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ABSTRACT

Cable-Driven Parallel Robots hold numerous advantages over conventional parallel robots in terms of high
speed and large workspace. Cable Driven Parallel Robots whose workspace can be further increased by the modifi-
cation of their geometric architecture are known as Reconfigurable Cable Driven Parallel Robots. A novel concept
of Reconfigurable Cable Driven Parallel Robots that consists of a classical Cable-Driven Parallel Robot mounted
on multiple Mobile Bases is known as Mobile CDPR. This paper proposes a methodology to trace the Wrench-
Feasible-Workspace of Mobile Cable-Driven Parallel Robots by determining its Available Wrench Set. Contrary to
classical Cable-Driven Parallel Robots, we show that the Available Wrench Set of a Mobile Cable-Driven Parallel
Robot depends, not only on the cable tension limits, but also on the Static Equilibrium conditions of the Mobile
Bases. The Available Wrench Set is constructed by two different approaches known as Convex Hull approach and
Hyperplane Shifting Method. Three case studies are carried out for the validation of the proposed methodology.
The proposed approach is experimentally validated on a Mobile Cable-Driven Parallel Robot with a point-mass
end-effector and two Mobile Bases.

1 Introduction
Cable-Driven Parallel Robots (CDPRs) are a particular class of conventional parallel manipulators whose rigid limbs

are replaced by cables that connect the moving-platform to a fixed base. Each cable is coiled/uncoiled by a motorized
winch to displace the moving-platform. The platform motion is generated by appropriately changing all the cable lengths
between the moving-platform and the fixed base frame. The lightweight properties of the CDPR give these systems an
edge over conventional manipulators and make them suitable for multiple applications such as high acceleration tasks [1],
large workspace [2], material handling [3], rehabilitation [4] and logistic applications [5]. Other possible applications are
large-scale assembly [6], flight simulators [7] and search-and-rescue operations [8].

In spite of the widespread applications of CDPRs, several challenges remain. For example, collision free trajectory
generation must consider all types of collisions, namely, cable/cable, cable/moving-platform, cable/environment and moving-
platform/environment collision type [9,10]. Moreover, the location of the CDPR’s cable attachment points must be carefully
chosen in order to maximize the workspace. Thus, it is important to adapt the robot’s geometric architecture according to
the task requirements. Such solutions are named as Reconfigurable Cable-Driven Parallel Robots (RCDPRs). The geometric
architecture of RCDPRs can be altered by displacing the cable’s exit and/or anchor points which can lead to better perfor-
mances, e.g. lower cable tensions, larger workspace and higher stiffness. The recent work on RCDPRs [11–14] proposed
different strategies to determine an optimized robot architecture based on the required task and the robot’s environment.
Nevertheless, the reconfigurations of existing RCDPRs are usually discrete and performed manually. A concept of CDPRs
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Fig. 1. FASTKIT prototype (a) Navigation mode (b) Undeployed configuration (c) Deployed configuration at the task location

with base mobility is introduced in [15] for optimizing the orientation workspace and stiffness of the moving-platform. A
similar system for optimizing the robot configuration in order to increase the position accuracy of the moving-platform is
presented in [16]. A novel concept of Mobile Cable-Driven Parallel Robots (MCDPRs) was introduced in [17]. It uses a
combination of mobile bases and a CDPR to create autonomous RCDPRs. A MCDPR is composed of a classical CDPR
with m cables and a n degree-of-freedom (DoF) moving-platform mounted on p mobile bases.

The MCDPR prototype “FASTKIT” [18] which was designed and built in the framework of ECHORD++ project1 is
shown in Fig. 1. FASTKIT is composed of two mobile bases (p = 2) with one passive mobile base and one active mobile
base. Its moving-platform is pulled by eight cables (m = 8) and can perform a six DoF motion type (n = 6). The goal of the
FASTKIT project is to provide a low cost and versatile robotic solution for logistics using a combination of mobile robots
and Cable-Driven Parallel Robot (CDPR). The FASTKIT prototype addresses an industrial need for fast picking and kitting
operations in existing storage facilities while being easy to install, maintaining existing infrastructures and covering large
areas. The system can navigate autonomously to the area of interest. Once the desired position is attained, the system deploys
the CDPR in such a way that its workspace corresponds to the current task specification. The system calculates the required
mobile base position from the desired workspace and ensures the controllability of the platform during the deployment.
Once the system is successfully deployed, a set of stabilizers is used to ensure the stability of the prototype. Finally, the
moving-platform is moved accurately by the CDPR at high velocity over a large area by controlling the cable tensions2.

This paper focuses on the Wrench-Feasible Workspace (WFW) of MCDPRs. WFW is defined as the set of platform
poses for which the required set of wrenches can be balanced with wrenches generated by the cables, while maintaining the
cable tension within the defined limits [19, 20]. For a given CDPR configuration, the set of wrenches that can be generated
by the cables on the moving-platform is defined as the Available Wrench Set (AWS). Knowing the AWS, we can predict
whether the robot has ability to generate the required set of wrenches to perform a task, which can be, for example, the
displacement of a sensor mounted on the moving-platform [21] or payload handling [22–24], in a given configuration.

The two methods used to represent the convex polytopes are V -representation, known as the convex hull approach, and
H -representation, known as the Hyperplane Shifting Method [25, 26]. Contrary to classical CDPRs, the static equilibrium
of the mobile bases, characterized by its tipping and sliding conditions, should be considered in addition to the cable tension
limits to determine the AWS of MCDPRs. Therefore, the first step is to formulate the static equilibrium conditions of a
MCDPR, i.e., the static equilibrium of the moving-platform and the static equilibrium of the mobile bases. These conditions
are used to form a cable tension space in order to determine the V -representation of the AWS. The static equilibrium
conditions of the mobile bases are mapped into the wrench space by solving the static equilibrium of the moving-platform
using Gaussian Elimination Algorithm. The H -representation of the AWS is defined by constructing its facets using cable
tension limits and the static equilibrium conditions of the mobile bases expressed in the wrench space. Finally, the H -
representation of the AWS is exploited to trace the WFW workspace of MCDPRs. This methodology is illustrated by the
flowchart shown in Fig. 2.

As consequence, the paper is organized as follows. Section 2 presents the architecture and parameterization of a

1https://www.fastkit-project.eu/
2https://www.youtube.com/watch?v=TJSsfjNlvZ4
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Fig. 2. Methodology used to determine the WFW of a MCDPR

MCDPR. Section 3 expresses the static equilibrium equations of the moving-platform and mobile bases. Those equations
are used to determine the manipulator’s cable tension space. A methodology to map the static equilibrium conditions of the
mobile bases into the wrench space of the moving-platform is described in Sec. 4.2.2. Accordingly, the AWS of MCDPRs
is calculated using both the V -representation and the H -representation as explained in Sec. 4. Section 5 explains how
the WFW is traced using H -representation of the AWS. Three case studies are given in Sec. 5 to illustrate the theoretical
contributions of the paper, along with the experimental validation of the concept. Finally, conclusions are drawn and future
work is discussed in Sec. 6.

