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T
 he variable nature of solar radiation at Earth’s  
 surface creates forecast challenges to maximize  
 the exploitation of this renewable resource. 

For example, adequate planning reduces the cost of 
operation of power generating systems and allows for 
more efficient grid operations and confident bids in 
the energy market. An accurate solar power forecast 
is helpful to utilities that are managing the rapid 
increase in solar energy on the grid (e.g., Marquis 

et al. 2011). Burgeoning installed solar power capacity 
(Devabhaktuni et al. 2013) has greatly increased the 
demand for accurate forecasts.

The methodologies for solar power forecasting 
can be classified as one- or two-stage approaches 
(Chen et al. 2011). The first step in the two-stage 
approach consists of forecasting relevant meteoro-
logical variables such as the surface solar irradiance 
and, in the second step, transforming the meteoro-
logical forecasts into power production by modeling 
the solar conversion system. Different modeling 
approaches are available for the simulation of the 
photovoltaic (PV) systems (e.g., Zhou et al. 2007) 
or the concentrated solar thermal plants (CSP; e.g., 
Kraas et al. 2013). On the other hand, the one-stage 
approach does not model solar plant output and 
only uses available information to forecast the solar 
power production directly. The use of artificial 
intelligence in combination with historical data 
at the site is frequently used (e.g., Chen et al. 2011; 
Pedro and Coimbra 2012). The solar irradiance 
forecast is commonly used as an input to the one-
stage approaches as well. Regardless of the approach 
selected, the challenge of solar power forecasting has 
been recognized to be essentially the same as for solar 
irradiance forecasting (Bacher et al. 2009).

Solar irradiance forecasts result from different 
methodologies depending on the temporal scales 
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(Diagne et al. 2013; Inman et al. 2013). Intrahour fore-
casts can follow from advection of clouds observed 
with ground-based all-sky cameras (e.g., Chow et al. 
2011; Peng et al. 2015) or statistical methods based 
on other surface measurements (McCandless et al. 
2015). Both linear and nonlinear statistical forecast-
ing methods are also appropriate and widely used 
for intrahour forecasts (e.g., Reikard 2009; Mellit 
and Massi Pavan 2010). Analysis and extrapolation 
of satellite imagery shows good performance from 
~30 min up to a maximum of 6 h (e.g., Hammer 
et al. 1999; Diagne et al. 2013; Nonnenmacher and 
Coimbra 2014). Because solar radiation is critically 
affected by small-scale dynamics and cloud micro-
physics (evaporation, condensation, etc.), the tempo-
ral autocorrelation of solar radiation time series can 
decrease rapidly. For prediction horizons beyond 6 h, 
numerical weather prediction (NWP) models become 
more appropriate and accurate (e.g., Perez et al. 2013). 
Some recent results suggest that forecasts from NWP 
models are also becoming competitive with statistical 
and satellite-based methods at shorter time scales 
(Diagne et al. 2013; Inman et al. 2013).

Despite the potential for NWP models to produce 
accurate shortwave forecasts across time scales, cur-
rent NWP models often do not provide the most 
appropriate quantitative forecasts for the solar energy 
industry. Because weather predictions internally only 
require the global horizontal irradiance (GHI) for the 
model’s energy budget, the direct normal irradiance 
(DNI) and diffuse (DIF) components are not com-
monly output to the user. GHI is much less sensitive 
to aerosol optical properties than DNI and DIF (e.g., 
Gueymard 2012; Ruiz-Arias et al. 2015), and some-
times NWP models do not account for atmospheric 
aerosols in the radiative transfer equation. This can be 

a limitation for CSPs, for example, which use the direct 
irradiance coming from the sun.

Aerosol modeling is often limited to models 
that explicitly consider atmospheric chemistry, 
whether run online (aerosols are explicitly mod-
eled) with NWP or offline (aerosols properties are 
handled in a secondary application using NWP 
output). For example, the Weather Research and 
Forecasting (WRF; Skamarock et al. 2008) Model 
provides the WRF-Chem extension that accounts 
for atmospheric chemistry (Grell et al. 2005; Fast 
et al. 2006). Additional data to initialize the chem-
istry (e.g., sources of constituents) are required to 
solve chemistry equations and predict atmospheric 
aerosols. Chemical reaction equations and the advec-
tion of chemical species also considerably increase the 
computational cost and latency time. These technical 
limitations lead to limited use of explicit atmospheric 
chemistry in NWP for solar energy forecasts.

Aside from the aerosol direct effect (i.e., aerosol–
radiation interactions), aerosols interact with cloud 
particles to modulate the cloud albedo and lifetime 
(Twomey 1974; Albrecht 1989). This is known as the 
aerosol indirect effect (e.g., Rap et al. 2013) and is 
usually only considered in NWP models that explic-
itly resolve atmospheric chemistry, if it is considered 
at all. Most models have independent cloud droplet 
radius and ice crystal size in the radiation and 
microphysics parameterizations (Stensrud 2007). The 
clouds are homogeneous in terms of the size of the 
microphysics species interacting with radiation, pre-
cluding the coupling required for the indirect effect. 
Improving these and other characteristics of NWP 
models is desirable to provide a better shortwave 
radiation forecasting framework that may foster the 
deployment of solar energy facilities.

TABLE 1. Comparison of WRF and WRF-Solar developments.

