Section 7 concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

A. System model

We consider a distributed key-value store whose data-set is

split into N partitions. Each key is deterministically assigned

to one partition by a hash function. We denote by px the

partition that contains key x.

The data-set is fully replicated: each partition is replicated

at all M DCs. We assume a multi-master system, i.e., each

replica can update the keys in its partition. Updates are

replicated asynchronously to remote DCs.

The data store is multi-versioned. An update operation

creates a new version of a key. Each version stores the value

corresponding to the key and some meta-data to track causal-

ity. The system periodically garbage-collects old versions of

keys.

At the beginning of a session, a client c connects to a DC,

referred to as the local DC. All c’s operations are performed

within said DC to preserve availability [17] 1. c does not issue

another operation until it receives the reply to the current one.

Partitions communicate through point-to-point lossless FIFO

channels (e.g., a TCP socket).

B. Causal consistency

Causal consistency requires that the key-value store returns

values that are consistent with causality [9], [18]. For two

operations a, b, we say that b causally depends on a, and write

a b, if and only if at least one of the following conditions

holds: i) a and b are operations in a single thread of execution,

and a happens before b; ii) a is a write operation, b is a read

operation, and b reads the version written by a; iii) there is

some other operation c such that a c and c b. Intuitively,

CC ensures that if a client has seen the effects of b and a b,

then the client also sees the effects of a.

We use lower-case letters, e.g., x, to refer to a key and the

corresponding upper-case letter, e.g., X , to refer to a version

of the key. We say that X causally depends on Y if the write

of X causally depends on the write of Y .

We use the term availability to indicate that a client opera-

tion never blocks as the result of a network partition between

DCs [19].

1Wren can be extended to allow a client c to move to a different DC by
blocking c until the last snapshot seen by c has been installed in the new DC.

C. Transactional causal consistency

Semantics. TCC extends CC by means of interactive read-

write transactions in which clients can issue several operations

within a transaction, each reading or writing (potentially)

multiple items [8]. TCC provides a more powerful semantics

than one-shot read-only or write-only transactions provided

by earlier CC systems [7], [15], [20], [21]. It enforces the

following two properties.

1. Transactions read from a causal snapshot. A causal snap-

shot is a set of item versions such that all causal dependencies

of those versions are also included in the snapshot. For any

two items, x and y, if X Y and both X and Y belong

to the same causal snapshot, then there is no X ′, such that

X X ′ Y .

Transactional reads from a causal snapshot avoid undesir-

able anomalies that can arise by issuing multiple individual

read operations. For example, they prevent the well-known

anomaly in which person A removes person B from the access

list of a photo album and adds a photo to it, only to have

person B read the original permissions and the new version of

the album [15].

2. Updates are atomic. Either all items written by a transaction

are visible to other transactions, or none is. If a transaction

writes X and Y , then any snapshot visible to other transactions

either includes both X and Y or neither one of them.

Atomic updates increase the expressive power of applica-

tions, e.g., they make it easier to maintain symmetric relation-

ships among entities within an application. For example, in

a social network, if person A becomes friend with person B,

then B simultaneously becomes friend with A. By putting both

updates inside a transaction, both or neither of the friendship

relations are visible to other transactions [21].

Conflict resolution. Two writes are conflicting if they are

not related by causality and update the same key. Conflicting

writes are resolved by means of a commutative and associative

function, that decides the value corresponding to a key given

its current value and the set of updates on the key [15].

For simplicity, Wren resolves write conflicts using the last-

writer-wins rule based on the timestamp of the updates [22].

Possible ties are settled by looking at the id of the update’s

originating DC combined with the identifier of transaction that

created the update. Wren can be extended to support other

conflict resolution mechanisms [8], [15], [21], [23].

D. APIs

A client starts a transaction T , issues read and write (multi-

key) operations and commits T . Wren’s client API exposes

the following operations:

• < TID, S >← START () : starts an interactive transac-

tion T and returns T’s transaction identifier TID and the causal

snapshot S visible to T.

•〈vals〉 ← READ(k1, ..., kn) : reads the set of items

corresponding to the input set of keys within T .

•WRITE(〈k1, v1〉, ..., 〈kn, vn〉) : updates a set of given

input keys to the corresponding values within T .

2

enough, and returns Y2. Instead, px has to block the read of

T1, because px cannot determine which version of x to return.

px cannot safely return X1, because it could violate CC and

atomicity. px cannot return X2 either, because px does not

yet know the commit timestamp of X2. If X2 were eventually

to be assigned a commit timestamp > 10, then returning X2

to T1 violates CC. px can install X2 and the corresponding

snapshot only when receiving the commit message from pw.

Then, px can serve c1’s pending read with the consistent value

X2.

Similar dynamics characterize also other CC systems with

write transactions, e.g., Eiger [21].

B. Nonblocking reads in Wren

Wren implements CANToR, a novel transaction protocol

that, similarly to Cure, is based on snapshots and 2PC, but

avoids blocking reads by changing how snapshots visible to

transactions are defined. In particular, a transaction snapshot

is expressed as the union of two components:

1) a fresh causal snapshot installed by every partition in

the local DC, which we call local stable snapshot, and

2) a client-side cache for writes done by the client and that

have not yet been included in the local stable snapshot.

1) Causal snapshot. Existing approaches block reads, because

the snapshot assigned to a transaction T may be “in the future”

with respect to the snapshot installed by a server from which

T reads an item. CANToR avoids blocking by providing to a

transaction a snapshot that only includes writes of transactions

that have been installed at all partitions. When using such a

snapshot, then clearly all reads can proceed without blocking.

To ensure freshness, the snapshot timestamp st provided to

a client is the largest timestamp such that all transactions with

a commit timestamp smaller than or equal to st have been

installed at all partitions. We call this timestamp the local

stable time (LST), and the snapshot that it defines the local

stable snapshot. The LST is determined by a stabilization

protocol, by which partitions within a DC gossip the latest

snapshots they have installed (§ III-C). In CANToR, when a

transaction starts, it chooses a transaction coordinator, and it

uses as its snapshot timestamp the LST value known to the

coordinator.

Figure 1b depicts the nonblocking behavior of Wren. pz
proposes 5 as snapshot timestamp (because of px). Then c1
can read without blocking on both px and py , despite the

concurrent commit of T2. The trade-off is that c1 reads older

versions of x and y, namely X1 and Y1, compared to the

scenarion in Figure 1a, where it reads X2 and Y2.

