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Abstract. A general and complete formulation is given for the wrinkling phenomenon
in the context of finite plane-stress theory. The planar portion of the true three-dimensional
displacement field, called the pseudo-displacement field, is used as a basis for the necessary
kinematic analysis. It is assumed that the principal directions associated with the pseudo-
deformation field are the same as those associated with the true stress field. The true stress
field is governed by equilibrium and the assumption that one of the principal stresses
vanishes, and hence is statically determinate. The difference between the pseudo-strain and
the true strain calculated from the true stress is a new tensor, called the wrinkle-strain
tensor, and serves as a measure of the wrinkliness of the surface.

1. Introduction. Wrinkling is a phenomenon that is commonly associated with the
deformation of a thin membrane surface. It is commonly assumed that the direction of a
wrinkle is a principal direction. The principal stress resultant along a wrinkle is assumed to
be tensile, while the transverse principal stress resultant is assumed to be zero. This assump-
tion renders the equilibrium conditions statically determinate, and the resulting analysis is
the so-called tension field theory. This theory has been studied extensively in the context of
linear plane-stress theory by many authors [1-8].1 The formulations used in these re-
ferences are not quite the same but are all built upon the same basic assumption. The work
reported in [7] was obtained without the knowledge of the earlier references and hence is
not published. It should be mentioned, however, that the use of a wrinkle strain to measure
the wrinkliness of a deformation was first explicitly introduced in [7].2 In any case, the
formulation needed for a linear analysis is complete.

When the deformation is finite, the system of equilibrium conditions is still statically
determinate. This leads to the false impression that the necessary nonlinear analysis is just
as straightforward as the linear analysis. But how does one get back to the displacement
field from the stresses? This question cannot be answered without a detailed study of the
kinematics based on physically reasonable assumptions. Formulations applicable to axially
symmetric problems can be found in [9, 10]. The purpose of this paper is to give a complete

* Received September 16,1980. The work reported here was supported by NSF under Grant CME-7905462.
** Present address: Sandia Laboratories.

1 Anisotropic and nonlinear elastic properties were considered in [8],
2 To be sure, the variable Poisson's ratio and the maximum slope of the wrinkles introduced in [3] and [4],

respectively, are also measures of the wrinkliness.
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and general formulation of the wrinkling phenomenon in the context of finite plane-stress
theory.

We shall begin by naming the planar portion of the true three-dimensional displace-
ment field the pseudo-displacement field. The main assumption will be that the principal
directions associated with the pseudo-displacement field are the same as those associated
with the true stress field. The difference between the strains calculated from the pseudo-
displacement field and strains calculated from the true stress field is a measure of the
wrinkliness of the surface.

Some mathematical preliminaries, mainly having to do with Schouten's kernal-index
notation, are reviewed in Sec. 2. This notation is convenient for our purpose, because we
have to deal with several sets of different curvilinear coordinates. Finite plane-stress theory
with wrinkles is introduced in Sec. 3. The presentation of Sec. 3 is somewhat fragmentary
because of the mixed use of several coordinates. Sec. 4 is an attempt to summarize the
equations obtained in Sec. 3. The class of rotationally symmetric problems is solved exactly
in Sec. 5, and some results are presented in Sec. 6 with a set of initial data as parameters.

2. Mathematical preliminaries via Schouten's kernel-index notation. The objectives of
this paper require the solution of the physical components of various field variables in
different curvilinear coordinates. Schouten's kernel-index notation [11, 12] appears to be
most suitable for our purposes. The notation uses a kernel letter to identify an object, and
index letters to identify the reference bases. Moreover, the word "component" is always
meant to be the physical component. This is summarized as follows:

 Identifies an object

 Identifies the coordinates

 Physical component

Before proceeding, we set forth in Table 1, once and for all, the kernel letters and index
letters to be assigned to various coordinates.

The base vectors associated with a set of coordinate axes are denoted by

e,ndex Index = (/, i, A, a) (2.1)

and the associated local Cartesian unit vectors are

'index ^Index/ I ®Index I ' (2.2)

It follows from our notation (Table 1) that

■index = eindex for Index = / or i. (2.3)

Direction cosines are defined accordingly:

Q(lst lndex)(2nd Index) '(1st Index) V2nd Index) (^-^)

where (1st Index) and (2nd Index) are associated with different bases. A characteristic of
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Table 1. Coordinate systems (all subscripts range over the integers (1, 2)).

