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ABSTRACT

In this paper, a technique to generate the wrench-closure workspace for general case completely restrained

cable driven parallel mechanisms is proposed. Existing methods can be classified as either numerically or analyti-

cally based approaches. Numerical techniques exhaustively sample the task space, which can be inaccurate due to

discretisation and is computationally expensive. In comparison, analytical formulations have higher accuracy, but

often provides only qualitative workspace information. The proposed hybrid approach combines the high accuracy

of the analytical approach and the algorithmic versatility of the numerical approach. Additionally, this is achieved

with significantly lower computational costs compared to numerical methods. It is shown that the wrench-closure

workspace can be reduced to a set of univariate polynomial inequalities with respect to a single variable of the

end-effector motion. In this form, the workspace can then be efficiently determined and quantitatively evaluated.

The proposed technique is described for a 3-DOF and a 6-DOF cable driven parallel manipulator. A detailed exam-

ple in workspace determination using the proposed approach and comparison against the conventional numerical

approach are presented.

1 Introduction

Cable driven parallel manipulators are structurally similar to traditional parallel mechanisms, but differ in that rigid

links are replaced by cables. The manipulator’s movement is regulated through the actuation of the individual cables that are

attached to the end effector on one end and to the actuator located at the base platform on the other. This class of manipulator

has been widely studied due to its desirable characteristics over traditional parallel mechanisms: reduced weight and inertia,

simplified dynamics modelling, ease of transportation and construction, and ease of reconfigurability.

The use of lightweight cables with negligible inertia simplifies the dynamics, modelling and control of the system.

In addition, cable mounting points at the base platform can be relocated to result in a highly reconfigurable and resizable

workspace. With these advantages, a range of applications exist for cable driven robots [1], such as manipulation of heavy

payloads for manufacturing [2] [3] and cargo handling [4], interaction and sensing with the environment [5] [6], aerial

camera, haptics [7] and building construction [8]. Applications in the medical field include rehabilitation [9] [10] and

exoskeletons [11] [12].

Knowledge of the end effector’s usable workspace is essential for several purposes, such as trajectory planning [13],

and the selection and design of manipulator configurations depending on workspace requirements [14]. The configuration

of a cable driven manipulator refers to the location of cable attachments at the base platform and the end effector. A unique

property of cable driven mechanisms is that cables can only be actuated unilaterally through tension and not compression

(positive cable tension). This limitation creates challenging problems in the control of the manipulator [15] and workspace



determination. It also means that techniques to determine the workspace for serial and rigid link parallel manipulators are not

directly applicable to cable manipulators due to this unilateral property. Several types of cable driven parallel manipulator

workspace have been identified and investigated, such as the static workspace [16], dynamic workspace [17], wrench-feasible

workspace [18] [19] [20], wrench-closure workspace [20] [21] [22] [23] [24], and interference-free workspace [25] [26].

The wrench-feasible workspace (WFW) for the manipulator refers to the set of poses for which the system dynamics can

be satisfied with positive cable tensions for a specified set of external wrenches, velocities, and accelerations, within the

specified actuation limits of the cable. The wrench-closure workspace (WCW) is similar to the WFW, defined as the set of

poses in which the manipulator can sustain any arbitrary external wrench when no upper bounds are placed on the cable

tensions.

Cable manipulators with n degrees-of-freedom (DOF) actuated by m cables can be classified as being incompletely

restrained (m < n + 1), completely restrained (m = n + 1), or redundantly restrained (m > n + 1) [27]. Techniques to

determine the WCW for redundantly restrained systems have been studied in [21] [23] based on the concept of determining

the positive spanning of the task space and on convex analysis, while completely restrained systems were studied in [22].

For redundantly restrained manipulators, workspace can be determined by considering the system as a combinatorial set

of completely restrained systems. Approaches for workspace determination can be classified as numerical [21] [22] or

analytical [17] [19] [23] [24].

Numerical methods are typically point-wise evaluation techniques, where the task space is exhaustively searched at

discrete intervals. This approach provides only a local measure of the workspace at the evaluated points, suffering from the

effects of discretisation. The accuracy for this approach is dependent on the interval width (step-size), where decreased width

results in increased accuracy. The drawback of decreasing interval width is that the computational time will be significantly

increased.

Analytical formulations provide a more accurate description of workspace and insights into its geometry. The region

can be described as the intersection of a set of inequality equations. Due to the algebraic complexity, previous studies have

been concerned with determining only the boundary of the workspace. In [23], the WCW boundary for over-restrained

planar cable robots in constant orientation was analytically studied. The boundary was determined to be in the form of a

set of second degree conic sections of two variables. In a similar manner, it was shown in [24] that the form for WCW

of planar cable manipulators could be expressed as a polynomial of degree 12 in three variables. A similar problem was

investigated in [19], where the WFW boundary for a range of systems, planar, spatial and point mass cable robots in constant

orientation were analytically determined. The solution was shown to be comprised of a set of lower and upper boundaries.

For the spatial manipulator, the lower boundary is a set of fifth degree polynomial equations in three variables with 56

polynomial coefficients. The upper boundary was observed to be generally not polynomial and hence difficult to solve.

Upon determining the boundaries, the workspace itself can then be located by graphically identifying the regions that satisfy

the set of inequalities. The manipulator designer can take advantage of this insight into the workspace geometry while

graphically identifying the workspace region. Many existing analytical methods where only boundaries of the workspace

are determined require additional steps to determine the admitted workspace. Compared to the techniques under numerical

approach, the analytical approach typically provides only qualitative information regarding the workspace. The ability to

quantitatively describe the generated region is important in determining the cable mounting locations given the desired

workspace characteristics. This also allows an automated design process of a mechanism, where quality functions associated

with various desired features in the design can be incorporated.

