
WReX: A Scalable Middleware Architecture to
Enable XML Caching for Web-Services

Junichi Tatemura1, Oliver Po1, Arsany Sawires2,�,
Divyakant Agrawal1, and K. Selçuk Candan1

1 NEC Laboratories America,
10080 North Wolfe Road,

Suite SW3-350, Cupertino, CA 95014
{tatemura, oliver, agrawal, candan}@sv.nec-labs.com

2 Department of Computer Science,
University of California Santa Barbara,

Santa Barbara, CA 93106
arsany@cs.ucsb.edu

Abstract. Web service caching, i.e., caching the responses of XML web
service requests, is needed for designing scalable web service architec-
tures. Such caching of dynamic content requires maintaining the caches
appropriately to reflect dynamic updates to the back-end data source.
In the database, especially relational, context, extensive research has ad-
dressed the problem of incremental view maintenance. However, only a
few attempts have been made to address the cache maintenance problem
for XML web service messages. We propose a middleware solution that
bridges the gap between the cached web service responses and the back-
end dynamic data source. We assume, for generality, that the back-end
source has a general XML logical data model. Since the RDBMS technol-
ogy is widely used for storing and querying XML data, we show how our
solution can be implemented when the XML data source is implemented
on top of an RDBMS. Such implementation exploits the well-known ma-
turity of the RDBMS technology. The middleware solution described in
this paper has the following features that distinguish it from the existing
technology in this area: (1) It provides declarative description of Web
Services based on rich and standards-based view specification language
(XQuery/XPath); (2) No knowledge of the source XML schema is as-
sumed, instead the source can be any general well-formed XML data;
(3) The solution can be easily deployed on RDBMS, and (4) The size
of the auxiliary data needed for the cache maintenance does not depend
on the source data size, therefore, the solution is highly scalable. Experi-
mental evaluation is conducted to assess the performance benefits of the
proposed approach.

Keywords: web services, caching, XML views, path expressions, XML-
relational mapping.

� This work has been done during the author’s summer internship at NEC.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 124–143, 2005.
c© IFIP International Federation for Information Processing 2005

WReX: A Scalable Middleware Architecture to Enable XML Caching 125

1 Introduction

Performance degradation of a Web Service can significantly impact the response
times of front-end applications that use it. Especially for Web Services that
provide dynamic content to many users (such as product information services),
latency observed by the users is caused not only by the network transmission,
but mainly by server overload at the back-end application. Offloading processing
from the back-end applications is thus essential in providing Web Services scal-
ability. Therefore, caching is a key enabling technology for scalable Web Service
delivery.

A Web Service cache must handle request and response messages (typically
formatted using XML); thus the cache must process (e.g., parse XML content of)
a request message to identify the response message to be returned. Therefore, a
standard HTTP cache cannot be directly employed when caching Web Services.
Furthermore, in order to achieve loose coupling of remote services, Web Services
usually handle messages with coarser granularities than traditional distributed
object messaging such as CORBA. This fact makes it more difficult to map
data source updates to the cached messages. Caching messages for data-driven
Web Services thus requires middleware support for appropriate propagation of
updates from the source to the cache.

It is commonly understood that an XML data/query model can be imple-
mented on a relational model to leverage from the proven and highly-optimized
storage and query capabilities already provided by existing relational database
systems [15]. Thus, one approach to caching Web Service could be to apply ex-
isting technologies that manage data dependency between web content and data
in relational databases, such as Data Update Propagation (DUP)[3], view inval-
idation [2], invalidation based on query templates [4], and many other works on
view maintenance. However, these relational approaches will be very inefficient
because an XML query can involve too many join operations when translated
into SQL.

In this paper, we propose a middleware architecture, WReX, that bridges
the semantic gaps among Web Service messages, a relational data model, and
an XML data model, for caching Web Services. To make the proposed mid-
dleware solution applicable to various data sources, the WReX represents the
source data in the caches as XML views and provides a declarative way to de-
fine Web Services to access the data. The WReX architecture (Sections 3 and
4) aims at resolving the impedance mismatch between the cached data content
and the underlying database technology by applying recent XML-specific view
maintenance techniques transparently in a relational setting.

Consequently, the WReX introduced in this paper consists of two complemen-
tary components: (1) Web Service Content Description (WSCD) mechanism fills
the gap between Web Service messages and XML views of the source data and (2)
XML view maintenance mapped to relational storage fills the gap between XML
views and updates to the source data. This novel middleware architecture has
the following features that distinguish it from the previous works: (1) It provides
declarative description of Web Services based on rich and standards-based view

126 J. Tatemura et al.

specification language (XQuery/XPath); (2) No knowledge of the source XML
schema is assumed, instead the source can be any general well-formed XML data;
(3) The solution can be easily deployed on RDBMS, and (4) The size of the aux-
iliary data needed for the cache maintenance does not depend on the source
data size, therefore, the solution is highly scalable. Experimental evaluation is
conducted to assess the performance benefits of the proposed approach. Exper-
imental evaluations presented in Section 5 establish the performance benefits of
the WReX middleware approach.

2 Cache-Enabled Service Middleware Architecture

Figure 1 illustrates WReX, a Web Service middleware architecture enhanced
with web service caching. WReX consists of a Web Service Application Server,
an XML Data Source, and an Update Manager, which are implemented on top
of a common Web computing platform (e.g., a J2EE application server and a
relational database server). WReX lets users describe and deploy Web Services
that deliver content generated from their own data sources. Given the description
of a Web Service, the middleware manages request/response message caches.

A Web Service application is deployed on top of the WS Application Server
and the XML Data Source as can be seen Figure 1. The application has three
major parts: (1) data (data source to be published), (2) content logic (descrip-
tion of message content to be generated from the data source) , and (3) man-
agement logic (user authentication, logging, and metering). The cache-enabled
Web Service application server consists of the following components: (1) Various
management components, (2) a message content cache component, (3) a con-
tent processor, and (4) an XPath cache. Management components manipulate
messages (e.g., insert data in the header) genereted by the content processor.

