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1. Introduction

A precise specification of the trajectory of the end effector is a prerequisite towards successful
application of a manipulator to many tasks. Arc welding, spray painting, conveyor belt tracking,
and glucing are some tasks which require specification of both the spatial and temporal aspects
of a trajectory. In the most general case, not only the Cartesian position and velocity of the end
effector, or hand, must be specified, but also the Cartesian accelerations.

The transformation of a Cartesian trajectory of the hand into the corresponding joint angle
trajectory of the manipulator, the so-called inverse kinematics problem, has been studied primarily
in the context of positions and velocities. Reasonably efficient algorithms have been developed
for these transformations (Paul 1981, Featherstone 1983), yet little attention has been paid to the
solution of the inverse kinematic accelerations,

In this paper, we present an cfficient algorithm for the calculation of the inverse kinematic
accelerations for a 6 degree-of-freedom (dof) manipulator with a spherical wrist, based on a
technique developed by Featherstone (1983) for inverse kinematic positions and velocities. In
addition, we show that the inverse kinematic calculations work synergistically with the inverse
dynamic calculations, because the extended Featherstone method yields kinematic parameters
needed in the backward recursion steps of the Newton-Euler dynamics formulation (Luh, Walker,
and Paul 1980a). We note that consistency argues that dynamics be particularized as well
to spherical-wrist arms, resulting in considerable computational savings. Lastly, we examine
simplifications in the dynamics computation due to simply-structured inertial parameters as well
as to simply-structured kinematic parameters.

1.1. Inverse Kinematie Positions

A benign kinematic structure is a characteristic of most manipulators. Whereas kinematicians
might choose to treat arbitrary linkages, manipulators arc usually designed to satisfy simplifying
kinematic criteria:

(i) there is the kinematic equivalent of a spherical wrist, and

(i) neighboring joint axes are oriented at 0° or 90° relative to each other.

Pieper (1968) originally showed that a wrist with three intersccting axes of rotation, which is
kinematically equivalent to a spherical wrist, is one of the configurations that leads to an analytic
inverse kinematic position calculation. The spherical wrist allows a decomposition of the 6-dof
inverse kinematics computation into two 3-dof kinematic computations, through a separation of
the orientation specification from the position specification. Most 6-dof manipulators are designed
with spherical wrists, making this the most important case.

- If the manipulator does not satisfy one of Pieper’s criteria, then in general the inverse
kinematic positions must be found by time-consuming numerical approximation and convergence
methods. This renders real-time control of a Cartesian trajectory infeasible (but see the discussion
of resolved rate control below). Some manipulators that were originally designed without spherical
wrists have been redesigned for this reason. Such manipulators might have been intended to be
programmed by a human operator manually guiding the manipulator to desired positions with a
teach box, so that the human opcrator in effect substituted for an inverse kinematics solution. As
the manipulator’s programming was increasingly automated with higher-level computer control,
the non-spherical wrist was found to be an insurmountable stumbling block to automatic real-time
generation of Cartesian trajectories.
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Figure 1. Cartesian position and orientation specificalion for a reference point on the hand of a manipulator.

1.2. Inverse Kinematic Velocities

Shortly after Pieper's work., Whitney (1969, 1972) proposed the Resolved Motion Rate Control
Method, which computes the inverse kmcmatlc velocities while avoiding the Computatlon of the
inverse kinematic positions. Whereas an anaiytlc inverse kinematic position calculation is critically
dependent on a benign manipulator conﬁg‘uratlon the inverse kinematic velocities can be easily
computed for any arbitrary 6-dof mampuiatox If § = (64,...,6¢) is the vector of joint angles
and x = (z1,...,7¢) is the vector specifyi the position (551,332,(173) = (z,y, 2) and oricntation
(z4, 25, 7¢) = (GI,BJ,B ) of the reference point on the hand (Fig. 1), then the forward kinematic
positions are straightforwardly given by the transformation x = f(g). The forward kinematic
velocities are then given by

x = Jd (1)

where the elements J;; of the Jacobian J are 8f;/8z; with f= (f,..., fs). The E-2 manipulator
that Whitney presented in his papers did not have a spherical wrist, and Whitney proposed that
the trajectory be differentially appmmmatcd by solving the inverse kinematic velocities through
inversion of (1) to avoid the intractible inverse kinematic position calculation:

g =J"1% @)

Due to the prohibitive computational cost of solving (2) through 6 X 6 matrix inversion (Table 1),
Whitney suggested an interpolation scheme based on precomputed inverse Jacobians evaluated at
a few positions.

It should be noted that the inverse Jacobian itself is often not of interest, but only the
joint rates. Thus Gaussian elimination could have been used instead of matrix inversion, giving a
substantial computational savings (Table 1); the numbers include evaluation of J.

