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Abstract
We assessed the ability of the Polar activity recorder (AR) to measure
energy expenditure (EE) during military training. Twenty-four voluntary male
conscripts participated in the study and wore an AR on the non-dominant
wrist 24 h a day for 7 d. The AR analyzed and stored the frequency of hand
movements (f_hand) into memory at 1 min intervals. The relationship between
f_hand and EE was studied over a 7 d period of military training using the
doubly labeled water (DLW) technique. In addition, the relationship between
f_hand and EE was analyzed during walking and running on a treadmill with
an indirect calorimeter (IC), and f_hand was measured during a supervised
45 min field march test where the conscripts carried combat gear. EE was
expressed as physical activity level (PAL), total energy expenditure (TEE), and
activity-induced energy expenditure adjusted for body mass (AEE/BM). Over
the 7 d period, f_hand alone explained 46% of inter-individual variation in
PALDLW. After inclusion of body height and mass in the model used to predict
PALDLW from f_hand, a very high positive correlation and a low standard error
of estimate (SEE) were observed between the AR and DLW techniques: for
TEE r = 0.86 (p < 0.001), the SEE was 6.3%, and for AEE/BM r = 0.84
(p < 0.001), the SEE was 12.8%. In the treadmill exercise, f_hand correlated
highly with PALIC (r = 0.97 ± 0.02). In the 45 min field march test, the AR
measured similar f_hand as on the treadmill at the same speed. In conclusion,
the wrist-worn AR can be regarded as a reliable and valid method for assessing
EE during intensive training.

Keywords: accelerometers, doubly labeled water, energy expenditure, military
training, physical activity
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1. Introduction

Military service includes physically demanding tasks both indoors and outdoors and involves
carrying loads and using various pieces of equipment and tools. The range of fitness levels
among conscripts has widened (Santtila et al 2006), and the ability to tolerate intensive military
training may be affected by increased body mass (BM) and lower fitness level (Tanskanen
et al 2009). Subsequently, it would be important to have practical and reliable tools to monitor
physical activity and energy expenditure (EE) in soldiers. During heavy training periods in the
military and among endurance athletes, knowledge of EE could help in adjusting the training
volume as well as controlling adequate energy availability. In order to be acceptable for the
military, the methods need to be robust and unobtrusive.

EE is an important training parameter, since many measures of training load are associated
with total energy expenditure (TEE). Physical activity level (PAL), defined as TEE divided by
basal metabolic rate (BMR), has been used to classify occupational workload and leisure-time
physical activity. PAL among North American and European adult population is typically
1.6–1.7 (Westerterp and Speakman 2008, Speakman and Westerterp 2010). An upper limit
of PAL that can be maintained for a longer period of time has been determined to be about
2.5 within the general population (Black et al 1996, Westerterp and Plasqui 2004) while
professional endurance athletes may reach higher PAL values (Westerterp 1998). Another
measure for describing EE is activity-induced energy expenditure (AEE) with corrections for
differences in body size (Ekelund et al 2004). AEE arises from muscular activity, including
shivering and fidgeting as well as purposeful physical exercise (Poehlman 1989), and it is
affected by the intensity and duration of activity as well as by individual differences in
movement efficiency (Ainsworth et al 1993).

The doubly labeled water (DLW) technique is considered the golden standard for
measuring EE under free-living conditions. Since the DLW technique is expensive, it is most
often used in small study populations. While this technique provides an accurate measure
of TEE, it gives no information on physical activity in terms of frequency, duration, and
momentary intensity. Nevertheless, it is the only method available for accurately measuring
TEE under free-living conditions (Plasqui and Westerterp 2007). In short-term measurements,
indirect calorimetry (IC) has been extensively used as the reference method for assessing the
validity of accelerometers in various sports and non-sports activities.

An accelerometer is the small instrument designed to register movement data at a high
frequency over days or weeks. Accelerometers are typically uniaxial or triaxial, of which
the latter are generally accepted as providing more information and a better relationship to
AEE than uniaxial ones (Bouten et al 1994). Previously validated accelerometer applications
(CSA/MTI/Actigraph and Tracmor) are worn close to the center of the body (hip, waist, or
lower back), and they are designed to integrate the total amount of acceleration in one or
three dimensions (Plasqui and Westerterp 2007). In contrast to these devices, Polar activity
recorders (AR) utilize frequency and regularity of hand movements with adjustment for body
parameters (Kinnunen et al 2009). This method requires little computational power, which has
enabled its use in battery-operated wrist-worn devices (Polar AW200, FA20 and Active, Polar
Electro Oy, Kempele, Finland).

Wrist-worn motion sensors were introduced in a research setting already in the 1950s,
but until a recent study by van Hees et al (2011), there have been no validation data available
from wrist-worn accelerometers with respect to TEE under free-living conditions (Plasqui
and Westerterp 2007). Van Hees et al (2011) used a linear model to analyze the role of
wrist acceleration in explaining variations in AEE, and they found that a wrist-worn three-
dimensional accelerometer explained 24% of variation in AEE in 73 non-pregnant women.
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In short-term recordings, activity monitoring from the wrist has been found to be accurate in
measuring EE while walking and hiking (Bouten et al 1997, Brugniaux et al 2010). In
daily tasks and sports activities, a minimal prediction improvement has been reported when
a wrist accelerometer has been added to the center of body measurement (Swartz et al
2000, Tanaka et al 2007). However, Kinnunen et al (2009) have reported a reasonably high
accuracy with the present methodology. Modern signal processing technology has allowed
more complex analysis methods to improve the accuracy of accelerometer applications. For
example, automatic activity classification has been widely studied in recent years with machine
learning procedures or hierarchical algorithm structures, among other methods (Siirtola et al
2009, Yang and Hsu 2010, Zhang et al 2012).