Only assigning a snapshot slightly in the past, however, does

not solve completely the issue of blocking reads. The local

stable snapshot includes all the items that have been written

by all clients up until the boundary defined by the snapshot and

on which c (potentially) depends. The local stable snapshot,

however, might not include the most recent writes performed

by c in earlier transactions.

Consider, for example, the case in which c commits a

transaction T , that includes a write on item x, and obtains

a value ct as its commit timestamp. Subsequently, c starts

another transaction T ,́ and obtains a snapshot timestamp

stśmaller than ct, because ct has not yet been installed at

all partitions. If we were to let c read from this snapshot, and

it were to read x, it would not see the value it had written

previously in T .

A simple solution would be to block the commit of T until

ct ≥ LST . This would guarantee that c can issue its next

transaction T ′ only after the modifications of T have been

applied at every partition in the DC. This approach, however,

introduces high commit latencies.

2) Client-side cache. Wren takes a different approach that

leverages the fact that the only causal dependencies of c that

may not be in the local stable snapshot are items that c has

written itself in earlier transactions (e.g., x). Wren therefore

provides clients with a private cache for such items: all items

written by c are stored in its private cache, from which it reads

when appropriate, as detailed below.

When starting a transaction, the client removes from the

cache all the items that are included in the causal snapshot, in

other words all items with commit timestamp lower than its

causal snapshot time st. When reading x, a client first looks up

x in its cache. If there is a version of x in the cache, it means

that the client has written a version of x that is not included

in the transaction snapshot. Hence, it must be read from the

cache. Otherwise, the client reads x from px. In either case,

the read is performed without blocking 2.

C. Dependency tracking and stabilization protocols

BDT. Wren implements BDT, a novel protocol to track the

causal dependencies of items. The key feature of BDT is that

every data item tracks dependencies by means of only two

scalar timestamps, regardless of the scale of the system. One

entry tracks the dependencies on local items and the other

entry summarizes the dependencies on remote items.

The use of only two timestamps enables higher efficiency

and scalability than other designs. State-of-the-art solutions

employ dependency meta-data whose size grows with the

number of DCs [8], [16], partitions [24] or causal dependen-

cies [7], [15], [21], [25]. Meta-data efficiency is paramount

for many applications dominated by very small items, e.g.,

Facebook [3], [26], in which meta-data can easily grow bigger

than the item itself. Large meta-data increases processing,

communication and storage overhead.

BiST. Wren relies on BDT to implement BiST, an efficient sta-

bilization protocol to determine when updates can be included

in the snapshots proposed to clients within a DC (i.e., when

they are visible within a DC). BiST allows updates originating

in a DC to become visible in that DC without waiting for the

receipt of remote items. A remote update d, instead, is visible

in a DC when it is stable, i.e., when all the causal dependencies

of d have been received in the DC.

2The client can avoid contacting px, because Wren uses the last-writer-wins
rule to resolve conflicting updates (see § II-A). With other conflict resolution
methods, the client would always have to read the version of x from px, and
apply the updates(s) in the cache to that version.

4

Algorithm 1 Wren client c (open session towards pmn).

1: function START

2: send 〈StartTxReq lstc, rstc〉 to pm
n

3: receive 〈StartTxResp id, lst, rst〉 from pm
n

4: rstc ← rst; lstc ← lst; idc ← id

5: RSc ← ∅;WSc ← ∅
6: Remove from WCc all items with commit timestamp up to lstc
7: end function

8: function READ(χ)

9: D ← ∅; χ′ ← ∅
10: for each k ∈ χ do

11: d← check WSc, RSc, WCc (in this order)

12: if (d 6= NULL) then D ← d

13: end for

14: χ′ ← χ \D.keySet()
15: send 〈TxReadReq idc, χ

′〉 to pm
n

16: receive 〈TxReadResp D′〉 from pm
n

17: D ← D ∪D′

18: RSc ← RSc ∪D

19: return D

20: end function

21: function WRITE(χ)

22: for each 〈k, v〉 ∈ χ do ⊲ Update WSc or write new entry

23: if (∃d ∈ WS : d == k)then d.v ← v else WSc ← WSc ∪ 〈k, v〉
24: end for

25: end function

26: function COMMIT ⊲ Only invoked if WS 6= ∅
27: send 〈CommitReq idc, hwtc,WSc〉 to pm

n

28: receive 〈CommitResp ct〉 from pm
n

29: hwtc ← ct ⊲ Update client’s highest write time

30: Tag WSc entries with hwtc
31: Move WSc entries to WCc ⊲ Overwrite (older) duplicate entries

32: end function

ensuring that clients can prune their local caches even if a DC

disconnects.

IV. PROTOCOLS OF WREN

We now describe in more detail the meta-data stored and

the protocols implemented by clients and servers in Wren.

A. Meta-data

Items. An item d is a tuple 〈k, v, ut, rdt, idT , sr〉. k and v

are the key and value of d, respectively. ut is the timestamp

of d which is assigned upon commit of d and summarizes the

dependencies on local items. rdt is the remote dependency

time of d, i.e., it summarizes the dependencies towards remote

items. idT is the id of the transaction that created the item

version. sr is the source replica of d.

Client. In a client session, a client c maintains idc which iden-

tifies the current transaction, and lstc and rstc, that correspond

to the local and remote timestamp of the transaction snapshot,

respectively. c also stores the commit time of its last update

transaction, represented with hwtc. Finally, c stores WSc, RSc

and WCc corresponding to the client’s write set, read set and

client-side cache, respectively.

Servers. A server pmn is identified by the partition id (n)

and the DC id (m). In our description, thus, m is the local

DC of the server. Each server has access to a monotonically

increasing physical clock, Clockmn . The local clock value on

pmn is represented by the hybrid clock HLCm
n .

pmn also maintains V V m
n , a vector of HLCs with M entries.

V V m
n [i], i 6= m indicates the timestamp of the latest update

Algorithm 2 Wren server pmn - transaction coordinator.

