WRINKLING IN FINITE PLANE-STRESS THEORY*

By
CHIEN H. WU and THOMAS R. CANFIELD**
University of Illinois, Chicago

Abstract

A general and complete formulation is given for the wrinkling phenomenon in the context of finite plane-stress theory. The planar portion of the true three-dimensional displacement field, called the pseudo-displacement field, is used as a basis for the necessary kinematic analysis. It is assumed that the principal directions associated with the pseudodeformation field are the same as those associated with the true stress field. The true stress field is governed by equilibrium and the assumption that one of the principal stresses vanishes, and hence is statically determinate. The difference between the pseudo-strain and the true strain calculated from the true stress is a new tensor, called the wrinkle-strain tensor, and serves as a measure of the wrinkliness of the surface.

1. Introduction. Wrinkling is a phenomenon that is commonly associated with the deformation of a thin membrane surface. It is commonly assumed that the direction of a wrinkle is a principal direction. The principal stress resultant along a wrinkle is assumed to be tensile, while the transverse principal stress resultant is assumed to be zero. This assumption renders the equilibrium conditions statically determinate, and the resulting analysis is the so-called tension field theory. This theory has been studied extensively in the context of linear plane-stress theory by many authors [1-8]. ${ }^{1}$ The formulations used in these references are not quite the same but are all built upon the same basic assumption. The work reported in [7] was obtained without the knowledge of the earlier references and hence is not published. It should be mentioned, however, that the use of a wrinkle strain to measure the wrinkliness of a deformation was first explicitly introduced in [7]. ${ }^{2}$ In any case, the formulation needed for a linear analysis is complete.

When the deformation is finite, the system of equilibrium conditions is still statically determinate. This leads to the false impression that the necessary nonlinear analysis is just as straightforward as the linear analysis. But how does one get back to the displacement field from the stresses? This question cannot be answered without a detailed study of the kinematics based on physically reasonable assumptions. Formulations applicable to axially symmetric problems can be found in $[9,10]$. The purpose of this paper is to give a complete

[^0]and general formulation of the wrinkling phenomenon in the context of finite plane-stress theory.

We shall begin by naming the planar portion of the true three-dimensional displacement field the pseudo-displacement field. The main assumption will be that the principal directions associated with the pseudo-displacement field are the same as those associated with the true stress field. The difference between the strains calculated from the pseudodisplacement field and strains calculated from the true stress field is a measure of the wrinkliness of the surface.

Some mathematical preliminaries, mainly having to do with Schouten's kernal-index notation, are reviewed in Sec. 2. This notation is convenient for our purpose, because we have to deal with several sets of different curvilinear coordinates. Finite plane-stress theory with wrinkles is introduced in Sec. 3. The presentation of Sec. 3 is somewhat fragmentary because of the mixed use of several coordinates. Sec. 4 is an attempt to summarize the equations obtained in Sec. 3. The class of rotationally symmetric problems is solved exactly in Sec. 5, and some results are presented in Sec. 6 with a set of initial data as parameters.
2. Mathematical preliminaries via Schouten's kernel-index notation. The objectives of this paper require the solution of the physical components of various field variables in different curvilinear coordinates. Schouten's kernel-index notation [11, 12] appears to be most suitable for our purposes. The notation uses a kernel letter to identify an object, and index letters to identify the reference bases. Moreover, the word "component" is always meant to be the physical component. This is summarized as follows:

Before proceeding, we set forth in Table 1, once and for all, the kernel letters and index letters to be assigned to various coordinates.

The base vectors associated with a set of coordinate axes are denoted by

$$
\begin{equation*}
\mathbf{e}_{\text {Index }} \quad \text { Index }=(I, i, A, a) \tag{2.1}
\end{equation*}
$$

and the associated local Cartesian unit vectors are

$$
\begin{equation*}
\mathbf{i}_{\text {Index }}=\mathbf{e}_{\text {Index }} /\left|\mathbf{e}_{\text {Index }}\right| . \tag{2.2}
\end{equation*}
$$

It follows from our notation (Table 1) that

$$
\begin{equation*}
\mathbf{i}_{\text {Index }}=\mathbf{e}_{\text {Index }} \text { for } \text { Index }=I \text { or } i . \tag{2.3}
\end{equation*}
$$

Direction cosines are defined accordingly:

$$
\begin{equation*}
Q_{(1 \text { st Index)(2nd Index)}}=\mathbf{i}_{(1 \text { st Index })} \cdot \mathbf{i}_{(2 \text { nd Index })} \tag{2.4}
\end{equation*}
$$

where (1st Index) and (2nd Index) are associated with different bases. A characteristic of

Table 1. Coordinate systems (all subscripts range over the integers (1, 2)).

Coordinates States		Undeformed State	Deformed State
Rectangular Cartesian	Indexed	I is a typical Z_{I} member of (I, J, K, L, M, N)	$z_{i} \begin{gathered} i \text { is a typical } \\ \text { member of } \\ (i, j, k, l, m, n) \end{gathered}$
	Explicit	$\begin{array}{ll} Z_{I}=X & I=1 \\ Z_{I}=Y & I=2 \end{array}$	$\begin{array}{ll} z_{i}=x & i=1 \\ z_{i}=y & i=2 \end{array}$
Orthogonal Curvilinear	Indexed	A is a typical X_{A} member of ($A, B, C, D, E, F)$	a is typical $x_{a} \quad$ member of (a, b, c, d, e, f)
	Explicit	$\begin{array}{ll} X_{A}=U & A=1 \\ X_{A}=V & A=2 \end{array}$	$\begin{array}{ll} x_{a}=u & a=1 \\ x_{a}=v & a=2 \end{array}$
	Principal	$\begin{array}{ll} X_{A}=P & A=1 \\ X_{A}=Q & A=2 \end{array}$	$\begin{array}{ll} x_{a}=p & a=1 \\ & \text { for } \\ x_{a}=q & a=2 \end{array}$

Schouten's notation is that

$$
\begin{equation*}
Q_{(1 \text { st Index)(2nd Index) }}=Q_{(2 n d \text { Index)(1st Index) }} . \tag{2.5}
\end{equation*}
$$

This, however, is merely an identity but not a symmetry property. In terms of the direction cosines, physical components of a tensor \mathbf{T} transform like Cartesian components, e.g.,

$$
\begin{equation*}
T_{I J}=Q_{I A} Q_{J B} T_{A B}, \quad T_{i J}=Q_{i a} Q_{J B} T_{a B}, \quad \text { etc. } \tag{2.6}
\end{equation*}
$$

Let the transformation between the Cartesian coordinates Z_{I} and the orthogonal curvilinear coordinates X_{A} be denoted by

$$
\begin{equation*}
Z_{I}=Z_{I}\left(X_{A}\right), \quad X_{A}=X_{A}\left(Z_{I}\right) \tag{2.7}
\end{equation*}
$$

Then, since X_{A} are orthogonal,

$$
\begin{equation*}
Z_{I, A} Z_{I, B}=0 \quad \text { for } \quad A \neq B . \tag{2.8}
\end{equation*}
$$

The square of a line element $d L$ is

$$
\begin{equation*}
(d L)^{2}=d Z_{I} d Z_{I}=\delta X_{A} \delta X_{A} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta X_{A} \equiv H_{A}^{-1} d X_{A} \quad \text { (no sum) } \tag{2.10}
\end{equation*}
$$

[^1]and
\[

$$
\begin{equation*}
H_{A}^{-1}=\left(Z_{I, A} Z_{I, A}\right)^{1 / 2}=\left(X_{A, I} X_{A, I}\right)^{-1 / 2} \tag{2.11}
\end{equation*}
$$

\]

It follows from the above that

$$
\begin{equation*}
X_{A, I}=H_{A}^{2} Z_{I, A}, \quad Z_{I, A}=H_{A}^{-2} X_{A, I} \tag{2.12}
\end{equation*}
$$

We note in passing that δX_{A} is nothing but a convenient notation.
Let \mathbf{P} be the position vector of a point; then

$$
\begin{equation*}
\mathbf{e}_{A}=\mathbf{P}_{, A}, \quad\left|\mathbf{e}_{A}\right|=\left(Z_{I, A} Z_{I, A}\right)^{1 / 2}=H_{A}^{-1}, \quad \mathbf{i}_{A}=H_{A} \mathbf{e}_{A} \tag{2.13}
\end{equation*}
$$