Management components handle management tasks such as user accounting
and monitoring with approprite transformation of message content. Web service

WS Application (Data Service)

XML Data Source

WS Application Server

RDBMS

Data
Source

update

aux

Update Manager

Management
Components

Content
Processor

Application
Content Logic:
WSDL+WSCD

Application Data:
Any XML

XPath
Cache

Content
Cache

deploy deploy

WS
Client update

SQL

XPath
query

XML-Relational Mapping

Application
Management

Logic

Fig. 1. WReX: Web Service Caching Architecture

WReX: A Scalable Middleware Architecture to Enable XML Caching 127

messages that contain management information are much less reusable even if
actual content delivered to the user (e.g., product information) is reusable. By
separating management functions as these components, WReX lets the other
components focus on managing relationships between message content and the
source data and makes cache more applicable.

The content logic specifies how to generate content of a message in response
to a request message from a Web Service client. A shortcoming of the existing
technologies is that, the Web Service definition language (WSDL) only defines
interfaces (such as data types) of request/response messages, but does not pro-
vide content relationship between request and response messages [18]. To bridge
this gap, we introduce a description platform, Web Service Content Description
(WSCD), which provides a template of a response message that can contain ref-
erences to data in a request message and queries to the source data. When the
application server receives a request message, it generates a response message by
integrating a message template and content fragments retrieved from the data
source. Caching is applied to both generated response messages (Content Cache)
and retrieved content from the source (XPath Cache).

This approach is similar to JSP (Java Server Pages) or ESI (Edge Side In-
cludes). JSP provides a template of dynamic web pages and lets the application
server construct a page from the template and content fragments generated by
applications. Several application servers provide caching functionality for such
content fragments in order to reduce application overload. ESI is a markup
language used to define web content components for dynamic assembly and
delivery of web pages at edge servers. The edge server dynamically integrates
fragments into a web page and needs to retrieve only non-cacheable or expired
fragments from the original servers. Datta et al. [5] has extended this approach
to enable more flexible content composition on the edge server resulting in en-
hanced cacheability and reusability of content. In this sense, our approach can be
seen as an extension of the JSP/ESI concept from HTML to XML context with
XML cache update management. Another related example is the Weave manage-
ment system [19] that enables the user to create Web content using declarative
specification and caches various intermediary data such as views of relational
data, XML page fragments, and HTML pages. Although it supports XML con-
tent generation from relational databases, update maintenance between cached
XML content and data source is based on time stamps and specified with event-
condition-action rules.

To enable caching of XPath queries to the data source as well as the message
responses from the Web Service itself, the Update Manager needs to monitor
updates in the data source and identify changes in the cached results. Here, note
that an XML-aware data source is commonly implemented on an XML-aware
RDBMS, which can leverage from the maturity of RDBMS implementations,
extensive tuning, proven scalability, sophisticated query processing and query
optimizers. However, even though the underlying DBMS is relational, tradi-
tional view/cache management solutions for relational data can not be directly
applied to an XML data/query model. For example, CachePortal [2] automates

128 J. Tatemura et al.

cache update management based on a view invalidation technique in a relational
model. However, when a query involves many join operations, which is the case of
XML queries in a relational model, it is very inefficient due to costs from an ex-
tra database snapshot and over invalidation. Therefore, we introduce an update
management middleware component which benefits from the relational nature
of the back-end database, while deploying XML-specific view management tech-
niques (i.e., the Update Manager that accesses the data source through SQL
queries (Figure 1)).

2.1 Web Service Content Description (WSCD)

Given a service request, the Web Service generates response messages based
on the service logic. The interface between the request and response is usually
defined using WSDL (Web Service Definition Language). WSDL, on the other
hand, does not describe content relationships between request and response mes-
sages, which are needed for managing updates. We propose Web Service Content
Description (WSCD) language that describes how a response message is gener-
ated for a given operation specified in WSDL. Formally, the WSCD for a service
operation o consists of three parts: (V, T, S), where V is the variable assignment
definition, T is the template definition, and S is the source references.

– The variable assignment definition V defines how to extract data from a
request message. Mapping from a request message to variables is given by
pairs of name and XPaths: V = {(namei, xpathi)}. Given a request message,
which can be seen as an XML document, V generates a specific variable as-
signment v = {namei = valuei}. In addition to the generation of a response
message, v is used as the identity of the message cache: the identity consists
of an operation name and a variable assignment (o, v).

– The template T defines the content of a response message with references to
the variables V . The template can contain XQuery expressions to dynami-
cally insert data derived from the data source.

– The source reference S maps URIs of data source service endpoints to doc-
ument URIs referred to by XQuery expressions in T .

Figure 2 shows an example of a WSCDdescription. Elements <cd:Variables>,
<cd:Template>, <cd:ServiceEPR> correspond to (V, T, S), respectively.

A variable is defined with a part of the request message (i.e. input) of a
WSDL operation and an XPath expression that indicates data within the part.
Combined with WSDL binding information, it is translated to a full XPath
expression applied to a request message, for example:

“/Envelope/Body/GetBookRequest/Category/text()”

in case of the SOAP literal binding. A template specifies an XML content of a
part of the response message (i.e., output) of a WSDL operation. It can contain
an XQuery specified in <cd:Query>. The query may refer to variables defined in
the variables part.