States
Coordinates

Rectangular
Cartesian

Orthogonal
Curvilinear

Indexed

Explicit

Indexed

Explicit

Principal

Undeformed State

/ is a typical
Z, member of

(I, J, K, L, M, N)

Z, = X I = 1
for

Z, = 7 1 = 2

A is a typical
XA member of

(A, B, C, D, E, F)

XA = U A = l
for

XA=V A = 2

XA = P A = l
for

Xa = Q A = 2

Deformed State

i is a typical
z, member of

(i,j, k, /, m, n)

z, = x i = 1
for

Z; = y < = 2

a is typical
xu member of

(a, b, c, d, e,f)

xa = u a = 1
for

x=v a = 2

xa = p a = 1
for

x„ = q a = 2

Schouten's notation is that

^2(lsl Index)(2nd Index) S(2nd IndexKlst Index) • (2.5)
This, however, is merely an identity but not a symmetry property. In terms of the direction
cosines, physical components of a tensor T transform like Cartesian components, e.g.,

Tfj = QiaQjb Tab> Tu = Qia Qjb TaB, etc. (2.6)3

Let the transformation between the Cartesian coordinates Z, and the orthogonal curvi-
linear coordinates XA be denoted by

Z, = Z,(XA), XA = XA(Zf). (2.7)

Then, since XA are orthogonal,

Z,.aZIiB = 0 for A + B. (2.8)4

The square of a line element dL is

(,dL)2 = dZ, dZ, = SXA SXA (2.9)

where

SXA = Ha 1 dXA (no sum) (2.10)5

3 Summation over repeated subscripts is taken for granted.
1 Subscripts preceded by a comma indicate partial differentiation.
5 No sum is performed in similar situations.
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and

Ha1 = = (XAJXAJr112. (2.11)

It follows from the above that

XAJ = H\ZItA, ZIA = Ha2Xai. (2.12)

We note in passing that 5XA is nothing but a convenient notation.
Let P be the position vector of a point; then

eA = P,a > |e^| =(ZmZu)1/2 = H;1, iA = HAeA. (2.13)

We introduce directional differentiation defined by

3a() = Ha(\a. (2.14)
Then

'a = HAeA = HAP A = dAP, (2.15)

Qa, = Qia = iA • i, = • i/ = dAZ, = HAZIM = HA lXAI. (2.16)

Some of the most useful identities are:

lA — Qai'i> '/ = Qia'a< ^a = Qai^i^

8, = Qia8a, dXA = QAIdZ„ dZ, = QIASXA. (2.17)

Absolute differentiations in orthogonal curvilinear coordinates are denoted by a semi-
colon, and are defined by

Ta.b — QaiQbjT^j , Tabc = Qai Qbj Qck TjjK, etc. (2.18)
It follows from the above and (2.17) that

Ta . b = 8b Ta + WCAb Tc, Tab c = dcTAB + WEACTj.:B + WebcTae, etc. (2.19)

where

WCAb = Qai8bQic (2.20)

are the wryness coefficients. For orthogonal curvilinear coordinates, the only non-zero
coefficients are

WBab = — WAbb = 8a In Hb (A B). (2.21)

This completes the relations needed for the Z — X transformation. Relations pertinent to
the z - x transformation may be obtained from the above by simply replacing all the
subscripts by their lower-case counterparts.

3. Finite plane-stress theory with wrinkles. Let M be the domain of the (Zu Z2)-plane
characterizing the shape of a membrane surface in its undeformed configuration. We
assume that the membrane is deformed to a wrinkly surface so that the position of a point
(Z1; Z2) after deformation is (z,, z2, z3). The deformation may be represented by a trans-
formation

Z; = Z;(Z;), Z3 = z(Z,) for all Z e M, (3.1)
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where, as throughout this paper, all subscripts range over the integers (1, 2). The transform-
ation (3.1) maps M onto a wrinkly surface m* characterized by the fact that z3 is not
identically zero. Physical evidence seems to indicate that the distribution of wrinkles is a
random process. Moreover, creases and folds caused by wrinkling and characterized by
z3 = z(Zj) are difficult to define analytically. To bypass these difficulties, we use the surface
m defined by

m:zi = zi{ZI), z3 = 0, (3.2)

to give a reference description of the surface m*. The difference between m and m* will be
described by a new strain-like kinematic variable to be defined in the development to
follow. The surface m will be called the pseudo-deformed surface to emphasize the fact that it
is not the true deformed surface. All quantities to be defined on the surface m will be
prefixed by "pseudo-" to give the same implication. It is clear from (3.1) and (3.2) that the
surface m is nothing but the projection of m* on the plane. We do, however, make one
assumption that the projection is one-to-one so that the mapping between (Zu Z2)and (zt,
z2) is one-to-one.

Let FtI be the components of the pseudo-deformation-gradient tensor F associated with
(3.2), whence

Fa = zt.i. (3.3)

[^/] = Ou] = i(Ai + A2)

+ i(Ai - A2) (3.4)

By polar decomposition, F has the representation

cos ft — sin
sin /? cos /?_

cos(2a + /?) sin(2a + /?)
_sin(2a + /?) — cos(2a + /?)_

where At and A2 are the pseudo-principal stretch ratios associated with F and

AiA2 = J = det[F,7], Af + A| = J = F„F„. (3.5, 3.6)

The angles a and /?, depicted in Fig. 1, define the orientations of the pseudo-principal
coordinates (Xl = P, X2 = Q) and (*! = p, x2 = q).6 We may now proceed to state our
Assumption /: The projection on the plane of the set of principal coordinates associated
with the true deformation experienced by the deformed surface m* is just the set of pseudo-
principal coordinates defined by F,7.