WRF-Solar WRF

Solar energy applications Output DNI and DIF —

High-frequency output of surface irradiance —

Solar position algorithm includes EOT EOT is not included

Aerosol–radiation feedbacks Observed/model climatologies or time-varying aerosols Model climatology

Cloud–aerosol feedbacks Aerosol indirect effect represented —

Cloud–radiation feedbacks Cloud particles consistent in radiation and microphysics —

Shallow cumulus feedback to radiation —

Fully coupled aerosol–cloud–radiation system Uncoupled
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WRF-Solar was developed to fulfill specific needs 
of the solar energy industry, while avoiding the dif-
ficulty of complex aerosol modeling. The model 
builds on the WRF modeling framework and has been 
developed within a project funded by the Department 
of Energy (DOE) that seeks improvement in GHI and 
DNI forecasts across a range of scales by blending 
different forecasting methods into a unified forecast 
(Haupt 2013; see sidebar for additional information). 
Synergistic work funded by the Federal Aviation 
Administration (FAA) was also leveraged. WRF-Solar 
developments are being made available to the WRF 
community through the official WRF releases.

As a part of the DOE-funded project, WRF-Solar 
has been run quasi operationally over the contigu-
ous United States (CONUS) since November 2014 
and was run during the complete year of 2015. The 
model predicts the shortwave direct, diffuse, and 
global irradiances; local point forecasts are fed into 

a statistical postprocessing system called DICast 
(Mahoney et al. 2012) to be combined with several 
other NWP models to generate power predictions 
at stakeholder solar facilities (see sidebar). As of this 
writing, the solar power forecasting system already 
provides timely forecasts to commercial PV plants 
and distributed PV located in diverse environments 
such as the San Luis Valley in Colorado, the Central 
Valley of California, and Long Island, New York.

Here we describe the specif ic WRF-Solar 
developments (Table 1) and present results charac-
terizing the model performance with an emphasis on 
surface solar irradiance during clear-sky conditions. 
Under clear skies, the aerosol direct effect is the 
largest source of uncertainty in the irradiance 
forecasts. This is especially the case for DNI. DNI 
is very sensitive to the aerosol load that can pro-
duce 100% of attenuation under certain conditions 
(Schroedter-Homscheidt et al. 2013). Since DNI is the 

SUNCAST: A COMPREHENSIVE SOLAR POWER FORECASTING SYSTEM.

W
 RF-Solar is an important 

component of the National Center 

for Atmospheric Research's (NCAR) 

SunCast Solar Power Forecasting 

System. This system seeks to compare 

the various methods of forecasting 

irradiance and to blend the different 

forecasts to provide a “best prac-

tices” comprehensive solar power 

forecasting system as displayed in 

the accompanying figure (Fig. SB1). 

In addition to WRF-Solar, irradiance 

forecasts from other high-resolution, 

regional, and global NWP models are 

blended and tuned via the Dynamic 

Integrated foreCast (DICast) system, 

producing a more accurate irradi-

ance forecast on average than any 

component model for each lead time 

(Mahoney et al. 2012).

In addition, a suite of nowcasting 

models forecast in their sweet spots 

for the 0–6-h time range. TSICast, 

built by Brookhaven National 

Laboratory, utilizes data from multiple 

total-sky imagers (TSIs) to determine 

current cloud position, height, and 

depth and also the cloud movement 

at the different levels to project the 

position over the next 30 min (Peng 

et al. 2015). StatCast leverages local 

pyranometer measurements and 

trains regime-dependent arti�cial 

network models from 15 min out 

to 3 h (McCandless et al. 2015). In 

the 1–6-h time range, we include 

the satellite-derived cloud advection 

technique designed by scientists at the 

Cooperative Institute for Research in 

the Atmosphere at Colorado State 

University. (Rogers et al. 2015). NCAR 

also deploys a 9-km implementation 

of WRF-Solar for the 6-h time frame 

as well as the Multi-Sensor Advective 

Diffusive foreCast (MADCast) system, 

which assimilates infrared irradiances 

from multiple sat-

ellite instruments 

and advects those 

derived clouds 

with the dynamic 

core of WRF 

(Auligné 2014a,b). 

These nowcast 

systems are 

blended seamlessly 

with the Nowcast 

blender, which in 

turn is blended 

with the DICast 

output to produce 

irradiance fore-

casts. Both, the 

Nowcast blender 

and DICast take 

into account the 

recent skill of each forecast component 

in their consensus forecasts.

The irradiance forecasts are 

converted to power using an arti�cial 

intelligence method (regression model 

tree) trained to data speci�c to the site 

of interest. An analog ensemble method 

(Delle Monache et al. 2013; Alessandrini 

et al. 2015) is used to both further im-

prove on the deterministic power fore-

cast as well as to quantify the uncertainty. 

The �nal output is a probabilistic solar 

power forecast tuned to the speci�c site.

FIG . SB1. Diagram of the SunCast Solar Power  

Forecasting System described in the sidebar.
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input to CSPs that mostly operate under clear skies, 
having an accurate DNI forecast under clear skies is 
essential for effective management. Hence, evaluating 
the clear-sky irradiance is a first solid step toward the 
solar power forecast under all-sky conditions.