2 MCDPR Parameterization
A MCDPR is composed of a classical CDPR with m cables, a n DoF moving-platform carried by p mobile bases. A

MCDPR with m = 8 cables, n = 6 DoF moving-platform and p = 4 mobile bases is shown in Fig. 3. Let m j be the number
cables connected to the jth mobile base denoted as M j, j = 1, . . . , p. The ith cable attached to M j is named as Ci j ,
i = 1, . . . ,m j. As a result, m cables are attached to the moving-platform.

m =
p

∑
j=1

m j. (1)
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(a) (b)

Fig. 3. (a) A MCDPR with eight cables (m = 8) and four mobile bases (p = 4). Its moving-platform has six degree-of-freedom (n = 6) (b)
jth mobile base with four wheels (c j = 4).

Let ui j be the unit vector pointing from the anchor point Bi j to the exit point Ai j of cable Ci j. ti j is the Ci j cable tension
vector expressed as:

ti j = ui jti j, (2)

where ti j denotes the tension in the cable Ci j. Let F0 be the base frame of origin O0 and axes x0, y0 and z0, respectively.
Mobile bases are assumed to be capable of performing two-DoF translational motions along x0 and y0 and one-DoF rotational
motion about an axis parallel to z0. The jth mobile base is assumed to have c j wheels. Ck j, k = 1, . . . ,c j are the contact
points between the jth mobile base M j and the ground. Figure 3(b) illustrates M j with four wheels (c j = 4).

3 Static Equilibrium of MCDPRs
A MCDPR is in a static equilibrium if and only if (iff) its moving-platform and mobile bases are all in static equilibrium.

Therefore, the static equilibrium conditions of the moving-platform and the mobile bases of MCDPRs are formulated in this
section.

3.1 Static Equilibrium of the Moving Platform
The static equilibrium equations of the moving-platform are expressed as [27, 28]:

p

∑
j=1

m j

∑
i=1

ui jti j = f, (3a)

p

∑
j=1

m j

∑
i=1

cri jti j = m, (3b)
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where f = [ f x, f y, f z]T and m = [mx,my,mz]T denote the forces and moments applied by the cables onto the moving platform.
cri j gives the direction of the actuation moment applied by the cable Ci j onto the moving-platform expressed as:

cri j = ri j×ui j, (4)

where ri j is a vector pointing from the origin OP of the moving-platform frame FP to the cable anchor point Bi j. The static
equilibrium of the moving-platform is expressed in a matrix form as:

Wt = w, (5)

where W is a (n×m) wrench matrix mapping the cable tension vector t ∈ Rm onto the wrenches w ∈ Rn applied by the
cables onto the moving-platform.

W =
[
W1 . . . W j . . . Wp

]
, w =

[
f

m

]
, t =


t1
...
t j
...

tp

 . (6)

W j is a (n×m j)-dimensional matrix whose columns are the actuation wrenches exerted by the cables attached to M j. t j is
a m j-dimensional cable tension vector corresponding to the cables connected to M j.

t j =
[
t1 j . . . ti j . . . tm j j

]T
, (7a)

W j =
[
w1 j . . . wi j . . . wm j j

]
. (7b)

wi j is the actuation wrench generated by the cable Ci j and is expressed as:

wi j =

[
ui j
cri j

]
. (8)

The cable tension are all bounded between a minimum and positive tension t i j and a maximum tension t i j

t i j ≤ ti j ≤ t i j, i = 1, . . . ,m j, j = 1, . . . , p. (9)

3.2 Static Equilibrium of Mobile Bases
The static equilibrium of a wheeled mobile base can be characterized by its tipping and sliding conditions. To obtain

the effect of these conditions on the wrench abilities of the moving platform, the latter must be first expressed in terms of the
cable tensions. From Fig. 3(b), the equilibrium conditions of M j are expressed as [17]:

wg j +
c j

∑
k=1

fck j −
m j

∑
i=1

ti j = 0 (10a)

g j×wg j +
c j

∑
k=1

ck j× fck j −
m j

∑
i=1

bi j× ti j = 0 (10b)
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where fck j = [ f x
ck j
, f y

ck j , f z
ck j
] denotes the ground contact force at Ck j. g j denotes the Cartesian coordinate vector of the center

of gravity G j. ck j denotes the Cartesian coordinate vector of the wheel contact point Ck j. bi j denotes the Cartesian coordinate
vector of the platform attachment points Bi j. wg j is the weight vector of M j. The aforementioned vectors are all expressed
in the base frame F0.

Equations (10a) and (10b) represent the classical static equilibrium conditions of M j in terms of the cable tensions.
From those equations, Secs. 3.2.1 and 3.2.2 formulate the static equilibrium conditions corresponding to the tipping and
sliding conditions of mobile bases in terms of cable tensions.

3.2.1 Tipping conditions of the Mobile Bases
The equilibrium towards the tipping of a wheeled robot is defined by an index named Zero-Moment Point (ZMP)

[29–31]. It is the point where the moment of ground contact forces is reduced to the pivoting moment of friction forces about
an axis normal to the ground. It amounts to the point where the sum of the moments due to planar ground reaction forces is
null. Let C j denotes the ZMP of M j. ZMP can be calculated from the wheel contact points Ck j, k = 1, . . . ,c j as [32]

c j =
∑

c j
k=1 ck j f z

ck j

∑
c j
k=1 f z

ck j

. (11)

where c j represents the Cartesian coordinates of the ZMP of jth mobile base. The tipping conditions depend on the moments
generated at the boundaries of the mobile base footprint. The footprint is formed by joining the contact points Ck j,k =
{1, . . . ,c j} selected counter-clockwise (See Fig. 4(a)). The boundary between the two consecutive contact points Ck j and
Ck+1 j of M j is denoted as LCk j of unit vector uCk j . Let mCk j be the moment generated about LCk j at the instant when M j
loses contact with the ground at the points which do not form the boundary LCk j ,

mCk j = uT
Ck j

((g j− ck j)×wg j) +
m j

∑
i=1

uT
Ck j

((ck j−bi j)×ui j)ti j, k = 1, . . . ,c j. (12)

For M j to be in static equilibrium, mCk j , k = 1, . . . ,c j, should be negative, namely,

mCk j ≤ 0, k = 1, . . . ,c j. (13)

Equation (13) defines the tipping conditions of M j expressed in terms of the cable tensions ti j, i = 1, . . . ,m j. Each kth
boundary LCk j is associated with a single tipping condition. It means that the total number of tipping conditions to be
satisfied for M j to be in static equilibrium is equal to the number of wheels, c j.