Let A? and A* be the true principal stretch ratios experienced by the deformed surface
m*; then it is convenient to construct a deformation-gradient-like tensor F* by the ex-
pression

[F*] = [replace (At, A2) by (Af, Af) in (3.4)]. (3.7)7
We emphasize that the term "deformation-gradient" here is nothing more than a con-
venient name because F* is not the gradient of a deformation. Nevertheless, (3.7) implies
that

A* Af = J* = det[F!J], Af2 + Af2 = /* = FfjFf,, (3.8,3.9)

6 Cf. Table 1 for notation.
7 Unless otherwise stated, an asterisk is used to identify a true physical quantity defined on the true deformed

surface m*.
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Z2 , Z2

X2 ~ Q

Z, ,z,
Fig. 1. Principal coordinates.

which, in turn, may be used to define the true strain energy density function

U = U(I*,J*). (3.10)

Before proceeding, it is again convenient to introduce a new tensor W defined by

W = F — F*. (3.11)

It follows from (3.4) and (3.7) that the principal quantities Wx and W2 associated with W are
just

Wi= Aj - AT, W2 = A2 — A? . (3.12)

Since (Ax, A2) are the projections of(Af, Af) on the plane,(Wu W2) must be either zero (no
wrinkle) or negative. Thus, we assume without the loss of generality that the 1-direction is
always the taut direction so that

Wt = 0, A, = A?, (3.13)
W2 = A2_A*<0. (3.14)

Eq. (3.12) implies that

+ Projection of deformed length — Deformed length
2 2 Undeformed length

which suggests the name wrinkle-strain tensor for W defined by (3.11).
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We proceed to state our Assumption II : The true principal Piola stresses experienced by
the deformed surface m* are

8U 8U dU
p'=wr2w*h' + w>A"' (315)

dU dU dU
p'"eXi°2dFA" + dJ>A"' ,316)

where

P2 = 0 if W2 < 0. (3.17)

In view of the fact that the principal Piola stresses are defined with respect to the unde-
formed surface M, and our Assumption I that the true principal directions are the same as
the pseudo-principal directions, there is no need to differentiate pseudo-Piola stresses from
Piola stresses as far as our notation and terminology are concerned. This leads to the one
exception that an asterisk is not used to identify a true physical quantity, and the (first)
Piola stress tensor is just

[fii] = [replace (At) A2) by {Pu P2) in (3.4)], (3.18)

and

[Pi/] = Pi
cos(a + /?)cos a cos(a + /?)sin a
sin(a + /?)cos a sin(a + /?)sin a

if P2 = 0 (W2 < 0). (3.19)

Isotropy is, of course, presumed in deriving (3.18).
The true Cauchy stress tensor T* (defined on m*) and the pseudo-Cauchy stress tensor T

(defined on m) may be expressed in terms of P, F* and F. They are

T* = — PF*r, (3.20)8
y*

T = j PFr. (3.21)

In particular,

Tij = jPiIFjI, (3.22)

Pu — JTijfjj, (3.23)
where

fn = Zu. (3.24)
The tensors F and f satisfy the relations

fli = ~j eIL eil Fil > (3.25)

Fu = Jeu eIL fLl, (3.26)

1 The superscript T indicates transposition.
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where ea, eIL are the two-dimensional alternators. We recall that F* is defined by (3.7) and,
as a result, no interpretation of the form (3.3) and (3.24) can be assigned to its components
as well as the components of its inverse. Let (Tf, Tf) and (T,, T2) be, respectively, the
principal Cauchy stresses and principal pseudo-Cauchy stresses associated with T* and T.
The three sets of principal stresses are related by (3.20) and (3.21), and the explicit relations
are

pl = A* Tf = A2 Tu (3.27)

P2 = A? Tf = At T2, (3.28)
p2 = Tf = T2 = 0 if W2 < 0. (3.29)

We note in passing that it is possible to make A2 vanish by "wrinkling" an arc element to
zero while keeping A J finite. This is why Tf is always finite even though the associated Tt
may be infinite, a situation that appears very often in an actual solution.

In the absence of body forces, the Piola stresses satisfy the equations of equilibrium

PiU = 0 on M. (3.30)

Using (3.23-3.26), we find that the pseudo-Cauchy stresses satisfy the equations of equilib-
rium

Tijj = 0 on m. (3.31)

As a further consequence of the fact that no relations of the form (3.24) can be assigned to
F*, the equations

T* j = 0 are not valid conditions. (3.32)

In linear theory, however, there is no difference between (3.31) and (3.32). This completes
the general formulation in Cartesian coordinates. It suffices to mention that the theory is a
straightforward extension of the conventional membrane theory. The presence of a wrinkly
region is indicated by the additional field equation P2 = 0, (3.29), and the wrinkliness of the
membrane is measured by the additional kinematic variable W2 .