Characterizing irradiance during partly cloudy to 
cloudy conditions will be the subject of a later con-
tribution that will exploit the long-term simulations 
from the quasi-operational forecast intended to pro-
vide a statistically robust characterization of the cloud 
variability and its impact on the forecasts. Previous 
studies have validated that mesoscale models already 
have skill at predicting cloudiness (e.g., Guichard et al.  
2003). Solar applications demand a more detailed vali-
dation of clouds (e.g., shallow cumulus) that remain 
subgrid scale at our target resolution and of the opti-
cal depths of resolved clouds. These validations are 
the primary areas for further development of the solar 
forecasting system. Cloud initialization is particularly 
crucial for short-range forecasts to inform both solar 
energy and convective storm forecasting.

WRF-SOLAR DESCRIPTION. WRF-Solar is 
a specific augmentation of the Advanced Research 
version of the WRF Model (Skamarock et al. 2008) 
designed to provide an improved NWP tool for solar 
energy applications. The WRF-Solar foundation is 
the official WRF version 3.6 released in 2014. We call 
the WRF lacking solar augmentation the “standard 
WRF” unless otherwise noted. In this section we 
document the WRF-Solar additions to the stan-
dard WRF. These include DNI and DIF available at 
temporal frequency limited only by model time step 
and several changes to model physics that account 

for feedbacks between aerosols, solar irradiance, and 
clouds. A conceptual diagram that illustrates these 
mechanisms is shown in Fig. 1.

Figure 1 also shows the different components of 
the irradiance. DNI is the irradiance received per 
unit of area over a surface perpendicular to the sun 
rays. DIF is the amount of surface irradiance that has 
been scattered by the atmosphere. GHI is the total 
amount of shortwave irradiance received by a surface 
horizontal to the ground and combines DIF and the 
component of DNI perpendicular to the ground.

Physical additions for solar energy applications. Many solar 
applications require direct and diffuse solar irradiance 
components in addition to GHI. For example, if the aim 
is to calculate the shortwave irradiance that impinges 
onto the plane of a solar panel, the typical computation-
al method includes 1) projecting DNI onto the direction 
normal to the plane of the panel, 2) adding a fraction of 
DIF evaluated from a sky view factor (the fraction of the 
total-sky hemisphere that is visible from a point in the 
panel), and 3) adding a fraction of GHI resulting from 
surface reflectance onto the tilted plane of the panel. 
An additional application is CSP production for which 
DNI is the fuel responsible for the energy production 
(DIF cannot be concentrated). WRF-Solar addresses 
the need for separate direct and diffuse components by 
making them available in the WRF output and also in 
auxiliary output files at arbitrary time intervals as short 
as the time step length of the model.

At least two of the existing shortwave param-
eterizations in the WRF calculate the direct and 
diffuse radiative transfer equations [e.g., Goddard 
scheme and the Rapid Radiative Transfer Model for 
Global Circulation Models (RRTMG); Chou and 
Suarez (1999); Iacono et al. (2008)]. In these cases, 
WRF-Solar adds the surface irradiance components 
to the model output. Other shortwave schemes do 
not explicitly solve for the direct and diffuse com-
ponents but provide GHI at the surface. Examples 
are the “Dudhia” scheme (Dudhia 1989) and an 
older Goddard scheme (Chou 1992). The advantage 
of these simpler parameterizations is that they are 
faster at solving the radiative transfer equation. For 
these parameterizations, the direct and diffuse com-
ponents are estimated from GHI using a regression 
model trained on worldwide observations (Ruiz-
Arias et al. 2010). The optical air mass and the clear-
ness index modulate the regression from GHI to DIF.

Improvements in the solar position algorithm used 
in previous versions of WRF, particularly the equa-
tion of time (EOT; Müller 1995), are now included. 
Deviations associated with the eccentricity of Earth’s 

FIG. 1. Sketch representing the physical processes that 

WRF-Solar improves. The different components of the 

radiation are indicated.
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FIG. 2. Observed and simulated surface irradiance 

components at site BND (see Fig. 5) during 2 Feb 2012. 

The simulation was initialized at 0000 UTC of the 

same day. The simulated irradiances are highlighted 

with a black solid line on top of the colored line that 

represents the irradiances (see legend).

orbit and the obliquity of Earth previously caused 
irradiance leads and lags of up to 16 min, depending 
on the day of the year. The standard WRF, before 
version 3.5.1, neglects the EOT correction, which 
is normally inconsequential when running the 
radiation scheme approximately every half hour. 
Solar energy applications demand more frequent 
calls to the radiation scheme, and the leads/lags then 
introduce nonnegligible error. Simulations performed 
during a day close to a maximum lag reduced the 
root-mean-square error (RMSE) in GHI by 31%.

WRF-Solar aims to provide irradiance components 
at every time step while avoiding unphysical discon-
tinuities. Typically the computational time of a model 
integration step calling the radiation parameterization 
is an order of magnitude longer than an integration 
step that skips it, and the radiative computations 
are done only about every 10 model steps at most. In 
between calls, the standard WRF assumes that irradi-
ance is constant, introducing temporal discontinuities 
(steps) in irradiance values computed at the surface. 
Fast radiative transfer methods are sometimes included 
in NWP models to simulate irradiance every time step 
(e.g., Manners et al. 2009). In WRF-Solar, we have im-
plemented a computationally efficient algorithm that 
interpolates the irradiance between successive calls 
to the radiation scheme considering only the change 
in the actual solar position and assuming the cloud 
extinction effect remains fixed to the latest computed 
value (a smart persistence approach).