We introduce directional differentiation defined by

$$
\begin{equation*}
\partial_{A}()=H_{A}()_{A} \tag{2.14}
\end{equation*}
$$

Then

$$
\begin{align*}
\mathbf{i}_{A} & =H_{A} \mathbf{e}_{A}=H_{A} \mathbf{P}_{, A}=\partial_{A} \mathbf{P}, \tag{2.15}\\
Q_{A I} & =Q_{I A}=\mathbf{i}_{A} \cdot \mathbf{i}_{I}=\partial_{A} \mathbf{P} \cdot \mathbf{i}_{I}=\partial_{A} Z_{I}=H_{A} Z_{I, A}=H_{A}^{-1} X_{A, I} \tag{2.16}
\end{align*}
$$

Some of the most useful identities are:

$$
\begin{align*}
& \mathbf{i}_{A}=Q_{A I} \mathbf{i}_{I}, \quad \mathbf{i}_{I}=Q_{I A} \mathbf{i}_{A}, \quad \partial_{A}=Q_{A I} \partial_{I}, \\
& \partial_{I}=Q_{I A} \partial_{A}, \quad \delta X_{A}=Q_{A I} d Z_{I}, \quad d Z_{I}=Q_{I A} \delta X_{A} . \tag{2.17}
\end{align*}
$$

Absolute differentiations in orthogonal curvilinear coordinates are denoted by a semicolon, and are defined by

$$
\begin{equation*}
T_{A: B}=Q_{A I} Q_{B J} T_{I, J}, \quad T_{A B: C}=Q_{A I} Q_{B J} Q_{C K} T_{I J, K}, \quad \text { etc. } \tag{2.18}
\end{equation*}
$$

It follows from the above and (2.17) that

$$
\begin{equation*}
T_{A ; B}=\partial_{B} T_{A}+W_{C A B} T_{C}, \quad T_{A B ; C}=\partial_{C} T_{A B}+W_{E A C} T_{E B}+W_{E B C} T_{A E}, \quad \text { etc. } \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{C A B}=Q_{A I} \partial_{B} Q_{I C} \tag{2.20}
\end{equation*}
$$

are the wryness coefficients. For orthogonal curvilinear coordinates, the only non-zero coefficients are

$$
\begin{equation*}
W_{B A B}=-W_{A B B}=\partial_{A} \ln H_{B} \quad(A \neq B) \tag{2.21}
\end{equation*}
$$

This completes the relations needed for the $\mathbf{Z}-\mathbf{X}$ transformation. Relations pertinent to the $\mathbf{z}-\mathbf{x}$ transformation may be obtained from the above by simply replacing all the subscripts by their lower-case counterparts.
3. Finite plane-stress theory with wrinkles. Let M be the domain of the $\left(Z_{1}, Z_{2}\right)$-plane characterizing the shape of a membrane surface in its undeformed configuration. We assume that the membrane is deformed to a wrinkly surface so that the position of a point $\left(Z_{1}, Z_{2}\right)$ after deformation is $\left(z_{1}, z_{2}, z_{3}\right)$. The deformation may be represented by a transformation

$$
\begin{equation*}
z_{i}=z_{i}\left(Z_{I}\right), \quad z_{3}=z\left(Z_{I}\right) \quad \text { for all } \quad \mathbf{Z} \in M \tag{3.1}
\end{equation*}
$$

where, as throughout this paper, all subscripts range over the integers (1,2). The transformation (3.1) maps M onto a wrinkly surface m^{*} characterized by the fact that z_{3} is not identically zero. Physical evidence seems to indicate that the distribution of wrinkles is a random process. Moreover, creases and folds caused by wrinkling and characterized by $z_{3}=z\left(Z_{I}\right)$ are difficult to define analytically. To bypass these difficulties, we use the surface m defined by

$$
\begin{equation*}
m: z_{i}=z_{i}\left(Z_{I}\right), \quad z_{3} \equiv 0 \tag{3.2}
\end{equation*}
$$

to give a reference description of the surface m^{*}. The difference between m and m^{*} will be described by a new strain-like kinematic variable to be defined in the development to follow. The surface m will be called the pseudo-deformed surface to emphasize the fact that it is not the true deformed surface. All quantities to be defined on the surface m will be prefixed by "pseudo-" to give the same implication. It is clear from (3.1) and (3.2) that the surface m is nothing but the projection of m^{*} on the plane. We do, however, make one assumption that the projection is one-to-one so that the mapping between $\left(Z_{1}, Z_{2}\right)$ and $\left(z_{1}\right.$, z_{2}) is one-to-one.

Let $F_{i I}$ be the components of the pseudo-deformation-gradient tensor \mathbf{F} associated with (3.2), whence

$$
\begin{equation*}
F_{i I}=z_{i, I} . \tag{3.3}
\end{equation*}
$$

By polar decomposition, \mathbf{F} has the representation

$$
\begin{align*}
{\left[F_{i I}\right]=\left[z_{i, I}\right]=} & \frac{1}{2}\left(\Lambda_{1}+\Lambda_{2}\right)\left[\begin{array}{rr}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right] \\
& +\frac{1}{2}\left(\Lambda_{1}-\Lambda_{2}\right)\left[\begin{array}{rr}
\cos (2 \alpha+\beta) & \sin (2 \alpha+\beta) \\
\sin (2 \alpha+\beta) & -\cos (2 \alpha+\beta)
\end{array}\right] \tag{3.4}
\end{align*}
$$

where Λ_{1} and Λ_{2} are the pseudo-principal stretch ratios associated with \mathbf{F} and

$$
\begin{equation*}
\Lambda_{1} \Lambda_{2}=J=\operatorname{det}\left[F_{i I}\right], \quad \Lambda_{1}^{2}+\Lambda_{2}^{2}=I=F_{i I} F_{i l} . \tag{3.5,3.6}
\end{equation*}
$$

The angles α and β, depicted in Fig. 1, define the orientations of the pseudo-principal coordinates $\left(X_{1}=P, X_{2}=Q\right)$ and $\left(x_{1}=p, x_{2}=q\right) .{ }^{6}$ We may now proceed to state our Assumption I: The projection on the plane of the set of principal coordinates associated with the true deformation experienced by the deformed surface m^{*} is just the set of pseudoprincipal coordinates defined by $F_{i I}$.

Let Λ_{1}^{*} and Λ_{2}^{*} be the true principal stretch ratios experienced by the deformed surface m^{*}; then it is convenient to construct a deformation-gradient-like tensor F^{*} by the expression

$$
\begin{equation*}
\left[F_{i I}^{*}\right]=\left[\text { replace }\left(\Lambda_{1}, \Lambda_{2}\right) \text { by }\left(\Lambda_{1}^{*}, \Lambda_{2}^{*}\right) \text { in (3.4) }\right] \tag{3.7}
\end{equation*}
$$

We emphasize that the term "deformation-gradient" here is nothing more than a convenient name because \mathbf{F}^{*} is not the gradient of a deformation. Nevertheless, (3.7) implies that

$$
\begin{equation*}
\Lambda_{1}^{*} \Lambda_{2}^{*}=J^{*}=\operatorname{det}\left[F_{i I}^{*}\right], \quad \Lambda_{1}^{* 2}+\Lambda_{2}^{* 2}=I^{*}=F_{i I}^{*} F_{i I}^{*}, \tag{3.8,3.9}
\end{equation*}
$$

[^2]

Fig. 1. Principal coordinates.
which, in turn, may be used to define the true strain energy density function

$$
\begin{equation*}
U=U\left(I^{*}, J^{*}\right) \tag{3.10}
\end{equation*}
$$

Before proceeding, it is again convenient to introduce a new tensor \mathbf{W} defined by

$$
\begin{equation*}
\mathbf{W}=\mathbf{F}-\mathbf{F}^{*} \tag{3.11}
\end{equation*}
$$

It follows from (3.4) and (3.7) that the principal quantities W_{1} and W_{2} associated with \mathbf{W} are just

$$
\begin{equation*}
W_{1}=\Lambda_{1}-\Lambda_{1}^{*}, \quad W_{2}=\Lambda_{2}-\Lambda_{2}^{*} \tag{3.12}
\end{equation*}
$$

Since $\left(\Lambda_{1}, \Lambda_{2}\right)$ are the projections of $\left(\Lambda_{1}^{*}, \Lambda_{2}^{*}\right)$ on the plane, $\left(W_{1}, W_{2}\right)$ must be either zero (no wrinkle) or negative. Thus, we assume without the loss of generality that the 1 -direction is always the taut direction so that

$$
\begin{gather*}
W_{1}=0, \quad \Lambda_{1}=\Lambda_{1}^{*} \tag{3.13}\\
W_{2}=\Lambda_{2}-\Lambda_{2}^{*} \leq 0 \tag{3.14}
\end{gather*}
$$

Eq. (3.12) implies that

$$
W_{2}=\Lambda_{2}-\Lambda_{2}^{*}=\frac{\text { Projection of deformed length }- \text { Deformed length }}{\text { Undeformed length }}
$$

which suggests the name wrinkle-strain tensor for \mathbf{W} defined by (3.11).