More recently, Paul (1981) proposed a method particularized to the Stanford manipulator
which is somewhat more efficient than Gaussian climination (Table 1); the numbers given
are slightly larger than stated in (Paul 1981). Paul’s method involves manipulation of 4 X 4
transformation matrices, and takes implicit advantage of the spherical-wrist configuration of the
Stanford manipulator. '
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Method Multiplications Additions

6 X 6 matrix inversion 287 193
Gaussian elimination 141 98
Paul (1981) 94 55
Featherstone (1983) 36 20

Table 1. Computational complexity of various methods of computing the inverse kinematic velocities
for a 6-dof manipulator, in terms of the total number of multiplications and additions required, for the
Stanford arm.

Featherstone (1983) takes more explicit advantage of the spherical-wrist configuration of
manipulators to propose a highly cfficient method for computation of the inverse kinematic
velocities. The method is composed of four steps.

(i) Find the linear velocity of the wrist from the hand linear and angular velocity.
(ii) Find the first three joint rates from the wrist linear velocity.
(iii) Find the angular velocity of the hand relative to the foreann.
(iv) Find the last three joint rates from the relative angular velocity of the hand.

Featherstone’s method cannot be directly compared to Paul’s method because it was developed
for a different manipulator and because the Cartesian velocity specification was different. We have
reworked Featherstone’s method for the Stanford manipulator with Paul's dTg Cartesian velocity
specification, where the wrist lincar velocity and the time derivative of the hand orientation matrix
are directly given. Thus the first step in Featherstone’s method is unnecessary for purposes of
the comparison. Table 1 shows that Featherstone’s method is almost 3 times more efficient than
Paul’s method. Featherstone’s method works so well because he most directly takes advantage of
the spherical wrist kinematics of robots. This is particularly important in computing the wrist joint
rates, where Paul’'s method requires 75 multiplications to Featherstone’s 22.

1.3. Inverse Kinematic Accelerations

As mentioned earlier, a solution to the inverse kinematic accelerations is required in the most
general transformation between Cartesian space and joint space. For purposes of control, the joint
accelerations are required for input into the inverse dynamics as well as for recent control law
formulations in terms of hand acceleration. For the inverse dynamics (Johnson 1983),

7 = N"Y(HE + (8, §)) (3)

where
7 is the vector of joint torques,
N is a matrix which reflects the recursive structure of the dynamic equations,
H is the generalized inertia matrix, and
c(6,8) is the vector of centripetal and Coriolis torques.

Several schemes have also been proposed recently that close the feedback loop around the
hand. Adopting some of the results and notation from (Johnson 1983), these schemes include:

1. Resolved acceleration (L.uh, Walker, and Paul 1980b):
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Method Multiplications Additions

6 X 6 matrix inversion 394 260
Gaussian elimination 213 162
Wrist partitioning 78 57

Table 2. Computational complexity of various methods of computing the inverse kinematic accelerations for
a 6-dof manipulator.

X = Xq + Kikg + Ko(x — x4) ()
2. Nonlinear control (Freund 1982):

¥ =A%z + KX+ Kox (5)

3. Cartesian impedance control (Hogan and Cotter 1982):

X = MY(f, — K, (%) — Ko(x) + Ka(x4)) n (8)
where
X is the derived hand acceleration,

% and x are the measured hand velocity and position (as determined from the joint
angle measurements),

X4, Xq4, and x4 arc the desired or planned hand acccleration, velocity, and position,
A and K, are velocity gain matrices,

K, is a position gain matrix,

f. is a vector of external forces, and

M = diag(m, m,m, I, I, I5) is a matrix which relates accelerations to generalized forces
through the mass m of the hand and the principal inertias Iy, I3, Is. :

As can be seen, the exact formulations of the feedback laws (4)-(6) differ somewhat. Walker’s
method is the only one requiring a planned hand acceleration Xy. In Hogan’s method, the velocity
and position gains K;,K; are considered as arbitrary functions rather than just as matrices. In
addition, Hogan also includes the external force f. and gives the hand attributes of mass and
inertia by the matrix multiplication M1,

Once the hand acceleration X has been derived, whether by a trajectory planner or by a
hand-based control law, the joint accelerations can be found through differentiation of (1).

¥ =Jg 4 Jé (7)
§=J"1(%—J) (8)

As in the inverse kincmatic velocity computation, solution of the inverse kinematic accelerations
by matrix inversion (8) is very costly (Table 2). Again, since the inverse Jacobian itself is not
of interest, the joint accelerations are better found by solving (7) through Gaussian climination
(Table 2). Until now, there had been no better method than Gaussian climination, but it can be
seen that the wrist-partitioning algorithm developed later is substantialy more efficient.
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Figure 2. (a) First three joints of the rotary manipulator. (b) Spherical wrist of the rotary manipulator,

The proposals of Walker, Freund, and Hogan, however, seem to require the matrix inversion
method. The hand acceleration is incorporated into the inverse dynamics computation (3) by
substituting for the joint accelerations (8).

7= NTYHIT! (& — J8) + (4, 9)) (9)

If they had intended Gaussian climination, then the inverse kinematics and dynamics should
have been expressed in the forms (3) and (7). Because of the apparent difficulty of solving the
inverse kinematic accelerations, Khatib (1980) proposed a hand-based feedback law which involves
resolving hand forces through the inverse Jacobian rather than resolving the hand accelerations.