3.2.2 Sliding conditions of the Mobile Bases
Sliding conditions are defined by a friction cone at each wheel of the mobile base. For the mobile base to be in static

equilibrium, the ground contact force fck j at Ck j must be within the corresponding kth friction cone. The frictional effects
due to the wheel contact points can be represented as a single friction cone located at the ZMP expressed as,

√
b j f x

c j
2
+ b j f y

c j
2 ≤ µ b j f z

c j
, (14)

where b jfc j = [b j f x
c j

b j f y
c j

b j f z
c j
]T represents the ground contact force at ZMP expressed in frame Fb j. In this paper, the

sliding condition is linearized and the friction cone becomes a four-sided friction pyramid [33, 34] as shown in Fig. 4(b).
Consequently, Eq. (14) is simplified as follows:


1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ

 b jfc j ≤ 04, (15)

where µ denotes the friction coefficient between the ground and the wheels of M j.
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(a) (b)

Fig. 4. (a) Footprint of M j with c j = 6 wheels (b) Linearized friction pyramid at ZMP (C j).

Equation (15) can be represented in the base frame F0 as

E f
0fc j ≤ 04, (16)

where

0fc j = 0Rb j
b jfc j , E f =


1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ

b jR0. (17)

0Rb j denotes the rotation matrix from F0 to Fb j. Accordingly, b jR0 is the inverse of 0Rb j.
0fc j = [0 f x

c j
0 f y

c j
0 f z

c j
]T denotes the ground contact forces at ZMP expressed in F0:

0fc j =
c j

∑
k=1

fck j = −wg j +
m j

∑
i=1

ui jti j. (18)

Substituting Eq. (18) in Eq. (16) yields:

m j

∑
i=1

E f ui jti j − E f wg j ≤ 04. (19)

As a result, Eq. (19) defines the sliding conditions associated with M j formulated in the form of a linearized friction pyramid
in terms of the cable tensions ti j, i = 1, . . . ,m j.

4 Available Wrench Set for MCDPRs
For a given pose, the set of wrenches a mechanism can generate is defined as Available Wrench Set (AWS) [35]. For

classical CDPRs, AWS ACDPR depends uniquely on the robot’s geometric architecture and the cable tension limits [?, 25],
expressed as:

ACDPR =

{[
f

m

]
∈ Rn |

[
f

m

]
= Wttt, t i j ≤ ti j ≤ t i j, i = 1, . . . ,m j, j = 1, . . . , p

}
. (20)
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Fig. 5. Tension space associated to (a) M1, (b) M2,(c) M3,(d) M4 considering both the cable tension limits and the static equilibrium of
the mobile bases

On the contrary, the AWS of MCDPRs cannot be fully characterized by the cable tension limits as the mobile bases static
equilibrium conditions must be considered. Hence, the AWS A of a MCDPR is defined as:

A =

{[
f

m

]
∈ Rn |

[
f
m

]
= Wttt, t i j ≤ ti j ≤ t i j, mCk j ≤ 0,

E f
0fc j ≤ 04, i = 1, . . . ,m j, k = 1, . . . ,c j, j = 1, . . . , p

}
.

(21)

By adding the additional conditions associated with the static equilibrium of the mobile bases, A is no longer a zonotope,
but a convex polytope [35]. The two widely used approaches to characterize such convex polytopes are V -representation,
known as the Convex Hull approach, and H -representation, known as the Hyperplane Shifting Method (HSM) [26]. V -
representation is preferred for visualizing the AWS but is computationally more expensive than H -representation, which is
used to determine the relation between the AWS and the required wrenches to perform a task. The convex-hull approach
uses the vertices of the cable tension space to determine the vertices of AWS and forms the boundary of the convex polytope
described in Sec. 4.1. HSM allows us to determine the AWS geometrically by characterizing the facets of the polytope as
explained in Sec. 4.2. This may be exploited to trace the WFW of MCDPRs.

4.1 Convex Hull Method
For MCDPRs, AWS takes the form of a convex polytope and is the image of the tension space under the linear mapping

of the wrench matrix W [?, 25, 35]. Thus V -representation defines the AWS of MCDPRs by finding the set of vertices
forming the boundary of the convex polytope. The vertices of the AWS are obtained by mapping the tension space vertices
into the wrench space under W. Thus the tension space vertices of a MCDPR should first be defined.

The cable tension space defines the region of acceptable cable tensions which maintains the static equilibrium of a
MCDPR. The tension space of classical CDPRs is only formed by the cable tension limits and takes the form of a m-
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dimensional hypercube [25]. For MCDPRs, the jth mobile base has its own independent m j-dimensional tension space
associated only with its attached cables of tensions ti j, i = 1, . . . ,m j. Therefore, the cable tension space of M j, denoted as
T j, is formed by mapping the static equilibrium conditions of the latter defined by Eqs. (13) and (19) on the m j-dimensional
tension space formed by the cable tension limits t i j and t i j. Figure 5 illustrates the tension space associated with each mobile
base of the MCDPR under study as shown in Fig 3(a).

Without loss of generality, let’s assume that T j is composed of v j vertices. Let the m j-dimensional coordinate vector
of the dth vertex of T j, d = 1, . . . ,v j be denoted as vd j. The vertices of T j and their coordinates can be obtained using
the Double Description Method [36], which exploits the static equilibrium conditions of M j and the bounds on the cable
tensions ti j, i = 1, . . . ,m j. Let V j be the set of vertices of T j,

V j = {vd j}, d = 1, . . . ,v j. (22)

The coordinates of the vertices for T j can be expressed in a matrix form as:

V j = [v1 j v2 j . . . vd j . . .vv j j], (23)

where V j is a (m j× v j) matrix containing the coordinates of the vertices of T j. Let v be the total number of vertices formed
by the m cables, which is defined by the product of the number of vertices of the tension space associated to each mobile
base, namely,

v =
p

∏
j=1

v j. (24)

The vertices of the tension space of a MCDPR can be obtained by taking the Cartesian product between the vertices of V j,
j = 1, . . . , p. Let V denote the set of all vertices of the tension space for a given MCDPR. Let V be a (m×v)-matrix denoting
the coordinates of the vertices in V expressed as:

V = [v1 v2 . . . vl . . . vv], (25)

where l = 1, . . . ,v. vl is a m-dimensional vector representing the coordinates of the lth vertex of the MCDPR cable tension
space noted as T . The image of AWS is constructed from V under the linear mapping of the wrench matrix W expressed as:

WA = WV, (26)

where WA is a (n× v)-matrix representing the image of the vertices of the MCDPR tension space into the wrench space.
The convex hull of the points whose coordinate vectors are the columns of WA leads to the AWS of the MCDPR using a
numerical procedure known as quickhull [37].

4.2 Hyperplane Shifting Method
The Hyperplane Shifting Method (HSM) is a geometric approach, which defines a convex polytope as the intersection

of the half-spaces bounded by its hyperplanes [?]. The classical HSM used to characterize the AWS of the CDPRs is
explained in [?, 25]. However, due to the additional static equilibrium conditions, the classical HSM is not sufficient to fully
characterize the AWS of MCDPRs [35]. As a consequence, this section introduces an improved version of HSM while taking
into account the static equilibrium conditions of the MCDPR mobile bases in addition to the cable tension limits.