One useful augmentation is irradiance output at 
time intervals limited only by the model time step. 
High-frequency time series of surface irradiance 
components are useful to model solar ramps (i.e., an 
abrupt change in the surface irradiance). Figure 2 
illustrates a solar ramp event accurately predicted by 
WRF-Solar. The first part of the day features cloudy 
skies that block the DNI so that GHI equals the DIF. 
WRF-Solar predicts this with only a slight overestima-
tion. Around 1700 UTC, scattered cloud conditions 
appear and clear-sky conditions alternate with clouds. 
WRF-Solar then simulates the different components of 
the irradiance but with less high-frequency variability 
because the modeled irradiance is more representative 
of a temporal (and spatial) average.

Aerosol-radiation feedback: Aerosol direct ef fect. 

Standard WRF simulations neglect the effects of 
atmospheric aerosols. The radiative impact of aerosols 
on GHI is relatively small, explaining the lack of 
attention to it for most meteorological applications. 
But it has been recognized that highly polluted condi-
tions can lead to biases (Barbaro 2015).

The standard WRF Model since version 3.5 has 
been capable of using a climatology-based aerosol 
parameterization developed at the European Centre 
for Medium-Range Weather Forecasts (ECMWF). 
The parameterization uses model results from 
Tegen et al. (1997) to derive monthly climatological 
means of the aerosol optical properties. Different 
models were used to simulate the transport of soil 
dust (Tegen and Fung 1995), sea salt, sulfate (Chin 
et al. 1996), and carbonaceous aerosols (Liousse 
et al. 1996). The 3D aerosol optical depth (AOD) 
for each species is on a grid with horizontal spacing 
of 5° longitude by 4° latitude and 12 pressure levels 
from 959 to 20 hPa. By activating the parameteriza-
tion, which by default is turned off, the RRTMG 
shortwave parameterization infers the AOD from 
the combined effects of the species with their own 
assumed properties and uses them to solve for diffuse 
and direct irradiance. The AOD values remain con-
stant, or change slowly, throughout the simulation 
period. This climatology and simple parameteriza-
tion of aerosol effects are expected to allow a better 
representation of the direct and diffuse radiation 
components; no known previous attempts have been 
made to assess its performance before this work 
because the direct and diffuse irradiances were not 
previously available as output. Monthly mean aero-
sols are potentially useful but do not exploit current 
observations from satellites, surface networks, or 
from faster-evolving analysis/reanalysis products.

WRF-Solar allows the user to impose evolving 
aerosol opt ica l propert ies in the simulat ion 
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necessity of quantifying the benefits of the param-
eterization using long-term simulations to robustly 
quantify model forecast errors and observational 
uncertainty (Thompson and Eidhammer 2014).

Cloud–radiation feedbacks. Three further improve-
ments in WRF close the aerosol–cloud–radiation 
feedback. First, consistency of the cloud particle 
distributions in the microphysics and radiation 
schemes is enforced. Historically, the cloud particle 
size for shortwave radiation calculations is imposed 
(i.e., the cloud effective radius is forced to remain 
constant) internal to a particular radiation scheme 
(Stensrud 2007). This implicitly assumes that all 
clouds are homogeneous in terms of their radii. To 
provide a more physically consistent representation 
of the cloud–radiation feedbacks, WRF-Solar adopts 
the novel approach of passing the effective radius 
of the cloud droplets, ice, and snow particles from 
the microphysics to the radiation (both shortwave 
and longwave) parameterization (Thompson and 
Eidhammer 2014; Thompson et al. 2015). This affects 
the cloud albedo and activates the aerosol indirect 
effects.

Second, the AOD from combined hygroscopic and 
nonhygroscopic aerosol number concentrations in 
the aerosol-aware microphysics can be passed to the 
radiation scheme. As noted above, the aerosols are 
currently initialized from a GOCART climatology. 
The aerosols are advected with the model dynamics. 
At a time step corresponding to a call to radiation 
physics, the extinction coefficient is computed and 
passed to the aerosol parameterization (Ruiz-Arias 
et al. 2014) for radiation. In this way, WRF-Solar 
provides a fully coupled representation of the aerosol–
cloud–radiation system (Fig. 1).

The last development upgrades the feedbacks 
that subgrid-scale clouds produce in the shortwave 
irradiance. This effect is implemented in the shallow 
cumulus parameterization. The standard WRF Model 
does not typically provide a cloud fraction from its 
shallow subgrid convection parameterization options. 
WRF-Solar includes one shallow cumulus scheme 
previously implemented in the MM5 mesoscale 
model (Deng et al. 2003), which provides a cloud 
fraction for radiation. The Deng et al. (2003, 2014) 
shallow convection scheme is a mass-f lux-based 
scheme. It includes a cloud entraining/detraining 
model to represent updrafts and it is triggered by 
factors including planetary boundary layer depth 
and turbulent kinetic energy (TKE). It uses a hybrid 
closure combining TKE and convective available 
potential energy, depending on the updraft depth. 