2. Rotary Manipulator

We now proceed to derive an cfficient formulation of the inverse kinematic accelerations. To
demonstrate the method, we use a rotary manipulator without offscts. Other manipulator types
are readily adapted to Featherstone’s method, although the details primarily in step 2 and slightly
in step 3 must be reworked; the other computations remain the same if the manipulator has a
spherical wrist.

The first three joints are shown in Figure 2a and the last three in Figure 2b. The joint axes
for this manipulator are derived from the Denavit-Hartenberg (1955) specification. The rotation
axis z; corresponds to joint angle 8,,; between links ¢ and ¢ 4 1. The internal coordinate system
for link ¢ is completed by defining x, from the cross product z;_, X z,, which also locates the
origin, and y, = z; X X,. Neighboring coordinate systems are related by three parameters:

a, is the distance between z;..; and z; measured along x;,
s; is the distance between x;_; and x; measured along z;_;, and
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Joint ¢ a; §; o;
1 0 s; m/2
2 ag 0 0
3100 —n/2
4 0 s4 =/2
5 0 0 —m/2
6 0 0 0

Table 3. Denavit-Hartenberg parameters for the rotary manipulator of Figure 2.

o; 18 the angle between z,; and z; measured in a righthand sense about x;.
The values for the three parameters above for the rotary arm of Figure 2 are given in Table 3.

The directions for z; and x; are chosen so that when 8; = 0, then x;_; and x; are parallel and
pointing in the same direction. For the rotary manipulator, this desideratum is straightforwardly
satisfied for every coordinate sytem except 3 and 5. For coordinate system 3, we desire that the
rotation axis zz point at the wrist. This means that x3 must point in the opposite direction from
72 X 73, which is reflected by ay == —n /2, and that the zero position for the clbow joint is at a
right angle pointing upward (Figure 2a). Similarly, because it is desired to point zy towards the
tip of the hand, x, must point in the opposite direction from z, X z5, and a5 = —n/2 (Figure
2b).

The rotation matrix A; which transforms points expressed in link ¢ coordinates to link 1 — 1
coordinates is: '

s8; cbica; —cbsa;
0 sa; co;

cd;, —sbca; sb;sc
Aiz[ jl (10)

where we have used the abbreviations s0 = sin8 and ¢ = cos 8. For convenience, we list below
the six joint transformation matrices.

c01 0 561 602 -——892 0 C93 0 —*-803
Ay =[391 0 —cb } Ay = [sag ey 0 } Az = {393 0 cby }
0 1 0 0 0 1 0 —1 0 (11)
C04 0 804 695 0 —595 Ceﬁ _'566 0
A4 =[804 0 —chy ] A = [505 0 cls ] Ag = {565 cdg O }
0 1 0 0 —1 0 0 0 1

With these transformation matrices, points on any onc link may be referred to the coordinate
gystem of any other link., We will denote with a left superscript which coordinate system a vector is
referred to. Then v is a vector referred to the #th coordinate system, and 1y = A, ‘v is this same
vector referred to the 7 — 1st coordinate system. These transformation matrices can be chained
together to refer non-adjacent links ¢ and j (where 7 > 1) by defining *W; = A, 1Aiq2 - -Ay,
where *v = ‘W, 7v. By convention, the left superscript is omitted when referring to the base
coordinate 0, e.g., v= v,

Define the following vectors, which will be useful later:
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shoulder

base

Figure 3. Vector definitions betwecn various coordinate origins of the rotary manipulator.

p. is the vector from coordinate origin 0 to coordinate origin ¢, and
p, is the vector from coordinate origin ¢ — 1 to coordinate origin i.

Due to the coincidence of coordinate origins 2-3 and of 4-6, many of these vectors are not distinct.
Thus p,—; = p; and p; = 0 for i = 3, 5,6. Furthermore, p; = p;.

3. Specification of the Cartesian Trajectory

In applying Featherstone’s method, it is necessary to have available the angular velocity and
acccleration vectors wg, wg of the hand as well as a time history of the (z, y, 2} Cartesian position of
some point on the hand. Yet some of the more common Cartesian trajectory planning algorithms,
such as those built around straight-line, constant-velocity segments (Paul 1981, Taylor 1979), yield
instead of the angular velocity and acceleration vectors a time-varying hand orientation matrix
Ws. In such a case, the angular velocity and acceleration of the hand can be derived from the
orientation matrix.

If p; is a vector from the base to the point on the tip of the hand used in trajectory planning,
and p; is the internal vector from coordinate origin 6 to this same tip point (Figure 3), then for
a spherical-wrist arm

pr =ps + Ws GP; (12)
p7 =ps + We ®p; (13)
By =py + \'Vs Sp; . (14)

where the first two time derivatives of the rotation matrix Wg must be available. In the vectorial
representation,

Pr =Pa + wg X W °p; (15)
By =Py + e X Wepl 4w, X (we X Wepl) (16)
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Ps

Yo

PP e ——

,

(0) {(b)

Figure 4. (a) Projection of the wrist point onto the zq — yo plane 1o find 6;. (b) Reduction to a planar
two-link manipulator for 8; and 6; by referring positions (o link 1 coordinates. '

Equating the corresponding elements,

5, =WeWT (17)
Gy =WWT + W WI ' (18)

where @, and QS are the matrix representations for the cross product by we and w, respectively;
that is to say, @,¥ = wg X v for example.