WReX: A Scalable Middleware Architecture to Enable XML Caching 129

<cd:WSCD xmlns:cd=... operation="GetBook">
<cd:Variables>
<cd:Let name="category" part="body"

path="/GetBookRequest/Category/text()"/>
<cd:Let name="maxprice" part="body"

path="/GetBookRequest/Max/text()"/>
<cd:Let name="minprice" part="body"

path="/GetBookRequest/Min/text()"/>
</cd:Variables>
<cd:Template part="body">
<GetBookResponse>

<cd:Query>FOR ... LET... WHERE... RETURN...</cd:Query>
</GetBookResponse>
</cd:Template>
<cd:ServiceEPR .../>
</cd:WSCD>

Fig. 2. Example of Web Service Content Description

Note that WSCD is meant to provide a simple specification of message con-
tent in a request-response Web Service operation. If the user wants a full set
of programming functionality to create Web Service (such as event handling), a
special programming language for Web Services, such as XL [8], could be used
instead of WSCD. In fact, since XL uses XQuery expressions to access data,
a possible extension of WReX is to support the XL language, in addition to
WSCD, for services with complicated interactions.

Our WSCD approach is also related to “declarative web services” [1], used
for composing dynamic XML documents by importing fragments. For optimized
data management, a declarative web service that provides fragments is defined
as an XQuery on data sources. Although they focus on data replication issues in
a distributed environment, they also state possibility of querying cost reduction
through an update propagation mechanism, on which we focus in this paper.

2.2 Cache Management Using WSCD

The WSCD description of Web Service messages provides a framework to manage
Web Service caching. First, the system needs to identify the matching incoming
requests and cached response messages. This task is done by extracting values
from an incoming message with XPath expressions in the variable definition V
since the cache identity is given as a variable assignment (o, v). Efficient filtering
[7] can be applied to process multiple XPath matching results in a scalable
manner. Then we focus on the second task: to manage update dependencies
between cached messages and the data at the source.

As described above, the WSCD template contains a set of XQuery expressions
XQ = {xqi} to insert dynamic data from the source into response messages.
Since an XQuery expression xq contains references to the variables V and the
source S, what the system needs to manage is an XQuery instance (xq, v, S):

130 J. Tatemura et al.

when the result of an XQuery instance is updated, the message cache items that
contain this result must be updated or invalidated.

An XQuery statement accesses documents (i.e., the source data) through
XPath expressions. Thus, a set of XPath expressions XP = {xpi} is extracted
from XQueries XQ and is given to the XPath cache component, which caches
an XPath instance: (xp, v, S). The XPath Cache receives an XPath query from
XQuery Processor and returns the query result from the cache. If it is not cached,
the XPath Cache issues an XPath query to the data source. The data source
returns the query result and makes available auxiliary data required to maintain
XPath cache (Section 3).

When the Update Manager observes updates in the data source, it determines
the impact of the source update to cached XPath results. During this process, the
Update Manager uses the auxiliary data and update data to identify the cache
updates. It may also access the source data if needed. Then it maintains cached
results in the XPath Cache affected by the update. Consequently, message cache
items that refer to the affected XPath instances are also either invalidated or
maintained. In order to effectively manage update dependency between message
cache and the data source, the WReX uses our XML-specific view maintenance
techniques described next.

3 XPath Cache Maintenance

In this section we describe the data model and the incremental XPath mainte-
nance technique WReX relies on. Further details of both are presented in [13].

3.1 Data Model

As described earlier, the underlying logical model of the data source is XML.
Each XML data source is represented as an ordered tree in which every node n
is a pair 〈n.id, n.label〉 where n.id is a node identifier that uniquely identifies the
node and n.label is a string that describes the node type and/or value. We use
upper-case letters to represent the node labels. For example, A, B, and C are
node labels. We use numeric subscripts to distinguish different nodes that have
the same label. Thus, Ai and Aj refer to two distinct nodes with the same label
A. Figure 3 shows an example document tree and path expression that will be
used as a running example to illustrate the incremental maintenance technique.

3.2 Update Model

A source update is a transformation of the source XML document. Any source
transformation can be expressed in terms of the two primitive operations of
addition and deletion of leaf nodes. Thus, for simplicity, in this section, we
focus on the maintenance operations needed to handle these two types of source
updates. Formally, we model a source update U as a pair 〈U .type,U .path〉 where
U .type is the type of the update: Add (add a leaf node) or Delete (delete a
leaf node). U .path is the path of all the ancestors of the added or deleted node

WReX: A Scalable Middleware Architecture to Enable XML Caching 131

R

B1

A1

B2

C1 C2

D2 D1

C6 C3 E1

C4

D3

A2

B3

E2

A3

B4

E3 C5

B5

D4

D5

E4

X1 X2

X3

Fig. 3. (a) An Example XML Tree and (b) a path-expression E

starting with the document root and ending with the added or deleted node
itself. The added or deleted node itself is referred to as U .node. For example,
U = 〈Add, (R, X1, A1, B1, Z)〉 represents the addition of node Z as a child node
of node B1 in the XML document shown in Figure 3(a).

3.3 Query Model

Path expressions are the basic building blocks of XML queries and therefore are
fundamental to implementing Web Services in our framework. The cache content
is the result of applying path expression-based queries to the source document.
A path expression E of size N is a sequence of N steps: (s1, s2, · · · sN). A step
si is a triple 〈si.axis, si.label, si.pred〉 where (i) si.axis is an axis test (child ’/’
or descendent ’//’); (ii) si.label is a label test; and (iii) si.pred is an optional
predicate test which can be any complex condition examining the labels and
the structure of the nodes in the subtree of the node being tested. Predi(n) is
said to be true if and only if (1) Node n belongs to the source tree, and (2)
si.pred evaluates to true at node n or step si does not have a predicate test. For
example, Pred3(C1) in the example is true because C1 satisfies the condition
s3.pred since C1 has no descendants labeled E.

Given an expression E , a document tree D, and a sequence of context nodes
C (the set of staring nodes from D), a query, Q = q(E , C, D) returns a sequence
of nodes R as a result. For example, consider the query Q = q(E , C, D) where:
D is the document tree shown in Figure 3(a), C = (X1, X2, X3) are the shaded
nodes the same figure, and E is the path expression specified in Figure 3(b).
Given this query,

132 J. Tatemura et al.

1. the first step s1 (/A) starts at every node in C and selects all the children
with label A; this results in the first intermediate result R1 = (A1, A2, A3).