In this paper, an approach to generate the WCW using a hybrid of analytical and numerical methods for completely

restrained cable driven manipulators is presented. The analytical solution for the WCW is reduced to a set of univariate

polynomial inequalities with respect to a single pose variable by treating the other remaining pose variables as constants.

The constant pose variables are then discretely varied over the range of interest, and the analytical form is accurately solved

at each iteration. The workspace region can then be determined directly by solving the set of univariate polynomial inequal-

ities. Compared to the conventional point-wise evaluation methods, the proposed technique has the advantages of lower

computational complexity and increased accuracy. It is shown that the reduction of the computational speed achieved by the

proposed algorithm against the traditional point-wise approach increases with finer evaluation step-size and higher system

complexity.

For the test cases presented in this paper, a computational time saving of at least 4 folds for coarse step-sizes and up to

orders of magnitude of saving for finer resolutions is achieved. The improvement in computational speed does not guarantee

real-time evaluation of a manipulator workspace, as it is dependent of evaluation step-size and system complexity. However,

the multiple folds of saving in computational time translates into tremendous advantage in iterative processes, such as in

the design of cable manipulators to achieve optimal workspace [12] [14], resulting in a significant savings in design costs.

Another benefit of the proposed approach is the ease and efficiency in which the quality of the workspace in the form of cost

functions can be included and evaluated quantitatively.

The remainder of this paper is organised as follows: Section 2 describes the kinematics and dynamics model for a

general spatial cable-driven manipulator. The wrench-closure condition and the corresponding wrench-closure workspace

is presented in Section 3. Section 4 describes the proposed workspace determination approach for a general 6-DOF spatial



manipulator and a 3-DOF ball joint manipulator. The potential of incorporating quality functions to quantitatively evaluate

the resulting WCW is also discussed. The simulation setup for the 3-DOF and 6-DOF manipulators will be presented in

Section 5. Section 6 presents and compares the resulting workspace from the proposed and numerical approaches. Finally,

Section 7 concludes the paper and presents areas of future work.

2 Kinematic and Dynamic Model

The model for a general 6-DOF spatial cable driven parallel manipulator is shown in Figure 1. The cables are attached

to the base frame at positions rA, and to the end effector at positions rB. Vectors rA and rB are constant in the inertial frame,

{F0}, and end effector frame, {FE}, respectively. The attachment points for cable i can be represented as:

0rAi
= rAix

i0 + rAiy
j0 + rAiz

k0

ErBi
= rBix

ie + rBiy
je + rBiz

ke (1)

where 0r and Er represents the vector r in {F0} and {FE}, respectively.

Fig. 1. General Model for Cable Manipulator

The cable vector can be kinematically defined as:

li = r0E + rBi
− rAi

(2)

Expressing the dynamics of the system in Lagrangian form, the equations of motion for the 6-DOF m-cable system can be

defined as:

M(x)ẍ+C(x, ẋ)+G(x)+Fext(x) =−JT (x)t (3)

where x is the manipulator pose, M(x), C(x, ẋ), G(x), and Fext(x) are the mass inertia matrix, centrifugal and Coriolis force

vector, gravitational vector, and external wrench vector, respectively. The cable wrench vector is denoted by −JT t, where

−JT (x) represents the direction of the forces and moments generated by the actuated cables, and t =
[

t1 t2 . . . tm
]T

is the

cable force vector containing the magnitudes of the tension for individual cables, where ti is the tension in cable i. The

positive tension constraint is denoted by t > 0, that is, all the cable tension magnitudes, ti, are required to be positive. The

6×m transpose of the Jacobian matrix is defined as:

JT =

[

l̂1 l̂2 . . . l̂m
rB1

× l̂1 rB2
× l̂2 . . . rBm × l̂m

]

(4)



Expressing JT terms in the inertial frame in terms of the cable attachment points and manipulator pose:

0 l̂i =
r0E(x)+

0
ER(x)rBi

− rAi

li

0rBi
× 0 l̂i =

(0
ER(x)rBi

)× (r0E(x)− rAi
)

li
(5)

where li is the length of the cable i, and 0
ER is the rotation matrix from the frame {F0} to {FE}, which is dependent on the

manipulator pose.

3 Wrench-Closure Workspace

The wrench-closure condition (WCC) for a particular pose is satisfied if a set of positive cable tensions can be determined

for any arbitrary external wrench, velocity or acceleration of the manipulator without any upper bound to cable tension.