To apply these equations to boundary-value problems, it is very often more convenient
to introduce suitable curvilinear coordinates. Several curvilinear versions of these equa-
tions are derived in Appendix A.

4. A summary of the equations. The exposition presented in Section 3 is somewhat
fragmentary in that too many sets of related coordinates, including the unknown principal
coordinates, are involved. As a result, it is difficult to tell just which are the independent
unknowns and what are their governing equations. It is therefore desirable to provide a
summary to clarify the situation. We shall do this by employing the explicit notations (X,
y), (x, y), (P Q), (p, q), etc., identified in Table 1. Certain equations will be repeated for the
sole purpose of putting everything in one place. Also, for the sole purpose of summarizing
and enumerating unknowns and equations, we have found it convenient to interpret the
deformed principal coordinates {p, q) as the independent variables. Thus, quantities in-
volved in this section are all to be considered as functions of p and q.

We begin with Eq. (A21) of Appendix A, the off-diagonal terms of which indicate that

p = p(p\ Q = Q(i)- (4.1)
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It follows from (A5), (A6) and (4.1) that
H„ = (x,2p + y%)~1/2, Hq = (x,2, + y2)"1/2, (4.2)

Hp — (x2p + y2p)~112, HQ = Yq + Y*r 112■ (43)

Using these relations and the diagonal terms of (A21), we obtain

A i =y% = [(x-2"+ + y2")] 1/2' (44)

A2=f^^=c(^+^)/(n+n)]i/2- (4.5)

The kinematic wrinkling conditions, (3.13) and (3.14), are

W2 = A2-A*2, (4.6)

A, = A*, (4.7)

where A* and A* are the true principal stretch ratios. They are determined from the stresses
in equilibrium via the use of constitutive relations.

The assumption (3.29), together with (3.16), yields

dU* 8U*
2~dFA* + JrAr = 0 or A2 = A*(Af)' <48)

where A*(A*) is a root of the original equation, and may or may not have a simple explicit
form. The non-zero principal Piola stress Pj may be obtained from (3.15). It is

Pi = Pi(A?) = (2 ~ At + Aj) (4.9)

The two equations of equilibrium (A27), (A28) now become

A2* = A*(Ai»)

or Iw-°. M"»
^ H n _ ^ ^ -> 1 i-j
~^ = 0 0r dq{x" + y"y= °> (4-n)

where (4.1) has been used in deriving (4.10). Finally, the two sets of principal coordinates
must be orthogonal. The relations are just

+ y.Py.q = 0, (4.12)

X.pX,q+YpY, = 0. (4.13)

The ten equations (4.4)-(4.13) completely determine the ten unknowns, (x, y), (X, y), (A^
A2), (Af, Af), W2 and Pj as functions of p and q.

It can be easily shown by using (4.11) that the p-(principal) coordinate curves are
straight lines (see, e.g., [1-7]). Let En be the envelope of the family of straight lines; then the
^-(principal) coordinate curves are just the involutes of En. It is therefore sometimes more
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convenient to define p and q through the use of an arbitrary envelope curve En. This will be
illustrated in Sec. 5.

We conclude this section by mentioning that for a Mooney material

U = (I* + J* ~2) + k(J*2 + I* J*'1), (4.14)

and Eqs. (4.8) and (4.9) become

Af = A*(A?) = Af~1/2, (4.15)

—¥ i -—
Af/\ Af"P! = PA Af, k) = 2Af ( 1 + — 1 - —3 . (4.16)

In (4.14), k is defined by

k = C2/Cu (4.17)
the ratio of the two Mooney constants, and V is nondimensionalized by C^H with H being
the constant undeformed thickness of the membrane.

5. Rotationally symmetric problems—exact solution. In terms of the polar coordinates
(R, ©) and (r, 9), the class of rotationally symmetric problems is defined by the relations

r = iiR) \R = R(r) ,
e = & + <p(R) [0 = 0- <D(r)' 1 '

We shall study this class of problems in detail, and show that the system of equations may
be reduced to quadratures. The required deductions parallel to those used in [10] for
axially symmetric problems. Indeed, symmetric solutions are just special cases of(5.1).9

Since the p-coordinate curves are straight lines (Fig. 2c), the transformation between (r,
d) and (p, q) are given by (BIO) and (Bll) of Appendix B. We shall use (5.1), (BIO) and (Bl l)
to simplify the set of equations obtained in Sec. 4 to suit this particular class of problems.
The explicit forms of the equations outlined in Sec. 4, however, are not always the most
convenient ones to use for a given situation. Thus, when a citation is made of an equation
from Sec. 4, we do not necessarily mean the explicit form of that equation, but rather one of
its many equivalent variations.