We proceed to state our Assumption $I I$: The true principal Piola stresses experienced by the deformed surface m^{*} are

$$
\begin{align*}
& P_{1}=\frac{\partial U}{\partial \Lambda_{1}^{*}}=2 \frac{\partial U}{\partial I^{*}} \Lambda_{1}^{*}+\frac{\partial U}{\partial J^{*}} \Lambda_{2}^{*}, \tag{3.15}\\
& P_{2}=\frac{\partial U}{\partial \Lambda_{2}^{*}}=2 \frac{\partial U}{\partial I^{*}} \Lambda_{2}^{*}+\frac{\partial U}{\partial J^{*}} \Lambda_{1}^{*}, \tag{3.16}
\end{align*}
$$

where

$$
\begin{equation*}
P_{2}=0 \quad \text { if } \quad W_{2}<0 \tag{3.17}
\end{equation*}
$$

In view of the fact that the principal Piola stresses are defined with respect to the undeformed surface M, and our Assumption I that the true principal directions are the same as the pseudo-principal directions, there is no need to differentiate pseudo-Piola stresses from Piola stresses as far as our notation and terminology are concerned. This leads to the one exception that an asterisk is not used to identify a true physical quantity, and the (first) Piola stress tensor is just

$$
\begin{equation*}
\left[P_{i I}\right]=\left[\text { replace }\left(\Lambda_{1}, \Lambda_{2}\right) \text { by }\left(P_{1}, P_{2}\right) \text { in (3.4) }\right] \tag{3.18}
\end{equation*}
$$

and

$$
\left[P_{i I}\right]=P_{1}\left[\begin{array}{cc}
\cos (\alpha+\beta) \cos \alpha & \cos (\alpha+\beta) \sin \alpha \tag{3.19}\\
\sin (\alpha+\beta) \cos \alpha & \sin (\alpha+\beta) \sin \alpha
\end{array}\right] \quad \text { if } \quad P_{2}=0 \quad\left(W_{2}<0\right) .
$$

Isotropy is, of course, presumed in deriving (3.18).
The true Cauchy stress tensor \mathbf{T}^{*} (defined on m^{*}) and the pseudo-Cauchy stress tensor \mathbf{T} (defined on m) may be expressed in terms of $\mathbf{P}, \mathbf{F}^{*}$ and \mathbf{F}. They are

$$
\begin{align*}
\mathbf{T}^{*} & =\frac{1}{J^{*}} \mathbf{P F}^{* T} \tag{3.20}\\
\mathbf{T} & =\frac{1}{J} \mathbf{P F}^{\boldsymbol{T}} . \tag{3.21}
\end{align*}
$$

In particular,

$$
\begin{align*}
T_{i j} & =\frac{1}{J} P_{i I} F_{j I}, \tag{3.22}\\
P_{i I} & =J T_{i j} f_{I j}, \tag{3.23}
\end{align*}
$$

where

$$
\begin{equation*}
f_{I i}=Z_{I, i} . \tag{3.24}
\end{equation*}
$$

The tensors \mathbf{F} and \mathbf{f} satisfy the relations

$$
\begin{gather*}
f_{I i}=\frac{1}{J} e_{I L} e_{i l} F_{l L} \tag{3.25}\\
F_{i I}=J e_{i l} e_{I L} f_{L l} \tag{3.26}
\end{gather*}
$$

[^3]where $e_{i l}, e_{I L}$ are the two-dimensional alternators. We recall that \mathbf{F}^{*} is defined by (3.7) and, as a result, no interpretation of the form (3.3) and (3.24) can be assigned to its components as well as the components of its inverse. Let (T_{1}^{*}, T_{2}^{*}) and (T_{1}, T_{2}) be, respectively, the principal Cauchy stresses and principal pseudo-Cauchy stresses associated with T* and T. The three sets of principal stresses are related by (3.20) and (3.21), and the explicit relations are
\[

$$
\begin{align*}
& P_{1}=\Lambda_{2}^{*} T_{1}^{*}=\Lambda_{2} T_{1} \tag{3.27}\\
& P_{2}=\Lambda_{1}^{*} T_{2}^{*}=\Lambda_{1} T_{2}, \tag{3.28}\\
& P_{2}=T_{2}^{*}=T_{2}=0 \quad \text { if } \quad W_{2}<0 . \tag{3.29}
\end{align*}
$$
\]

We note in passing that it is possible to make Λ_{2} vanish by "wrinkling" an arc element to zero while keeping Λ_{2}^{*} finite. This is why T_{1}^{*} is always finite even though the associated T_{1} may be infinite, a situation that appears very often in an actual solution.

In the absence of body forces, the Piola stresses satisfy the equations of equilibrium

$$
\begin{equation*}
P_{i I, I}=0 \quad \text { on } \quad M . \tag{3.30}
\end{equation*}
$$

Using (3.23-3.26), we find that the pseudo-Cauchy stresses satisfy the equations of equilibrium

$$
\begin{equation*}
T_{i j, j}=0 \quad \text { on } \quad m . \tag{3.31}
\end{equation*}
$$

As a further consequence of the fact that no relations of the form (3.24) can be assigned to $F_{i I}^{*}$, the equations

$$
\begin{equation*}
T_{i j, j}^{*}=0 \quad \text { are not valid conditions. } \tag{3.32}
\end{equation*}
$$

In linear theory, however, there is no difference between (3.31) and (3.32). This completes the general formulation in Cartesian coordinates. It suffices to mention that the theory is a straightforward extension of the conventional membrane theory. The presence of a wrinkly region is indicated by the additional field equation $P_{2}=0,(3.29)$, and the wrinkliness of the membrane is measured by the additional kinematic variable W_{2}.

To apply these equations to boundary-value problems, it is very often more convenient to introduce suitable curvilinear coordinates. Several curvilinear versions of these equations are derived in Appendix A.
4. A summary of the equations. The exposition presented in Section 3 is somewhat fragmentary in that too many sets of related coordinates, including the unknown principal coordinates, are involved. As a result, it is difficult to tell just which are the independent unknowns and what are their governing equations. It is therefore desirable to provide a summary to clarify the situation. We shall do this by employing the explicit notations (X, $Y),(x, y),(P Q),(p, q)$, etc., identified in Table 1. Certain equations will be repeated for the sole purpose of putting everything in one place. Also, for the sole purpose of summarizing and enumerating unknowns and equations, we have found it convenient to interpret the deformed principal coordinates (p, q) as the independent variables. Thus, quantities involved in this section are all to be considered as functions of p and q.

We begin with Eq. (A21) of Appendix A, the off-diagonal terms of which indicate that

$$
\begin{equation*}
P=P(p), \quad Q=Q(q) \tag{4.1}
\end{equation*}
$$

It follows from (A5), (A6) and (4.1) that

$$
\begin{align*}
& H_{p}=\left(x_{, p}^{2}+y_{, p}^{2}\right)^{-1 / 2}, \quad H_{q}=\left(x_{. q}^{2}+y_{\cdot q}^{2}\right)^{-1 / 2}, \tag{4.2}\\
& H_{P}=\frac{d P}{d p}\left(X_{\cdot p}^{2}+Y_{. p}^{2}\right)^{-1 / 2}, \quad H_{Q}=\frac{d Q}{d q}\left(X_{. q}^{2}+Y_{. q}^{2}\right)^{-1 / 2} . \tag{4.3}
\end{align*}
$$

Using these relations and the diagonal terms of (A21), we obtain

$$
\begin{align*}
& \Lambda_{1}=\frac{H_{P}}{H_{p}} \frac{d p}{d P}=\left[\left(x_{, p}^{2}+y_{, p}^{2}\right) /\left(X_{, p}^{2}+Y_{, p}^{2}\right)\right]^{1 / 2}, \tag{4.4}\\
& \Lambda_{2}=\frac{H_{Q}}{H_{q}} \frac{d q}{d Q}=\left[\left(x_{, q}^{2}+y_{, q}^{2}\right) /\left(X_{. q}^{2}+Y_{, q}^{2}\right)\right]^{1 / 2} . \tag{4.5}
\end{align*}
$$

The kinematic wrinkling conditions, (3.13) and (3.14), are

$$
\begin{align*}
& W_{2}=\Lambda_{2}-\Lambda_{2}^{*}, \tag{4.6}\\
& \Lambda_{1}=\Lambda_{1}^{*} \tag{4.7}
\end{align*}
$$

where Λ_{1}^{*} and Λ_{2}^{*} are the true principal stretch ratios. They are determined from the stresses in equilibrium via the use of constitutive relations.