4. Inverse Kinematic Positions

In applying Featherstone’s method, it is necessary to have solved for the inverse kinematic positions
before finding the inverse kinematic velocities, and to have solved for the inverse kinematic
velocitics before finding the inverse kinematic accelerations. For completeness of presentation and
to show how intermediate results from one inverse kinematic level are used in the next, we begin
with a rederivation of the inverse kinematic positions.

Step 1: Find the wrist position, We presume that the orientation matrix W for the hand and
the position p; of the tip of the hand have been specified. Since ®p;, the internal vector in link
6 which extends from the coordinate 6 origin to the hand tip, is known, then the position of the
wrist py is given by

Ps = pr — We®p; (19)

Step 2: Find the first three joint angles. Joint 1 is dircct]y' found from p,, since joints 2 and
3 act in a plane that does not change the projection of the wrist onto the zy,y, plane (Figure 4a):
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9, = tan™! (?—43) (20)

Paz

where the tan™! function corresponds to the FORTRAN ATAN2 function, so that the above
division is not actually carried out. We follow Paul (1981) in this practice because of the superior
numerical conditioning with this inverse trigonometric function compared to others. A degeneracy
occurs when the wrist lies on the z, axis, where ps; = psy = 0 and 6, can assume any value.
Since s8, and c¢8; arc requircd below, they are best found with one additional transcendental
function call. Defining r* = p3, + p},,

p4y
oy =242 s = — (21)
r r

The next two angles are easily found if p, is expressed in joint 1 coordinates, which reduces
the problem to a planar two-link problem. Define

Pw =Dy — P1 = Py — 81Zp (22)
When expressed in link 1 coordinates,

r .
lpw = A{pw = [sz} (23)
0

where !p,. = 0 because the wrist point p,, lies in the z;/y; plane. By the cosine rule (Figure
4b), :

) 2 2 _ (,2 2
803 —_ 02+54 ('r +pwz) (24)

20.284
¢0; 1s found next.
(293 = i 1— (863)2 (25)
‘ 4 { s6
fs =tan"! (—C—éz-) (26)

Depending on-which quadrant is chosen for 83, one obtains an elbow up or elbow down solution.
The angle ¢, is found by expressing !p,, in terms of the joint axis vectors.

Pw =02X2 + 8423 (27)
a2c02 — 348(92 + 03)

pw =lays8y + 846(02 -+ 03)
0

1




Hollerbach and Sahar . Wrist-Partitioned Inverse Kinematics

Solving by simultaneous equations,

1Pwy(a2 - (34 593)) - lpwz(s4ce3)
a% + SE — 202(84393)
Py + $02(54c83)

Oy = 2
e g — (84893) ( 9)

Seg ==

(28)

892

8 =‘tan_1 (——-) , (30)

COQ

where the products in the parentheses are computed only once.

Step 3: Find the hand orientation relative to the forearm. The forearm orientation is given by
W3 = A;AsA3, so that the hand orientation relative to the forcarm, 3Wg = A A5 Aq, is given by

Wy = WIW; (31)

Because they yicld intermediate results which are useful later, we present the partial matrix
multiplications A;A; and (A;A2)As.

reicly  —cfys0y 86y
A1As =|sbicy —s8,50, —cb; (32)
L s6; cd, 0
[cl3(cOicfy) — s03(chy50y) —sb;  —sb5(chicly) — cO3(ch;565)
(A1A2)As =] cO5(s01c0s) — s05(s0y56,)  c6y  —sB5(s0;clz) — cB3(s6;502) (33)
L s(82 + 63) 0 _ {8y + 63)

where the sine/cosine products in the parentheses are computed only once and the 31 and 33
elements in (33) are computed from the expansion. Finally, we presume *Wy has been computed
from a knowledge of W and 8y, 8,,03, and that its elements are w;;.

Step 4: Find the last three joint angles. Joint angles 8, and 8g can be found from the clements
of *Wg, which are identified by some matrix manipulations.

[cfyc05 —s0y —cb,s0
AgAs =|s0sc05 chs —s84505 ' (34)
L s8; 0 cB5
(w1105 — wiasls  wiy s + wiacls  wig
SWeAL =|wo1cls — wapsy  wy 905 + waachs  wag - (3)

Lw3 el — wzes8s w3180 + waachs  was

Since AgA; = WA, we find by selecting elements 13 and 23 that

10
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—Wi3

8y = tan—" (ﬂgﬁ) | (36)

Because of the multiplication factor s8s, there are two possible solutions to this equation; the
quadrant must be chosen by some other criterion such as continuity. Note the singularity when
sin 85 == 0, causing the zz and z; axes to line up. There is no numerically-sound shortcut to finding
s6, and cb4, required below, so that 2 more transcendental function calls are needed.