Combining the terms representing the dynamics of the system, the equation of motion (3) can be expressed as:

w = JT t (6)

where w =−[M(x)ẍ+C(x, ẋ)+G(x)+Fext(x)]. Hence for an n-DOF m-cable system, the WCC can be described as:

∀w ∈ R
n,∃t > 0 : JT t = w (7)

The geometrical interpretation of (7) is that the WCC is satisfied if the columns of JT positively span R
n for full rank JT . An

equivalent definition of the WCC is the existence of some positive cable tension vector within the nullspace of JT [23].

rank(JT ) = n

∃t ∈ ker(JT ) : t > 0 (8)

Another interpretation of (7) is that the WCC can be described by performing row reduction on the linear system. Since JT

is of full rank, and considering a completely restrained system, m = n+1, the n× (n+1) transpose of the Jacobian matrix

can be expressed in reduced row echelon form:

JT →
[

In v(x)
]

(9)

where In ∈ R
n×n is an identity matrix and v ∈ R

n is a function of the pose variables. Applying the row reduction as in (9) on

the WCC in (7):

[

In v(x)
]

t = w′, t > 0 (10)

where w′ is the wrench vector after row reduction. The interpretation of (10) is that if all components of v are negative,

v < 0, then the WCC is satisfied. This can be shown by observing the set of equations from (10):

t j + v j(x)tm = w′
j,∀ j ∈ 1, . . . ,n (11)

where j refers to the jth row of (10). Given that tm ∈ (0,∞), if v j(x)< 0, then v jtm ∈ (−∞,0) and hence w′
j ∈ (−∞,∞). The

result of this is w ∈ R
n, satisfying the WCC from (7). The WCW for the manipulator is defined as the set of poses in which

the WCC is satisfied. This can be defined as:

{x : ∀w ∈ R
n,∃t > 0,JT (x)t = w} (12)



An alternative definition of WCC in (10) can also be used to define the WCW:

{

x : v(x)< 0,JT →
[

In v(x)
]

}
}

(13)

Hence the resulting workspace can be considered as the intersection of a set of multivariate inequalities. Knowledge of the

algebraic form of v(x), derived in the following section, is required to analytically determine the workspace region. It can

also be shown that the WCW boundary is comprised of sections of the curves v(x) = 0.

4 Proposed Workspace Determination Approach

4.1 6-DOF Spatial Manipulator

The analytical form for the WCW of a general 6-DOF spatial manipulator based on (13) is presented in this section.

The pose for the manipulator as shown in Figure 1 can be defined as x = [x y z α β γ]T , where x,y and z are the translation

variables between the origin of the inertial and end-effector coordinate frames, and α,β and γ are the xyz-Euler angles that

define the orientation of the manipulator. The relationship between {F0} and {FE} can be described as:

r0E = xi0 + yj0 + zk0

0
ER =





cβcγ −cβsγ sβ

cαsγ + sαsβcγ cαcγ − sαsβsγ −sαcβ

sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ



 (14)

where cα,cβ and cγ, and sα,sβ and sγ represent cosα,cosβ and cosγ, and sinα,sinβ and sinγ, respectively. Without loss of

generality, the cable attachment locations from (1) can be used. The ith column of JT matrix (4) can be expressed as:

[

l̂i
rEBi

× l̂i

]

=
1

li

















J1i

J2i

J3i

J4i

J5i

J6i

















(15)

where each of the terms can be explicitly derived as:

J1i = x+ rBix
cβcγ − rBiy

cβsγ + rBiz
sβ − rAix

J2i = y+ rBix
(cαsγ + sαsβcγ)+ rBiy

(cαcγ − sαsβsγ)− rBiz
sαcβ − rAiy

J3i = z+ rBix
(sαsγ − cαsβcγ)+ rBiy

(sαcγ + cαsβsγ)+ rBiz
cαcβ − rAiz

J4i = (rBix
(cαsγ + sαsβcγ)+ rBiy

(cαcγ − sαsβsγ)− rBiz
sαcβ)(z− rAiz

)

−(rBix
(sαsγ − cαsβcγ)+ rBiy

(sαcγ + cαsβsγ)+ rBiz
cαcβ)(y− rAiy

)

J5i = −(rBix
cβcγ − rBiy

cβsγ + rBiz
sβ)(z− rAiz

)

+(rBix
(sαsγ − cαsβcγ)+ rBiy

(sαcγ + cαsβsγ)+ rBiz
cαcβ)(x− rAix

)

J6i = (rBix
cβcγ − rBiy

cβsγ + rBiz
sβ)(y− rAiy

)

−(rBix
(cαsγ + sαsβcγ)+ rBiy

(cαcγ − sαsβsγ)− rBiz
sαcβ)(x− rAix

) (16)

Previous analytical studies typically assume constant orientation, by treating pose variables, α,β and γ, as constants

[20] [21] [22]. This reduces the complexity of the workspace boundary to a set of multivariate polynomial equations. In

comparison, the solution for the WCW from (13) is a set of multivariate inequalities that are generally not polynomials. The

analytical solution can be simplified by expressing the WCW as a function of a single variable, and treating the remaining

variables as constant values. As a result, the WCW can be reduced to a set of univariate polynomial inequalities. Any of the

six pose variables for the spatial manipulator could be selected to be solved analytically, resulting in different polynomial

complexities.



Consider an example where the WCW was to be expressed with respect to the translational pose variable x. It can be

observed that the term J1i from (16) is a linear function of x expressed in the form:

J1i = ax+b ∈ O(x) (17)

a = 1

b = rBix
cβcγ − rBiy

cβsγ + rBiz
sβ − rAix

Repeating this analysis on the remaining terms of JT result in the following algebraic complexities:

J1i,J5i,J6i ∈ O(x)

J2i,J3i,J4i ∈ O(1) (18)

where the coefficients of the terms are a function of the constant pose variables y, z, α, β, and γ. The order of complexity for

the terms of JT can be expressed as:

JT ∈























O(x)
l1

O(x)
l2

O(x)
l3

O(x)
l4

O(x)
l5

O(x)
l6

O(x)
l7

O(1)
l1

O(1)
l2

O(1)
l3

O(1)
l4

O(1)
l5

O(1)
l6

O(1)
l7

O(1)
l1

O(1)
l2

O(1)
l3

O(1)
l4

O(1)
l5

O(1)
l6

O(1)
l7

O(1)
l1

O(1)
l2

O(1)
l3

O(1)
l4

O(1)
l5

O(1)
l6

O(1)
l7

O(x)
l1

O(x)
l2

O(x)
l3

O(x)
l4

O(x)
l5

O(x)
l6

O(x)
l7

O(x)
l1

O(x)
l2

O(x)
l3

O(x)
l4

O(x)
l5

O(x)
l6

O(x)
l7























(19)

The complexity of the terms in the vector v from (9) can be determined by applying row reduction on JT from (19). It

can be shown that after row reduction, v j(x) can be expressed in the form of
l j

l7

p j(x)

d(x) , where l j is the length of cable j, and

p j,d ∈ O(x3) are univariate cubic equations. The WCW from (13) can be expressed as:

{

x : v j(x) =
l j

l7

p j(x)

d(x)
< 0,∀v j(x) ∈ v(x)

}

(20)

Since cable lengths are strictly positive, l j > 0, these non-polynomial terms can be ignored. Considering the numerator

and denominator polynomial equations separately, the WCW definition from (20) can be expressed as a univariate equation:

{x : sgn(p j(x)) =−sgn(d(x)), p j(x) 6= 0 ∀ j ∈ {1, . . . ,6},d(x) 6= 0} (21)

The resulting workspace can be represented as a set of open intervals, x ∈ (xl ,xu), where xl and xu form the workspace

boundaries. Given that p j and d are cubic equations, its roots and sgn regions can be expressed explicitly in analytical form.

Alternatively, (21) can be expressed as a set of univariate polynomial inequalities. Algorithm 1 summarises this approach

for a general case n-DOF system.

Algorithm 1 Determining the values of x for which v(x)< 0

Require: v(x) ∈ R
n

Ensure: v(x)< 0

d(x)⇐ univariate polynomial equation from v(x) (Eqn. 20)

for i = 1 to n do

pi(x)⇐ univariate polynomial equation from v(x) (Eqn. 20)

Wi = {x : pi(x)< 0,d(x)> 0}∪{x : pi(x)> 0,d(x)< 0} (Eqn. 21)

end for

return W1 ∩W2 ∩·· ·∩Wn



Repeating this analysis, if the WCW was to be expressed as a function of an orientation pose variable, for example, β,

then the complexity of the Jacobian terms from (16) are:

J1i,J2i,J3i,J4i,J5i,J6i ∈ O(cβ + sβ) (22)

Using the Jacobian terms from (22), expressing v j(β) as
l j

l7

p j(β)

d(β) yields p j,d ∈ O(c6
β + s6

β). The transcendental terms can be

eliminated by introducing the Weierstrass substitution:

T = tan
β

2
, sinβ =

2T

1+T 2
, cosβ =

1−T 2

1+T 2
(23)

As a result, p j(T ),d(T ) ∈ O(T 12) become univariate polynomials of degree 12, where the set of constant pose variables are

contained within the polynomial coefficients.

Performing this analysis for each of the pose variables, it can be shown that the polynomial complexities for p j and d

will differ. Selection of translational variables x, y or z results in univariate cubic equations, p j(T ),d(T ) ∈ O(T 3), while

selecting the orientation variable α yields degree 10 univariate polynomials, p j(T ),d(T )∈ O(T 10) and orientation variable β
or γ degree 12 univariate polynomials, p j(T ),d(T ) ∈ O(T 12). From this analysis, it is apparent that different complexities of

polynomial equations arise depending on the degrees of freedom and pose representation for the manipulator. For workspace

determination, the pose variable that results in the simplest form should be chosen. The summary of the algorithm when

implemented to determine WCW for an n-DOF completely restrained cable system is given in Algorithm 2.

Algorithm 2 Determining WCW for an n-DOF (n+1)-cable system

Require: {B1,B2, . . . ,Bn} which are the bounds for variables {x1,x2, . . . ,xn}
Ensure: W is the WCW workspace of manipulator

x ⇐{x1,x2, . . . ,xn} ∈ R
n (pose variable vector)

JT ⇐ n× (n+1) transpose of Jacobian matrix (Eqn. 4)

for all Ji j ∈ JT do

Ji j ⇐ derive analytical expression (Eqn. 16)

end for

v(x)⇐ (n+1)th column of row-reduced JT matrix (Eqn. 9)

xs ⇐ selected pose variable from x, e.g. xn

xc ⇐ {x1,x2, . . . ,xn−1} ∈ R
n−1 where xs /∈ xc; xc contains the remaining pose variables

for x1 ∈ B1 with step-size ∆B1 do

for x2 ∈ B2 with step-size ∆B2 do
...

for xn−1 ∈ Bn−1 with step-size ∆Bn−1 do

v(xs)⇐ substitute xc into v(x) (Eqn. 20)

A ⇐ region satisfying v(xs)< 0 (Algorithm 1)

W ⇐W ∪A

end for
...

end for

end for

return W

4.2 3-DOF Ball Joint Manipulator

A 3-DOF manipulator constrained at the origin of the inertial frame, {F0}, by a ball joint is shown in Figure 2. The pose

of the manipulator can be defined by the xyz-Euler orientation angles x = [α β γ]T . Since there are only orientation degrees

of freedom, the transpose of the Jacobian matrix is:

JT =
[

rB1
× l̂1 rB2

× l̂2 rB3
× l̂3 rB4

× l̂4
]