1: upon receive 〈StartTxReq lstc, rstc〉 from c do

2: rstmn ← max{rstmn , rstc} ⊲ Update remote stable time

3: lstmn ← max{lstmn , lstc} ⊲ Update local stable time

4: idT ← generateUniqueId()
5: TX[idT]← 〈lstmn ,min{rstmn , lstmn − 1}〉 ⊲ Save TX context

6: send 〈StartTxResp idT , TX[idT]〉 ⊲ Assign transaction snapshot

7: upon receive 〈TxReadReq idT , χ〉 from c do

8: 〈lt, rt〉 ← TX[idT]
9: D ← ∅

10: χi ← {k ∈ χ : partition(k) == i} ⊲ Partitions with ≥ 1 key to read

11: for (i : χi 6= ∅) do

12: send 〈SliceReq χi, lt, rt〉 to pm
i

13: receive 〈SliceResp Di〉 from pm
i

14: D ← D ∪Di

15: end for

16: send 〈TxReadResp D〉 to c

17: upon receive 〈CommitReq idT , hwt,WS〉 from c do

18: 〈lt, rt〉 ← TX[idT]
19: ht← max{lt, rt, hwt} ⊲ Max timestamp seen by the client

20: Di ← {〈k, v〉 ∈ WS : partition(k) == i}
21: for (i : Di 6= ∅) do ⊲ Done in parallel

22: send 〈PrepareReq idT , lt, rt, ht,Di〉 to pm
i

23: receive 〈PrepareResp idT , pti〉 from pm
i

24: end for

25: ct ← maxi:Di 6=∅{pti} ⊲ Max proposed timestamp

26: for (i : Di 6= ∅) do send 〈Commit idT , ct〉 to pm
i end for

27: delete TX[idT] ⊲ Clear transactional context of c

28: send 〈CommitResp ct〉 to c

received by pmn that comes from the n-th partition at the i-th

DC. V V m
n [m] is the version clock of the server and represents

the local snapshot installed by pmn . The server also stores lstmn
and rstmn . lstmn = t indicates that pmn is aware that every

partition in the local DC has installed a local snapshot with

timestamp at least t. rstmn = t′ indicates that pmn is aware that

every partition in the local DC has installed all the updates

generated from all remote DCs with update time up to t′.

Finally, pmn keeps a list of prepared and a list of committed

transactions. The former stores transactions for which pmn has

proposed a commit timestamp and for which pmn is awaiting

the commit message. The latter stores transactions that have

been assigned a commit timestamp and whose modifications

are going to be applied to pmn .

B. Operations

Start. Client c initiates a transaction T by picking at random

a coordinator partition (denoted pmn) and sending it a start

request with lstc and rstc. pmn uses these values to update

its lstmn and rstmn , so that pmn can propose a snapshot that

is at least as fresh as the one accessed by c in previous

transactions. Then, pmn generates the snapshot visible to T .

The local snapshot timestamp is lstmn . The remote one is set

as the minimum between rstmn and lstmn − 1. Wren enforces

the remote snapshot time to be lower than the local one, to

efficiently deal with concurrent conflicting updates. Assume c

wants to read x, that c has a version Xl in its private cache with

commit timestamp ct > lstmn , and that there exist a visible

remote Xr with commit timestamp ≥ ct. Then, c must retrieve

Xr, its commit timestamp and its source replica to determine

whether Xl or Xr should be read according to the last writer

wins rule. By forcing the remote stable time to be lower than

6

Algorithm 3 Wren server pmn - transaction cohort.

1: upon receive 〈SliceReq χ, lt, rt〉 from pm
i do

2: rstmn ← max{rstmn , rst} ⊲ Update remote stable time

3: lstmn ← max{lstmn , lst} ⊲ Update local stable time

4: D ← ∅
5: for (k ∈ χ) do

6: Dk ← {d : d.k == k} ⊲ All versions of k

7: Dlv ← {d : d.sr == m ∧ d.ut ≤ lt ∧ d.rst ≤ rt} ⊲ Local visible

8: Drv ← {d : d.sr 6= m ∧ d.ut ≤ rt ∧ d.rst ≤ lt} ⊲ Remote visible

9: Dkv ← {Dk ∩ {Dlv ∪Drv}} ⊲ All visible versions of k

10: D ← D ∪ {argmaxd.ut{d ∈ Dkv}} ⊲ Freshest visible vers. of k

11: end for

12: reply 〈SliceResp D〉 to pm
i

13: upon receive 〈PrepareReq idT , lt, rt, ht,Di〉 from pm
i do

14: HLCm
n ← max(Clockm

n , ht + 1, HLCm
n + 1) ⊲ Update HLC

15: pt ← HLCm
n ⊲ Proposed commit time

16: lstmn ← max{lstmn , lt} ⊲ Update local stable time

17: rstmn ← max{rstmn , rt} ⊲ Update remote stable time

18: Preparedm
n ← Preparedm

n ∪ {idT , rt,Di} ⊲ Append to pending list

19: send 〈PrepareResp idT , pt〉 to pm
i

20: upon receive 〈CommitReq idT , ct〉 from c do

21: HLCm
n ← max(HLCm

n , ct, Clockm
n) ⊲ Update HLC

22: 〈idT , rst,D〉 ← {〈i, r, φ〉 ∈ Preparedm
n : i == idT }

23: Preparedm
n ← Preparedm

n \ {〈idT , rst,D〉} ⊲ Remove from pending

24: Committedm
n ← Committedm

n ∪ {〈idT , ct, rst,D}⊲ Mark to commit

lst – and hence of ct – the client knows that the freshest visible

version of x is Xl, which can be read locally from the private

cache 3.

After defining the snapshot visible to T , pmn also generates a

unique identifier for T , denoted idT , and inserts T in a private

data structure. pmn replies to c with idT and the snapshot

timestamps.

Upon receiving the reply, c updates lstc and rstc, and evicts

from the cache any version with timestamp lower than lstc. c

can prune the cache using lstc because pmn has enforced that

the highest remote timestamp visible to T is lower than lstmn .

This ensures that if, after pruning, there is a version X in the

private cache of c, then X.ct > lst and hence the freshest

version of x visible to c is X .

Read. The client c provides the set of keys to read. For each

key k to read, c searches the write-set, the read-set and the

client cache, in this order. If an item corresponding to k is

found, it is added to the set of items to return, ensuring

read-your-own-writes and repeatable-reads semantics. Reads

for keys that cannot be served locally are sent in parallel to

the corresponding partitions, together with the snapshot from

which to serve them. Upon receiving a read request, a server

first updates the server’s LST and RST, if they are smaller than

the client’s (Alg. 2 Lines 2–3). Then, the server returns to the

client, for each key, the version within the snapshot with the

highest timestamp (Alg. 3 Lines 6–10). c inserts the returned

items in the read-set.