2. s2 (//B[Count(//E) ≥ 1 ∨Count(/D) ≥ 1]) starts at every node in R1 and
selects all the descendants with label B that have at least one descendant
labeled E or at least one child labeled D; this results in the second inter-
mediate result R2 = (B2, B3, B4, B4, B5, B5). Note that B4 - and also B5 -
occurs twice in R2 because it can be derived in two ways from nodes of R1,
one from A2 and another one from A3.

3. starting at R2, step s3 (/C[Count(//E) = 0]) selects all the descendants la-
beled C that have no descendants labeled E; this results in R3 =
(C3, C4, C5, C5, C5).

4. finally, s4 (//D) starts at R3 and selects all the descendants labeled D.
Hence, the final result of Q is R = R4 = (D3, D3, D4, D4, D4).

We differentiate between the multiple occurrences of the same node in a result
by using a numeric superscript. For example, we denote the result R as R =
(D1

3, D
2
3, D

1
4, D

2
4, D

3
4).

For a node n ∈ R, the sub-sequence of the ancestors of a node n that matched
the steps of E , and thus caused n to appear in R is referred to as the result
path of n and denoted as ResultPath(n). ResultPathi(n), where i ≥ 0, is the
ith element in ResultPath(n). In the example query above, ResultPath(D1

3) =
(X1, A1, B2, C3, D3) and ResultPath(D1

3)2 = (X1, A1, B2, C3, D3) is B2.

3.4 Incremental Maintenance of Path Expression Results

Asource update U can affect the cached resultRby adding or deleting nodes to any
of the intermediate resultsRi.Theprimary reasonof suchadditions anddeletions is
changing the truth values of the expressionpredicates at the steps of the expression:

If an update changes a predicate Predi(n) from false(true) to true(false),
we say that the update directly adds (deletes) node n at step i.

A direct addition (deletion) at step i can induce other indirect additions (deletions)
in steps j > i. The final result R is affected if and only if the effect propagates all
the way to step N . For example, ifU = (Add, (R, X1, A1, B1, E5)), thenPred2(B1)
changes from false to true. The direct effect of this is to add B1 to R2. The resulting
indirect effects are the addition of C1 and C2 to R3 and then the addition of D1 and
D2 to R4. For each step, the incremental maintenance process first discovers all the
direct effects and then uses these effects to discover the indirect ones.

Discovering the Direct Effects of the Updates. We identify the direct effects
of the updates in two phases: Axis&Label test and the predicate test.

Phase I - Axis&label test: Let us define δ+
i and δ−i as the sequences of all nodes

that U directly adds/deletes at Ri respectively. Let also δi = δ+
i � δ−i . The job

of this phase is to identify a sequence ∆i such that we can guarantee, without
any source queries, that δi � ∆i.

In [13], we showed that every node n in δi must also belong to U .path. More-
over, for a node n to be directly added to be in δi, it must have an ancestor

WReX: A Scalable Middleware Architecture to Enable XML Caching 133

in every Rj , j < i. Since n itself belongs to U .path, then all its ancestors also
belong to U .path. This suggests that U .path has much of the information needed
to identify the nodes of δi. In fact, applying the axes and labels tests to U .path,
ignoring the predicate tests, provides a sequence ∆i which is guaranteed to be
a supersequence of δi. This is because this process uses a relaxed selection con-
dition (it ignores the predicate tests, which evaluation requires querying the
source) over the branch U .path which is guaranteed to include all the nodes of
all the δi’s. Computing the ∆i’s from U .path proceeds very similar to computing
the Ri’s from the source tree D. For example, consider an update U of adding
a node D6 as a child of D4. In this case, U .path is the tree branch that starts
with the root R and ends with D6. Computing the different ∆i’s as described
above results in: ∆0 = (X2, X3), ∆1 = (A2, A3), ∆2 = (B3, B4, , B4, B5, B5),
∆3 = (C5, C5, C5), ∆4 = (D4, D4, D4, D6, D6, D6). Note that the only nodes
that will be directly added are the three occurrences of D6 that appear in ∆4;
all the other nodes n in all the computed ∆i’s will not be added or deleted
because U did not affect Predi(n). Note that, because D6 did not exist be-
fore U occurred, the value Predi(D6), ∀i is false before U . Similarly, if an
update deletes a node n from the source tree, the value Predi(n), ∀i is false
after U .

Phase II - Predicate test: This phase identifies the exact sequence δi by deter-
mining which nodes in ∆i had their predicate values changed due to the update.

To detect such changes we need to compare, for every node in δi, the values
of Predi(n) before and after U occurred. Let us denote the value of the predicate
before the update occurred as Predbefore

i (n) and the value after the update as
Predafter

i (n). The value of Predafter
i (n) can be easily calculated by querying the

source. The value of Predbefore
i (n), on the other hand, cannot be computed by a

source query because the update U has already been incorporated at the source.
Once again, in [13], we showed that we can deduce the value of Predbefore

i (n)
using the information of the result paths. Specifically, we showed that if we define
RPi(n) to be true if and only if n is the ith element of the result path of some
node in R, then we can take Predbefore

i (n) = RPi(n). Therefore, we keep the
result paths’ information as auxiliary data with the cached result R. With that,
we compute Predbefore

i (n) without issuing any source queries. To compute the
size of this auxiliary data, recall that each result path is of length N + 1; if M
is the size of the cached result R, then the size of the auxiliary data is clearly
O(M ∗ N). Thus the auxiliary data size is bounded by the expression size and
the result size and it does not depend on the source data size.