(24)



The Jacobian matrix terms in (24) are equivalent to (5) where r0E = 0:

rBi
× l̂i =

rAi
× (0

ER(x)rBi
)

li
(25)

From (15), it can seen that the Jacobian terms for the particular system can be expressed as:

[

rEBi
× l̂i

]

=
1

li





J1i

J2i

J3i



 (26)

where each term could be explicitly derived from (25):

J1i = rAiy
(rBix

(sαsγ − cαsβcγ)+ rBiy
(sαcγ + cαsβsγ)+ rBiz

cαcβ)

−rAiz
(rBix

(cαsγ + sαsβcγ)+ rBiy
(cαcγ − sαsβsγ)− rBiz

sαcβ)

J2i = −rAix
(rBix

(sαsγ − cαsβcγ)+ rBiy
(sαcγ + cαsβsγ)+ rBiz

cαcβ)

+rAiz
(rBix

cβcγ − rBiy
cβsγ + rBiz

sβ)

J3i = rAix
(rBix

(cαsγ + sαsβcγ)+ rBiy
(cαcγ − sαsβsγ)− rBiz

sαcβ)

−rAiy
(rBix

cβcγ − rBiy
cβsγ + rBiz

sβ) (27)

The problem can then be reformulated as a univariate polynomial function of one of the pose variables. In this case, the three

possible Euler angles will yield the same level of complexity. To illustrate this example, α was selected, and the complexity

of the Jacobian terms are:

J1i,J2i,J3i ∈ O(cα + sα) (28)

where the coefficients of the terms are a function of β and γ. After row-reduction on JT , v j(α) =
l j

l4

p j(α)

d(α) , where p j,d ∈

O(c3
α + s3

α). Introducing the Weierstrass substitution in (23), univariate sextics, p j,d ∈ O(T 6), are obtained. Hence the

WCW definition for this specific manipulator becomes:

W = {α : T = tan
α

2
,sgn(p j(T )) =−sgn(d(T )), p j(T ) 6= 0 ∀ j ∈ {1, . . . ,3},d(x) 6= 0} (29)

The resulting workspace can be represented as a set of open intervals, α ∈ (αl ,αu), where αl and αu form the workspace

boundaries.

4.3 Workspace Evaluation

The proposed technique inherently accommodates the ability to quantitatively evaluate the WCW in an efficient manner.

This is crucial in the optimisation of cable configurations for a particular manipulator design. In the optimisation process,

the evaluation of workspace under a desired quantitative measure of quality is required. A trivial example of such a function

is the total workspace volume. More sophisticated functions could incorporate levels of desirability in different workspace

regions.

Considering the quality of the workspace at a particular pose, x, as f (x), the total quality of the workspace can be defined

as:

Q =
∫

W
f (x)dx (30)

where W represents the WCW of the manipulator. It will be shown that the total workspace quality could be efficiently

computed if the integral function of f (x) can be determined analytically with respect to at least one of the pose variables.



For example, considering the 3-DOF ball joint manipulator presented in Section 4.2, the total quality from (30) can be

expressed as:

Q =
∫

α

∫
β

∫
γ

f (α,β,γ) dα dβ dγ, ∀(α,β,γ) ∈W (31)

Assuming that the integral of f (α,β,γ) can be determined with respect to α, F(α), the quality from (31) can be expressed

as:

Q = ∑
γ

∑
β

∑
k

∫ αuk

αul

f (α,β,γ)dα, ∀(β,γ) ∈W

= ∑
γ

∑
β

∑
k

F(αuk
)−F(αul

), ∀(β,γ) ∈W (32)

where k represents the number of (αl ,αu) intervals at particular β and γ values. The total quality from (32) provides an

efficient way to evaluate the workspace by using the lower and upper bounds determined by the analytical WCW form from

(29). In comparison, the workspace determined by the point-wise approach would require evaluation of f (α,β,γ) at each

(α,β,γ) pose within the WCW. A simple and intuitive quality function is the volume of the workspace, where f (α,β,γ) = 1

and hence F(α) = α. The resulting total cost can be expressed as:

Q = ∑
γ

∑
β

∑
k

(αuk
−αul

), ∀(β,γ) ∈W (33)

With careful selection of the quality functions, the manipulator’s cable configuration can be optimised to possess desirable

WCW characteristics in an efficient and autonomous manner.

5 Simulation Setup

The WCW for a 3-DOF and 6-DOF completely restrained cable driven parallel manipulator is generated using the

proposed hybrid approach. The workspace for the 3-DOF manipulator will also be determined using the point-wise approach

as a benchmark in terms of accuracy and computational efficiency. The point-wise approach to determine the WCW for a

6-DOF manipulator was not performed due to the inefficiency of the method. The simulation setup and manipulator cable

arrangements are presented in this section.

5.1 3-DOF Ball Joint Manipulator

The cable attachment points for the proposed 3-DOF manipulator as shown in Figure 2 are displayed in Table 1, assum-

ing units in metres. In this configuration, the cables are located symmetrically around the ball joint of the manipulator.