(Ruiz-Arias et al. 2014), and considers humidity 
effects, to account for the aerosol direct effect. 
Parameterization of the effects of the aerosol optical 
properties on the radiation has been added to the 
Goddard (Chou and Suarez 1999; Shi et al. 2010) 
and the RRTMG (Iacono et al. 2008) shortwave 
radiation codes. The parameterization requires the 
total AOD at 0.550 µm (visible) and specification of 
the type of predominant aerosol. Knowledge of the 
predominant aerosol type allows for estimation of the 
remaining aerosol optical properties, including the 
single-scattering albedo and the asymmetry factor. 
It also permits modeling the spectral variability with 
estimations of the Ångström exponent. The user 
can optionally provide the single-scattering albedo, 
asymmetry factor, and Ångström exponent rather 
than allowing the parameterization to infer them 
based on the predominant aerosol. Ruiz-Arias et al. 
(2013) present a comparison of the parameterization 
to observations, which indicates that the param-
eterization produces accurate estimation of surface 
irradiance given accurate aerosol optical properties. 
Section 3 describes different aerosol datasets that are 
analyzed in the WRF-Solar model.

Cloud–aerosol feedbacks. Prior to version 3.6, the 
standard WRF lacked representation of aerosol inter-
actions with cloud processes. To enable cloud–aerosol 
feedbacks and maintain computational affordability 
for operational applications, WRF-Solar borrows the 
simplified representation of the aerosol interaction 
with the Thompson microphysics (Thompson and 
Eidhammer 2014). Aerosol species are classified 
into hygroscopic and nonhygroscopic aerosols. The 
two species are currently initialized from a three-
dimensional monthly climatology of the aerosol 
number concentrations generated from the Goddard 
Chemistry Aerosol Radiation and Transport (GOCART) 
model (Ginoux et al. 2001; Colarco et al. 2010). The 
surface emission flux is represented by a variable lower 
boundary condition based upon the starting aerosol 
conditions and an assumed mean surface wind.

As of the time of writing, the combination of the 
RRTMG radiation scheme and the Thompson and 
Eidhammer (2014) microphysics scheme fully incor-
porates the first and second aerosol indirect effects 
(Twomey 1974; Albrecht 1989). This adaptation of the 
standard WRF was aimed at NWP and WRF-Solar 
applications and resulted in minimal computational 
cost increase compared to running a full chemistry 
model [16% increase in simulation time compared 
to the previous Thompson et al. (2008) scheme]. 
Simulations of a large winter cyclone indicate the 
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In addition to the updraft formulation, the scheme 
also contains two predictive equations for cloud frac-
tion and cloud liquid/ice water content for neutrally 
buoyant clouds (inactive clouds detrained from the 
active updraft core). Deng et al. (2014) shows that the 
scheme is able to produce reasonable cloud fractions 
and reduce surface temperature bias.

Initial testing of the parameterization at 9 km of 
horizontal resolution over CONUS shows a reduction 
of a positive bias in the GHI. The GHI bias at 14 sites 
distributed over the CONUS domain is shown in 
Fig. 3. The simulations were initialized at 1500 UTC 
and run for 6 h, spanning the complete year of 2014 
with one simulation every week (52 simulations). 
Each simulation consists of a 10-member ensemble 
performed with the stochastic kinetic-energy back-
scatter scheme (SKEBS; Berner et al. 2011) imple-
mented in WRF. Neglecting the effects of unresolved 
clouds introduces a systematic bias at the 14 sites 
(52 W m−2). Activating the effects of the unresolved 
clouds reduces most of the bias (13 W m−2, 75% of 
improvement). Several sites show a slightly negative 
bias, which indicates that the systematic overpredic-
tion of GHI is corrected.

The other shallow convection option used by WRF-
Solar (Grell–Freitas) is also being adapted to provide a 
shallow cloud fraction to the radiation scheme.

A S S E S S M E NT U N D E R C LE A R - S K Y  

CONDITIONS. Experiment details. Six WRF-Solar 
experiments were completed to measure the im-
portance of the aerosol direct effect on predictions 
of surface irradiance and to investigate sensitivity 
to aerosol optical property source and treatment. 
The first experiment (NO-AEROSOL) lacks any 
aerosol. The second experiment (ECMWF-CLIM) 
activates the ECMWF monthly climatology. The 
third experiment (SCS-CLIM) adds two further 
potential improvements: a monthly aerosol dataset 
covering North America at high spatial resolution 
(0.05° latitude by 0.05° longitude) developed by Solar 
Consulting Services (SCS) and a more sophisticated 
aerosol property parameterization for the aerosol 
direct effect. The fourth experiment (GOCART-
CLIM) uses the GOCART climatology (section 
2c) to activate the feedback to radiation (section 
2d). GOCART-CLIM is the only experiment with 
aerosol advection and the only experiment where the 
Thompson microphysics aerosols are also used for 
the direct effect. SCS-CLIM and GOCART-CLIM 
impose the total AOD at 0.550 µm using data from 
models that explicitly predict evolving atmospheric 
chemistry. The fifth experiment (MACC-AOD) uses 

data from the ECMWF Monitoring Atmospheric 
Composition and Climate (MACC) reanalysis (Inness 
et al. 2013). MACC AOD is available globally every 
3 h at 1.115° latitude by 1.115° longitude and here is 
linearly interpolated to hourly input to the WRF-
Solar. The total AOD is a forecast variable starting 
from 0000 UTC analysis up to 24 h. The last (sixth) 
experiment (GEOS5-AOD) uses NASA’s Goddard 
Earth Observing System model version 5 (GEOS5; 
Rienecker et al. 2000) analysis. The GEOS5 product is 
global and available every 3 h and is also interpolated 
to hourly AOD. The horizontal resolution is greater 
than the MACC at 0.5° latitude by 0.65° longitude. 
The experiments prescribing the AOD via the aerosol 
parameterization of WRF-Solar (i.e., SCS-CLIM, 
MACC-AOD, GEOS5-AOD) impose a rural-type 
(Shettle and Fenn 1979) predominant aerosol.