Write. Client c locally buffers the writes in its write-set WSc.

If a key being written is already present in WSc, then it is

updated; otherwise, it is inserted.

Commit. The client sends a commit request to the coordinator

3The likelihood of rstm
n

being higher than lstm
n

is low given that i) geo-
replication delays are typically higher than the skew among the physical
clocks [31] and ii) rstm

n
is the minimum value across all timestamps of

the latest updates received in the local DC.

Algorithm 4 Wren server pmn - Auxiliary functions.

1: function UPDATE(k, v, ut, rdt, idT)

2: create d : 〈d.k, d.v, d.ut, d.rdt, d.idT , d.sr〉 ← 〈k, v, ut, rdt, idT ,m〉
3: insert new item d in the version chain of key k

4: end function

5: upon Every ∆R do

6: if (Preparedm
n 6= ∅) then ub← min{p.pt}{p ∈ Preparedm

n } − 1
7: else ub← max{Clockm

n , HLCm
n } end if

8: if (Committedm
n 6= ∅) then ⊲ Commit tx in increasing order of ct

9: C ← {〈id, ct, rst,D〉} ∈ Committedm
n : ct ≤ ub

10: for (T ← {〈id, rst,D〉} ∈ (group C by ct)) do

11: for (〈id, rst,D〉 ∈ T) do

12: for (〈k, v〉 ∈ D) do update (k, v, ct, rst, id) end for

13: end for

14: for (i 6= m) send 〈Replicate T, ct〉 to pi
n end for

15: Committedm
n ← Committedm

n \ T
16: end for

17: V V m
n [m]← ub ⊲ Set version clock

18: else

19: V V m
n [m]← ub ⊲ Set version clock

20: for (i 6= m) do send 〈Heartbeat V V m

n
[m]〉 to pi

n end for

21: end if

22: upon receive 〈Replicate T, ct〉 from pi
n do

23: for (〈id, rst,D〉 ∈ T) do

24: for (〈k, v〉 ∈ D) do update (k, v, ct, rst, id) end for

25: end for

26: V V m
n [i]← ct ⊲ Update remote snapshot of i-th replica

27: upon receive 〈Heartbeat t〉 from pi
n do

28: V V m
n [i]← t ⊲ Update remote snapshot of i-th replica

29: upon Every ∆G do ⊲ Compute remote and local stable snapshots

30: rstmn ← min{i=0,...,M−1,i 6=m;j=0,...,N−1}V V m
j [i] ⊲ Remote

31: lstmn ← min{i=0,...,N−1}V V m
i [m] ⊲ Local

with the content of WSc, the id of the transaction and

the commit of its last update transaction hwtc, if any. The

coordinator contacts the partitions that store the keys that need

to be updated (the cohorts) and sends them the corresponding

updates and hwtc. The partitions update their HLCs, propose

a commit timestamp and append the transaction to the pending

list. To reflect causality, the proposed timestamp is higher than

the snapshot timestamps and hwtc. The coordinator then picks

the maximum among the proposed timestamps [32], sends it to

the cohort partitions, clears the local context of the transaction

and sends the commit timestamp to the client. The cohort

partitions move the transaction from the pending list to the

commit list, with the new commit timestamp.

Applying and replicating transactions. Periodically, the

servers apply the effects of committed transactions, in in-

creasing commit timestamp order (Alg. 4 Lines 6-20). pmn
applies the modifications of transactions that have a commit

timestamp lower than the lowest timestamp present in the

pending list. This timestamp represents the lower bound on

the commit timestamps of future transactions on pmn . After

applying the transactions, pmn updates its local version clock

and replicates the transactions to remote DCs. When there are

more transactions with the same commit time ct, pmn updates

its local version clock only after applying the last transaction

with the same ct and packs them together to be propagated in

one replication message (Alg. 4 Lines 10–17).

If a server does not commit a transaction for a given amount

of time, it sends a heartbeat with its current HLC to its peer

7

 5
 10
 15
 20
 25

 0 5 10 15 20 25 30 35 40 45

Re
sp

. t
im

e
(m

se
c)

Throughput (1000 x TX/s)

Cure H-Cure Wren

(a) Throughput vs average TX latency.

 0
 2
 4
 6
 8

 10

 0 5 10 15 20 25 30 35 40 45Bl
oc

kin
g

tim
e

(m
se

c)

Throughput (1000 x TX/s)

Cure H-Cure

(b) Mean blocking time in Cure and H-Cure. Wren never blocks.

Fig. 3: Performance of Wren, H-Cure and Cure on 3 DCs, 8 partitions/DC, 4 partitions involved per transaction, and 95:5

r:w ratio. Wren achieves better latencies because it never blocks reads (a). H-Cure achieves performance in-between Cure and

Wren, showing that only using HLCs does not solve the problem of blocking reads in TCC. Cure and H-Cure incur a mean

blocking time that grows with the load (b). Because of blocking, Cure and H-Cure need higher concurrency to fully utilize

the resources on the servers. This leads to higher contention on physical resources and to a lower throughput (a).

replicas, ensuring the progress of the RST.

BiST. Periodically, partitions within a DC exchange their

version vectors. The LST is computed as the minimum across

the local entries in such vectors; the RST as minimum across

the remote ones (Alg. 4 Lines 30–32). Partitions within a DC

are organized as a tree to reduce communication costs [20].

Garbage collection. Periodically, the partitions within a DC

exchange the oldest snapshot corresponding to an active trans-

action (pmn sends its current visible snapshot if it has is no

running transaction). The aggregate minimum determines the

oldest snapshot Sold that is visible to a running transaction.

The partitions scan the version chain of each key backwards

and keep the all the versions up to (and including) the oldest

one within Sold. Earlier versions are removed.

C. Correctness

Because of space constraints, we provide only a high-level

argument to show the correctness of Wren.

Snapshots are causal. To start a transaction, a client c

piggybacks the freshest snapshot it has seen, ensuring the

monotonicity of the snapshot seen by c (Alg. 2 Lines 1–6).

Commit timestamps reflect causality (Alg. 2 Line 19), and

BiST tracks a lower bound on the snapshot installed by every

partition in a DC. If X is within the snapshot of a transaction,

so are its dependencies, because i) dependencies generated

in the same DC where X is created have a timestamp lower

than X and ii) dependencies generated in a remote DC have a

timestamp lower than X.rdt. On top of the snapshot provided

by the coordinator, the client applies its writes that are not in

the snapshot. These writes cannot depend on items created by

other clients that are outside the snapshot visible to c.