The assumption (3.29), together with (3.16), yields

$$
\begin{equation*}
2 \frac{\partial U^{*}}{\partial I^{*}} \Lambda_{2}^{*}+\frac{\partial U^{*}}{\partial J^{*}} \Lambda_{1}^{*}=0 \quad \text { or } \quad \Lambda_{2}^{*}=\Lambda^{*}\left(\Lambda_{1}^{*}\right) \tag{4.8}
\end{equation*}
$$

where $\Lambda^{*}\left(\Lambda_{1}^{*}\right)$ is a root of the original equation, and may or may not have a simple explicit form. The non-zero principal Piola stress P_{1} may be obtained from (3.15). It is

$$
\begin{equation*}
P_{1}=P_{1}\left(\Lambda_{1}^{*}\right)=\left(2 \frac{\partial U}{\partial I^{*}} \Lambda_{1}^{*}+\frac{\partial U}{\partial J^{*}} \Lambda_{2}^{*}\right)_{\Lambda_{2} *=\Lambda *\left(\Lambda_{1} *\right)} \tag{4.9}
\end{equation*}
$$

The two equations of equilibrium (A27), (A28) now become

$$
\begin{gather*}
\frac{\partial}{\partial P}\left(\frac{P_{1}}{H_{Q}}\right)=0 \quad \text { or } \quad \frac{\partial}{\partial p}\left[P_{1}\left(X_{\cdot q}^{2}+Y_{, q}^{2}\right)^{1 / 2}\right]=0 \tag{4.10}\\
\frac{\partial H_{p}}{\partial q}=0 \quad \text { or } \quad \frac{\partial}{\partial q}\left(x_{, p}^{2}+y_{\cdot p}^{2}\right)^{-1 / 2}=0 \tag{4.11}
\end{gather*}
$$

where (4.1) has been used in deriving (4.10). Finally, the two sets of principal coordinates must be orthogonal. The relations are just

$$
\begin{array}{r}
x_{, p} x_{\cdot q}+y_{, p} y_{. q}=0, \\
X_{, p} X_{, q}+Y_{, p} Y_{, q}=0 . \tag{4.13}
\end{array}
$$

The ten equations (4.4)-(4.13) completely determine the ten unknowns, $(x, y),(X, Y),\left(\Lambda_{1}\right.$, $\left.\Lambda_{2}\right),\left(\Lambda_{1}^{*}, \Lambda_{2}^{*}\right), W_{2}$ and P_{1} as functions of p and q.

It can be easily shown by using (4.11) that the p-(principal) coordinate curves are straight lines (see, e.g., [1-7]). Let En be the envelope of the family of straight lines; then the q-(principal) coordinate curves are just the involutes of En. It is therefore sometimes more
convenient to define p and q through the use of an arbitrary envelope curve En. This will be illustrated in Sec. 5.

We conclude this section by mentioning that for a Mooney material

$$
\begin{equation*}
U=\left(I^{*}+J^{*-2}\right)+k\left(J^{* 2}+I^{*} J^{*-2}\right), \tag{4.14}
\end{equation*}
$$

and Eqs. (4.8) and (4.9) become

$$
\begin{align*}
& \Lambda_{2}^{*}=\Lambda^{*}\left(\Lambda_{1}^{*}\right)=\Lambda_{1}^{*-1 / 2} \tag{4.15}\\
& P_{1}=P_{1}\left(\Lambda_{1}^{*}, k\right)=2 \Lambda_{1}^{*}\left(1+\frac{k}{\Lambda_{1}^{*}}\right)\left(1-\frac{1}{\Lambda_{1}^{* 3}}\right) \tag{4.16}
\end{align*}
$$

In (4.14), k is defined by

$$
\begin{equation*}
k=C_{2} / C_{1}, \tag{4.17}
\end{equation*}
$$

the ratio of the two Mooney constants, and U is nondimensionalized by $C_{1} H$ with H being the constant undeformed thickness of the membrane.
5. Rotationally symmetric problems-exact solution. In terms of the polar coordinates (R, Θ) and (r, θ), the class of rotationally symmetric problems is defined by the relations

$$
\left\{\begin{array} { l }
{ r = r (R) } \tag{5.1}\\
{ \theta = \Theta + \phi (R) }
\end{array} \text { or } \quad \left\{\begin{array}{l}
R=R(r) \\
\Theta=\theta-\Phi(r)
\end{array}\right.\right.
$$

We shall study this class of problems in detail, and show that the system of equations may be reduced to quadratures. The required deductions parallel to those used in [10] for axially symmetric problems. Indeed, symmetric solutions are just special cases of (5.1).9 ${ }^{9}$

Since the p-coordinate curves are straight lines (Fig. 2c), the transformation between (r, θ) and (p, q) are given by (B10) and (B11) of Appendix B. We shall use (5.1), (B10) and (B1.1) to simplify the set of equations obtained in Sec. 4 to suit this particular class of problems. The explicit forms of the equations outlined in Sec. 4, however, are not always the most convenient ones to use for a given situation. Thus, when a citation is made of an equation from Sec. 4, we do not necessarily mean the explicit form of that equation, but rather one of its many equivalent variations.

We begin by substituting (5.1) into (B10) and (B11) to obtain p and q as functions of R and Θ. The results are

$$
\begin{equation*}
p=\Theta+p_{0}(R), \quad q=\Theta+q_{0}(R) \tag{5.2}
\end{equation*}
$$

where

$$
\begin{gather*}
p_{0}=\left[\Phi(r)-\cos ^{-1} \frac{r_{e}}{r}+\frac{1}{r_{e}}\left(r^{2}-r_{e}^{2}\right)^{1 / 2}\right]_{r=r(R)}, \tag{5.3}\\
q_{0}=\left[\Phi(r)-\cos ^{-1} \frac{r_{e}}{r}\right]_{r=r(R)} \tag{5.4}
\end{gather*}
$$

[^4]It follows that

$$
\begin{align*}
& \frac{\partial p}{\partial R}=\frac{d p_{0}}{d R}=\left\{\frac{d \Phi}{d r}+\frac{1}{r}\left[\left(\frac{r}{r_{e}}\right)^{2}-1\right]^{1 / 2}\right\} \frac{d r}{d R} \tag{5.5}\\
& \frac{\partial q}{\partial R}=\frac{d q_{0}}{d R}=\left\{\frac{d \Phi}{d r}-\frac{1}{r}\left[\left(\frac{r}{r_{e}}\right)^{2}-1\right]^{1 / 2}\right\} \frac{d r}{d R} . \tag{5.6}
\end{align*}
$$

Eq. (B12) now becomes

$$
\begin{equation*}
H_{p}=\frac{1}{r_{e}}, \quad H_{q}=\frac{1}{r_{e}\left(p_{0}-q_{0}\right)} \tag{5.7}
\end{equation*}
$$

For the undeformed principal coordinates, we use (4.3), (5.1) and (5.2) to obtain

$$
\begin{align*}
& H_{P} \frac{d p}{d P}=\left[\left(\frac{\partial p}{\partial R}\right)^{2}+\frac{1}{R^{2}}\right]^{1 / 2}=\left[\left(\frac{d p_{0}}{d R}\right)^{2}+\frac{1}{R^{2}}\right]^{1 / 2} \tag{5.8}\\
& H_{Q} \frac{d q}{d Q}=\left[\left(\frac{\partial p}{\partial R}\right)^{2}+\frac{1}{R^{2}}\right]^{1 / 2}=\left[\left(\frac{d q_{0}}{d R}\right)^{2}+\frac{1}{R^{2}}\right]^{1 / 2} \tag{5.9}
\end{align*}
$$

The conditions (4.11) and (4.12) are identically satisfied by the choice of (p, q) defined by (B10) and (B11). The condition (4.13), after applying (4.1), (5.1) and (5.2), now becomes

$$
\begin{equation*}
\frac{\partial p}{\partial R} \frac{\partial q}{\partial R}+\frac{1}{R^{2}}=\frac{d p_{0}}{d R} \frac{d q_{0}}{d R}+\frac{1}{R^{2}}=0 \tag{5.10}
\end{equation*}
$$

A convenient expression for Λ_{1} may be obtained from (4.4), (5.7) and (5.8). It is

$$
\begin{equation*}
\Lambda_{1}=r_{e} H_{P} \frac{d p}{d P}=r_{e}\left[\left(\frac{d p_{0}}{d R}\right)^{2}+\frac{1}{R^{2}}\right]^{1 / 2} \tag{5.11}
\end{equation*}
$$

In view of (4.7), the principal Piola stress P_{1} defined by (4.16) is

$$
\begin{equation*}
P_{1}=P_{1}\left(\Lambda_{1}\right) \tag{5.12}
\end{equation*}
$$

where the functional form of $P_{1}\left(\Lambda_{1}\right)$ depends on the choice of the strain energy density function, and may or may not be an explicit expression. Integrating the first form of (4.10) yields

$$
\begin{equation*}
P_{1}\left(\Lambda_{1}\right)=\left(K \frac{d q}{d Q}\right) H_{Q} \tag{5.13}
\end{equation*}
$$

where the quantity in front of H_{Q} is taken as the arbitrary function of integration, and hence K is an arbitrary function of Q. In view of (5.9) and the fact that P_{1} can only be a function of R for rotationally symmetric problems, K can at most be a function of R. This, however, is impossible because R is a function of both P and Q. It follows that K is a constant.