The high-resolution aerosol dataset for SCS-
CLIM is composed of the AOD at 0.550 µm and the 
Ångström exponent for each month of the period 
2000–14 and of the mean monthly single-scattering 
albedo. The methodology is similar to that used 
previously by other authors (Kinne et al. 2003, 
2006; Kinne 2009; Kinne et al. 2013; Pappas et al. 
2013) to develop climatologies including AeroCom, 
Hamburg (Pappas et al. 2013), and Max-Planck-
Institute Aerosol Climatology (MAC; Kinne et al. 
2013). They are composites based on remote sensing 
observations (spaceborne MODIS spectrometers 
and ground-based AERONET sunphotometers) and 
predictions from various aerosol transport models. 
Here, special attention was devoted to large parts 
of western North America where the Dark Target 
(DT) MODIS algorithm was found to considerably 

FIG. 3. GHI bias at the seven sites from the SURFRAD 

network and the seven sites of the ISIS network with 

observations available for the year of 2014. The differ-

ent lines represent simulations neglecting (red) and 

activating (blue) the effects of the unresolved clouds.
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overestimate AOD. Corrections to remove this bias 
over high-albedo areas (delineated from MODIS 
albedo data) were derived from a regional com-
parison with AERONET Level-2 data, Deep Blue 
MODIS data, MACC reanalysis, and the Hamburg 
climatology. The coarse spatial resolution (1° by 1°) 
of the original monthly gridded data were improved 
by combining a bilinear interpolation at sea level, 
and a correction to account for topographic effects 

on the vertical aerosol profile, using an exponential-
scale height of 2.5 km. The Ångström exponent was 
obtained in a similar way, but without topographic 
correction. Among other differences with the MAC, 
the SCS dataset does not incorporate any specific 
AERONET data and does not force local agreement 
with ground truth.

Figure 4 compares the spatial variation of the AOD 
at 0.550 µm as obtained from monthly MODIS Terra 

(DT algorithm v5.1) and the SCS dataset 
at their respective spatial resolutions. This 
comparison is made for July in a clima-
tological sense—that is, considering the 
long-term 2000–14 mean. In Fig. 4c, the 
time series of the monthly AOD obtained 
by AERONET (after appropriate spectral 
correction) is compared to the MODIS 
Terra and the SCS data for Maricopa, 
Arizona. Maricopa is one of the areas where 
the MODIS DT retrievals show a notable 
high bias. The SCS climatology reduces the 
high AOD bias providing a better compari-
son with the ground observations.

WRF-Solar was configured similarly to 
NOAA’s High-Resolution Rapid Refresh 
(HRRR) system, with the same physics 
schemes and on a domain covering the 
CONUS at 3-km horizontal grid spacing. 
One key difference from the HRRR is that 
our implementation calls the radiation 
code every 5 min compared to 30 min in 
the HRRR. Four periods of five consecu-
tive days were selected for analysis in each 
season for a total of 20 days. All days 
were during 2012 because this is the most 
recent year with MACC reanalysis prod-
ucts available. Analyses from the Rapid-
Refresh (RAP) model run by NCEP, with 
13-km grid spacing, provided initial and 
boundary conditions every 3 h. Analyses 
were used to limit forecast error growth 
in this evaluation of aerosol direct-effect 
treatment. Initialization was at 0000 UTC 
each day, and simulations proceeded for 
30 h to ensure a continuous daytime period 
in the simulations.

Verif ication is performed against 
irradiance observations from the Surface 
Radiation budget network (SURFRAD; 
Augustine et al. 2000, 2005). GHI, DNI, 
and DIF measurements are recorded 
every minute at seven geographically 
diverse sites across the CONUS (Fig. 5). 

FIG. 4. AOD at 0.550 µm from (a) MODIS and (b) the SCS 

dataset for the Jul climatology. (c) The time series at Mari-

copa, Arizona, are also shown together with the ground AOD 

observations. This figure demonstrates that the SCS dataset 

successfully removes the anomalous high bias in the western 

United States.

1256 JULY 2016|



WRF-Solar was configured to output ir-
radiance components at the SURFRAD 
sites every time step of the model (20 s), 
then these values were averaged to 1 
min. With the present focus on clear-
sky irradiance, the cloud–radiation 
feedback was deactivated. Verification 
samples were formed from all daytime 
minutes corresponding to clear skies in 
the observations, following Long and 
Ackerman (2000) to identify clear skies 
from observed GHI and DIF.