The determination of the hyperplanes of the AWS when the tension space is not a hypercube but is a convex poly-
tope was addressed in [35]. However, it only deals with planar MCDPRs having a point-mass end-effector and only
considers the tipping conditions of the mobile bases. On the contrary, this paper takes into account both the tipping
and sliding conditions of spatial MCDPRs. Section 4.2.1 characterizes the facets of the AWS denoted as H +

q , H −
q ,

q = 1, . . . ,Cm
n−1 = m!

(m−n+1)!(n−1)! , associated with the cable tension limits of MCDPRs. To express the facets of the
AWS associated with the static equilibrium conditions of M j, it is required to map the latter into the wrench space. There-
fore, Sec. 4.2.2 presents the adopted methodology to map the static equilibrium conditions of M j into the wrench space.
Eventually, Secs. 4.2.3 and 4.2.4 present the hyperplanes associated with both the tipping and sliding conditions of M j.
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4.2.1 Hyperplanes associated with Cable Tension Limits
For classical CDPRs, AWS takes the form of a zonotope by considering only the constraints associated with the cable

tension limits [?, 25]. The facets of the zonotope are formed by the set of vectors βi jui j∆ti j, 0≤ βi j ≤ 1. ∆ti j represents the
difference between the maximum and minimum cable tension limits of Ci j, expressed as:

∆ti j = t i j− t i j. (27)

The shape of the zonotope is formed by the directions of the cable unit vectors ui j while the size of the zonotope depends on
∆ti j. However, ∆ti j is no longer a constant for MCDPRs as illustrated in Fig. 5. The property of a zonotope having parallel
facets still holds as the shape of the facets are defined by the cable unit vectors ui j. However the location of the hyperplanes
forming the facets of the AWS is modified leading to a convex polytope with parallel facets. Thus, the hyperplanes associated
with the cable tension limits for MCDPRs are determined using classical HSM detailed in [?, 25] and by considering the
modified tension space.

The pairs of parallel hyperplanes are determined by the sets of (n−1) column vectors of W [?,25]. As a consequence, the
cable tension limits leads to Cm

n−1 hyperplanes (H +
q ,H −

q , q = 1, . . . ,Cm
n−1). The first step is to obtain the orientation of those

hyperplanes by taking n−1 linear combinations out of m columns of W. The qth combination, cWq is a (n×n−1)-matrix
containing (n−1) columns of W. The remaining m−n+1 columns of W are denoted as dWq such that,

W =
[

cWq dWq
]
. (28)

The orientation of H +
q ,H −

q is defined by the n-dimensional unit vector eq orthogonal to its facets, expressed as

eq =
rq

||rq||
, (29)

where rq is a n-dimension vector expressed as the linear combination of the columns of cWq. The position of H +
q ,H −

q
is given by the projection of the MCDPR tension space vertices on eq. Let lq be a m-dimensional vector representing the
projection of W on eq,

lq = WT eq. (30)

It is noteworthy that the projection of the actuation wrenches in cW is null as they are orthogonal to eq. Let h+q ,h
−
q be the

maximum and minimum combinations of lq with the coordinates of the MCDPR tension space vertices, namely,

h+q = max
(

vT
l lq, l = 1, . . . ,v

)
; h−q = min

(
vT

l lq, l = 1, . . . ,v
)
. (31)

To completely characterize the location of the hyperplanes, a point p+q (p−q , resp.) must be defined on H +
q (H −

q , resp.),
expressed as:

p+
q = h+q eq +Wt; p−q = h−q eq +Wt, (32)

where t= [t11, . . . , t i j, . . . , tmp p]
T is a m-dimensional vector containing the cable tension lower bounds. Wt defines the wrench

generated by the smallest cable tensions. The position of H +
q (H −

q , resp.) is determined by a shifting distance d+
q (d−q ,

resp.) along eq from the origin, expressed as:

d+
q = eT

q p+
q ; d−q = eT

q p−q . (33)

Finally, the respective pairs of hyperplanes H +
q , H −

q are expressed as:

H +
q : eT

q

[
f

m

]
≤ d+

q ; H −
q : −eT

q

[
f
m

]
≤ d−q . (34)

The above procedure is repeated to determine the Cm
n−1 pairs of hyperplanes associated to the m cables of a MCDPR.
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4.2.2 Static Equilibrium of M j in Wrench Space
To map the static equilibrium conditions associated with M j into the wrench space, the system of linear equations

defined in Eq. (5) should be solved. In case m = n and W is full rank, the cable tensions ti j, i = 1, . . . ,m j are expressed as,

t = W−1w. (35)

The solutions of the cable tensions ti j, i= 1, . . . ,m j extracted from Eq. (35) are substituted in static equilibrium the conditions
of M j defined in Eqs. (13) and (19) to map the latter into the wrench space. Thus, if m = n, each static equilibrium condition
in the tension space will also generate a single condition into the wrench space.

On the contrary, if m > n, there will exist Cm
n = m!

(m−n)!n! number of possible solutions for ti j to map the static equilibrium
conditions associated with M j into the wrench space. As a consequence, there exists Cm

n number of (n× n) square sub-
matrices of the wrench matrix W denoted as aWs,s = 1, . . . ,Cm

n containing n columns of W. Let ats be a n-dimensional
vector containing the cable tensions associated with the actuation wrenches of aWs. Let aVs be a (n× v) matrix denoting
the coordinates of the tension space vertices of ats. aVs is defined by extracting the corresponding rows of V from Eq. (25)
associated with the cable tensions included in ats. The remaining m−n columns of W and the corresponding cable tension
vector along with the coordinates of the tension space vertices are denoted as bWs, bts and bVs respectively. Thus for the
sth combination, the static equilibrium of the moving platform defined in Eq. (5) can be expressed by splitting the Wrench
matrix into its square sub matrix aWs and the remaining columns bWs as

aWs ats + bWs bts = w =⇒ aWs ats = w− bWs bts s = 1, . . . ,Cm
n . (36)

Therefore, the coordinates of the MCDPR tension space vertices in Eq. (25) can be expressed for the sth combination as,

Vs =

[aVs

bVs

]
=

[avs
1 . . . avs

l . . .
avs

v
bvs

1 . . . bvs
l . . .

bvs
v

]
, (37)

where avs
l and bvs

l denote the lth column of aVs and bVs, respectively. Equation (36) amounts to a linear system of equations
having n number of equations with n unknowns (ats). Gaussian Elimination Algorithm [38] is used to solve such linear
system of equations. The Algorithm determines the components of a cable tension vector ats. The meaningful solutions i.e.
the solutions for the cable tensions ti j included in ats only are extracted and used to map the static equilibrium conditions of
M j into the wrench space explained as follows.

Amongst the m j cables attached to M j, let m ja be the number of cables whose tensions are components of vector ats
j.