Writes are atomic. Items written by a transaction have the

same commit timestamp and RST. LST and RST are computed

as the minimum values across all the partitions within a DC.

If a transaction has written X and Y and a snapshot contains

X , then it also contains Y (and vice-versa).

V. EVALUATION

We evaluate the performance of Wren in terms of through-

put, latency and update visibility. We compare Wren with

Cure [8], the state-of-the-art approach to TCC, and with

H-Cure, a variant of Cure that uses HLCs. By comparing

with H-Cure, we show that using HLCs alone, as in existing

systems [29], [33], is not sufficient to achieve the same

performance as Wren, and that nonblocking reads in the

presence of multi-item atomic writes are essential.

A. Experimental environment

Platform. We consider a geo-replicated setting deployed

across up to 5 replication sites on Amazon EC2 (Virginia,

Oregon, Ireland, Mumbai and Sydney). When using 3 DCs,

we use Virginia, Oregon and Ireland. In each DC we use up

to 16 servers (m4.large instances with 2 VCPUs and 8 GB

of RAM). We spawn one client process per partition in each

DC. Clients issue requests in a closed loop, and are collocated

with the server partition they use as coordinator. We spawn

different number of client threads to generate different load

conditions. In particular, we spawn 1, 2, 4, 8, 16 threads per

client process. Each “dot” in the curve plots corresponds to a

different number of threads per client.

Implementation. We implement Wren, H-Cure and Cure in

the same C++ code-base 4. All protocols implement the last-

writer-wins rule for convergence. We use Google Protobufs

for communication, and NTP to synchronize physical clocks.

The stabilization protocols run every 5 milliseconds.

Workloads. We use workloads with 95:5, 90:10 and 50:50 r:w

ratios. These are standard workloads also used to benchmark

other TCC systems [8], [16], [34]. In particular, the 50:50

and 95:5 r:w ratio workloads correspond, respectively, to the

update-heavy (A) and read-heavy (B) YCSB workloads [35].

Transactions generate the three workloads by executing 19

reads and 1 write (95:5), 18 reads and 2 writes (90:10), and

10 reads and 10 writes (50:50). A transaction first executes all

reads in parallel, and then all writes in parallel.

Our default workload uses the 95:5 r:w ratio and runs

transactions that involve 4 partitions on a platform deployed

over 3 DCs and 8 partitions. We also consider variations of

this workload in which we change the value of one parameter

4https://github.com/epfl-labos/wren

8

 5
 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35

Re
sp

. t
im

e
(m

se
c)

Throughput (1000 x TX/s)

Cure H-Cure Wren

(a) Throughput vs average TX latency (90:10 r:w).

 5
 10
 15
 20
 25
 30

 0 5 10 15 20 25 30 35

Re
sp

. t
im

e
(m

se
c)

Throughput (1000 x TX/s)
(b) Throughput vs average TX latency (50:50 r:w).

Fig. 4: Performance of Wren, Cure and H-Cure with different 90:10 (a) and 50:50 (b) r:w ratios, 4 partitions involved per

transaction (3DCs, 8 partitions). Wren outperforms Cure and H-Cure for both read-heavy and write-heavy workloads.

20

 5

 10

 15

 0 10 20 30 40 50

Re
sp

. t
im

e
(m

se
c)

Throughput (1000 x TX/s)

Cure H-Cure Wren

(a) Throughput vs average TX latency (p=2).

 5

 10

 15

 20

 0 10 20 30 40 50

Re
sp

. t
im

e
(m

se
c)

Throughput (1000 x TX/s)
(b) Throughput vs average TX latency (p=8).

Fig. 5: Performance of Wren, Cure and H-Cure with transactions that read from 2 (a) and 8 (b) partitions with 95:5 r:w ratio

(3DCs, 8 partitions). Wren outperforms Cure and H-Cure with both small and large transactions.

and keep the others at their default values. Transactions access

keys within a partition according to a zipfian distribution,

with parameter 0.99, which is the default in YCSB and

resembles the strong skew that characterizes many production

systems [26], [36], [37]. We use small items (8 bytes), which

are prevalent in many production workloads [26], [36]. With

bigger items Wren would retain the benefits of its nonblocking

reads. The effectiveness of BDT and BiST would naturally

decrease as the size of the items increases, because meta-data

overhead would become less critical.

B. Performance evaluation

Latency and throughput. Figure 3a reports the average

transaction latency vs. throughput achieved by Wren, H-Cure

and Cure with the default workload. Wren achieves up to

2.33x lower response times than Cure, because it never blocks

a read due to clock skew or to wait for a snapshot to be

installed. Wren also achieves up to 25% higher throughput

than Cure. Cure needs a higher number of concurrent clients

to fully utilize the processing power left idle by blocked reads.

The presence of more threads creates more contention on the

physical resources and implies more synchronization to block

and unblock reads, which ultimately leads to lower throughput.

Wren also outperforms H-Cure, achieving up to 40% lower

latency and up to 15% higher throughput. HLCs enable H-

Cure to avoid blocking the read of a transaction T because

of clock skew. This blocking happens on a partition if the

local timestamp of T ’s snapshot is t, there are no pending or

committed transactions on the partition with commit times-

tamp lower than t, but the physical clock on the partition is

lower than t. HLCs, however, cannot avoid blocking T if there

are pending transactions on the partition, and T is assigned a

snapshot that has not been installed on the partition.

Statistics on blocking in Cure and H-Cure. Figure 3b pro-

vides insights on the blocking occurring in Cure and H-Cure,

that leads to the aforementioned performance differences. The

plots show the mean blocking time of transactions that block

upon reading. A transaction T is considered as blocked if at

least one of its individual reads blocks. The blocking time

of T is computed as the maximum blocking time of a read

belonging to T .

Blocking can take up a vast portion of a transaction exe-

cution time. In Cure, blocking reads introduce a delay of 2

milliseconds at low load, and almost 4 milliseconds at high

load (without considering overload conditions). These values

correspond to 35-48% of the total mean transaction execution

time. Similar considerations hold for H-Cure. The blocking

time increases with the load, because higher load leads to

more transactions being inserted in the pending and commit

queues, and to higher latency between the time a transaction

is committed and the corresponding snapshot is installed.