We begin by substituting (5.1) into (BIO) and (B11) to obtain p and q as functions of R
and 0. The results are

p = © + p0(R), <7 = 0 + q0(R), (5.2)

where

P o = <I>(r) — cos 1 — + — (r2 — r2)1/2
r r„ (5.3)

r = r(R)

<?0 = <P(r) — cos"1 — (5.4)
r = r(R)

9 In linear elasticity, the term " rotationally symmetric solution " is exclusively reserved for the situation r = R,
1 = 0 +
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It follows that

dp dp0 j d<l> 1
dR dR \dr + r

dq dq0 (dQ> 1
dR dR (dr r

r\2 - 1
r.

1/21 dr_

dR'
1/21 dr_

dR

(5.5)

(5.6)

Eq. (B12) now becomes

\
re' "" re(Po - <?o)

For the undeformed principal coordinates, we use (4.3), (5.1) and (5.2) to obtain

Hp = ~ =   — (5-7)

Hp dP~

H h-
Hq dQ -

d£)2+±
8Rj R2

y+±L\srJ r2_

1/2

1/2

dPo]2 ^ ±
dR J R2

^oV _i_ ±
dR R2

1/2

1/2

(5.8)

(5.9)

The conditions (4.11) and (4.12) are identically satisfied by the choice of (p, q) defined by
(BIO) and (B11). The condition (4.13), after applying (4.1), (5.1) and (5.2), now becomes

dp dq 1 dp0 dq0 1
dR dR R2 dR dR R+ ̂  = ir^r + ̂  = o. (5.10)

A convenient expression for Ai may be obtained from (4.4), (5.7) and (5.8). It is

1/2fe>Y x ±
dR J R2 (5.11)

In view of (4.7), the principal Piola stress defined by (4.16) is

Pi = P 1(A1) (5.12)

where the functional form of Pi(Aj) depends on the choice of the strain energy density
function, and may or may not be an explicit expression. Integrating the first form of (4.10)
yields

P1(Ai) = (x^)hg (5.13)

where the quantity in front of HQ is taken as the arbitrary function of integration, and hence
K is an arbitrary function of Q. In view of (5.9) and the fact thatPj can only be a function of
R for rotationally symmetric problems, K can at most be a function of R. This, however, is
impossible because R is a function of both P and Q. It follows that K is a constant.

We proceed to convert the governing equations to a system of uncoupled ordinary
differential equations with \1 as the independent variable. Applying (5.8), (5.10) and (5.11)
to (5.9), we get

(5,4)
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Substituting (5.14) into (5.13) yields

'■Ri£'KTh (515)
which, in turn, may be substituted into (5.11) to obtain

KR =
Pd Ai).

2 / \ 2/ y \
+ | - j ■ (5.16)

This is the relation that will be used to convert functions of R to functions of At. In
particular, applying (5.16) and (5.15) we obtain

dp0 dp0 dR
dAx dR dAy

K 1 1 d
re 1"P1(A1) + 4M1

Ai 1 d
+ 4 dA, tan-1 K Aj (5.17)

Similar substitutions may be applied to (5.10) to yield

. r PAA.fl
(5.18)

dq0 re^i(Ai)+ d
dAi KAt dAt

.an-
KAj

These are the two equations that must be integrated. Depending on the form off1(A1), they
may even be explicitly integrated, as in the case for a Mooney material which will be
presented at the end of this section.

Eqs. (5.3) and (5.4) may be solved for r and <J> in terms of p0 and q0. They are

r = re[\ + (p0 ~ q0)2Y'2, (5.19)

® = t + Qo - tan-1 , (5.20)
2 Po — <7o

which, in view of (5.17) and (5.18), are again functions of At. Finally, A2 is determined from
(4.5), (5.7) and (5.12). It is

A2 = (Po ~ <7o)Pi(AJ. (5.21)

The solution to the two equations (5.17) and (5.18) involves four arbitrary constants: re,
K and two more from integration. All other variables are expressed in terms of p0, q0 and
the "independent variable" Ax by algebraic relations. We have thus completed the general
solution.

We now give an examination of the physical meaning of the constant K. The pseudo
Cauchy traction vector acting on an arc element rdO in the pseudo-deformed surface m is in
the direction of the p-coordinate (Fig. 2c). The magnitude is

— cos iA(r) rdO = K d6 (5.22)
A2
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(a) ( b) ( C )
Fig. 2. Principal coordinates for rotationally symmetric problems.

where Fig. 2c, (5.2) and (5.21) have been used in the derivation. Since the p-coordinate
curves are tangent to the circle r = re, the resultant moment of the traction on a circle is

f2*C = reK dd = 2nreK. (5.23)
Jo

For axially symmetric problems, re = 0 and K/r is simply the pseudo Cauchy stress result-
ant in the radial direction (cf. [10]).