The tensions of the remaining m jb = m j−m ja cables are the components of vector bts
j. As a consequence, the cable tension

vector t j and its associated actuation wrench matrix W j defined in Eq. (7) can also be expressed as:

ts
j =
[

ats
j
T bts

j
T
]T

=
[

ats
1 j . . .

ats
o j . . .

ats
m ja j

bts
1 j . . .

bts
r j . . .

bts
m jb j

]T
, (38a)

Ws
j =
[

aws
1 j . . .

aws
o j . . .

aws
m ja j

bws
1 j . . .

bws
r j . . .

bws
m jb j

]
, (38b)

where s = 1, . . . ,Cm
n . ats

o j, o = 1, . . . ,m ja and bts
r j, r = 1, . . . ,m jb are the oth and rth components of ats

j and bts
j, respectively.

aws
o j (bws

r j, resp.) is the actuation wrench associated with the cable tension ats
o j (bts

r j, resp.). Using Gaussian Elimination
Algorithm, the cable tension ats

o j, o = 1, . . . ,m ja is obtained as:

ats
o j =

αs
o j (w− bWs bts)

αs
o j

aws
o j

, o = 1, . . . ,m ja, s = 1, . . . ,Cm
n (39)

where αs
o j is a n-dimensional row vector acquired from Gaussian Elimination Algorithm. The output of algorithm for the

MCDPR under study is presented in Appendix A. From Eq. (39), the tensions in the cables attached to M j are substituted in
the corresponding static equilibrium condition to map it into the wrench space presented in the following sections.
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4.2.3 Hyperplanes associated with the tipping conditions
This section presents the hyperplanes of the AWS associated with the tipping conditions of M j about the footprint

boundary LCk j , noted as H s
tk j, k = 1, . . . ,c j, s = 1, . . . ,Cm

n . Using Eq. (38a), the tipping conditions of M j defined by
Eq. (12) about LCk j is expressed as:

uT
Ck j

((g j− ck j)×wg j) +
m ja

∑
o=1

uT
Ck j

((ck j− abs
o j)× aus

o j)
ats

o j

+

m jb

∑
r=1

uT
Ck j

((ck j− bbs
r j)× bus

r j)
bts

r j ≤ 0, k = 1, . . . ,c j, s = 1, . . . ,Cm
n .

(40)

where abs
o j and bbs

r j are the coordinate vectors of the anchor points to which the cables of tension vectors ats
o j and bts

r j are
attached. aus

o j and bus
r j are the directional vector of those cables. Substituting Eq. (39) in Eq. (40) yields,

m ja

∑
o=1

uT
Ck j

((ck j− abs
o j)× aus

o j)α
s
o j

αs
o j

aws
o j

[
f

m

]
−

m ja

∑
o=1

uT
Ck j

((ck j− abs
o j)× aus

o j)α
s
o j

αs
o j

aws
o j

bWs bts

+

m jb

∑
r=1

uT
Ck j

((ck j− bbs
r j)× bus

r j)
bts

r j +uT
Ck j

((g j− ck j)×wg j)≤ 0, k = 1, . . . ,c j, s = 1, . . . ,Cm
n .

(41)

Equation. (41) gives the tipping conditions for M j expressed in the wrench space. Eq. (41) characterizes a hyperplane H s
tk j:

H s
tk j : (es

tk j)
T
[

f
m

]
≤ ds

tk j, k = 1, . . . ,c j, s = 1, . . . ,Cm
n , (42)

where es
tk j is a n-dimensional unit vector orthogonal to H s

tk j expressed as:

es
tk j =

m ja

∑
o=1

uT
Ck j

((ck j− abs
o j)× aus

o j)

αs
o j

aws
o j

α
s
o j, k = 1, . . . ,c j, s = 1, . . . ,Cm

n . (43)

The distance from the origin of the wrench set to hyperplane H s
tk j along es

tk j is defined by ds
tk j. This distance is a function of

the weight of M j and the cable tensions included in bts, namely,

ds
tk j = max

( m ja

∑
o=1

uT
Ck j

((ck j− abs
o j)× aus

o j)α
s
o j

αs
o j

aws
o j

bWs bvs
l , l = {1, . . . ,v}

)
−min

(m jb

∑
r=1

uT
Ck j

((ck j− bbs
r j)× bus

r j)
bvs

rd j, d = {1, . . . ,v j}
)

−uT
Ck j

((g j− ck j)×wg j)≤ 0, k = 1, . . . ,c j, s = 1, . . . ,Cm
n .

(44)

where bvs
rd j is the rth component of the tension space generated by cable tensions bts

r j, r = 1, . . . ,m jb. The shifting distance
ds

tk j represents the wrench capabilities of the moving platform against the corresponding tipping conditions about LCk j for sth
combination. bWs bvs

l represents the wrenches applied by tension space vertices in bVs along es
tk j. This must be maximized

to acquire the maximal wrench capabilities of the moving platform. On the contrary, the term uT
Ck j

((ck j− bbs
r j) × bus

r j)
bts

r j

contributes to the tipping of M j due to the cable tensions bts
r j, r = 1, . . . ,m jb, and thus should be minimized. Each mobile

base generates up to c j×Cm
n possible hyperplanes corresponding to its tipping conditions.

4.2.4 Hyperplanes associated with the sliding conditions
This section describes the hyperplanes of the AWS associated with sliding conditions of mobile base M j, noted as

H s
f g j,g = 1, . . . ,4,s = 1, . . . ,Cm

n , respectively. The sliding conditions defined by Eq. (19) can be expressed using Eq. (38a)
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as,

m ja

∑
o=1

E f
aus

o j
ats

o j +

m jb

∑
r=1

E f
bus

r j
bts

r j − E f wg j ≤ 04, s = 1, . . . ,Cm
n . (45)

Substituting Eq. (39) in Eq. (45) yields:

m ja

∑
o=1

E f
aus

o jα
s
o j

αs
o j

aws
o j

[
f

m

]
−

m ja

∑
o=1

E f
aus

o jα
s
o j

αs
o j

aws
o j

bWs bts +

m jb

∑
r=1

E f
bus

r j
bts

r j

−E f wg j ≤ 04, s = 1, . . . ,Cm
n .

(46)

Equation (46) expresses the sliding conditions of M j into the wrench space. The latter can be directly expressed in the form
of a hyperplane H s

f g j as,

H s
f g j : (es

f g j)
T
[

f
m

]
≤ ds

f g j, s = 1, . . . ,Cm
n , g = 1, . . . ,4. (47)

where es
f g j is a n-dimensional unit vector orthogonal to H s

f g j expressed as:

es
f g j =

m ja

∑
o=1

Eg
f

aus
o j αs

o j

αs
o j

aws
o j

, s = 1, . . . ,Cm
n , g = 1, . . . ,4. (48)

Eg
f denotes the gth row of E f . The shifted distance of H s

f g j is denoted as ds
f g j:

ds
f g j = max

( m ja

∑
o=1

E f
aus

o jα
s
o j

αs
o j

aws
o j

bWs bvs
l , l = {1, . . . ,v}

)
Eg

f wg j + Eg
f wg j

−min
(m jb

∑
r=1

Eg
f

bus
r j

bvs
rd j, d = {1, . . . ,v j}

)
, s = 1, . . . ,Cm

n , g = 1, . . . ,4.