C. Varying the workload

Figure 4a and Figure 4b report the average transaction

latency as a function of the load for the 90:10 and 50:50

r:w ratios, respectively. Figure 5a and Figure 5b report the

same metric with the default r:w ratio of 95:5, but with p = 2
and p = 8 partitions involved in a transaction, respectively.

These figures show that Wren delivers better performance than

Cure and H-Cure for a wide range of workloads. It achieves

transaction latencies up to 3.6x lower then Cure, and up to

1.6x lower than H-Cure. It achieves maximum throughput up

to 1.33x higher than Cure and 1.23x higher than H-Cure. The

9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

95:5 90:10 50:50

Th
ro

ug
hp

ut
no

rm
ali

ze
d

w.
r.t

 C
ur

e

Workload

Wren-4P Wren-8P Wren-16P

19
16

1239
32 24

73
61 46

(a) Throughput when varying the number of partitions/DC (3 DCs).

 1
 1.1
 1.2
 1.3
 1.4
 1.5

95:5 90:10 50:50

Th
ro

ug
hp

ut
no

rm
ali

ze
d

w.
r.t

 C
ur

e

Workload

Wren-3DC Wren-5DC

73 61 46112
91 66

(b) Throughput when varying the number of DCs (16 partitions/DCs).

Fig. 6: Throughput achieved by Wren when increasing the number of partition per DC (a) and DCs in the system (b). Each

bar represents the throughput of Wren normalized w.r.t. to Cure (y axis starts from 1). The number on top of each bar reports

the absolute value of the throughput achieved by Wren in 1000 x TX/s. Wren consistently achieves better throughput than

Cure and achieves good scalability both when increasing the number of partitions and the number of DCs.

peak throughput of all three systems decreases with a lower

r:w ratio, because writing more items increases the duration of

the commit and the replication overhead. Similarly, a higher

value of p decreases throughput, because more partitions are

contacted during a transaction.

D. Varying the number of partitions

Figure 6a reports the throughput achieved by Wren with 4,

8 and 16 partitions per DC. The bars represent the throughput

of Wren normalized with respect to the throughput achieved

by Cure in the same setting. The number on top of each bar

represents the absolute throughput achieved by Wren.

The plots show three main results. First, Wren consistently

achieves higher throughput than Cure, with a maximum im-

provement of 38%. Second, the performance improvement of

Wren is more evident with more partitions and lower r:w

ratios. More partitions touched by transactions and more writes

increase the chances that a read in Cure targets a laggard

partition and blocks, leading to higher latencies, lower resource

efficiency, and worse throughput. Third, Wren provides effi-

cient support for application scale-out. When increasing the

number of partitions from 4 to 16, throughput increases by

3.76x for the write-heavy and 3.88x for read-heavy workload,

approximating the ideal improvement of 4x.

0.2
0.4
0.6
0.8

1

Repl. Stabl.

By
tes

 no
rm

. w
.r.t

 C
ure

Protocol

Wren 3DC
5DC

Cure

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 20 40 60 80 100

CD
F

 Visibility latency (msec)

Wren L
R

Cure R

Fig. 7: (a) BiST incurs lower overhead than Cure to track the

dependencies of replicated updates and to determine trans-

actional snapshots (default workload). (b) Wren achieves a

slightly higher Remote update visibility latency w.r.t. Cure,

and makes Local updates visible when they are within the

local stable snapshot (3 DCs).

E. Varying the number of DCs

Figure 6b shows the throughput achieved by Wren with

3 and 5 DCs (16 partitions per DC). The bars represent the

throughput normalized with respect to Cure’s throughput in

the same scenario. The numbers on top of the bars indicate

the absolute throughput achieved by Wren.

Wren obtains higher throughput than Cure for all workloads,

achieving an improvement of up to 43%. Wren performance

gains are higher with 5 DCs, because the meta-data overhead

is constant in BiST, while in Cure it grows linearly with the

number of DCs. The throughput achieved by Wren with 5

DCs is 1.53x, 1.49x, and 1.44x higher than the throughput

achieved with 3 DCs, for the 95:5, 90:10 and 50:50 workloads,

respectively, approximating the ideal improvement of 1.66x.

A higher write intensity reduces the performance gain when

scaling from 3 to 5 DCs, because it implies more updates

being replicated.

F. Resource efficiency

Figure 7a shows the amount of data exchanged in Wren

to run the stabilization protocol and to replicate updates,

with the default workload. The results are normalized with

respect to the amounts of data exchanged in Cure at the same

throughput. With 5 DCs, Wren exchanges up to 37% fewer

bytes for replication and up to 60% fewer bytes for running

the stabilization protocol. With 5 DCs, updates, snapshots and

stabilization messages carry 2 timestamps in Wren versus 5

in Cure.

G. Update visibility

Figure 7b shows the CDF of the update visibility latency

with 3 DCs. The visibility latency of an update X in DCi is

the difference between the wall-clock time when X becomes

visible in DCi and the wall-clock time when X was committed

in its original DC (which is DCi itself in the case of local

visibility latency). The CDFs are computed as follows: we

first obtain the CDF on every partition and then we compute

the mean for each percentile.

Cure achieves lower update visibility latencies than Wren.

The remote update visibility time in Wren is slightly higher

10

than in Cure (68 vs. 59 milliseconds in the worst case,

i.e., 15% higher), because Wren tracks dependencies at the

granularity of the DC, while Wren only tracks local and remote

dependencies (see § III-C Figure 2). Local updates become

visible immediately in Cure. In Wren they become visible

after a few milliseconds, because Wren chooses a slightly

older snapshot. We argue that these slightly higher update

visibility latencies are a small price to pay for the performance

improvements offered by Wren.

VI. RELATED WORK

TCC systems. In Cure [8] a transaction T can be assigned

a snapshot that has not been installed by some partitions. If

T reads from any of such laggard partitions, it blocks. Wren,

on the contrary, achieves low-latency nonblocking reads by

either reading from a snapshot that is already installed in all

partitions, or from the client-side cache.