We proceed to convert the governing equations to a system of uncoupled ordinary differential equations with Λ_{1} as the independent variable. Applying (5.8), (5.10) and (5.11) to (5.9), we get

$$
\begin{equation*}
H_{Q} \frac{d q}{d Q}=\Lambda_{1} /\left(r_{e} R \frac{d p_{0}}{d R}\right) \tag{5.14}
\end{equation*}
$$

Substituting (5.14) into (5.13) yields

$$
\begin{equation*}
r_{e} R \frac{d p_{0}}{d R}=K \frac{\Lambda_{1}}{P_{1}\left(\Lambda_{1}\right)} \tag{5.15}
\end{equation*}
$$

which, in turn, may be substituted into (5.11) to obtain

$$
\begin{equation*}
R^{2}=\left[\frac{K}{P_{1}\left(\Lambda_{1}\right)}\right]^{2}+\left(\frac{r_{e}}{\Lambda_{1}}\right)^{2} . \tag{5.16}
\end{equation*}
$$

This is the relation that will be used to convert functions of R to functions of Λ_{1}. In particular, applying (5.16) and (5.15) we obtain

$$
\begin{align*}
\frac{d p_{0}}{d \Lambda_{1}} & =\frac{d p_{0}}{d R} \frac{d R}{d \Lambda_{1}} \\
& =\frac{K}{r_{e}}\left\{-\frac{1}{P_{1}\left(\Lambda_{1}\right)}+\frac{1}{4} \frac{d}{d \Lambda_{1}}\left[\frac{\Lambda_{1}}{P_{1}\left(\Lambda_{1}\right)}\right]\right\}+\frac{1}{4} \frac{d}{d \Lambda_{1}}\left[\tan ^{-1} \frac{r_{e} P_{1}\left(\Lambda_{1}\right)}{K \Lambda_{1}}\right] \tag{5.17}
\end{align*}
$$

Similar substitutions may be applied to (5.10) to yield

$$
\begin{equation*}
\frac{d q_{0}}{d \Lambda_{1}}=\frac{r_{e} P_{1}\left(\Lambda_{1}\right)}{K \Lambda_{1}}+\frac{d}{d \Lambda_{1}}\left[\tan ^{-1} \frac{r_{e} P_{1}\left(\Lambda_{1}\right)}{K \Lambda_{1}}\right] \tag{5.18}
\end{equation*}
$$

These are the two equations that must be integrated. Depending on the form of $P_{1}\left(\Lambda_{1}\right)$, they may even be explicitly integrated, as in the case for a Mooney material which will be presented at the end of this section.

Eqs. (5.3) and (5.4) may be solved for r and Φ in terms of p_{0} and q_{0}. They are

$$
\begin{align*}
r & =r_{e}\left[1+\left(p_{0}-q_{0}\right)^{2}\right]^{1 / 2} \tag{5.19}\\
\Phi & =\frac{\pi}{2}+q_{0}-\tan ^{-1} \frac{1}{p_{0}-q_{0}} \tag{5.20}
\end{align*}
$$

which, in view of (5.17) and (5.18), are again functions of Λ_{1}. Finally, Λ_{2} is determined from (4.5), (5.7) and (5.12). It is

$$
\begin{equation*}
\Lambda_{2}=\frac{r_{e}}{K}\left(p_{0}-q_{0}\right) P_{1}\left(\Lambda_{1}\right) \tag{5.21}
\end{equation*}
$$

The solution to the two equations (5.17) and (5.18) involves four arbitrary constants: r_{e}, K and two more from integration. All other variables are expressed in terms of p_{0}, q_{0} and the "independent variable" Λ_{1} by algebraic relations. We have thus completed the general solution.

We now give an examination of the physical meaning of the constant K. The pseudo Cauchy traction vector acting on an arc element $r d \theta$ in the pseudo-deformed surface m is in the direction of the p-coordinate (Fig. 2c). The magnitude is

$$
\begin{equation*}
\frac{P_{1}}{\Lambda_{2}} \cos \psi(r) r d \theta=K d \theta \tag{5.22}
\end{equation*}
$$

Fig. 2. Principal coordinates for rotationally symmetric problems.
where Fig. 2c, (5.2) and (5.21) have been used in the derivation. Since the p-coordinate curves are tangent to the circle $r=r_{e}$, the resultant moment of the traction on a circle is

$$
\begin{equation*}
C=\int_{0}^{2 \pi} r_{e} K d \theta=2 \pi r_{e} K \tag{5.23}
\end{equation*}
$$

For axially symmetric problems, $r_{e}=0$ and K / r is simply the pseudo Cauchy stress resultant in the radial direction (cf. [10]).

The principal coordinates (P, Q) in the undeformed configuration may be characterized by a single function $\Psi(R)$ and a constant $R_{e}((\mathrm{~B} 1)$ and (B2) of Appendix B). Differentiating the first of (5.2) and using (B3), we get

$$
\begin{equation*}
\frac{d p}{d P}=\frac{d p_{0}}{d R} \frac{\partial R}{\partial P}+\frac{\partial \Theta}{\partial P}=R \sin \Psi\left[\frac{d p_{0}}{d R} \cos \Psi+\frac{1}{R} \sin \Psi\right] \tag{5.24}
\end{equation*}
$$

Eqs. (5.11), (5.24), (B4) and (5.15) now yield

$$
\begin{equation*}
\tan \Psi=\frac{r_{e} P_{1}\left(\Lambda_{1}\right)}{K \Lambda_{1}} \tag{5.25}
\end{equation*}
$$

The P - and Q-curves may then be determined from (B1) and (B2) by completing the integration. However, there is no need for such a direct integration. Using (5.25) and other relations, we find from (5.24) that

$$
\begin{equation*}
d p / d P=1 \tag{5.26}
\end{equation*}
$$

Similar calculations applied to the second of (5.2) yield

$$
\begin{equation*}
d q / d Q=1 \tag{5.27}
\end{equation*}
$$

The two reference radii r_{e} and R_{e} may be conveniently adjusted to satisfy the relations

$$
\begin{equation*}
r_{e}=r\left(R_{e}\right) \quad \text { or } \quad R_{e}=R\left(r_{e}\right) . \tag{5.28}
\end{equation*}
$$

Then, in view of (5.26) and (5.27), the undeformed principal coordinate curves are:

$$
\begin{align*}
& P=P_{c}: \Theta=P_{c}+\left[\phi\left(R_{e}\right)-p_{0}(R)\right], \tag{5.29}\\
& Q=Q_{c}: \Theta=Q_{c}+\left[\phi\left(R_{e}\right)-q_{0}(R)\right] . \tag{5.30}
\end{align*}
$$

The images of these curves in the deformed configuration are, respectively,

$$
\begin{gather*}
p=P_{c}+\phi\left(R_{e}\right): \theta=\left[P_{c}+\phi\left(R_{e}\right)\right]+\cos ^{-1} \frac{r_{e}}{r}-\frac{1}{r_{e}}\left(r^{2}-r_{e}^{2}\right)^{1 / 2} \tag{5.31}\\
q=Q_{c}+\phi\left(R_{e}\right): \theta=\left[Q_{c}+\phi\left(R_{e}\right)\right]+\cos ^{-1}\left(r_{e} / r\right) . \tag{5.32}
\end{gather*}
$$