Similarly, 85 and 65 can be found by equating AsAg and AT 3We:

refsclly —clssfg  —sbs
AsAg =|s05c8; —sb558;  cOs : (37)
L —s6g —cfg 0
[wigcls 4 wors8s  wipchy + waoshy  wizcls + wogzsly
AT3W; = w31 W32 w33 (38)
Lwy1804 — worcls  Wia80y — Wwonchy wizshy — waszchy

8; can be found from the 13 and 23 elements of these last matrices and the value of 4,.

895 = ’U)13604 — w23304 (39)

095 =W33 (40)
6

05 =tan™! | 22 41

5 an (605) ( )

By selecting the 31 and 32 elements of these matrices,

896 = -~ Wi 894 + ’UJ21C94 (42)

696 = — Wi2 804 + ’UJ22694 (43)
]

66 = tan™" | =2 44

6 an (096) ( )

This particular method of computing 6 has been chosen because it yields sfs and cfg, and yields
8¢ unambiguously.

4.1. Computational complexity

The total computational complexity for steps 1-4 comes to 64 multiplications, 38 additions, and
10 transcendental function calls, broken down as follows:

Step 1: 9 multiples and 9 additions.

Step 2: 15 multiplications, 9 additions, and 5 transcendental function calls. In deriving the additions
and multiplications, we note that for 85 the subexpressions a2 +s? and 2a,s4 can be precomputed.

Step 3: 34 multiplications and 17 additions. Note that only seven elements of Wy are réquired,
namely wiy, wig, wis, wo1, Waz, Waz, Was.

Step 4: 6 multiplications, 3 additions, and § tran_sccndental function calls.

11
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*

5. Inverse Kinematic Velocities

Step 1: Find the wrist linear velocity. The wrist and hand tip linear velocities are related by

P = 1 — wg X Py (45)
Step 2: Find the first three joint velocities. The wrist position is given by

P4 = 81Zp + aaXo + 8423 » (46)

Differentiating, -

Ps = wy X a2Xe +wy X 8473 (47)
When evaluated in link 2 coordinates (Appendix 1),

—s4¢03(0 -+ 85)
Py = | @by — 54505(8; + 83) (48)
—b 1pwac
where 2y = (A1Az)7 ps. Solving,
2-
P4z
6 = —
' Pua
. 2Paycls — 2Pyys0
by = D4yCU3 Paz 803 (49)
02C93
g  %py, — Ba(s4ch3)
g == Pdz T T2104778)

S4C93

Step 3: Find the angular velocity of the hand relative to the forearm. The hand angular
velocity relative to the forearm, w,, is given by

Wy = Wg — Wy ‘ (50)

This is best evaluated in joint 4 coordinates, accomplished as follows:

915(92 + 03)

3wy =| —(By + 85) (51)
61c(f2 + 05) ,

Swy =(A1A243) wg (52)

S_W_h == 3.‘26 - 3‘_‘)_3 (53)

Snacly + Swpyshy
4 T3
Wy, =A; ‘w, = 3Whe (54)

Swnzs8s — Swpychy

12
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Step 4: Find the last three joint velocities. The hand angular velocity relative to the forearm
is also given by

wy, = 2384 + 2405 + 2504 (55)

Expressed in joint 4 coordinates, we find that

4Z3 == 4y4 (56)
--—805

‘25 =| cbs (57)
L 0

—*é6395

4(—‘)—-h = é,; -+ 96c05 (58)

L 6
Solving,

b5 ="4wn, (59)

5 4whx

fg = — —hz .

6 805 (60)
é4 = 4why —_ éscgs ' (61)

5.1. Computation Complexity

The total for steps 1-4 is 37 multiplications and 25 additions. In arriving at these numbers,
we presume to have the results of the inverse kinematic position computation available. The
breakdown is as follows:

Step 1: 6 multiplications and 6 additions.
Step 2: 15 multiplications and 7 additions.
Step 3: 14 multiplications and 11 additions.
Step 4: 2 multiplications and 1 addition.

6. Inverse Kinematic Accelerations

Step 1: Find the wrist linear acceleration. This is readily found as

By = Br — s X 7 — wy X (w5 X p7) | (62)

Step 2: Find the first three joint accelerations. Differentiating (47), and noting that p,, = pu,

13
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By = @y X Pu + Wy X Ps — $483X3 — 54050, X X3 (63)

Expressed in joint 2 coordinates, this equation cvaluates to (Appendix 1)

——84693(62 + é3) 5493 893 3w3y
asly — s4503(8y + 8)| = "B — wy X *pa+ —s403003 3wy (64)
— puby —5403 3ws, — 1py,,0102

Defining the right side as 2ii4, the joint accelerations can now be found.