Results. An example demonstrates the 
expected effects of aerosols on clear-sky irradiance. 
Aerosols absorb and scatter the incoming solar beam, 
reducing DNI and increasing DIF. Ignoring aero-
sols leads to systematic overprediction of DNI and 
underprediction of DIF. Figure 6a shows the observed 
irradiance during a nearly clear day at one SURFRAD 
site. Figure 6b shows the corresponding average errors 
(bias) for the NO-AEROSOL experiment. The sim-
plest treatment for aerosols, ECMWF-CLIM, nearly 
eliminates bias in DIF and reduces the DNI bias mag-
nitude (Fig. 6c). GHI is slightly overestimated, while 
DNI is slightly underestimated in the ECMWF-CLIM 
experiment. Bias in DIF is negligible. The impact on 
GHI is much weaker because absorption is small and 
scattering is highly peaked in the forward direction, 
but the GHI bias drops by more than 10 W m−2. Bias 
in GHI should be the sum of the DNI and DIF biases 
but is not because of observational errors.

With few exceptions, the aerosol effect demonstrated 
in Fig. 6 generalizes to the full clear-sky dataset and 
other aerosol treatments (Figs. 7 and 8). The GEOS5 
aerosols lead to the overall lowest bias magnitudes. 
Simulation at the GCM site is especially challenging 
for most of the experiments; GEOS5-AOD is the only 
experiment providing results comparable to those at 
the rest of SURFRAD sites. It will be shown below that 
this is a consequence of accurate AOD at GCM in the 
GEOS5. Although they improve on NO-AEROSOL, 
the SCS-CLIM, GOCART-CLIM, and MACC-AOD 
show too little DNI and too much DIF, thus indicating 
a high bias in the aerosol effect. A smaller magnitude 
impact on GHI is clear (Fig. 7c), but the relative 
improvement from the aerosol effect is large (Fig. 8c). 
Results from GEOS-5 suggest that computationally 
expensive models that explicitly and accurately solve 
the atmospheric chemistry can be competitive with, or 
superior to, high-quality climatology products.

RMSE improvements show that bias reductions 
from including aerosols are responsible for most of 

FIG. 6. (a) Observed surface irradiance components 

and their biases from the (b) NO-AEROSOL and 

(c) ECMWF-CLIM experiments [see key in (a)] at site 

DRA during 4 Feb 2012.

FIG. 5. Location of the seven SURFRAD sites.
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the error reductions (Table 2). Again, runs imposing 
climatological properties of the aerosol provide simi-
lar results, which are superior to the MACC-AOD and 

inferior to the GEOS5-AOD experiments. Almost all 
the experiments that include atmospheric aerosols 
reduce the RMSE compared to the NO-AEROSOL 

TABLE 2. RMSE in the surface irradiance components (W m−2). The relative improvement with respect to 

the NO-AEROSOL experiment is shown in parenthesis.

Irradiance NO-AEROSOL ECMWF-CLIM SCS-CLIM GOCART-CLIM MACC-AOD GEOS5-AOD

GHI 21 16 (23%) 16 (23%) 16 (23%) 20 (5%) 15 (28%)

DIF 44 20 (54%) 19 (57%) 26 (41%) 42 (4%) 12 (73%)

DNI 103 66 (36%) 52 (50%) 58 (44%) 120 (−16%) 41 (60%)

FIG. 7. Biases in the surface irradiance components over 

all clear-sky minutes at each SURFRAD site. Results for 

the six numerical experiments are shown (see legend).

FIG. 8. Improvements on the surface irradiance biases 

with respect to the NO-AEROSOL experiment for all 

clear-sky minutes.
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TABLE 3. Standard deviation of the error in the surface irradiance components (W m−2). The relative 

improvement with respect to the NO-AEROSOL experiment is shown in parenthesis.

Irradiance NO-AEROSOL ECMWF-CLIM SCS-CLIM GOCART-CLIM MACC-AOD GEOS5-AOD

GHI 16 16 (0%) 16 (0%) 16 (0%) 17 (−6%) 15 (6%)

DIF 23 19 (17%) 17 (26%) 25 (−9%) 26 (−13%) 12 (48%)

DNI 52 62 (−14%) 45 (13%) 54 (−4%) 77 (−16%) 40 (23%)

run, agreeing with the bias improvements (Figs. 7 
and 8). The only exception is the RMSE of DNI for 
the MACC-AOD. Poor performance at DRA, where 
MACC strongly overestimates AOD (Figs. 7 and 8), 
is responsible. Again, the largest improvements are 
found using the GEOS5-AOD that shows improve-
ments with respect to the ECMWF-CLIM, the stan-
dard representation of aerosols in NWP models, of 
38% and 40% for the DNI and DIF, respectively.

Comparing temporal error variability from each 
experiment allows us to quantify the improvements 
associated with the AOD variability. Table 3 shows the 
standard deviation of the error defined as the differ-
ences between the simula-
tion and the observations. 
Results from ECMWF-
C L I M a nd  G O C A RT-
CLIM indicate that these 
experiments do not reduce 
the variability of the error, 
which indicates that the 
improvement in the errors 
(Table 2) is associated with 
a bias reduction. The vari-
ability of the error is higher 
in MACC-AOD than in 
the NO-AEROSOL exper-
iment. On the contrary, 
SCS-CLIM and GEOS5-
AOD reveal a reduction 
of the error variability. 
Experiment GEOS5-AOD 
shows the most error reduc-
tion compared to the stan-
dard approach, ECMWF-
CLIM experiment, by 35% 
and 37% for the DNI and 
DIF, respectively.