Finally, for a Mooney membrane surface with the P_{1} function defined by (4.16), both (5.17) and (5.18) may be integrated. The results are:

$$
\begin{align*}
& p_{0}=C_{0} F_{1}\left(\Lambda_{1}, k\right)+\Psi\left(\Lambda_{1}, k, C_{0}\right)+c_{p}, \tag{5.33}\\
& q_{0}=\frac{1}{C_{0}} F_{2}\left(\Lambda_{1}, k\right)+\Psi\left(\Lambda_{1}, k, C_{0}\right)+c_{q} \tag{5.34}
\end{align*}
$$

where

$$
\begin{align*}
F_{1}\left(\Lambda_{1}, k\right)= & \frac{1}{2}\left[\frac{k(1+k)}{\sqrt{3\left(1+k^{3}\right)} \tan ^{-1} \frac{2 \Lambda_{1}+1}{\sqrt{3}}-\frac{k^{3}}{1+k^{3}} \ln \left(\Lambda_{1}+k\right)}\right. \\
& \left.-\frac{1}{3(1+k)} \ln \left(\Lambda_{1}-1\right)-\frac{2+k-k^{2}}{6\left(1+k^{3}\right)} \ln \left(\Lambda_{1}^{2}+\Lambda_{1}+1\right)+\frac{2 \Lambda_{1}}{P_{1}\left(\Lambda_{1}, k\right)}\right], \tag{5.35}\\
F_{2}\left(\Lambda_{1}, k\right)= & 2\left[\ln \Lambda_{1}-\frac{k}{\Lambda_{1}}+\frac{1}{3 \Lambda_{1}^{3}}+\frac{k}{4 \Lambda_{1}^{4}}\right], \tag{5.36}\\
\Psi\left(\Lambda_{1}, k, C_{0}\right)= & \tan ^{-1} \frac{P_{1}\left(\Lambda_{1}, k\right)}{C_{0} \Lambda_{1}}, \tag{5.37}\\
P_{1}\left(\Lambda_{1}, k\right)= & 2 \Lambda_{1}\left(1+\frac{k}{\Lambda_{1}}\right)\left(1-\frac{1}{\Lambda_{1}^{3}}\right), \tag{5.38}\\
C_{0}= & K / r_{e}=C / 2 \pi r_{e}^{2}, \tag{5.39}
\end{align*}
$$

and c_{p}, c_{q} are two integration constants. The four arbitrary constants involved in the complete solution are r_{e}, K, c_{p} and c_{q}. If we set $r_{e}=0$ and treating p_{0} as r, (5.33) reduces to the result obtained in [10] for axially symmetric problems.
6. Rotationally symmetric initial-value problems. A wrinkly region is in general coupled with a taut region. A complete solution would then require the solutions to both regions. While we have solved the equations exactly for the wrinkly region, no such explicit solution is expected for the taut region where the full finite plane-stress equations must be applied. To bring out some of the physical features of the solution obtained in the previous section, we decided to consider the initial-value problem in detail.

Let the undeformed membrane surface M be defined by

$$
\begin{equation*}
M: R \geq R_{e} \tag{6.1}
\end{equation*}
$$

We assume that after deformation the pseudo-deformed surface m is

$$
\begin{equation*}
m: r \geq r_{e} \tag{6.2}
\end{equation*}
$$

For convenience, we scale all the length quantities by the radius r_{e} and define

$$
\begin{equation*}
r_{0}=r / r_{e}, \quad R_{0}=R / r_{e} \tag{6.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
M: R_{0} \geq R_{e} / r_{e}, \quad m: r_{0} \geq 1 \tag{6.4}
\end{equation*}
$$

To complete the initial data, we let

$$
\begin{equation*}
\Lambda_{1}=\Lambda, \quad \theta-\Theta=\phi_{0}=\Phi_{0} \quad \text { at } \quad R_{0}=R_{e} / r_{e} \tag{6.5}
\end{equation*}
$$

The quantity C_{0} defined by (5.39) is treated as a parameter.
We shall restrict ourselves to the explicit solution obtained for a Mooney material. The quantities p_{0} and q_{0} defined by (5.33) and (5.34) now become

$$
\begin{align*}
& p_{0}-\phi_{0}=C_{0}\left[F_{1}\left(\Lambda_{1}, k\right)-F_{1}(\Lambda, k)\right]+\Psi\left(\Lambda_{1}, k, C_{0}\right)-\Psi\left(\Lambda, k, C_{0}\right) \tag{6.7}\\
& q_{0}-\phi_{0}=\frac{1}{C_{0}}\left[F_{2}\left(\Lambda_{1}, k\right)-F_{2}(\Lambda, k)\right]+\Psi\left(\Lambda_{1}, k, C_{0}\right)-\Psi\left(\Lambda, k, C_{0}\right) \tag{6.8}
\end{align*}
$$

where ϕ_{0} is the initial value of both p_{0} and q_{0} by (5.3) and (5.4). Eqs. (5.16), (5.19), (5.21), (5.20), (4.7), (4.15) and (4.6) become

$$
\begin{align*}
r_{0} & =\left\{1+\left[\left(p_{0}-\phi_{0}\right)-\left(q_{0}-\phi_{0}\right)\right]^{2}\right\}^{1 / 2}, \tag{6.9}\\
R_{0} & =\left\{\left[\frac{C_{0}}{P_{1}\left(\Lambda_{1}, k\right)}\right]^{2}+\left(\frac{1}{\Lambda_{1}}\right)^{2}\right\}^{1 / 2}, \tag{6.10}\\
\Lambda_{2} & =\frac{1}{C_{0}} P_{1}\left(\Lambda_{1}, k\right)\left[\left(p_{0}-\phi_{0}\right)-\left(q_{0}-\phi_{0}\right)\right], \tag{6.11}\\
\Phi-\Phi_{0} & =\phi-\phi_{0}=\frac{\pi}{2}+\left(q_{0}-\phi_{0}\right)-\tan ^{-1} \frac{1}{\left(p_{0}-\phi_{0}\right)-\left(q_{0}-\phi_{0}\right)} \tag{6.12}\\
\Lambda_{1}^{*} & =\Lambda_{1}, \quad \Lambda_{2}^{*}=\Lambda_{1}^{-1 / 2}, \tag{6.13}\\
W_{2} & =\Lambda_{2}-\Lambda_{2}^{*} \tag{6.14}
\end{align*}
$$

The above quantities are computed as functions of Λ_{1} with Λ and C_{0} as parameters. The data $\phi_{0}=\Phi_{0}$ is not needed in the computation, but only appears in the final interpretation as a rigid body rotation.

Two sets of results are presented in Tables 2 and 3-Table 2: the initial data are $k=0.1$, $\Lambda=1.5$ and $C_{0}=4.0$; the deformed principal coordinates are given in Fig. 3; Table 3: the initial data are $k=0.1, \Lambda=3.0$ and $C_{0}=11.0$; the deformed and undeformed principal coordinates are given in Fig. 4. For both cases the images of the wrinkles in the undeformed state are almost straight. This fact can be observed from the relation

$$
\begin{equation*}
\tan \Psi=\left[\left(\Lambda_{1} R_{0}\right)^{2}-1\right]^{-1 / 2} \tag{6.15}
\end{equation*}
$$

derived from (5.16) and (5.25). The P-curve would be straight if Λ_{1} were constant (cf. (B.9)). The variation of Λ_{1} is rather small for the two cases calculated.

Table 2. Initial-value problem ($k=0.1, \Lambda=1.5, C_{0}=4.0$).

R_{0}	r_{0}	$\Phi-\Phi_{0}$	$\Lambda_{1}=\Lambda_{1}^{*}$	Λ_{2}^{*}	W_{2}
1.897	1.000	0.000	1.500	0.817	-0.817
2.000	1.013	0.142	1.463	0.827	-0.740
2.502	1.346	0.638	1.338	0.865	-0.487
3.002	1.868	0.857	1.265	0.889	-0.344
3.497	2.427	0.958	1.218	0.906	-0.256
3.993	2.994	1.012	1.185	0.919	-0.196
4.504	3.576	1.044	1.160	0.929	-0.152
4.983	4.117	1.064	1.142	0.936	-0.122
5.486	4.681	1.077	1.127	0.942	-0.097
5.983	5.233	1.087	1.115	0.947	-0.079
6.435	5.786	1.093	1.105	0.951	-0.064
6.960	6.308	1.098	1.097	0.955	-0.052
7.447	6.837	1.102	1.090	0.958	-0.043
7.928	7.359	1.105	1.084	0.961	-0.035
8.484	7.958	1.108	1.078	0.963	-0.027
9.017	8.530	1.110	1.073	0.966	-0.021
9.499	9.046	1.111	1.069	0.967	-0.016
10.040	9.624	1.112	1.065	0.969	-0.012
10.490	10.110	1.113	1.062	0.971	-0.008
10.990	10.630	1.114	1.059	0.972	-0.005
11.550	11.220	1.115	1.056	0.973	-0.002
12.000	11.640	1.115	1.054	0.941	0.000

Table 3. Initial-value problem $\left(k=0.1, \Lambda=3.0, C_{0}=11.0\right)$

R_{0}	r_{0}	$\Phi-\Phi_{0}$	$\Lambda_{1}=\Lambda_{1}^{*}$	Λ_{2}^{*}	W_{2}
1.872	1.000	0.000	3.000	0.577	-0.577
1.900	1.003	0.080	2.960	0.581	-0.537
1.950	1.027	0.221	2.890	0.588	-0.467
2.000	1.069	0.349	2.824	0.595	-0.403
2.050	1.127	0.462	2.782	0.602	-0.345
2.100	1.197	0.561	2.703	0.608	-0.290
2.150	1.277	0.646	2.647	0.615	-0.240
2.200	1.363	0.718	2.594	0.621	-0.193
2.250	1.454	0.780	2.544	0.627	-0.150
2.300	1.550	0.833	2.496	0.633	-0.110
2.350	1.649	0.879	2.450	0.639	-0.072
2.400	1.748	0.917	2.407	0.645	-0.038
2.450	1.848	0.951	2.365	0.650	-0.006
2.459	1.866	0.957	2.359	0.651	0.000

Fig. 3. Principal coordinates for the data given in Table 2. Deformed configuration is given on the left.