(49)

The shifting distance ds
f g j represents the wrench capabilities of the moving platform against the corresponding sliding

conditions associated with the gth boundary of the linearized friction pyramid of M j. It is noteworthy that each mobile base
can generates up to 4×Cm

n possible hyperplanes corresponding to its sliding conditions.

5 Wrench Feasible Workspace of MCDPRs
The Wrench Feasible Workspace of a MCDPR is the set of platform poses that are wrench-feasible [39]. The moving-

platform pose will be wrench-feasible if the set of required wrenches, named Required Wrench Set, denoted as R is inscribed
in Available Wrench Set A , namely,

R ⊆ A (50)

The capacity margin index w defined in [40,41] can be used to calculate if a moving-platform pose is wrench-feasible or not.
It is also known as a measure of the robustness of the equilibrium of the robot, expressed as,

w = min (min wx,y), (51)

where wx,y is the signed distance from the xth vertex of R to the yth facet of A . wx,y is positive when the moving-platform
pose is wrench feasible, negative otherwise.

In the following sections the wrench capabilities of three MCDPRs are outlined. The results are compared with the
wrench capabilities of the classical CDPRs which only takes into account the constraints associated with the cable tension
limits.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) Planar MCDPR with one point-mass end-effector, two mobile bases and four cables (b) Static workspace (c,d) Modified cable
tension space (e) V −Representation of AWS of a CDPR (in black) and MCDPR (in green) (f) H − Representation of the AWS formed by
the intersection of the hyperplanes

5.1 Case study: p = 2, m = 4 and n = 2 DoF MCDPR
The first case study is a planar MCDPR with a 1.5 kg point mass end-effector shown in Fig. 6(a). The mass and size

of each mobile base are equal to 13 kg and 0.7× 0.7× 0.71 m3, respectively. The corresponding cable tension space is
illustrated in Figs. 6(c) and 6(d). The AWS defined by the Convex Hull approach is illustrated in Fig. 6(e). It can be observed
that by considering only the cable tension limit constraints, the AWS in black corresponds to the wrench capabilities of a
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classical CDPR in the form of a zonotope. On the contrary, by taking into account the additional static equilibrium conditions
associated with the mobile bases, the MCDPR AWS in green is no longer a zonotope, but a convex polytope.

Figure 6(f) depicts the AWS for the MCDPR configuration shown in Fig. 6(a), obtained by the HSM detailed in Sec. 4.2.
The AWS due to cable tension limits is split by four additional hyperplanes due to the tipping and friction constraints named
as H 1

t21, H 1
f 21, H 6

t12 and H 6
f 12 respectively. The hyperplane H 1

t21 (H 6
t12, resp.) is associated with the tipping of M1 (M2,

resp.) at C21 (C12, resp.) for s = 1 (s = 6, resp.), respectively. Similarly, the hyperplane H 1
f 21 (H 6

f 12, resp.) is associated
with the sliding of M1 (M2, resp.). The aforementioned hyperplanes are computed using ats and bts for s = 1 and s = 6,
defined as:

at1 =

[at1
11

at1
21

]
, at6 =

[at1
12

at1
22

]
, bt1 =

[bt1
12

bt1
22

]
, bt6 =

[bt1
11

bt1
21

]
(52)

The static workspace of the planar MCDPR under study is shown in Fig. 6(b). The green region corresponds to the static
workspace of the manipulator computed based on the cable tension limits, the mobile base tipping and sliding conditions.
The gray region shows the area that cannot be reached by the point-mass end-effector because of mobile base tipping and/or
sliding. The simulation and the experimental validations of this case study can be seen in video3.

5.2 Case study: p = 4, m = 8 and n = 3 DoF Planar MCDPR
The previous case study is extended to a planar MCDPR with a n = 3 DoF moving-platform illustrated in Fig. 7(a). The

modified tension space is computed for a given moving-platform pose based on the cable tension limits, mobile base tipping
and sliding conditions illustrated in Fig. 8. Based on the vertices of the tension space, the V −representation of the AWS is
shown in Fig. 7(b). The green area depicts the AWS of the manipulator characterized by the cable tension limits, the mobile
base tipping and sliding conditions. The wrenches that cannot be generated by the end-effector due to the tipping and/or
sliding of mobile bases are illustrated in gray.

Figure 9 depicts the hyperplanes associated with the static equilibrium of the MCDPR under study. The AWS due to
cable tension limits is split by additional four hyperplanes due to the tipping and friction constraints named as H 1

t21, H 2
t21,

H 1
f 21 and H 2

f 21 respectively. From Fig. 8, it appears that only the hyperplanes associated with the cable tension limits and
the static equilibrium conditions of M1 define the facets of the AWS. The static equilibrium conditions of M2 do not affect
T2, and thus do not affect the AWS.

5.3 Case study: p = 2, m = 8 and n = 6 DoF Spatial MCDPR
The methodology described in Fig. 2 is used to trace the WFW of FASTKIT shown in Figs. 10(a) and 10(b) for different

locations of the mobile bases. The green region corresponds to the static workspace of FASTKIT determined using the cable
tension limits, the mobile base tipping and sliding conditions. The gray region illustrates the area that cannot be reached
by the end-effector due to the tipping and/or sliding of the FASTKIT mobile bases. It should be noted that the higher the
relative distance between the mobile bases, the smaller the wrench capability of FASTKIT along the vertical direction. The
evolution of FASTKIT WFW as a function of the relative distance between the two mobile bases can be seen in video 4.

6 Conclusion
In this paper, we have proposed a methodology to determine the Available Wrench Set of Mobile Cable-Driven Parallel

Robots. The Available Wrench Set is required to trace the Wrench-Feasible Workspace of Mobile Cable-Driven Parallel
Robots. The proposed workspace depends, not only on the Static Equilibrium of the moving-platform, but on the Static
Equilibrium of the Mobile Bases. The Available Wrench Set is formed using two different approaches i.e. Convex Hull and
the Hyperplane Shifting Method. The equivalence of both approaches were shown. Initially all the conditions associated
with the Static Equilibrium of a Mobile Cable-Driven Parallel Robot are formulated. Compared to the classical Cable-Driven
Parallel Robots, the additional Static Equilibrium conditions associated with the Mobile Bases may affect the Available
Wrench Set. Multiple case studies are carried out in order to show that the approach is applicable to both planar and spatial
Mobile Cable-Driven Parallel Robots. The proposed approach is experimentally validated on a Mobile Cable-Driven Parallel
Robot with a point-mass end-effector and two Mobile Bases. Future work will focus on exploiting the proposed methodology
in order to find the wrench-feasible poses during the trajectory planning of Mobile Cable-Driven Parallel Robots.