The principal coordinates (P, Q) in the undeformed configuration may be characterized
by a single function ¥(#) and a constant Re ((Bl) and (B2) of Appendix B). Differentiating
the first of (5.2) and using (B3), we get

dp dp0 8R 30 .
Tp'H<Tp + J?-Rs"'*

Eqs. (5.11), (5.24), (B4) and (5.15) now yield

dpr, 1
cos + — sin (5.24)

tan *P = rePl(Al). (5.25)
KAl

The P- and Q-curves may then be determined from (Bl) and (B2) by completing the
integration. However, there is no need for such a direct integration. Using (5.25) and other
relations, we find from (5.24) that

dp/dP = 1. (5.26)
Similar calculations applied to the second of (5.2) yield

dq/dQ = 1. (5.27)
The two reference radii re and Re may be conveniently adjusted to satisfy the relations

re = r(Re) or Re = R(re). (5.28)
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Then, in view of (5.26) and (5.27), the undeformed principal coordinate curves are:

P = Pc: 0 = pc + ld>(Re) - p0(R)l (5.29)
Q = Qc ■ © = Qc + L<P(Re) - qo(R)l (5.30)

The images of these curves in the deformed configuration are, respectively,

p = Pc + <P(Rey. e=lPc + MRJ] + cos"1 ^ - - (r2 - r2)1'2, (5.31)
? ?e

q = Qc + <MReY- e = [Qc + 4>(Re)~] + cos ~\re/r). (5.32)

Finally, for a Mooney membrane surface with the Pi function defined by (4.16), both
(5.17) and (5.18) may be integrated. The results are:

<Zo = — Fii.A1? k) + *(A„ k, C0) + ct, (5.34)

p0 = C0 Fi(Ai, k) + ^(Aj, k, C0) + cp, (5.33)

J_
C0

where

1
Fi(Ai, k) = 2 ' k(\ +k) ! 2A, + 1 k3 /A73(TTP),an — " TTT'ln<A' + k)

1 , ^ 2 + k — k2 ,_/a2 a 2Atln(Aj — 1) — ~~77. 7~yT ln(Ai + Aj + 1) +
JU + K)

F2(A1, k) = 2

3(1 + k) v ' ' 6(1 + /c3) P^Al fc).

fc 1 /c
lnAl"X; + 3A! + 4At.

(5.35)

(5.36)

T(Alt k, C0) = tan-1 (5-37)
C0Ai

t) - 2A, (l + i)(l - ^3). (5.38)

C0 = K/re = C/2nr2, (5.39)

and cp, c9 are two integration constants. The four arbitrary constants involved in the
complete solution are re, K, cp and cq. If we set re = 0 and treating p0 as r, (5.33) reduces to
the result obtained in [10] for axially symmetric problems.

6. Rotationally symmetric initial-value problems. A wrinkly region is in general coup-
led with a taut region. A complete solution would then require the solutions to both
regions. While we have solved the equations exactly for the wrinkly region, no such explicit
solution is expected for the taut region where the full finite plane-stress equations must be
applied. To bring out some of the physical features of the solution obtained in the previous
section, we decided to consider the initial-value problem in detail.

Let the undeformed membrane surface M be defined by

M: R > Re. (6.1)
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We assume that after deformation the pseudo-deformed surface m is

m : r > re. (6.2)

For convenience, we scale all the length quantities by the radius re and define

r0 = r/re, R0 = R/re. (6.3)

It follows that

M: R0 > RJre, m: r0 > 1. (6.4)

To complete the initial data, we let

Ai = A, 0-0 = 0o = <5o at R0 = RJre. (6.5)
The quantity C0 defined by (5.39) is treated as a parameter.

We shall restrict ourselves to the explicit solution obtained for a Mooney material. The
quantities p0 and q0 defined by (5.33) and (5.34) now become

Po - = CoCF^Aj, k) - Fi(A, /c)] + ^(A„ k, C0) - 4>(A, k, C0), (6.7)

qo~<Po=-^r LF2(A1; k) - F2(A, k)-] + V(Alt k, Co) - «P(A, k, Co), (6.8)

where (fr0 is the initial value of both p0 and q0 by (5.3) and (5.4). Eqs. (5.16), (5.19), (5.21),
(5.20), (4.7), (4.15) and (4.6) become

ro = {1 + [(Po - <t>o) - (<?o - <t>o)]2}1/2, (6.9)

R0 =
C0

LPi(Au k)_
2 / j \21 1/2

+ \A~J f ' (6-10)

A2 — „ Fj(Ai, fc)[(p0 — <fro) — (q0 — <fr0)l (6.11)
^0

<D - 0)o = (fr - (fro = ^ + {q0 - <fr0) - tan"1    1  — (6.12)
2 (Po - (fro) ~ (<Zo - (fro)

Af = A1, Af = A r1/2, (6.13)

W2 = A2-Af. (6.14)
The above quantities are computed as functions of with A and C0 as parameters. The
data (f)0 = <I>0 is not needed in the computation, but only appears in the final interpretation
as a rigid body rotation.