Fig. 4. Principal coordinates for the data given in Table 3. Deformed configuration is given on the left.

References

[1] H. Wagner, Flat sheet metal girders with a very thin metal web, Z. Flugtechnik u. Motorluftschiffahrt 20, 200-314 (1929)
[2] E. Reissner, On tension field theory, in Proc. 5th Int. Congr. Appl. Mech., 88-92 (1938)
[3] M. Stein, and J. M. Hedgepeth, Analysis of partly wrinkled membranes, NASA TN-D-813 1961
[4] E. H. Mansfield, Tension field theory, in Proc. 12th Int. Congr. Appl. Mech., 305-320 (1969)
[5] E. H. Mansfield, Load transfer via a wrinkled membrane, Proc. Roy. Soc. Lond. (A) 316, 269-289 (1970)
[6] G. P. Cherepanov, On the buckling under tension of a membrane containing holes, PMM 27, 275-286(1963)
[7] C. H. Wu, Plane linear wrinkle elasticity without body force, Report, Dept. Mat. Engrg, University of Ill. at Chicago Circle, 1974
[8] E. H. Mansfield, Analysis of wrinkled membranes with anisotropic and nonlinear elastic properties, Proc. Roy. Soc. Lond. (A) 353, 475-498 (1977)
[9] C. H. Wu, The wrinkled axisymmetric air bags made of inextensible membrane, J. Appl. Mech. 41, 963-968 (1974)
[10] C. H. Wu, Nonlinear wrinkling of nonlinear membranes of revolution, J. Appl. Mech. 45, 533-538 (1978)
[11] J. A. Schouten, Tensor analysis for physicists, Oxford, Clarendon Press, 1953
[12] W. Jaunzemis, Continuum mechanics, Macmillan, New York, 1967

Appendix A: Equations in orthogonal curvilinear coordinates (cf. Table 1 for notation). Let $\left[X_{A}\right]=[U, V]$ and $\left[x_{a}\right]=[u, v]$ be, respectively, the curvilinear coordinates in the undeformed and deformed configurations. They are related to the Cartesian coordinates $\left[Z_{I}\right]=[X, Y]$ and $\left[z_{i}\right]=[x, y]$ by the relations

$$
\begin{align*}
Z_{I} & =Z_{I}\left(X_{A}\right), & X_{A}=X_{A}\left(Z_{I}\right), \tag{A1}\\
z_{i} & =z_{i}\left(x_{a}\right), & x_{a}=x_{a}\left(z_{i}\right) . \tag{A2}
\end{align*}
$$

These relations satisfy the orthogonality conditions

$$
\begin{align*}
Z_{I, A} Z_{I, B}=0 & \text { for } \quad A \neq B \tag{A3}\\
z_{i, a} z_{i, b}=0 & \text { for } \quad a \neq b \tag{A4}
\end{align*}
$$

It follows from (2.11) that

$$
\begin{equation*}
H_{A}=\left(Z_{I, A} Z_{I, A}\right)^{-1 / 2}, \quad H_{a}=\left(z_{i, a} z_{i, a}\right)^{-1 / 2} \tag{A5,~A6}
\end{equation*}
$$

With respect to the orthogonal curvilinear coordinates, the components $F_{a A}$ of the pseudo-deformation-gradient tensor \mathbf{F} may be obtained from the Cartesian components $F_{i I}$ via the transformation

$$
\begin{equation*}
F_{a A}=Q_{a i} Q_{A I} F_{i I} \tag{A7}
\end{equation*}
$$

Using (3.3), (2.16) and the $Q_{a i}$-counterpart of (2.16), we obtain from (A7)

$$
\begin{align*}
{\left[F_{a A}\right] } & =\left[\begin{array}{ll}
\left.\frac{H_{A}}{H_{a}} \frac{\partial x_{a}}{\partial X_{A}}\right] \text { (no sum), } \\
& =\left[\begin{array}{ll}
F_{u U} & F_{u V} \\
F_{v U} & F_{v V}
\end{array}\right]=\left[\begin{array}{ll}
\frac{H_{U}}{H_{u}} \frac{\partial u}{\partial U} & \frac{H_{V}}{H_{u}} \frac{\partial u}{\partial V} \\
\frac{H_{U}}{H_{v}} \frac{\partial v}{\partial U} & \frac{H_{V}}{H_{v}} \frac{\partial v}{\partial V}
\end{array}\right]
\end{array} .=\begin{array}{l}
\\
\end{array}\right]
\end{align*}
$$

The pseudo-Cauchy stress equations of equilibrium, (3.31), now become

$$
\begin{equation*}
T_{a b ; b}=\partial_{b} T_{a b}+W_{e a b} T_{e b}+W_{e b b} T_{a e}=0 \tag{A9}
\end{equation*}
$$

Using (2.20) and (2.21), we obtain

$$
\begin{align*}
& H_{u} T_{u u, u}+H_{v} T_{u v, v}-2 \frac{H_{v}}{H_{u}} \frac{\partial H_{u}}{\partial v} T_{u v}+\frac{H_{u}}{H_{v}} \frac{\partial H_{v}}{\partial u}\left(T_{v v}-T_{u u}\right)=0, \tag{A10}\\
& H_{v} T_{v v, v}+H_{u} T_{u v, u}-2 \frac{H_{u}}{H_{v}} \frac{\partial H_{v}}{\partial u} T_{u v}+\frac{H_{v}}{H_{u}} \frac{\partial H_{u}}{\partial v}\left(T_{u u}-T_{v v}\right)=0 . \tag{A11}
\end{align*}
$$

To derive the Piola stress equations of equilibrium, (3.30), we begin with the transformation

$$
\begin{equation*}
P_{a A ; A}=Q_{a i} Q_{A I} Q_{A J} P_{i I, J} \tag{A12}
\end{equation*}
$$

By repeatedly applying the chain rule of differentiation and (2.17), we finally arrive at

$$
\begin{equation*}
P_{a A ; A}=\partial_{A} P_{a A}+W_{B A A} P_{a B}+W_{b a c} F_{c A} P_{b A} . \tag{A13}
\end{equation*}
$$

The two equations of equilibrium now become

$$
\begin{align*}
H_{U} P_{u U, U} & +H_{V} P_{u V, V}-\frac{H_{U}}{H_{V}} \frac{\partial H_{V}}{\partial U} P_{u U}-\frac{H_{V}}{H_{U}} \frac{\partial H_{U}}{\partial V} P_{u V} \\
& -\frac{H_{v}}{H_{u}} \frac{\partial H_{u}}{\partial v}\left[F_{u U} P_{v U}+F_{u V} P_{v V}\right]+\frac{H_{u}}{H_{v}} \frac{\partial H_{v}}{\partial u}\left[F_{v U} P_{v U}+F_{v V} P_{v V}\right]=0, \tag{A14}\\
H_{V} P_{v V, V} & +H_{U} P_{v U, U}-\frac{H_{V}}{H_{U}} \frac{\partial H_{U}}{\partial V} P_{v V}-\frac{H_{U}}{H_{V}} \frac{\partial H_{V}}{\partial U} P_{v U} \\
& -\frac{H_{u}}{H_{v}} \frac{\partial H_{v}}{\partial u}\left[F_{v V} P_{u V}+F_{v U} P_{u U}\right]+\frac{H_{v}}{H_{u}} \frac{\partial H_{u}}{\partial v}\left[F_{u V} P_{u V}+F_{u U} P_{u U}\right]=0 . \tag{A15}
\end{align*}
$$

We conclude this appendix by specializing these equations to suit two special sets of coordinates.