Qe

.o U4z
by o— — 65
' "Puz (65)
Qe AN
. U4y693 - ‘U41303
8y = 66
2 (12C03 ( )
2. .
- ilgz -+ s4ch302
- CO302 o 7
03 S4C03 (6 )

Step 3: Find the hand angular acceleration relative to the forearm. By differentiating (50), we
find that

Wy = Wg — W3 — Wy X W, (68)

The angular acceleration w, is found in link 3 coordinates from the previous results.

o, =yi6, (69)
8,8,
1&2 = él
2
2Q2 =A2T le (70)
. élégc%
2&3 = 2&2 + 21203 + ——91é3302 (71)
0
Sy =A7 v (72)
Evaluating in link 4 coordinates,
Sg =(A1AsAs) g ' (73)
Yy, =AT (g — by — Pwy X Pw)) (74)

14
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Kinematic Parameter Multiplications Additions

Joint Angles 64 38
Joint Velocities 37 25
Joint Accelerations 78 57
Combined Total 179 120

Table 4. Computational complexity for evaluation of the inverse kinematic positions, velocities, and

accelerations.

Step 4: Find the last three joint accelerations. Written in terms of the last three angular

accelerations, the relative hand acceleration is

—('-‘.J-h = Z3§4 + 1455 + 1556 "I_ 13é4 X 1495 ‘+‘ (Zgé4 + Z4é5) x Zséa

When evaluated in joint 4 coordinates,

é4é5 T—'ésé6C05 . —0.(,8052
4Qh == -—:05',96895 + 96‘30_5‘ - 4,
6403895 95

The joint accelerations can now be found.

“0ny — 0405 + 958505
595

fg = —

§5 =4<.L'hz - é4é5805

54 == 4why + é5é5895 -— §5c05

6.1. Computational Complexity

(75)

(76)

(m
(78)
(79)

The total is 78 multiplications and 57 additions, using the results of the previous inverse calculations.

This is constituted as follows:

Step 1: 12 multiplications and 12 additions. Here wy X p; is alrcady known.
Step 2: 29 muitiplications and 17 additions. It is required to compute 2w, here.
Step 3: 30 multiplications and 23 additions.

Step 4: 8 multiplications and 5 additions.

Table 4 summarizes the results for computation of the inverse kinematic positions, velocities, and

accelerations.
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link 1
center of mass

1link i-1
origin

base
origin

Ca

Figure 5. An illustration of vectors defined in the text.

7. Dynamics Computation

In the recursive Newton-Euler dynamics formulation, which is the most cfficient one (Hollerbach
1980), a kinematics computation precedes application of the Newton-Euler equations. Because
of the simplificd kinematics of spherical wrist robots, the kinematic portion of the dynamics
computation is simplified as well. In addition, the inverse kinematic computations produce some
of the same quantities as does the inverse dynamics computation. Therefore a combined inverse
kinematic - inverse dynamics computation would save some opcrations in the latter computation.

7.1. Recursive Newton-Euler Dynamics

The recursive Newton-Euler computation of the dynamics proceeds by a two-step recursive
procedure (L.uh, Walker, and Paul 1980a). First, the angular velocities and accelerations of cach
link are computed along with the linear acceleration of each joint.

i‘:"-i =A31(i—1%‘——1 ++1 Zi—léi) (80)
oy =AT( o 4 g 18+ =y X =z 18) , (81)
BBy =AT TPy + s X ip: +tw; X (fw; X ip:) (82)

where these particular equations presume a rotary joint manipulator only. From these results, the
Newton-Euler equations may be applied to find the net force and torque acting at each link.

¥, =", 4+ ' X e, X (g X ) (83)
"fi =mii'l:i » (84)
'n; ="1'w; + 'w, X (L'w,) (85)

where previously undefined terms are (Figure S):

16




Hollerbach and Sahar ' Wrist-Partitioned Inverse Kinematics

irf is & vector from coordinate system 4 to the center of mass of link i,
*F; is the acceleration of the center of mass of link 4,
*f, is the net force on link 4,
‘n; is the net torque on link 4, and
1, is the inertia tensor of link ¢ about its center of mass.
Secondly, the forces and torques arc propagated from the tip to the base.

i = A TG (86)
Mgy =0 A TRy (”p? +i) X '+ iD: X i1 (87)
r="""g g TNy (88)

where

“f;_1,; is the force exerted on link ¢ by link 7 — 1,

n;,_,,; is the moment exerted on link ¢ by link ¢ — 1, and

r; is the input torque at joint i.
Evaluation of these dynamics for a gencral 6-rotary-joint manipulator requires 688 multiplications
and 558 additions (a slightly lower figure than given in (Hollerbach 1980)).

7.2. Dynamics Particularized to a Spherical-Wrist Manipulator

By taking advantage of the simple kinematic structure of the spherical-wrist, rotary manipulator,
the dynamic complexity is reduced to 448 multiplications and 361 additions. The breakdown for

the savings is as follows.

A;: 116 muldiplications and 87 additions are saved. A matrix multiply now takes 4 multiplications
and 2 additions instead of 8§ multiplications and 5 additions because each «; is either 0
or /2. There are 29 applications of the link transformation matrices A; for the six-joint
manipulator.

b;: an additional 92 multiplications and 78 additions are saved. This comes about because (i)
i, =b,_; for ¢ = 1,3,5,6, although the term ‘p, = AT i—p,_, must still be evaluated;
and (il) p, = 7145, p; = 2354 simplify some of the cross products.

n,,;: an additional 32 multiplications and 32 additions saved. As above, this comes about from
the simple p; vectors when evaluating 'p; X f;;y1.

wy,wo: If the assumption of a non-spinning base is made, i.e., wy = @, = 0, then an additional
40 multiplications and 37 additions is saved in evaluating 'w,, 2w,, '@, 2wy, ¥, and 'n;.