Discovering the Indirect Effects of the Updates To discover the indirect
effects from the direct ones, we need to handle two cases:

1. Indirect additions due to direct additions: when a node n is directly added
to Ri then, in order to retrieve the indirect additions at R, the maintenance
algorithm issues a source query with context as n and with the steps sequence
(si+1, si+2, · · · , sN). This query is denoted as q((si+1, si+2, · · · , sN), (n), D).

134 J. Tatemura et al.

Incremental Maintenance (Expression E, Update U)

1- ∆0 = C ∩ U .path
R+ = R− =() //Empty sequences
i = 1 // loop variable

2- WHILE (i ≤ N AND ∆i−1 is not empty)
2-1 j = i

WHILE (sj has no predicate test AND j < N) j++
2-2 ∆j = q((si, si+1, · · · , sj).axis&label, ∆i−1,U .path)
2-3 Let Tj = (n|n ∈ ∆j ∧ Predafter

j (n) = true)
2-4 δ+

j = (n|n ∈ Tj ∧ RPj(n) = false)
2-5 R+ = R+ � q((sj+1, sj+2, · · · , jN), δ+

j ,D)
2-6 R− = R− � (n|n ∈ R ∧ ResultPathj (n) ∈ (∆j − Tj))
2-7 ∆j = Tj − δ+

j

2-8 i = j + 1
3- R = R �R+

R = R − R−

Fig. 4. Incremental View Maintenance Algorithm for XML Path Expressions

2. Indirect deletions due to direct deletions: when a node n is directly deleted
from Ri, then all the nodes r ∈ R that came to R due to n belonging to
Ri must also be deleted from R. These are the nodes r ∈ R which have
ResultPathi(r) = n. Thus, using the auxiliary data described above, we can
discover the indirect deletions without issuing any source queries.

The Full Algorithm. Figure 4, shows an algorithm based on the ideas pre-
sented above. Step 1 initializes some algorithm variables. R+ and R− are the
sequences of nodes to be added and deleted, respectively, in R. The loop in step
2 computes the different ∆′s. Step 2-1 assigns the value of j such that the range
i : j spans all the expression steps starting at i that do not have predicate tests.
For this range, no predicate tests are needed because all the predicates are known
to be true, by definition, before and after U . Thus, there are no direct effects
in this range. Therefore, the algorithm combines all the axis&label tests of this
range in one step, namely, step 2-2. Step 2-3 identifies Tj as the sequence of the
nodes of ∆j that have Predafter

j (n) = true. Step 2-4 then discovers the direct
additions at Rj . These direct additions are then used by step 2-5 to discover
the indirect effects on R. Step 2-6 discovers all the ultimate deletions at R, it
implicitly discovers the direct deletions and uses them to discover the indirect
ones. Step 2-7 excludes from ∆j the nodes that will not have effects on later
iterations, this is formally proved in [13]. Step 2-8 increments the loop variable
to start after j in the next step. Finally, step 3 updates R using R+ and R−.

Note that the algorithm does not differentiate between source addition and
deletion updates, the only case that needs to make such distinction is when
U .node itself belong to ∆N , this case is implicitly taken care of in the computa-
tion of Predi(n) before and after U .

In addition to the result R, the auxiliary data also need to be maintained.
This is not shown here for simplicity.

In the following section, we show how this algorithm is implemented when the
source XML document is stored in an RDBMS and hence, queried by SQL queries.

WReX: A Scalable Middleware Architecture to Enable XML Caching 135

4 Implementation over RDBMS

Although there have been several efforts to build native XML database sys-
tems [10,11], a common consensus is to use RDBMS technology to leverage from
the proven and highly-optimized storage and query capabilities already provided
by existing relational database systems [15].

Therefore, in this section, we show how the incremental XPath maintenance
algorithm described in Section 3 can be implemented when RDBMS technology
is used for the storage of the XML source data, the auxiliary data, and the
cached results. This requires an update management middleware which bridges
the gap between the XML logical data model at one side, and the relational
database implementation at the other side.

First, we will describe the XML-to-RDBMS and XPath-to-SQL mapping
schemes the middleware uses (Section 4.1). Then we will describe how to employ
this relational framework for incremental view maintenance of XPath queries to
support efficient Web Service caching (Section 4.2).

4.1 Storing and Querying XML over RDBMS

XML Data to Relational Data Mapping. Given the mismatch between the
XML data model (which has a nested structure) and the relational data model
(which is flat), several techniques have been proposed for storing and querying
XML documents using relational database systems [6,9,16,15]. These approaches
typically work as follows. The first step is relational schema generation, where rela-
tional tables are created for the purpose of storing XML documents. The next step
is XML document shredding, where XML documents are stored by shredding them
into rows of the tables that were created in the first step. The final step is XML
query processing (XPath queries in our case), where XPath queries over the stored
XML documents are converted into SQL queries over the created tables.

One simple approach of shredding is to store each node in the XML tree as a
tuple in a relational table, which maintains all the necessary information, such as
the node label, and node type. Node identifiers are used to capture and represent
the structure of the XML source in the relational database. In order to efficiently
maintain path-expression views over XML documents, two essential properties
must be provided by node identifiers: First, element(s) updated in the source
XML document should be easily identified. Secondly, structural (parent, child,
descendent, sibling) relationships among the elements of the XML document
should be easily determined using the node identifiers. These are critical for
efficient query processing and also in facilitating effective view maintenance in
the presence of updates.