Occult [34] implements a master-slave design in which

only the master replica of a partition accepts writes and

replicates them asynchronously. The commit of a transaction,

then, may span multiple DCs. A replicated item can be read

before its causal dependencies are received, hence achieving

the lowest data staleness. However, a read may have have to

be retried several times in case of missing dependencies, and

may even have to contact the remote master replica, which

might not be accessible due to a network partition. The effect

of retrying in Occult has a negative impact on performance,

that is comparable to blocking the read to receive the right

value to return. Wren, instead, implements always-available

transactions that complete wholly within a DC, and never

block nor retry read operations.

In SwiftCloud [16] clients declare the items in which they

are interested, and the system sends them the corresponding

updates, if any. SwiftCloud uses a sequencer-based approach,

which totally orders updates, both those generated in a DC

and those received from remote DCs. The sequencer-based

approach ensures that the stream of updates pushed to clients

is causally consistent. However, sequencing the updates also

makes it cumbersome to achieve horizontal scalability. Wren,

instead, implements decentralized protocols that efficiently

enable horizontal scalability.

Cure and SwiftCloud use dependency vectors with one entry

per DC. Occult uses one dependency timestamp per master

replica. By contrast, Wren timestamps items and snapshots

with constant dependency meta-data, which increases resource

efficiency and scalability.

The trade-off that Wren makes to achieve low latency,

availability and scalability is that it exposes snapshots slightly

older than those exposed by other TCC systems.

CC systems. Many CC systems provide weaker semantics

than TCC. COPS [15], Orbe [24], GentleRain [20], Chain-

Reaction [25], POCC [38] and COPS-SNOW [7] implement

read-only transactions. Eiger [21] additionally supports write-

only transactions. These systems either block a read while

waiting for the receipt of remote updates [20], [24], [38],

require a large amount of meta-data [7], [15], [21], or rely

on a sequencer process per DC [25].

Highly available transactional systems. Bailis et al. [39],

[40] propose several flavors of transactional protocols that are

available and support read-write transactions. These protocols

rely on fine-grained dependency tracking and enforce a con-

sistency level that is weaker than CC. TARDiS [41] supports

merge functions over conflicting states of the application,

rather than at key granularity. This flexibility requires a sig-

nificant amount of meta-data and a resource-intensive garbage

collection scheme to prune old states. Moreover, TARDiS does

not implement sharding. GSP [42] is an operational model

for replicated data that supports highly available transactions.

GSP targets non-partitioned data stores and uses a system-wide

broadcast primitive to totally order the updates. Wren, instead,

is designed for applications that scale-out by sharding and

achieves scalability and consistency by lightweight protocols.

Strongly consistent transactional systems. Many systems

support geo-replication with consistency guarantees stronger

than CC (e.g., Spanner [1], Walter [43], Gemini [44],

Lynx [45], Jessy [46], Clock-SRM[47], SDUR [48] and

Droopy [49]). These systems require cross-DC coordination to

commit transactions, hence they are not always-available [11],

[19]. Wren targets a class of applications that can tolerate a

weaker form of consistency, and for these applications it pro-

vides low latency, high throughput, scalability and availability.

Client-side caching. Caching at the client side is a technique

primarily used to support disconnected clients, especially in

mobile and wide area network settings [50], [51], [52]. Wren,

instead, uses client-side caching to guarantee consistency.

VII. CONCLUSION

We have presented Wren, the first TCC system that at the

same time implements nonblocking reads thereby achieving

low latency and allows applications to scale-out by sharding.

Wren implements a novel transactional protocol, CANToR,

that defines transaction snapshots as the union of a fresh causal

snapshot and the contents of a client-side cache. Wren also

introduces BDT, a new dependency tracking protocol, and

BiST, a new stabilization protocol. BDT and BiST use only 2

timestamps per update and per snapshot, enabling scalability

regardless of the size of the system. We have compared Wren

with the state-of-the-art TCC system, and we have shown

that Wren achieves lower latencies and higher throughput,

while only slightly penalizing the freshness of data exposed

to clients.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers, Fernando Pedone,

Sandhya Dwarkadas, Richard Sites and Baptiste Lepers for

their valuable suggestions and helpful comments. This re-

search has been supported by The Swiss National Science

Foundation through Grant No. 166306, by an EcoCloud post-

doctoral research fellowship, and by Amazon through AWS

Cloud Credits.

11

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, and et al., “Spanner: Google’s
Globally-distributed Database,” in Proc. of OSDI, 2012.

[2] G. DeCandia, D. Hastorun, M. Jampani, and et al., “Dynamo: Amazon’s
Highly Available Key-value Store,” in Proc. of SOSP, 2007.

[3] R. Nishtala, H. Fugal, S. Grimm, and et al., “Scaling Memcache at
Facebook,” in Proc. of NSDI, 2013.

[4] S. A. Noghabi, S. Subramanian, P. Narayanan, and et al., “Ambry:
LinkedIn’s Scalable Geo-Distributed Object Store,” in Proc. of SIG-

MOD, 2016.

[5] A. Verbitski, A. Gupta, D. Saha, and et al., “Amazon Aurora: De-
sign Considerations for High Throughput Cloud-Native Relational
Databases,” in Proc. of SIGMOD, 2017.

[6] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. a. Paulo, J. Pereira, and
R. Vilaça, “MeT: Workload Aware Elasticity for NoSQL,” in Proceed-

ings of the 8th ACM European Conference on Computer Systems, ser.
EuroSys ’13, 2013.

[7] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd, “The SNOW Theorem
and Latency-Optimal Read-Only Transactions,” in OSDI, 2016.

[8] D. D. Akkoorath, A. Tomsic, M. Bravo, and et al., “Cure: Strong
semantics meets high availability and low latency,” in Proc. of ICDCS,
2016.

[9] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal
Memory: Definitions, Implementation, and Programming,” Distributed

Computing, vol. 9, no. 1, pp. 37–49, 1995.

[10] H. Attiya, F. Ellen, and A. Morrison, “Limitations of Highly-Available
Eventually-Consistent Data Stores,” in Proc. of PODC, 2015.

[11] P. Mahajan, L. Alvisi, and M. Dahlin, “Consistency, Availability, Con-
vergence,” Computer Science Department, University of Texas at Austin,
Tech. Rep. TR-11-22, May 2011.

[12] M. P. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition
for Concurrent Objects,” ACM Trans. Program. Lang. Syst., vol. 12,
no. 3, pp. 463–492, Jul. 1990.

[13] K. Birman, A. Schiper, and P. Stephenson, “Lightweight Causal and
Atomic Group Multicast,” ACM Trans. Comput. Syst., vol. 9, no. 3, pp.
272–314, Aug. 1991.