Counting the non-spinning base assumption, the dynamic complexity is reduced to 408 multiplications
and 324 additions, a savings of 280 multiplications and 234 additions. It should be noted that if
the A; matrices are not provided to the dynamic computation, then an additional 4 multiplications
are required to form each matrix in the general case. This would be unnecessary for the particular
manipulator considered here.
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.

7.3. Inverse Kinematics Considered with Inverse Dynamics

In computing the inverse kinematics, there is an additional modest savings in the inverse dynamics
of 40 multiplications and 28 additions, bringing the total dynamics complexity down to 368
multiplications and 296 additions. This results from the precomputation of the following quantities.

Yw,,2w,, 3w, 6 multiplications and 3 additions are saved.

Y1, 2, 2w, 10 multiplications and 7 additions are saved.

4 multiplications and 4 additions are saved. Since 2, is known, then

3i54 = A;r 2i54» 4i54 = AZ 3i54

requires 8 multiplications and 4 additions for evaluation instead of 12 multiplications and 8
additions from (82). ‘

. 8 multiplications and 6 additions are saved. It is not necessary to compute p, because ¥,

can be computed without it and p, is known. From (82) and (83),

%y = AD'B, + 2w X (Pps + 7rp) + 2wy X (Pwy X (Ppy + 213)) (89)

4. 4 multiplications and 2 additions saved. Similarly, it is not necessary to compute p, because

8F; can be computed from 3j,.

89, =3Py 3wy X s4%23 — 3&3 X (3@3 X 84 313) _ (90)

By =, + Pas X (*ry — 54 °28) + Pwy X Py X Py — 54 °25)) (91)

where 3r; — s4 %23 is fixed and is precomputed.

*w,, Sw;, w3 multiplications and 2 additions saved. This results from calculating w, directly

1y
%,
“,
f‘ H
—~

from w, and the components of *w, separately.

Swe =W§we (92)
a0y = Ao, (99)
"wg =As *wg (94)
fwy =A{ w, (95)
fwy, ="twg — ‘w, (96)
fwy =*wy + *yab, (97)
52.15 = SQG - slsée (98)

Ordinarily, 24 multiplications and 19 additions would have been required to calculate these
quantities.
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404, %ws, 8wg: 5 multiplications and 4 additions saved. Similarly, some savings can be accomplished
by computing ®ws from @, and the components of *w, separately.

Sg =W{ g | (99)
S =Ag’s (100)
g =As g (101)
t9, =A%, (102)
o, ="tg — g — wy X *w, (103)
g =10y + *yabs + ‘wy X 'y, (104)
Sy = g — 2505 — "wy X 2506 (105)

Ordinarily, 36 multiplications and 31 additions are required for these quantities.

7.4. Simplified Inertial Parameters

No presumptions were made above about the inertial parameters of the manipulator, namely the
center of gravity, the principal inertias, and the orientation of the principal axes of inertia for
each link. While the kinematic structure of manipulators is deliberate, the inertial parameters are
seldom a factor in design. Therefore a simplifying set of incrtial parameters cannot be assumed a
priori. Paul (1981) considered one way in which the dynamics might be simplified if a particular
set were assumed. In the present study, if the center of gravity and the principal axes lined up
with the internal link coordinate system, an additional simplification of 174 multiplications and
168 additions in the dynamics would result.

f;; 60 multiplications and 54 additions are saved. If ‘r; lies along a coordinate axis, then each
*f; requires only 8 multiplications and 6 additions for cvaluation.

‘n,__; ;: 24 multiplications and 24 additions are saved. The term (*p] -+ ‘r}) X.ifi now requires 2
multiplications and 2 additions for its formation and its addition, where *p; + ‘r lies along
an axis.

‘n;: 90 multiplications and 90 additions are saved. Ilf 1 is a}igned with the coordinate axes, then
it is diagonal. Three additions are saved in the ‘w, X 'I,'w, term because the principal inertia
differences can be precomputed.

If the simplified inertial parameters were considered along with all the other computational
savings, then the dynamics would require only 194 multiplications and 138 additions. Table 5
summarizes the dynamics complexity for the various kinematic and dynamic conditions that have
been considered above. It appears that the dynamic equations are even more approachable from
a computational standpoint than had been considered herctofore (Hollerbach 1980). Under the
best conditions, an exact evaluation of the dynamics has roughly the same complexity as a full
evaluation of the inverse kinematics (Table 4).

19




Hollerbach and Sahar Wrist-Partitioned Inverse Kinematics

Condition Multiplications Additions

General Rotary Manipulator 688 558
Spherical Wrist Manipulator 408 324
Precomputed Inverse Kinematics 368 296
Simplificd Inertial Parameters 194 138

Table 5. Dynamics computation complexity for a 6-dof manipulator under various conditions.