Two sets of results are presented in Tables 2 and 3—Table 2: the initial data are k = 0.1,
A = 1.5 and C0 = 4.0; the deformed principal coordinates are given in Fig. 3; Table 3: the
initial data are k = 0.1, A = 3.0 and C0 = 11.0; the deformed and undeformed principal
coordinates are given in Fig. 4. For both cases the images of the wrinkles in the undeformed
state are almost straight. This fact can be observed from the relation

tan = [(Aj R0)2 — 1]~1/2 (6.15)

derived from (5.16) and (5.25). The P-curve would be straight if At were constant (cf. (B.9)).
The variation of A j is rather small for the two cases calculated.
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Table 2. Initial-value problem (k = 0.1, A = 1.5, C0 = 4.0).

R0 r o <D-<D0 A, = Af A* W2

1.897 1.000 0.000 1.500 0.817 -0.817
2.000 1.013 0.142 1.463 0.827 -0.740
2.502 1.346 0.638 1.338 0.865 -0.487
3.002 1.868 0.857 1.265 0.889 -0.344
3.497 2.427 0.958 1.218 0.906 -0.256
3.993 2.994 1.012 1.185 0.919 -0.196
4.504 3.576 1.044 1.160 0.929 - 0.152
4.983 4.117 1.064 1.142 0.936 —0.122
5.486 4.681 1.077 1.127 0.942 -0.097
5.983 5.233 1.087 1.115 0.947 -0.079
6.435 5.786 1.093 1.105 0.951 -0.064
6.960 6.308 1.098 1.097 0.955 -0.052
7.447 6.837 1.102 1.090 0.958 -0.043
7.928 7.359 1.105 1.084 0.961 -0.035
8.484 7.958 1.108 1.078 0.963 -0.027
9.017 8.530 1.110 1.073 0.966 -0.021
9.499 9.046 1.111 1.069 0.967 -0.016

10.040 9.624 1.112 1.065 0.969 -0.012
10.490 10.110 1.113 1.062 0.971 -0.008
10.990 10.630 1.114 1.059 0.972 -0.005
11.550 11.220 1.115 1.056 0.973 -0.002
12.000 11.640 1.115 1.054 0.941 0.000

Table 3. Initial-value problem (k = 0.1, A = 3.0, C0 = 11.0)

R0 r0 <D - <D0 A, = A? A? W2

1.872 1.000 0.000 3.000 0.577 -0.577
1.900 1.003 0.080 2.960 0.581 -0.537
1.950 1.027 0.221 2.890 0.588 -0.467
2.000 1.069 0.349 2.824 0.595 -0.403
2.050 1.127 0.462 2.782 0.602 -0.345
2.100 1.197 0.561 2.703 0.608 -0.290
2.150 1.277 0.646 2.647 0.615 - 0.240
2.200 1.363 0.718 2.594 0.621 -0.193
2.250 1.454 0.780 2.544 0.627 -0.150
2.300 1.550 0.833 2.496 0.633 -0.110
2.350 1.649 0.879 2.450 0.639 -0.072
2.400 1.748 0.917 2.407 0.645 -0.038
2.450 1.848 0.951 2.365 0.650 -0.006
2.459 1.866 0.957 2.359 0.651 0.000
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0T00 81.00 Ts.00 oTciO 8'.00 16.00

Fig. 3. Principal coordinates for the data given in Table 2. Deformed configuration is given on the left.

0.00 1.00 2.00 3.00 0.00 1.00 2.00 3.00

Fig. 4. Principal coordinates for the data given in Table 3. Deformed configuration is given on the left.
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Appendix A: Equations in orthogonal curvilinear coordinates (cf. Table 1 for nota-
tion). Let [XA] = [I/, V] and [xj = [u, y] be, respectively, the curvilinear coordinates in
the undeformed and deformed configurations. They are related to the Cartesian coordi-
nates [Zj] = [X, V] and [zj = [x, y~\ by the relations

Z, = Z,(XA), XA = XA(Zj), (Al)

zf = z,(xfl), xa = xJZi). (A2)

These relations satisfy the orthogonality conditions

ZwZ,j = 0 for A^B, (A3)

Z;,a Zf.b = 0 for a =/= b. (A4)

It follows from (2.11) that

Ha = (Z, AZ, A)~112, Ha = (z^zj-112. (A5, A6)

With respect to the orthogonal curvilinear coordinates, the components FaA of the
pseudo-deformation-gradient tensor F may be obtained from the Cartesian components Fu
via the transformation

FaA=QaiQA,Fi,- (A7)

Using (3.3), (2.16) and the Qfli-counterpart of (2.16), we obtain from (A7)