Fig. 2. 3-DOF Ball Joint Manipulator Model

For this manipulator, the bounds for the pose variables in determining the workspace were selected to be α,β ∈
[

−π
2
, π

2

]

rad and γ ∈ [−π,π] rad. A range of step sizes, ∆α, ∆β and ∆γ, were varied to observe the efficiency and accuracy of both



Table 1. Cable Configuration for 3-DOF Manipulator

Base End Effector

0rAix
0rAiy

0rAiz
ErBix

ErBiy
ErBiz

Cable 1 0.5 0 0 0.1 0 1

Cable 2 0 0.5 0 0 0.1 1

Cable 3 −0.5 0 0 −0.1 0 1

Cable 4 0 −0.5 0 0 −0.1 1

techniques. The efficiency of the approach was measured as the computational time required to determine the workspace,

and accuracy was compared through graphical representations of the WCW and workspace volumes.

Due to discretisation in the approaches, the workspace volume for the point-wise approach can be considered as a sum

of elementary cubes with volume ∆V = ∆α ·∆β ·∆γ, and the whole volume of the workspace can be expressed as:

Va = ∑
α

∑
β

∑
γ

∆α ·∆β ·∆γ (34)

For the proposed hybrid approach, the workspace volume can be considered as a sum of thin rectangles with volume ∆V =
∆β ·∆γ · (αu −αl), hence the total volume can be represented as:

Vb = ∑
β

∑
γ

∑
k

∆β ·∆γ · (αuk
−αlk) (35)

where k represents the number of (αl ,αu) intervals at the β and γ value. Since the point-wise approach is known to under-

estimate the workspace, the difference in volumes of the two approaches can be expressed by taking a ratio of the volumes

from (34) and (35). If the same step size values, ∆β and ∆γ, are used in both approaches, the volume ratio can be expressed

as:

Vr =
Va

Vb

=

∑
β

∑
γ

∑
α

∆α

∑
β

∑
γ

∑
k

(αuk
−αlk)

(36)

To allow direct comparison of the point-wise approach against the proposed approach, it is assumed that continuous points

along α can be considered as a single linear region, relaxing the locality constraint of the point-wise method.

5.1.1 Proposed Hybrid Analytical-Numerical Approach

It was shown in Section 4.2 that the polynomial coefficients for the WCW in (29) will be functions of β and γ. By

assuming constant β and γ, polynomial coefficients and subsequently, the solution to the WCW with respect to α, can be

determined. In this simulation, β and γ are uniformly varied within the defined bounds as shown in Algorithm 2. At each

β and γ iteration, the Weierstrass substitution is applied and the roots of the polynomial equations, p1(T ), p2(T ), p3(T ) and

d(T ) are determined. This is used to evaluate the sign of the polynomial functions and then to generate the WCW using

(29). The proposed approach provides a point-based measure along β and γ, while the WCC is satisfied continuously along

αl < α < αu. The only inaccuracy incurred in this approach is the numerical error involved in solving for the polynomial

roots. To determine the computational complexity of the proposed approach, the number of steps for the pose variables α,β
and γ can be denoted as a,b and c, respectively. Since only β and γ are varied iteratively, the complexity is O(bc), with the

fundamental operation of solving for (29) at each iteration.

5.1.2 Point-Wise Evaluation

In the point-wise evaluation approach, pose variables are varied discretely within the defined bounds. At each sample

point, if the WCC from (13) is satisfied, then the point can be classified as being within the WCW. Workspace obtained

through this approach has two main features: identified regions are a collection of points that satisfy WCC locally, and the



obtained region underestimate the exact workspace. The first feature implies that the resulting workspace region will be

described by a set of points, where the workspace properties between points cannot be concluded. Underestimation of the

workspace means that the determined region only approximates the exact solution. As a result, the accuracy is dependent on

the step-sizes, ∆α, ∆β and ∆γ. In this simulation experiment, the pose variables α,β and γ are varied at uniform intervals,

implying that ∆α, ∆β and ∆γ are constant values. Hence, the computational complexity of the uniform interval point-wise

approach is O(abc), with the fundamental operation as the verification of the WCC from (13).

5.2 6-DOF Spatial Manipulator

The general 6-DOF spatial manipulator analysed is of the same type as investigated in [18] [21], consisting of a floating

end effector with cables attached to a base frame, as shown in Figure 3. The cable attachment points for the manipulator are

displayed in Table 2.

Fig. 3. 6-DOF Ball Joint Manipulator Model

Table 2. Cable Configuration for 6-DOF Manipulator

Base End Effector

0rAix
0rAiy

0rAiz
ErBix

ErBiy
ErBiz

Cable 1 0 0 1 −0.15 −0.1 0.05

Cable 2 1 0 1 0.15 −0.1 0.05

Cable 3 1 1 1 0.15 0.1 0.05

Cable 4 0 1 1 −0.15 0.1 0.05

Cable 5 0.5 0 0 0 −0.1 −0.05

Cable 6 1 1 0 0.15 0.1 −0.05

Cable 7 0 1 0 −0.15 0.1 −0.05

To allow visualisation of the resulting workspace, the end effector is assumed to have constant orientation. The WCW

of two orientations, α = β = γ = 0, and α = β = 0,γ = 5◦, will be presented. The bounds for the translational variables were

selected to be x,y,z ∈ [0,1] m. The WCW will be determined analytically with respect to pose variable x, for varying values

of y and z with step sizes of ∆y = ∆z = 0.01m.