8. Discussion and Summary

An algorithm for calculation of the inverse kinematic accelerations has been presented, which
is the most cfficient one to date. Based on a method devcloped by Featherstone (1983), the
algorithm directly takes advantage of the structure of spherical-wrist manipulators to decompose
the 6-dof inverse problem into two 3-dof inverse problems through a 4-step procedure. The
resultant equations for the first 3 joints, but not the last three, arc particular to a given manipulator
structure, but the technique is easily extended to other structures. One could envision a catalog of
equations for the most common manipulator configurations.

Spherical wrists are the most important case for current 6-dof robots and are becoming
standard. An additional simplifying kinematic criterion, namely that neighboring joint axes are
oriented parallel or orthogonal to each other, is almost always followed in manipulator design and
aids the solution to the two 3-dof kinematic problems.

These two kinematic criteria have a simplifying effect on the dynamic equations as well.
Since in the recursive Newton-Euler equations (L.uh, Walker, and Paul 1980a) the computations
are carried out in internal link coordinates, the transformations between neighboring links are
simplified. Angular velocities and accelerations as well as linear accelerations of the link origins
are calculated more simply, even as they are in the inverse kinematics computation. Because the
inverse kinematic acceleration algorithm produces some of these last-mentioned vectors as well,
then a combined inverse kinematic acceleration/inverse dynamics computation results in some
savings for the inverse dynamics calculation.

The implication of these algorithms is that the computational requirement for either the
inverse kinematics or the inverse dynamics is low enough to warrant casy real-time implementation.
Recent control algorithms based on derived hand acceleration (Luh, Walker, and Paul 1980b,
Freund 1982, Hogan and Cotter 1982) are made computationally feasible, making these algorithms
more competitive with schemes which close force toops around the hand to avoid the inverse
kinematic problem (Khatib 1980). The recursive Newton-Euler formulation is made even more
cfficient; if simplifying inertial parameters are assumed, the dynamics complexity roughly equals
the inverse kinematics complexity. It would seem that a general Cartesian trajectory control ability,
involving full inverse kinematics and dynamics as well as sophisticated hand-based control laws,
is within reach.
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Appendix 1
- The wrist velocity is given by

Ps = wy X agXo + Wy X 8473

where

Wy = Wy + 2203

Substituting above,

Ps = wy X (agXs + s423) + 0322 X 2354

Noting that p,, = asXz + 5473 and x3 = —7s X Zg,

Py = Wy X Py — 34é3x3

where

wy = Zoby + 2,6,

(106)

(107)

(108)

(109)

(110)

The wrist velocity is best evaluated in joint 2 coordinates, a reflection of the regular kinematic
structure of the first 3 joints. Since the rotation axes are either perpendicular or parallel to each
other, then a rotation axis in one coordinate system will also be a major axis in the next coordinate
system. Link 2 coordinates are the most convenient because they are situated in the middle of the

coordinate systems. Starting first with the angular velocity 2w,,

802
70 =%y, = | ch,
0
n="n
91802
2@.2 = 91c62
by

The vector p,, in link 2 coordinates is

ag — 84893
pr = 84693
0

Thus the cross product term in (109) evaluates to

22
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5 9 "‘éQ 2pwy . ‘—ég(84003)
Wo X Py = . 62 2sz = 92(0.2.—— 84393)
91(2pwy592 - 2sz002) —64 1Pw:c
where it is noticed that *py; = —(*pwysfo — 2pwzch2). Finally,

2 2 2 52
Pa ="wy X “Pu — 8403 “X3

2X3 2(603, 593,0)
Collecting all terms, (79} becomes

:—-64093(é2 —+— ég).
2P4 = 0.292 —_ 84893(92 -+ 93)
—60, lpwz

Appendix II
The wrist acceleration in link 2 coordinates is

2 2. 2 2 2. ) 5 2 2
Py = "Wa X “Pu + “wy X Py — 8403 X3 — 5403 “wy X X3

Starting with the first term on the right,

1‘;“)_2 z(élé% él:éQ)
lpw =(1sz: lpwy; 0)
I "”62 lpwy

1Q2 X lpw = 02 lpwz

_9192 1Pwy — 0 1pwz
—52(1pwx302 - lpwyceil)
Ag(l% X 'pw) =85 puwzchs + puyshs)
L 0102 1pwy - 01 1pw:c

This expression can be further simplified by noting that

1pwzss — 'pyycly = — s4c;

1Dwscls + 'puysby =as — 5456,
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(116)
(117)

(118)

(119)

(120)
(121)

| (122)

(123)

(124)
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The last term on the right is evaluated as follows:

-0
Swy X 3xg =| Pwg, ‘ (126)
L— 3w3y
: i 893 3w3y
A3(3W3 X 3X3) =|—cf3 3W3y (127)
- ——3(.032
Collecting all unknowns on one side,
~—S4693§2 — 8400353 34é3503 3w3y
((.7.2 - 84393)-0.2 —_ 8480353 == 2i54 - 2£2 X 2[.)4 + —S4é3093 30)3y (128)
- ]'pwmgl "'34é3 3“)32 - lpwyélé2
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