[Fax] =
Ha dx„

L Ha dXAj

FUU F uy

L Fvu F vV

(no sum),

Hv du Hv du
iru8u JTudv
Hv 8v Hv dv
~H\,dU !T,dV

(A8)
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The pseudo-Cauchy stress equations of equilibrium, (3.31), now become

Tab- b = db Tab + W,eab Teb + Webb Tae — 0. (A9)

Using (2.20) and (2.21), we obtain

H dH H dH
Hu Tuu u + Hv Tuv v -2 jf-^TUv + jf-^(Tvv-TJ = 0, (A 10)

H dH H dH
HVTVV,V + Hu Tuvu-2jf-^Tuv + jf-^(Tuu-TJ = 0. (All)

To derive the Piola stress equations of equilibrium, (3.30), we begin with the transformation

PaA, A ~ QaiQAlQAJ Pil, J ■ (A 12)

By repeatedly applying the chain rule of differentiation and (2.17), we finally arrive at

PaA-.A = ^ a P aA + ^BAA^aB + Wbac F Cj4 PbA ' (A13)

The two equations of equilibrium now become

Hv dHy Hy dHv
W™ + »r^r-trluP'«-£lvP"

TJ f>TT TJ f)TJ

-7f~T P"V + F»v p+ TT p»v + F»v p°v) = °> <A14>Hu dv Hv du

Hv 8HV Hv dHv
Hypw,v + Hvpvv,v- Hv ey Pw- Hy du Pvu

H r)H H dH
- 7T IT IT»V Puv + FvV PuV] +7?-^ [F»v Puv + FuV P„[/] = 0. (A15)

Hv du . Hw dv.-- •

We conclude this appendix by specializing these equations to suit two special sets of
coordinates.

Polar coordinates ([A^] = [R, 0], [xj = [r, 0]).

dr 1 dr
F rR FrS

VFaA] =
BR 1 eeJ

5R R d&
d0_ ^86_
dR R 30

(A 16)

Trr r + Tr0 e + (7^.r — Tee) — 0, (A17)r r

-Tee,e+Tre,r + -Trg = 0, (A 18)r r

PrR.R + ^ Pr@.8 + ^ PrR ~ ~ [^9R PoR + Fee P0e] = 0, (A 19)

P08,8 + PBR.R + "jT PgR "t LFm P e + F$R P r] = 0. (A20)R R r
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Principal coordinates ([XA~] = [P, g], [xa] = [p, q]).

LFaA] =

C Tah-\ =

ra =

LPqP FqQ.

T TlPP PQ

T T■ QP RQ-i

7^* T*
PP 1 PQ

T^* rT"¥
L_ 1 qp 1 qq.

PpP PpQ

■PqP PqQ-

At 0
0 A2J

Ti 0
0 t2J

T? 0
0 Tf

Pi 0
.0 P2.

Hp dp Hq dp
WpdP JfpdQ
Hp dp Hq dq
TTqdP H~qdQ

T 0a2

0 TA,

du n
dAf
0 ^

dTt H dH

"'IF-TT^ + ltf>l?Top^ (A27)dP Hq dP Hq dp Hq dQ

(A21)

(A22)

(A23)

(A24)

H^+Hq^(T2'Tl) = 0' ^

Hq ̂  ^ 8-f* (Tj - T2) = 0, (A26)dq Hp dq

d_P1_Hcd_HJ, tUm^HrSp
Q dQ HP dQ 2 Hp dq Hp dP

Appendix B: Principal coordinates for rotationally symmetric problems. In terms of
the polar coordinates (R, 0), the most general representation for the principal coordinates
(P, Q) associated with a rotationally symmetric problem may be written as

P = 0 +

<2 = ©

l>R cot yfp)

Re P

rr

dp, (Bl)

dp, (B2)
R. P
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where *¥(R) is the angle between P and R (Fig. 2a) and Re is a constant reference radius. It
follows that

dR 8R
— = R sin ¥ cos 4*, — = — R sin cos 4*,dP 8Q

= Si"2 %= COs2 (B3)

Hp = R sin Hq = R cos (B4)

Similar relations may be obtained for the deformed coordinates (r, 9) and (p, q), viz.

fJre

-"fJre

P = e+| C-^4p, (85)J--. p
tan i/>(p) , dp, (B6)

P
8r 8r .
— = r sin i/< cos y/, — = — a sin i/> cos if/,op Bq

89 . 2 , d9 2 ,
— = sin i//, — = cos2 1^, (B7)op dq

= —l—r. Hq = " 7> (B8)
r sin ip r cos i//

where i/*(r) is the angle between p and r (Fig. 2b), and re is a constant reference radius. If the
p-coordinate curves (q = constant curves) are straight lines, then (Fig. 2c)

13,1 = (r2 ,^2)1/2^ (B9)

p = 9 + -(r2 - r2)1'2 -cos-1 (BIO)
re r

q = 9- cos'1—. (B11)

Moreover,

= ± Hq = (r2 - r2)1'2 = —l—- (B12)
re re\P Q)