[14] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, “Providing High Avail-
ability Using Lazy Replication,” ACM Trans. Comput. Syst., vol. 10,
no. 4, pp. 360–391, Nov. 1992.

[15] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-area Storage
with COPS,” in Proc. of SOSP, 2011.

[16] M. Zawirski, N. Preguiça, S. Duarte, and et al., “Write Fast, Read in
the Past: Causal Consistency for Client-Side Applications,” in Proc. of

Middleware, 2015.

[17] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Bolt-on Causal
Consistency,” in Proc. of SIGMOD, 2013.

[18] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[19] E. A. Brewer, “Towards Robust Distributed Systems (Abstract),” in Proc.

of PODC, 2000.

[20] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “GentleRain: Cheap
and Scalable Causal Consistency with Physical Clocks,” in Proc. of

SoCC, 2014.

[21] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Stronger
Semantics for Low-latency Geo-replicated Storage,” in Proc. of NSDI,
2013.

[22] R. H. Thomas, “A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases,” ACM Trans. Database Syst.,
vol. 4, no. 2, pp. 180–209, Jun. 1979.

[23] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
Replicated Data Types,” in Proc. of SSS, 2011.

[24] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable Causal
Consistency Using Dependency Matrices and Physical Clocks,” in Proc.

of SoCC, 2013.

[25] S. Almeida, J. a. Leitão, and L. Rodrigues, “ChainReaction: A Causal+
Consistent Datastore Based on Chain Replication,” in Proc. of EuroSys,
2013.

[26] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload Analysis of a Large-scale Key-value Store,” in Proc. of

SIGMETRICS, 2012.

[27] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone,
“Logical Physical Clocks,” in Proc. of OPODIS, 2014.

[28] C. Gunawardhana, M. Bravo, and L. Rodrigues, “Unobtrusive Deferred
Update Stabilization for Efficient Geo-Replication,” in Proc. of ATC,
2017.

[29] M. Roohitavaf, M. Demirbas, and S. Kulkarni, “CausalSpartan: Causal
Consistency for Distributed Data Stores using Hybrid Logical Clocks,”
in SRDS, 2017.

[30] L. Lamport, “The Part-time Parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[31] H. Lu, K. Veeraraghavan, P. Ajoux, and et al., “Existential Consistency:
Measuring and Understanding Consistency at Facebook,” in Proc. of

SOSP, 2015.
[32] J. Du, S. Elnikety, and W. Zwaenepoel, “Clock-SI: Snapshot isolation

for partitioned data stores using loosely synchronized clocks,” in Proc

of SRDS, 2013.
[33] D. Didona, K. Spirovska, and W. Zwaenepoel, “Okapi: Causally Consis-

tent Geo-Replication Made Faster, Cheaper and More Available,” ArXiv

e-prints, https://arxiv.org/abs/1702.04263, Feb. 2017.
[34] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd,

“I Can’t Believe It’s Not Causal! Scalable Causal Consistency with No
Slowdown Cascades,” in Proc. of NSDI, 2017.

[35] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proc. of SoCC,
2010.

[36] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Minimizing
Commit Latency of Transactions in Geo-Replicated Data Stores,” in
Proc. of SIGMOD, 2015.

[37] O. Balmau, D. Didona, R. Guerraoui, and et al., “TRIAD: Creating
Synergies Between Memory, Disk and Log in Log Structured Key-Value
Stores,” in Proc. of ATC, 2017.

[38] K. Spirovska, D. Didona, and W. Zwaenepoel, “Optimistic Causal
Consistency for Geo-Replicated Key-Value Stores,” in Proc. of ICDCS,
2017.

[39] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Highly Available Transactions: Virtues and Limitations,”
Proc. VLDB Endow., vol. 7, no. 3, pp. 181–192, Nov. 2013.

[40] P. Bailis, A. Fekete, J. M. Hellerstein, and et al., “Scalable Atomic
Visibility with RAMP Transactions,” in Proc. of SIGMOD, 2014.

[41] N. Crooks, Y. Pu, N. Estrada, T. Gupta, L. Alvisi, and A. Clement,
“TARDiS: A Branch-and-Merge Approach To Weak Consistency,” in
Proc. of SIGMOD, 2016.

[42] S. Burckhardt, D. Leijen, J. Protzenko, and M. Fahndrich, “Global
Sequence Protocol: A Robust Abstraction for Replicated Shared State,”
in Proceedings of ECOOP, 2015.

[43] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional Storage
for Geo-replicated Systems,” in Proc. of SOSP, 2011.

[44] V. Balegas, C. Li, M. Najafzadeh, and et al., “Geo-Replication: Fast If
Possible, Consistent If Necessary,” Data Engineering Bulletin, vol. 39,
no. 1, pp. 81–92, Mar. 2016.

[45] Y. Zhang, R. Power, S. Zhou, and et al., “Transaction Chains: Achieving
Serializability with Low Latency in Geo-distributed Storage Systems,”
in Proc. of SOSP, 2013.

[46] M. S. Ardekani, P. Sutra, and M. Shapiro, “Non-monotonic Snapshot
Isolation: Scalable and Strong Consistency for Geo-replicated Transac-
tional Systems,” in Proc. of SRDS, 2013.

[47] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and F. Pedone, “Clock-
RSM: Low-Latency Inter-datacenter State Machine Replication Using
Loosely Synchronized Physical Clocks,” in Proc. of DSN, 2014.

[48] D. Sciascia and F. Pedone, “Geo-replicated storage with scalable de-
ferred update replication,” in Proc. of DSN, 2013.

[49] S. Liu and M. Vukolić, “Leader Set Selection for Low-Latency Geo-
Replicated State Machine,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 28, no. 7, pp. 1933–1946, July 2017.
[50] M. E. Bjornsson and L. Shrira, “BuddyCache: High-performance Object

Storage for Collaborative Strong-consistency Applications in a WAN,”
in Proc. of OOPSLA, 2002.

[51] D. Perkins, N. Agrawal, A. Aranya, and et al., “Simba: Tunable End-
to-end Data Consistency for Mobile Apps,” in Proc. of EuroSys, 2015.

[52] I. Zhang, N. Lebeck, P. Fonseca, and et al., “Diamond: Automating
Data Management and Storage for Wide-Area, Reactive Applications,”
in Proc. of OSDI, 2016.

12