5.2.1 Proposed Hybrid Analytical-Numerical Approach

It was shown in Section 4.1 that the selection of translational generalised variables would result in univariate cubic

equations. In this simulation, x is selected and the remaining variables, y, z, α, β and γ are uniformly varied within the

defined bounds as shown in Algorithm 2. The proposed approach provides a point-based measure along y, z, α, β and γ,

while the WCC is satisfied continuously along xl < x < xu. Denoting the number of steps for the pose variables α, β, γ, x, y

and z as a, b, c, d, e and f , respectively, the computational complexity of the proposed approach for non-constant orientation



WCW evaluation is O(abce f ), with the fundamental operation of solving for (21) at each iteration. Performing a similar

analysis for the point-wise approach, the computational complexity is expected to be O(abcde f ), with the fundamental

operation as the verification of the WCC from (13).

6 Results and Discussion

The α-β cross-sections of the WCW for the 3-DOF manipulator with ∆α = ∆β = ∆γ = π
60

rad at γ ≈ π
6

rad for the

proposed and point-wise approaches are shown in Figures 4(a) and 4(b), respectively. Additionally, the admitted workspace

satisfying the WCC of each approach is demonstrated through lines and dots, respectively. From the cross-sections, it

can be observed that two disconnected workspace volumes exist. Figure 5 shows the 3D visualisation of one of these

volumes determined using each approach. The locality problem for both approaches have been disregarded for the purpose

of visualisation.

(a) Proposed approach (b) Point-wise approach

Fig. 4. α-β cross-section of the 3-DOF manipulator’s WCW at γ ≈ π
6

rad with ∆α = ∆β = ∆γ = π
60

rad for α,β ∈
[

−π
2
, π

2

]

rad

(a) Proposed approach (b) Point-wise approach

Fig. 5. 3-D Visualisation of the 3-DOF manipulator’s workspace for α,γ ∈ [0, π
2
] rad and β ∈ [−π

2
,0] rad

Comparing the cross-sections and 3D representations of the two techniques, it can be observed that the proposed ap-

proach produces a more accurate definition of workspace contour, where as the artifacts of discretisation are more prominent

in the point-wise approach. This can be observed when the region size and the step-size are of similar magnitude, where the

point-wise evaluation lacks the resolution required to clearly depict the region. The consequence of this is the possibility in

misinterpreting the workspace shape. The cross-section at γ ≈ 3π
8

rad in Figure 6 shows an example where the workspace

shape determined by the point-wise approach is difficult to identify compared to the proposed method. This is further illus-

trated in the cross-section at γ ≈ 7π
16

rad in Figure 7, where the point-wise approach shows two smaller sections that appear

to be disconnected. In contrast, the proposed approach clearly shows a single thin segment of workspace. Although the

proposed approach produces solutions local to the β and γ values, the determined workspace boundaries and regions are

the exact solutions of the WCW within numerical computational error. This produces a more accurate representation of the

workspace geometry without any dependence on ∆α.



(a) Proposed approach (b) Point-wise approach

Fig. 6. α-β cross-section of the 3-DOF manipulator’s workspace at γ ≈ 3π
8

rad with ∆α = ∆β = ∆γ = π
60

rad

(a) Proposed approach (b) Point-wise approach

Fig. 7. α-β cross-section of the 3-DOF manipulator’s workspace at γ ≈ 7π
16

rad with ∆α = ∆β = ∆γ = π
60

rad

The accuracy of the point-wise approach could be increased by using smaller step sizes ∆α, ∆β and ∆γ. Figures 8

and 9 show the same cross-sections at γ ≈ 3π
8

rad and γ ≈ 7π
16

rad with a step-size of ∆α = ∆β = ∆γ = π
200

rad. With this

step-size, it is apparent that the point-wise approach produces more accurate workspace representations compared to those

shown in Figures 6(b) and 7(b). Despite the finer step-size, the discretisation around the workspace boundary is still visible.

In comparison, the proposed approach provides more information between the gaps for β and γ, as shown in Figures 8(a)

and 9(a), but has no effect on the accuracy of the solution with respect to α. These observations suggest that the proposed

approach can be considered as equivalent to the point-wise approach with ∆α = ε, where ε is the numerical error involved in

the computation of the polynomial roots. Observing the computational complexity for the point-wise evaluation approach,

the increased number of steps in α will have a significant impact on its efficiency.

(a) Proposed approach (b) Point-wise approach

Fig. 8. α-β cross-section of the 3-DOF manipulator’s workspace at γ ≈ 3π
8

rad with ∆α = ∆β = ∆γ = π
200

rad

To compare the approaches, two different scenarios to vary the step-sizes in workspace generation have been considered.

In both cases, the time efficiency of each approach and the volume ratio from (36) have been measured for the setup described

in Section 5.1.



(a) Proposed approach (b) Point-wise approach

Fig. 9. α-β cross-section of the 3-DOF manipulator’s workspace at γ ≈ 7π
16

rad with ∆α = ∆β = ∆γ = π
200

rad

Case 1 : Step-sizes of all pose variables are uniform, ∆α = ∆β = ∆γ = ∆x, and varied between π
20

and π
200

rad. This is

expected to be the more commonly used scenario when performing analysis on the workspace geometry and features.

Case 2 : Step-sizes of pose variables β and γ, ∆β and ∆γ are chosen as a constant value of ∆β = ∆γ = π
20

rad, while ∆α is

varied between π
20

and π
3200

rad. This allows a more direct comparison on the accuracy between the approaches for varying

∆α.

The results for case 1 are shown in Table 3, where it can be observed that the proposed approach has much lower

computational times than the point-wise approach. Furthermore, this becomes increasingly significant for smaller step-sizes,

conforming to the computational complexities determined previously. Denoting the number of steps in γ as c, derived from

step-size ∆x and bounds on γ, the commonly used point-wise approach has an algorithmic complexity of O(c3), while for the

proposed approach it is O(c2). Despite having different fundamental operations in the complexity analysis, it appears that

the numerical polynomial root solving is more efficient in comparison to multiple point-wise evaluations. In addition to the

advantage in efficiency, the volume ratio shows that the proposed approach has a higher accuracy in workspace determination.