Several approaches are proposed to assign node identifiers to the nodes in
XML document. We apply one such approach called, the ORDPATH [12] scheme
(also used in the upcoming version of Microsoft SQL Server). ORDPATH iden-
tifiers can be assigned to the nodes of an XML tree without requiring a schema.
ORDPATHs are conceptually similar to the Dewey Order introduced in [17].
The resulting identifiers have the property that ancestor relationships between

136 J. Tatemura et al.

id label type value parent
1 Manuscripts element NULL 0
1.1 Category attribute Fiction 1
1.3 Book element NULL 1
1.3.1 ISBN attribute 1-555860-438-3 1.3
1.3.3 Title element NULL 1.3
1.3.3.1 NULL value A Story 1.3.3
1.3.5 Author element NULL 1.3
1.3.5.1 Country attribute USA 1.3.5
1.3.5.3 NULL value John Doe 1.3.5
1.5 Monograph element NULL 1
1.5.1 ISBN attribute 1-888570-843-5 1.5
1.5.3 Title element NULL 1.5
1.5.3.1 NULL value Another Story 1.5.3
1.5.5 Author element NULL 1.5
1.5.5.1 Country attribute Canada 1.5.5
1.5.5.3 NULL value Tom Alter 1.5.5

Fig. 5. SrcTBL: The XML Document Table

the nodes is captured by the prefix relationship between the corresponding node
identifiers: ancestor(ni, nj) ↔ prefix(ni.nid, nj.nid).

Consider the following sample XML document:

<Manuscripts Category="Fiction">
<Book ISBN="1-555860-438-3">

<Title>A Story</Title>
<Author Country="USA">John Doe</Author>

</Book>
<Monograph ISBN="1-888570-843-5">

<Title>Another Story</Title>
<Author Country="Canada">Tom Alter</Author>

</Monograph>
</Manuscripts>

Figure 5 shows the table SrcTBL in which an XML document is stored in an
RDBMS

– id: The ORDPATH identifier originally proposed is implemented as a bit
string, and an RDBMS is supposed to implement primitive functions for struc-
tural relationships and query plans optimized for ORDPATHs. In our proto-
type, we have implemented an ORDPATH id as a character string, as shown in
Figure 5, for experimental purpose without implementing primitive functions
in RDBMSs. The primitive ancestor(ni.id, nj .id) is implemented as a string
prefix matching: “ni.id LIKE nj .id || ’%’”. Note that the node id column cap-
tures the order of the XML document, thus this XML order semantics are not
lost when the document is stored in an unordered relational system.

– parent: To identify a parent-child relationship effectively in our experimental
prototype, we additionally store the parent node id in the table. The primi-
tive parent(ni.id, nj .id) is in fact implemented as “ni.id = nj.parent”.

– label, type, value: A node type is specified in type , which is either an
element, attribute, or value. An element node has its tag name in label.
An attribute node has its name and value in label and value respectively.
A value node has its value in value. Although our view maintenance algo-
rithm is presented on a simplified document model (i.e., 〈n.id, n.label〉), it
can be easily mapped in this node model.

WReX: A Scalable Middleware Architecture to Enable XML Caching 137

With this table schema in place, XPath queries can be processed by translating
them into SQL queries against a table of this schema, as illustrated next.

4.2 XML Document Update Management

For each cached XPath expression, the system stores the following data required
for incremental maintenance (Section 3): (1) CntxtTBL: a table of the nodes
that comprise the query context, (2) Query Statement: an SQL representation of
the original XPath expression, (3) Individual query step: an SQL representation
of each step in the incremental maintenance algorithm, and (4) AuxTBL: the
auxiliary data (i.e. the result paths), whose schema is AuxTBL(id0, id1, id2, · · ·,
idN) (where N is the number of steps in the cached expression, each row in this
table stores a result path of the result, and the nodes in the last column idN
comprise R).

In the maintenance process, the whole auxiliary data (i.e., AuxTBL) needs to
be maintained, not only the final result R which is stored in the last column of
that table. We have implemented that simply by projecting more columns in the
SELECT clauses of the following SQL statements. With that, the rows resulting
from these SQL statements represent partial path expressions. Therefore, we use
join operations to concatenate these partial result paths to form full result paths
to maintain AuxTBL. For simplicity, we do not show the concatenation queries
here.

In addition to these tables, we maintain an update table (UpdtTBL) that
stores the source update being processed. As mentioned before, each update U
is represented by U .path which is a branch of the source tree. Thus, we use the
same schema as for the SrcTBL.

The View Maintenance Process. We illustrate the view maintenance process
with the folowing expression as an example:

/site/person[LIKE(@id, ”person%”)]/name

To construct the SQL query representing this expression, the hierarchical rela-
tionships between the nodes can be represented by either nested SQL queries
or as self-join operations on the source table, SrcTBL, shown in Figure 5. We
adopted the second option in our solution because it allows the query optimizer
to generate more efficient query plans. Thus, the expression is transformed into
the following SQL query by the middleware:

SELECT A.id, B.id, C.id, E.id
FROM CntxTBL A, SrcTBL B, SrcTBL C, SrcTBL D, SrcTBL E
WHERE parent(B.id)=A.id AND parent(C.id)=B.id AND parent(D.id)=C.id
AND parent(E.id)=C.id
AND B.type = ’element’ AND A.label = ’site’
AND C.type = ’element’ AND B.label = ’person’
AND D.type = ’attribute’ AND D.label = ’id’ AND LIKE(D.value,’person%’)
AND E.type = ’element’ AND E.label = ’name’

138 J. Tatemura et al.

In this query, the final result is the set of nodes in the last projection E.id,
the other projections A.id, B.id and C.id represent the result path information
which is used as auxiliary data for the maintenance process.