3https://youtu.be/UsvBnJ8q2v4
4https://youtu.be/EXbp1Bb7OCo
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(a) (b)

Fig. 7. (a) Configuration under study of p = 2, m = 4 and n = 3 MCDPR (b) Comparison of AWS between CDPR (in black + green) and
MCDPR (in green)

Fig. 8. (a) T1 and (b) T2 for MCDPR configuration in Fig. 7(a)
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Nomenclature
CDPRs : Cable-Driven Parallel Robots.
MCDPRs : Mobile Cable-Driven Parallel Robots.
DoF : Degree-of-Freedom.
AWS : Available Wrench Set.
WFW : Wrench Feasible Workspace.
ZMP : Zero-Moment Point.
F0(O0,x0,y0,z0) : base frame centered at O0.
Fb j(Ob j,xb j,yb j,zb j) : coordinate frame attached to the jth Mobile Base.
Fp(Op,xp,yp,zp) : coordinate frame attached to the moving-platform.
m : total number of cables carried by the MCDPR.
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(a) (b)

(c) (d)

Fig. 9. Correspondence between the WFW facets obtained with the Convex Hull approach (in green) and those obtained with HSM: (a,b)
Mobile Base tipping; (c,d) Mobile Base sliding for the moving-platform pose shown in Fig. 7(a)

m j : number of cables attached to the jth mobile base.
n : degree-of-freedom of the moving-platform.
p : total number of mobile bases.
M j : jth Mobile base.
Ci j : ith cable connected to the jth mobile base.
Ai j, Bi j : cable Ci j exit and anchor points depicted in Fig. 3.
T j : tension space formed by the cables attached to the jth mobile base.
f = [ f x, f y, f z]T : forces applied by the cables onto the moving-platform.
m = [mx, my, mz]T : moments applied by the cables onto the moving-platform.
ui j : directional vector of cable Ci j.
cri j : direction of the actuation moment applied by the cable Ci j onto the moving-platform.
wi j = [uT

i j, cT
ri j]

T : actuation wrench generated by the cable Ci j
ri j : vector pointing from point OP to point Bi j.
bi j : Cartesian coordinate vector of the platform attachment point Bi j
ti j : tension in the cable Ci j
W j : actuation wrenches exerted by the cables attached to M j onto the moving-platform.
w : wrenches applied by the cables onto the moving-platform.
t j : cable tension vector associated to the cables carried by M j.
Ck j : kth wheel contact point of the jth mobile base.
ck j : Cartesian coordinate vector of point Ck j.
fck j = [ f x

ck j
, f y

ck j , f z
ck j
]: ground contact force at point Ck j.

LCk j : boundary of the jth mobile base footprint between Ck j and Ck+1 j.
uCk j : directional vector of line LCk j (see Fig.4(a)).
mCk j : moment generated about LCk j .
g j : Cartesian coordinate vector of the jth mobile base center of gravity.
wg j: weight of M j.
E f : Four sides of the friction pyramid
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(a)

(b)

Fig. 10. WFW of FASTKIT at different configuration of mobile bases with a constant moving-platform orientation

0Rb j : Rotation matrix from F0 to Fb j.
A : Available Wrench Set of a Mobile Cable-Driven Parallel Robot.
R : Required Wrench Set.
T j : tension Space formed by the cables mounted on M j.
V j = [v1 j v2 j . . .vd j . . .vv j ] : coordinates of the vertices of T j.
vd j : coordinate vector of the dth vertex of T j.
T : MCDPR cable tension space.
V = [v1 v2 vl . . . .vv] : coordinates of the vertices of the MCDPR cable tension space.
vl : coordinates of the lth vertex of the MCDPR cable tension space.
H +

q ,H −
q : qth pair of hyperplanes associated with the cable tension limits.

aWs : sth n×n sub-matrix of the wrench matrix W, s = 1, . . . ,Cm
n .
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bWs : those m−n columns of W not located in aWs.
ats, bts : cable tensions associated with the actuation wrenches of aWs, bWs.
aVs, bVs : coordinates of the tension space vertices of ats, bts.
avs

l ,
bvs

l : lth column of aVs, bVs.
ts

j = [ats
j
T , bts

j
T
]T : sth division of the cable tensions t j into ats

j and bts
j.

ats
o j : oth component of ats

j.
bts

r j : rth component of bts
j.

aus
o j,

bus
r j : unit vectors of cables whose tension magnitudes are ats

o j,
bts

r j.
abs

o j,
bbs

r j : Coordinate vectors of the anchor points to which the cables of tensions ats
o j,

bts
r j are attached.

aws
o j,

bws
r j : actuation wrenches associated with the cable tensions ats

o j,
bts

r j.
H s

tk j : sth hyperplane associated with the tipping of M j about LCk j .
H s

f g j : sth hyperplane associated with the sliding of M j in the direction normal to the gth friction pyramid.
es

tk j, es
f g j : unit vector orthogonal to its hyperplane H s

tk j, H s
f g j.

ds
tk j, ds

f g j : shifting distances from the origin to the hyperplanes H s
tk j, H s

f g j, respectively.

A Appendix A
This appendix presents the output of the Gaussian Elimination Algorithm for the MCDPR under study in Fig. 3 com-

posed of four mobile bases carrying eight cables named as C11, C21, C12, C22, C13, C23, C14 and C24 connected to a six DOF
moving platform. Let for s = 1, the wrench matrix W and the cable tension vector t are split as,

at1 =



at1
11

at1
21

at1
12

at1
22

at1
13

at1
23

 ,
bt1 =

[bt1
14

bt1
24

]
,aW1 =

[
u11 u21 u12 u22 u13 u23
cr11 cr21 cr12 cr22 cr13 cr23

]
,bW1

=

[
u14 u24
cr14 cr24

]
. (53)

Using Gaussian Elimination Algorithm to solve for at1, its components are expressed as

at1
11 =

α1
11(w− bWs bts)

α1
11

[
uT

11 cT
r11
]T , at1

21 =
α1

21(w− bWs bts)

α1
21

[
uT

21 cT
r21
]T , at1

12 =
α1

12(w− bWs bts)

α1
12

[
uT

12 cT
r12
]T , (54a)

at1
22 =

α1
22(w− bWs bts)

α1
22

[
uT

22 cT
r22
]T , at1

13 =
α1

13(w− bWs bts)

α1
13

[
uT

13 cT
r13
]T , at1

23 =
α1

23(w− bWs bts)

α1
23

[
uT

23 cT
r23
]T , (54b)

where

α
1
11 =



[((cr13× cr23)
T cr22)(u21×u12)

+ [−((u21×u12)
T u22)(cr13× cr23)−

((cr12× cr23)
T cr13(u21×u22)+ ((u21×u22)

T u13)(cr12× cr23)−
((cr12× cr22)

T cr23)(u21×u13)+ ((u21×u13)
T u23)(cr12× cr22)−

((cr12× cr13)
T cr22)(u21×u23)+ ((u21×u23)

T u22)(cr12× cr13)−
((cr21× cr23)

T cr13)(u12×u22)+ ((u12×u22)
T u13)(cr21× cr23)−

((cr23× cr22)
T cr21)(u12×u13)+ ((u12×u13)