The relative improve-
ment of each model experi-
ment is directly associated 
with accuracy in the aerosol 
optical properties. To verify 
this, the AOD recorded by 

the five multifilter radiometer channels available at 
the SURFRAD sites (0.4135, 0.4974, 0.6150, 0.6727, 
and 0.8698 µm) was interpolated to the primary 
wavelength of 0.550 µm using the observed Ångström 
exponent. The estimates from the five channels were 
then averaged to derive a single value. Comparing 
these observations to the values extracted from the 
four datasets under scrutiny here shows that the AOD 
skill among the various experiments is ranked simi-
larly to the irradiance prediction skill (Fig. 9).

The SCS-CLIM aerosol reproduces noticeable 
characteristics in the observed AOD and agrees well 
with observations at certain sites (e.g., Fig. 9e). The 

FIG. 9. Total AOD at 0.550 µm from the different experiments at the 

SURFRAD locations with AOD records available.
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MACC-AOD and GEOS5-AOD both show temporal 
variability exceeding the observed AOD variabil-
ity, with MACC-AOD additionally revealing a high 
bias. Site-specific AOD bias and correlation results 
(Table 4) clearly indicate that the GEOS5-AOD and 
SCS-CLIM both agree with observations better than 
MACC-AOD. This order is in agreement with the 
ability of the experiments to reproduce the observed 
surface irradiance (Fig. 8 and Table 2), indicating that 
RRTMG properly accounts for aerosol effects when 
supplied with appropriate inputs. This confirms other 
recent results (Gueymard and Ruiz-Arias 2015).

WRF-Solar versus standard WRF. To conclude the clear-
sky assessment, a seventh numerical experiment sum-
marizes the total effect of WRF-Solar (GEOS5-AOD) 
compared to the previous version of WRF that did not 
output separate irradiance components. The standard 
(baseline) WRF here is now defined as the official 
release of WRF version 3.5.1 with two modifications. 
First, the correction to the sun position algorithm 
was removed because it is part of the WRF-Solar 
effort. Second, code to output surface irradiance at 
the SURFRAD sites and at every model time step is 
added to enable direct comparison to WRF-Solar. 
WRF version 3.5.1 already included the WRF-Solar 
capability to output the direct and diffuse radiation 
components. Another difference with respect to the 
NO-AEROSOL experiment is that the standard WRF 
3.5.1 does not include the interpolation of the modeled 
irradiance between radiation calls.

Figure 10 shows the decrease in RMSE in WRF-
Solar simulations compared to those from the 
standard WRF. Consistent with earlier results, 
WRF-Solar improves the GHI, DNI, and DIF under 
clear-sky predictions at all SURFRAD sites. On 
average, GHI is improved by 46%, DNI by 60%, and 
DIF by 70%.

CONCLUSIONS. The WRF-Solar augmentations 
to the WRF Model, described here, result in the first 
NWP model specifically designed to meet the growing 
demand for specialized forecasting products associated 
with solar power applications. The model includes 
representation of aerosol–cloud–radiation feedbacks 
and efficient numerical approaches to support opera-
tional forecasting. This clear-sky assessment reveals 
large improvements compared to irradiance from the 
standard WRF. Sensitivity to details of the source of 
aerosol information emphasizes the importance of 
accurate aerosol optical properties for accurate esti-
mates of surface irradiance. Models that explicitly solve 
atmospheric chemistry equations and are initialized 
with an aerosol data assimilation process (i.e., GEOS5) 
appear the most useful for clear-sky solar irradiance. 
In particular, imposing the temporal variability of 
the AOD produces large improvements in DNI and 
DIF with respect to the more extended use of aerosol 
climatologies.

Current developments focus on comparing fore-
casts and actual solar power production to precisely 
evaluate the model performance under all-sky condi-
tions (including cloudy periods). Further modeling 
advances in WRF-Solar are expected from these 
efforts and should enhance the specific clear-sky 
improvements highlighted here. Included in these 
planned improvements are enhanced satellite data 
assimilation techniques. Combined with the ability 
to output high-frequency irradiance time series, the 
new WRF-Solar should prove helpful to the growing 
solar industry in general and contribute to better 
cloud, aerosol, and solar forecasts in general.

TABLE 4. Bias/correlation of the total AOD at 

0.550 µm at the SURFRAD sites (except PSU, 

which does not have AOD observations) for 

different experiments.

Station SCS-CLIM MACC-AOD GEOS5-AOD

TBL −0.01/0.59 0.09/0.38 −0.01/0.72

BND 0.02/0.70 0.03/0.64 0.02/0.84

FPK −0.02/0.66 0.09/0.86 −0.02/0.93

GCM 0.03/0.71 0.09/0.67 0.03/0.88

DRA 0.03/0.90 0.15/0.69 0.00/0.81

SXF −0.05/0.58 0.09/0.75 −0.05/0.91

FIG. 10. Improvements introduced by WRF-Solar 

(experiment GEOS5-AOD) in the estimations of 

the clear-sky surface irradiance components at the  

SURFRAD sites. The standard WRF simulation is used 

as a baseline for comparison.
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