The algorithm in Figure 4 starts by initializing ∆0 in step 1 by an intersection
operation:

CREATE TABLE ∆0(id0) AS
(SELECT id FROM CntxtTBL INTERSECTION SELECT id FROM UpdtTBL)

Then, in the first iteration of the loop, step 2-1 assigns to j the value 2
because s1 has no predicate test. Then, step 2-2 computes ∆2 by the following
SQL statement:

CREATE TABLE ∆2(id0, id1, id2) AS
SELECT A.id, B.id C.id FROM ∆0 A, UpdtTBL B, UpdtTBL C
WHERE parent(B.id)=A.id AND parent(C.id)=B.id
AND B.type = ’element’ AND B.label = ’site’
AND C.type = ’element’ AND C.label = ’person’

The projection of A.id and B.id here are to get partial result paths.
In step 2-3, T2 is computed by:

CREATE TABLE T2 AS SELECT A.id FROM ∆2 A, SrcTBL B
WHERE parent(B.id)=A.id
AND B.type = ’attribute’ AND C.label = ’id’
AND LIKE(B.value,’person%’)

Then step 2-4 computes the direct additions at R2 as follows:

CREATE TABLE δ+
2 AS

SELECT T.id FROM T2 T
WHERE NOT EXISTS (SELECT * FROM AuxTBL WHERE id2 = T.id)

Step 2-5 then uses δ+
2 to discover the ultimate additions at R, the SQL query

used to discover these additions is:

SELECT A.id, B.id FROM δ+
2 A, SrcTBL B

WHERE parent(B.id)=A.id
AND B.type = ’element’ AND B.label = ’name’

(A.id, B.id) in this query result is a partial result path starting at R2 until R3.
Then step 2-6 computes the ultimate deletions at R as follows:

SELECT DISTINCT A.id3 FROM AuxTBL A
WHERE A.id2 IN
SELECT id2 FROM ∆2 DIFFERENCE SELECT id FROM T2

step 2-7 simply reduces ∆2 by a DIFFERENCE operator.

In the second (also, last) iteration of the loop, we have i = j = 3. In step
2-2, ∆3 is computed from the reduced ∆2. Since this iteration is processing
the last expression step, then if U .node belongs to ∆3 then the computation
of Pred3(U .node) takes into account U .type. This is computed as follows: If

WReX: A Scalable Middleware Architecture to Enable XML Caching 139

U .type = Add, then Predbefore
3 (U .node) = false because U .node did not exist

in the source before U .node. If U .type = Del, then Predafter
3 (U .node) = false

because U .node does not exist in the source after U .node. These two cases are
implicitly taken care of in the algorithm without testing U .type in the compu-
tation of Pred3(U .node) before and after U . Finally, all the ultimate additions
and deletions in AuxTBL are determined by joining the partial result paths
discovered by the SQL queries shown above.

5 Experimental Evaluation

In this section, we experimentally show that the proposed scheme provides a large
performance impact, while incurring a small storage and processing overhead.
For this purpose, we used the XMARK benchmark [14] to generate a data set
of 325,236 nodes. Experiments are done using an Oracle 9i database on a PC
with Linux 8.0, Pentium 4 1800 MHz CPU with 1 GB memory. We evaluated
the caching performance by using the following XPath queries:

– XP1: /site/people/person[like(@id,”person%”)]/name/text()
– XP2: /site/closed auctions/closed auction[price>40]/price/text()
– XP3: /site//item[contains(description,”gold”)/name/text()
– XP4: /site/closed auctions/closed auction/annotation/description/

parlist/listitem/parlist/listitem/text/emph/ketword/text()

Overhead of Auxiliary Data. Table 1 shows the overhead of auxiliary data
(i.e., AuxTBL) in terms of storage requirements and execution time. In addition
to cached XPath results (denoted as columns R-VAL and R-ID), the system
needs to store result paths as auxiliary data(AUX). As can be seen in the AUX
column, the storage overhead does not depend on the data size, but depends
on the number of steps in the XPath query and the cached data size. Then,
to observe the query processing in WReX, we compared the original full query
execution time with the execution time of the modified query that also retrieves
result paths to be used as auxiliary data. As shown in the Table 1, the overhead
is less than 10% in each case.

Table 1. Overhead in Auxiliary Data Maintenance: R-VAL: Result Set Value Stor-
age, R-ID: Result Set Node ID Storage, AUX: Auxililary Data Storage, SOV: Storage
Overhead (=AUX/(R-VAL+R-ID)), FQ: Full Source Query Execution Time, FQA:
Full Source Query with Aux. Data Execution Time, EOV: Execution Time Overhead
(=FQA/FQ).

R-VAL R-ID AUX SOV FQ FQA EOV
(byte) (byte) (byte) (msec) (msec)

XP1 36538 30103 85199 1.28 532 551 1.04
XP2 2366 8312 24267 2.27 802 876 1.09
XP3 3080 2327 6096 1.13 3933 4019 1.02
XP4 964 752 5525 3.22 3520 3556 1.01

140 J. Tatemura et al.

Performance Impact of Cache-enabled Middleware. To observe the ben-
efit of WReX in reducing the execution time observed by the users, we have
compared the execution time requirements for incremental cache update and
full recomputation on the following cached queries:

– XP5: /site/people/person[like(@id,”person2%”)]/name/text()
– XP6: /site/people[person[like(@id,”person1%”)]]/

person[like(@id,”person2%”)]/name/text()

For each query, 100 source updates were randomly generated. The results of
the time comparison for all the updates are shown in Figures 6(a) and 6(b). In
short, full queries take 10 to 20 times longer to execute on average. The figures
clearly establish the advantage of the proposed incremental view maintenance
middleware.

Finally, consider Figure 7, which shows the caching impact analysis for query
XP4, which has 13 steps, but no predicate. Since there are no predicates in XP4,

Process Cycle Time Comparison
(Five steps, one predicate, 325236 nodes in source document, 662 nodes in answer document)

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
yc

le
 T

im
e

(m
se

c)

View Update Through Incremental Maintenance View Update Through Full Query

(a) XP5

Process Cycle Time Comparison
(Five steps, two predicates, 325236 node in source document, 662 nodes in answer documentro

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 100

Source Updates

C
yc

le
 T

im
e

(m
se

c)

View Update Through Incremental Maintenance View Update Through Full Query

(b) XP6

Fig. 6. Incremental View Maintenance versus Full Re-Computation (Queries XP5,
XP6)

WReX: A Scalable Middleware Architecture to Enable XML Caching 141

Process Cycle Time Comparison
(13 steps, no predicate, 325236 nodes source document, 25 nodes in answer document)

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Source Updates

C
yc

le
 T

im
e

(m
s

View Update Through Incremental Maintenance Full Source Query

Fig. 7. Incremental View Maintenance versus Full Re-Computation (Query XP4)

no queries to the source need to be issued for predicate checking. Therefore,
the time needed for incremental maintenance is rather constant, whereas the
need for accessing sources for predicate tests had introduced a higher variability
to the incremental maintenance time for queries XP5 and XP6 in Figures 6(a)
and 6(b). Nevertheless, since predicate evaluation is only a part of the overall
processing needed for reevaluation of queries XP5 and XP6, incremental main-
tenance was consistently cheaper even when sources are accessed for predicate
checking.