T u21)(cr23× cr22)−
((cr22× cr13)

T cr21)(u12×u23)+ ((u12×u23)
T u21)(cr22× cr13)−

((cr21× cr12)
T cr23)(u22×u13)+ ((u22×u13)

T u23)(cr21× cr12)−
((cr21× cr13)

T cr12)(u22×u23)+ ((u22×u23)
T u12)(cr21× cr13)−

((cr22× cr21)
T cr12)(u13×u23)]

T ((u13×u23)
T u12)(cr22× cr21)]

T


(55)
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α
1
21 =



[((cr13× cr23)
T cr22)(u11×u12)+ [−((u11×u12)

T u22)(cr13× cr23)−
((cr12× cr23)

T cr13)(u11×u22)+ ((u11×u22)
T u13)(cr12× cr23)

−

((cr12× cr22)
T cr23)(u11×u13)+ ((u11×u13)

T u23)(cr12× cr22)−
((cr12× cr13)

T cr22)(u11×u23)+ ((u11×u23)
T u22)(cr12× cr13)−

((cr11× cr23)
T cr13)(u12×u22)+ ((u12×u22)

T u13)(cr11× cr23)−
((cr23× cr22)

T cr11)(u12×u13)+ ((u12×u13)
T u11)(cr23× cr22)−

((cr22× cr13)
T cr11)(u12×u23)+ ((u12×u23)

T u11)(cr22× cr13)−
((cr11× cr12)

T cr23)(u22×u13)+ ((u22×u13)
T u23)(cr11× cr12)−

((cr11× cr13)
T cr12)(u22×u23)+ ((u22×u23)

T u12)(cr11× cr13)−
((cr22× cr11)

T cr12)(u13×u23)]
T ((u13×u23)

T u12)(cr22× cr11)]
T


(56)

α
1
12 =



[((cr13× cr23)
T cr22)(u11×u21)+ [−((u11×u21)

T u22)(cr13× cr23)−
((cr21× cr23)

T cr13)(u11×u22)+ ((u11×u22)
T u13)(cr21× cr23)−

((cr21× cr22)
T cr23)(u11×u13)+ ((u11×u13)

T u23)(cr21× cr22)−
((cr21× cr13)

T cr22)(u11×u23)+ ((u11×u23)
T u22)(cr21× cr13)−

((cr11× cr23)
T cr13)(u21×u22)+ ((u21×u22)

T u13)(cr11× cr23)−
((cr23× cr22)

T cr11)(u21×u13)+ ((u21×u13)
T u11)(cr23× cr22)−

((cr22× cr13)
T cr11)(u21×u23)+ ((u21×u23)

T u11)(cr22× cr13)−
((cr11× cr21)

T cr23)(u22×u13)+ ((u22×u13)
T u23)(cr11× cr21)−

((cr11× cr13)
T cr21)(u22×u23)+ ((u22×u23)

T u21)(cr11× cr13)−
((cr22× cr11)

T cr21)(u13×u23)]
T ((u13×u23)

T u21)(cr22× cr11)]
T


(57)

α
1
22 =



[((cr13× cr23)
T cr12)(u11×u21)+ [−((u11×u21)

T u12)(cr13× cr23)−
((cr21× cr23)

T cr13)(u11×u12)+ ((u11×u12)
T u13)(cr21× cr23)−

((cr21× cr12)
T cr23)(u11×u13)+ ((u11×u13)

T u23)(cr21× cr12)−
((cr21× cr13)

T cr12)(u11×u23)+ ((u11×u23)
T u12)(cr21× cr13)−

((cr11× cr23)
T cr13)(u21×u12)+ ((u21×u12)

T u13)(cr11× cr23)−
((cr23× cr12)

T cr11)(u21×u13)+ ((u21×u13)
T u11)(cr23× cr12)−

((cr12× cr13)
T cr11)(u21×u23)+ ((u21×u23)

T u11)(cr12× cr13)−
((cr11× cr21)

T cr23)(u12×u13)+ ((u12×u13)
T u23)(cr11× cr21)−

((cr11× cr13)
T cr21)(u12×u23)+ ((u12×u23)

T u21)(cr11× cr13)−
((cr12× cr11)

T cr21)(u13×u23)]
T ((u13×u23)

T u21)(cr12× cr11)]
T


(58)

α
1
13 =



[((cr22× cr23)
T cr12)(u11×u21)+ [−((u11×u21)

T u12)(cr22× cr23)−
((cr21× cr23)

T cr22)(u11×u12)+ ((u11×u12)
T u22)(cr21× cr23)−

((cr21× cr12)
T cr23)(u11×u22)+ ((u11×u22)

T u23)(cr21× cr12)−
((cr21× cr22)

T cr12)(u11×u23)+ ((u11×u23)
T u12)(cr21× cr22)−

((cr11× cr23)
T cr22)(u21×u12)+ ((u21×u12)

T u22)(cr11× cr23)−
((cr23× cr12)

T cr11)(u21×u22)+ ((u21×u22)
T u11)(cr23× cr12)−

((cr12× cr22)
T cr11)(u21×u23)+ ((u21×u23)

T u11)(cr12× cr22)−
((cr11× cr21)

T cr23)(u12×u22)+ ((u12×u22)
T u23)(cr11× cr21)−

((cr11× cr22)
T cr21)(u12×u23)+ ((u12×u23)

T u21)(cr11× cr22)−
((cr12× cr11)

T cr21)(u22×u23)]
T ((u22×u23)

T u21)(cr12× cr11)]
T


(59)
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α
1
23 =



[((cr22× cr13)
T cr12)(u11×u21)+ [−((u11×u21)

T u12)(cr22× cr13)−
((cr21× cr13)

T cr22)(u11×u12)+ ((u11×u12)
T u22)(cr21× cr13)−

((cr21× cr12)
T cr13)(u11×u22)+ ((u11×u22)

T u13)(cr21× cr12)−
((cr21× cr22)

T cr12)(u11×u13)+ ((u11×u13)
T u12)(cr21× cr22)−

((cr11× cr13)
T cr22)(u21×u12)+ ((u21×u12)

T u22)(cr11× cr13)−
((cr13× cr12)

T cr11)(u21×u22)+ ((u21×u22)
T u11)(cr13× cr12)−

((cr12× cr22)
T cr11)(u21×u13)+ ((u21×u13)

T u11)(cr12× cr22)−
((cr11× cr21)

T cr13)(u12×u22)+ ((u12×u22)
T u13)(cr11× cr21)−

((cr11× cr22)
T cr21)(u12×u13)+ ((u12×u13)

T u21)(cr11× cr22)−
((cr12× cr11)

T cr21)(u22×u13)]
T ((u22×u13)

T u21)(cr12× cr11)]
T


(60)

Similarly using Gaussian Elimination Algorithm, ats is solved and can be expressed similarly to Eq. (54) for any s =
1, . . . ,C8

6 combination.
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