With decreasing step-size, it can be observed that the volume ratio approaches unity, suggesting that the workspace region

from the point-wise approach is converging to the proposed approach. It is important to note that the volume ratio is not

an absolute measure of accuracy and is highly dependent on the workspace geometry for the particular cable configuration.

Since the error in the point-wise approach occurs due to the discretisation of the workspace boundary by ∆x, the magnitude of

this error is dependent on the workspace’s surface to volume ratio. Hence the volume ratio can only be used as an indication

of accuracy for this cable configuration.

Table 3. Computational time and volume ratio for varying ∆α = ∆β = ∆γ = ∆x

Computational Time (sec)

∆x (rad) Proposed Approach Point-wise Evaluation Vr

π/20 1.0608 4.6176 0.7217

π/40 3.2292 33.9146 0.8458

π/60 6.8328 109.7311 0.9067

π/80 11.9185 258.0569 0.9280

π/100 18.5797 507.9081 0.9430

π/200 73.4453 3973 0.9720

Table 4 shows the computational time and volume ratio for case 2, where ∆α is varied for constant β and γ. The com-

putational complexity of the proposed and point-wise approaches are constant, O(1), and linear, O(a), respectively, where a

represents the number of steps in the iteration of α as defined in Section 5.1.1. The constant computational complexity for

the proposed approach is expected as there is no dependency on ∆α. Similar to the case with uniformly varying step-size, a

decrease in step-size shows a convergence of the volume ratio towards unity. The results suggest that the proposed approach

has the accuracy of the point-wise approach with ∆α = ε ≪ π
3200

.

Although comparable accuracy can be achieved using the point-wise approach with an extremely small step-size, it

is apparent that the efficiency is significantly impacted. In addition, the interval-based satisfaction of the WCC of the



Table 4. Computational time and volume ratio for varying ∆α with ∆β = ∆γ = π
20

rad

Computational Time (sec)

∆α (rad) Proposed Approach Point-wise Evaluation Vr

π/20 1.0608 4.6176 0.7217

π/50 1.1076 11.2633 0.8860

π/100 1.0920 21.8401 0.9405

π/200 1.0452 42.9939 0.9704

π/400 1.1232 85.5821 0.9850

π/800 1.0843 171.3359 0.9920

π/1600 1.2012 336.2602 0.9960

π/3200 1.1700 673.2379 0.9980

proposed approach is desirable over the point-based locality of the point-wise approach, since the condition is satisfied

for all continuous values along α within the lower and upper bounds (αl ,αu). It should be noted that in achieving these

advantages, the proposed approach requires explicit determination of the polynomials p j and d in (29) from JT , which are

different depending on the manipulator topology. In comparison, the WCC condition in (13) can be utilised for the point-wise

approach once JT has been determined, regardless of manipulator topology.

Similarly, for the 6-DOF manipulator, the proposed algorithm was implemented to generate the x-y cross sections of

the WCW for two constant orientations, α = β = γ = 0, and α = β = 0,γ = 5◦ for varying z values, as shown in Figures 10

and 11, respectively. Advantages of the proposed algorithm are similarly observed in this 6-DOF case, such as: the accurate

determination of the WCW without any discretisation in the x dimension and the reduction of one exponential order in the

expected computational time compared to the point-wise approach. The resulting workspace can be compared to the results

of [21], and was observed to display similar symmetry and asymmetry in the admitted workspace, as shown in Figures 10

and 11, respectively. The asymmetry is introduced by the non-zero γ constant orientation.

(a) z = 0.1 (b) z = 0.5 (c) z = 0.9

Fig. 10. x-y cross-section of 6-DOF manipulator’s WCW at α = β = γ = 0◦ with ∆y = 0.01 m for x,y ∈ [0,1] m

The proposed approach can be regarded as a hybrid of numerical and analytical techniques, where the analytical form

of the workspace region is solved with respect to a single variable, and the remaining pose variables are iteratively varied in

the evaluation of the WCW within the region of interest, as discussed in Section 4. As a result, the level of accuracy known

from the purely analytical techniques is maintained while significantly reducing its algebraic complexity.

7 Conclusions

A hybrid approach utilising analytical formulations within conventional numerical methods for a completely restrained

cable driven manipulator was presented. It was shown that despite the complexity, the algebraic inequalities defining the

WCW can be simplified to a set of univariate polynomial inequalities by considering a single variable for analysis. The

complexities of the polynomial inequalities were determined for a general spatial manipulator and a 3-DOF manipulator. It



(a) z = 0.1 (b) z = 0.5 (c) z = 0.9

Fig. 11. x-y cross-section of 6-DOF manipulator’s WCW at α = β = 0◦,γ = 5◦ with ∆y = 0.01 m for x,y ∈ [0,1] m

was shown that this approach is significantly more efficient compared to exhaustive numerical search techniques that evaluate

in a point-wise manner. Efficient generation and evaluation of workspace provided by the proposed WCW determination

approach allows the potential of comparing and optimising cable arrangements in an automated manner. Future work will

focus on utilising the proposed technique in determining other types of cable driven parallel manipulator workspace, and to

apply these in the optimisation of cable configurations given the desired workspace characteristics.
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