Polar coordinates $\left(\left[X_{A}\right]=[R, \Theta],\left[x_{a}\right]=[r, \theta]\right)$.

$$
\begin{gather*}
{\left[F_{a A}\right]=\left[\begin{array}{ll}
F_{r R} & F_{r \Theta} \\
F_{\theta R} & F_{\theta \Theta}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial r}{\partial R} & \frac{1}{R} \frac{\partial r}{\partial \Theta} \\
\frac{\partial \theta}{\partial R} & \frac{r}{R} \frac{\partial \theta}{\partial \Theta}
\end{array}\right],} \tag{A16}\\
T_{r r, r}+\frac{1}{r} T_{r \theta, \theta}+\frac{1}{r}\left(T_{r r}-T_{\theta \theta}\right)=0, \tag{A17}\\
\frac{1}{r} T_{\theta \theta, \theta}+T_{r \theta, r}+\frac{2}{r} T_{r \theta}=0, \tag{A18}\\
P_{r R, R}+\frac{1}{R} P_{r \theta, \Theta}+\frac{1}{R} P_{r R}-\frac{1}{r}\left[F_{\theta R} P_{\theta R}+F_{\theta \Theta} P_{\theta \Theta \Theta}\right]=0, \tag{A19}\\
\frac{1}{R} P_{\theta \Theta, \Theta}+P_{\theta R, R}+\frac{1}{R} P_{\theta R}+\frac{1}{r}\left[F_{\theta \Theta} P_{r \Theta}+F_{\theta R} P_{r R}\right]=0 . \tag{A20}
\end{gather*}
$$

Principal coordinates $\left(\left[X_{A}\right]=[P, Q],\left[x_{a}\right]=[p, q]\right)$.

$$
\begin{align*}
& {\left[F_{a A}\right]=\left[\begin{array}{cc}
F_{p P} & F_{p Q} \\
F_{q P} & F_{q Q}
\end{array}\right]=\left[\begin{array}{cc}
\Lambda_{1} & 0 \\
0 & \Lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{H_{P}}{H_{p}} \frac{\partial p}{\partial P} & \frac{H_{Q}}{H_{p}} \frac{\partial p}{\partial Q} \\
\frac{H_{P}}{H_{q}} \frac{\partial p}{\partial P} & \frac{H_{Q}}{H_{q}} \frac{\partial q}{\partial Q}
\end{array}\right],} \tag{A21}\\
& {\left[T_{a b}\right]=\left[\begin{array}{ll}
T_{p p} & T_{p q} \\
T_{q p} & T_{q q}
\end{array}\right]=\left[\begin{array}{cc}
T_{1} & 0 \\
0 & T_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{P_{1}}{\Lambda_{2}} & 0 \\
0 & \frac{P_{2}}{\Lambda_{1}}
\end{array}\right],} \tag{A22}\\
& {\left[T_{a b}^{*}\right]=\left[\begin{array}{cc}
T_{p p}^{*} & T_{p q}^{*} \\
T_{q p}^{*} & T_{q q}^{*}
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} & 0 \\
0 & T_{2}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\frac{P_{1}}{\Lambda_{2}^{*}} & 0 \\
0 & \frac{P_{2}}{\Lambda_{1}^{*}}
\end{array}\right],} \tag{A23}\\
& {\left[P_{a A}\right]=\left[\begin{array}{ll}
P_{p P} & P_{p Q} \\
P_{q P} & P_{q Q}
\end{array}\right]=\left[\begin{array}{cc}
P_{1} & 0 \\
0 & P_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial U}{\partial \Lambda_{1}^{*}} & 0 \\
0 & \frac{\partial U}{\partial \Lambda_{2}^{*}}
\end{array}\right],} \tag{A24}\\
& H_{p} \frac{\partial T_{1}}{\partial p}+\frac{H_{p}}{H_{q}} \frac{\partial H_{q}}{\partial p}\left(T_{2}-T_{1}\right)=0, \tag{A25}\\
& H_{q} \frac{\partial T_{2}}{\partial q}+\frac{H_{q}}{H_{p}} \frac{\partial H_{p}}{\partial q}\left(T_{1}-T_{2}\right)=0, \tag{A26}\\
& H_{p} \frac{\partial P_{1}}{\partial P}-\frac{H_{P}}{H_{Q}} \frac{\partial H_{Q}}{\partial P} P_{1}+\frac{H_{p}}{H_{q}} \frac{\partial H_{q}}{\partial p} \frac{H_{Q}}{H_{q}} \frac{\partial q}{\partial Q} P_{2}=0, \tag{A27}\\
& H_{Q} \frac{\partial P_{2}}{\partial Q}-\frac{H_{Q}}{H_{P}} \frac{\partial H_{P}}{\partial Q} P_{2}+\frac{H_{q}}{H_{p}} \frac{\partial H_{p}}{\partial q} \frac{H_{P}}{H_{p}} \frac{\partial p}{\partial P} P_{1}=0 . \tag{A28}
\end{align*}
$$

Appendix B: Principal coordinates for rotationally symmetric problems. In terms of the polar coordinates (R, Θ), the most general representation for the principal coordinates (P, Q) associated with a rotationally symmetric problem may be written as

$$
\begin{align*}
& P=\Theta+\int_{R_{e}}^{R} \frac{\cot \Psi(\rho)}{\rho} d \rho \tag{B1}\\
& Q=\Theta-\int_{R_{e}}^{R} \frac{\tan \Psi(\rho)}{\rho} d \rho \tag{B2}
\end{align*}
$$

where $\Psi(R)$ is the angle between P and R (Fig. 2a) and R_{e} is a constant reference radius. It follows that

$$
\begin{array}{ll}
\frac{\partial R}{\partial P}=R \sin \Psi \cos \Psi, & \frac{\partial R}{\partial Q}=-R \sin \Psi \cos \Psi \\
\frac{\partial \Theta}{\partial P}=\sin ^{2} \Psi, & \frac{\partial \Theta}{\partial Q}=\cos ^{2} \Psi \\
H_{P}=\frac{1}{R \sin \Psi}, & H_{Q}=\frac{1}{R \cos \Psi} \tag{B4}
\end{array}
$$

Similar relations may be obtained for the deformed coordinates (r, θ) and (p, q), viz.

$$
\begin{gather*}
p=\theta+\int_{r_{e}}^{r} \frac{\cot \psi(\rho)}{\rho} d \rho \tag{B5}\\
q=\theta-\int_{r_{e}}^{r} \frac{\tan \psi(\rho)}{\rho} d \rho \tag{B6}\\
\frac{\partial r}{\partial p}=r \sin \psi \cos \psi, \quad \frac{\partial r}{\partial q}=-R \sin \psi \cos \psi \\
\frac{\partial \theta}{\partial p}=\sin ^{2} \psi, \quad \tag{B7}\\
H_{p}=\frac{1}{r \sin \psi}, \quad \frac{\partial \theta}{\partial q}=\cos ^{2} \psi \tag{B8}\\
H_{q}=\frac{1}{r \cos \psi}
\end{gather*}
$$

where $\psi(r)$ is the angle between p and r (Fig. 2b), and r_{e} is a constant reference radius. If the p-coordinate curves ($q=$ constant curves) are straight lines, then (Fig. 2c)

$$
\begin{gather*}
\tan \psi(r)=\frac{r_{e}}{\left(r^{2}-r_{e}^{2}\right)^{1 / 2}} \tag{B9}\\
p=\theta+\frac{1}{r_{e}}\left(r^{2}-r_{e}^{2}\right)^{1 / 2}-\cos ^{-1} \frac{r_{e}}{r} \tag{B10}\\
q=\theta-\cos ^{-1} \frac{r_{e}}{r} \tag{B11}
\end{gather*}
$$

Moreover,

$$
\begin{equation*}
H_{p}=\frac{1}{r_{e}}, \quad H_{q}=\left(r^{2}-r_{e}^{2}\right)^{1 / 2}=\frac{1}{r_{e}(p-q)} . \tag{B12}
\end{equation*}
$$

[^0]: * Received September 16, 1980. The work reported here was supported by NSF under Grant CME-7905462.
 ** Present address: Sandia Laboratories.
 ${ }^{1}$ Anisotropic and nonlinear elastic properties were considered in [8].
 ${ }^{2}$ To be sure, the variable Poisson's ratio and the maximum slope of the wrinkles introduced in [3] and [4], respectively, are also measures of the wrinkliness.

[^1]: ${ }^{3}$ Summation over repeated subscripts is taken for granted.
 ${ }^{4}$ Subscripts preceded by a comma indicate partial differentiation.
 ${ }^{5}$ No sum is performed in similar situations.

[^2]: ${ }^{6}$ Cf. Table 1 for notation.
 ${ }^{7}$ Unless otherwise stated, an asterisk is used to identify a true physical quantity defined on the true deformed surface m^{*}.

[^3]: ${ }^{8}$ The superscript T indicates transposition.

[^4]: ${ }^{9}$ In linear elasticity, the term "rotationally symmetric solution" is exclusively reserved for the situation $r \equiv R$, $\theta=\Theta+\phi(R)$.