6 Conclusion

In this paper, we have proposed WReX, a Web Service middleware architec-
ture that enables cache management by bridging the gap between Web Service
message caching and updates in the source data. Our solution consists of two
components: (1) Web Service Content Description (WSCD) that fills the gap
between Web Service messages and XML views of the source data; and (2) XML-
specific view maintenance that fills the gap between XML views and updates in
the source data. Cache-enabled Web Services are easily described and deployed
on a common platform with proven RDBMS technology. Through experimental
evaluation, we have demonstrated the performance benefits of our incremental
view maintenance. Future work includes more effective maintenance of multiple
XPath views and multiple updates, extension of our approach to other XML-to-
RDBMS mapping schemes (such as schema-aware mappings), and more detailed
studies on the entire middleware performance.

References

1. S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML
documents with distribution and replication. In SIGMOD Conference, pages 527–
538, 2003.

142 J. Tatemura et al.

2. K. S. Candan, D. Agrawal, W. Li, O. Po, and W. Hsiung. View invalidation for
dynamic content caching in multitiered architectures. In The 28th Very Large Data
Bases Conference, 2002.

3. J. Challenger, P. Dantzig, and A. Iyengar. A scalable system for consistently
caching dynamic web data. In In Proceedings of IEEE INFOCOM’99, 1999.

4. C. Y. Choi and Q. Luo. Template-based runtime invalidation for database-
generated web contents. In APWeb 2004, 2004.

5. A. Datta, K. Dutta, H. M. Thomas, D. E. Vandermeer, and K. Ramamritham.
Proxy-based acceleration of dynamically generated content on the world wide web:
An approach and implementation. ACM Trans. Database Syst, 29(2):403–443,
2004.

6. A. Deutsch, M. Fernandez, and D. Suciu. Storing Semi-structured Data with
STORED. In Proceedings of the 1999 ACM International Conference on Man-
agement of Data (SIGMOD’1999), 1999.

7. Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and
predicate evaluation for high-performance XML filtering. ACM Trans. Database
Syst, 28(4):467–516, 2003.

8. D. Florescu, A. Grunhagen, and D. Kossmann. XL: An XML programming lan-
guage for web service specification and composition. In WWW2002, International
World Wide Web Conference, 2002.

9. D. florescu and D. Kossman. Storing and Querying XML Data using an RDBMS.
IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

10. Roy Goldman, Jason McHugh, and Jennifer Widom. From Semistructured Data
to XML: Migrating the Lore Data Model and Query Language. In Proceedings of
the ACM International Workshop on the Web and Databases (WebDB’99), 1999.

11. J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis, J. Kang,
R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy andJ. Shanmugasun-
daram, F. Tian, K. Tufte, S. Viglas, C. Zhang, B. Jacksonand A. Gupta, and
R. Chen. The Niagara Internet Query System. IEEE Data Engineering Bulletin,
24(2), 2001.

12. Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. Ordpaths: Insert-friendly xml node labels. In SIGMOD
Conference, pages 903–908, 2004.

13. Arsany Sawires, Junichi Tatemura, Oliver Po, Divyakant Agrawal, and K. Selçuk
Candan. Incremental Maintenance of Path-Expression Views. In SIGMOD Con-
ference, 2005.

14. Albrecht Schmidt, Florian Waas, Martin L. Kersten, MichaelJ. Carey, Ioana
Manolescu, and Ralph Busse. Xmark: A benchmark for xml data management.
In VLDB, pages 974–985, 2002.

15. Jayavel Shanmugasundaram, Rajashekhar Krishnamurthy, Igor Tatarinov, Eugene
Shekita, Efstratios Viglas, Jerry Kinman, and Jefferey Naughton. A General Tech-
nique for Querying XML Documents using a Relational Database System. In
Proceedings of the 2001 ACM International Conference on Management of Data
(SIGMOD’2001), 2001.

16. Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey,
Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently publishing
relational data as xml documents. In Proceedings of 26th International Conference
on Very Large Data Bases (VLDB’2000), September 10-14, 2000, Cairo, Egypt,
pages 65–76, 2000.

WReX: A Scalable Middleware Architecture to Enable XML Caching 143

17. Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasundaram, Eu-
gene J. Shekita, and Chun Zhang. Storing and querying ordered XML using a
relational database system. In Proceedings of the 20002 ACM International Con-
ference on Management of Data (SIGMOD’2002), pages 204–215, 2002.

18. D. B. Terry and V. Ramasubramanian. Caching xml web services for mobility.
ACM Queue, 1(3):70–78, 2003.

19. K. Yagoub, D. Florescu, V. Issarny, and Patrick Valduriez. Caching strategies for
data-intensive web sites. In The VLDB Journal, pages 188–199, 2000.

	Introduction
	Cache-Enabled Service Middleware Architecture
	Web Service Content Description (WSCD)
	Cache Management Using WSCD

	XPath Cache Maintenance
	Data Model
	Update Model
	Query Model
	Incremental Maintenance of Path Expression Results

	Implementation over RDBMS
	Storing and Querying XML over RDBMS
	XML Document Update Management

	Experimental Evaluation
	Conclusion