In normal walking and running, the frequency of hand movement ( f _hand) is linked with
stride frequency (Wagenaar and van Emmerik 2000), and stride frequency is associated with
walking and running speeds. Wixted et al (2007) described an EE estimator in walking and
running based on step frequency modified by anthropometric measures. Anthropometrics such
as leg length, body height (BH) and BM affect self-selected step length and stride frequency at
a given speed. Walking cadence has also been successfully used to determine the lower limit
for moderate-intensity activity (Tudor-Locke and Rowe 2012). Another recent paper by Cheng
et al (2009) describes an algorithm for estimation of exercise rate, i.e. stride rate in walking
or running, pedaling cadence in cycling or stroke rate in rowing. All of these approaches have
used waist mounted accelerometers, and apparently none of them has been validated in the
long-term field setting so far.

The aim of this study was to assess the validity and reliability of the wrist-worn AR in
measuring EE in a military environment. Because of usability issues and extreme measurement
conditions, simple and robust methods were preferred. Firstly, a piece-wise linear relationship
between f _hand and intensity of exercise was determined so that the best match was attained
with AR and DLW regarding TEE and AEE during 7 d of intensive military training. Secondly,
the relationship between f _hand and intensity of exercise was determined with IC in treadmill
walking and running on a minute-by-minute basis. Finally, the effect of carrying 20 kg of extra
military equipment on f _hand was studied when walking or running at a constant speed on
flat terrain covered by fine gravel.

2. Methods

2.1. Subjects

Twenty-four voluntary male conscripts, age 19–20 years, mean ± SD BM 77 ± 15 (range
57–111) kg, BH 178 ± 8 (153–187) cm, and maximal oxygen uptake (VO2max) 47 ± 6
(30–59) ml kg–1 min–1, participated in the study. The selection of subjects from a group of
voluntary subjects is explained in detail by Tanskanen et al (2009). The subjects’ physical
fitness characteristics were representative of young Finnish men (Santtila et al 2006). All the
subjects were informed of the experimental protocol and they gave their written consent to
participate in the study. They were also advised of their right to withdraw from the investigation
at any time. The study protocol was approved by the Finnish Defense Forces and the Ethics
Committees of the University of Jyväskylä and the Kainuu region.

2.2. Study protocol

The experimental protocol, timing of the tests, and main daily program with respect to the
DLW assessment period, are illustrated in table 1. The study protocol included a treadmill
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Table 1. Experimental protocol and main daily program during the DLW assessment period.

Days

−9, . . . , −5 0 1 2 3 4 5 6 7 8 +1

VO2max test on a treadmill ×
DLW (doubly labeled water) ×
dose
Urine sample × × ×
Combat shooting exercise × ×
Overnight field exercise × × × ×
Long-distance skiing ×
Shooting exercise ×
45 min march test ×

test about 1 week before the DLW assessment period, and a 45 min field march test on the
following day after the DLW period. The data collection took place during the winter when
the ambient temperature varied between −2 and −23 ◦C.

2.3. Polar AR

Each conscript wore an AR (prototype of Polar FA20, Polar Electro Oy, Kempele, Finland) on
the non-dominant wrist 24 h a day. As the sensing element, the AR included a capacitive 1D
accelerometer. In the signal processing, the AR utilized a patented movement counting and
filtering procedure (Kinnunen and Miettinen 2005). The acceleration signal was band-pass
filtered (0.3–3.0 Hz) and the device counted hand movements if acceleration exceeded a pre-
set threshold. The device did not register hand movements that appeared too soon after the
previously detected movement, and the rejection time was longer in non-rhythmic activities.
The number of registered hand movements was stored in the memory of the device at 1 min
intervals, and this is referred to as f_handAR. The prototype had a 24 h running memory, so the
AR were collected every evening for data download and redistributed within 30 min. If the
AR had registered 30 consecutive zeros during the day (between 8 a.m. and 9 p.m.) and 300
consecutive zeros during the night (between 9 p.m. and 8 a.m.), the corresponding time was
considered to be non-wear and left out of the analysis.

2.4. Military training and DLW measurement

Description of the 7 d military training. The measurement period was one of the most
intensive training weeks during 8 week basic military training. The conscripts were involved
in typical physically demanding military tasks, such as marching, material handling, and
shooting exercises, and in several unsupervised activities of varying intensity in the garrison
area and in the field. During the 7 d measurement period, the main events included a 1 d
combat shooting exercise, 4 d of overnight field training, and 1 d of long distance skiing
(table 1).

DLW experimental design. Reference EE for the 7 d period (TEEDLW) was measured with
DLW according to the Maastricht Protocol (Westerterp et al 1995). Briefly, at 10 p.m. on
day 0 after collecting a baseline urine sample, the subjects drank a weighed mixture of 2H2O
(99.9 atom%) and H2

18O (10 atom%), resulting in an initial excess total body water enrichment
of 150 ppm for deuterium and 300 ppm for oxygen-18. Total body water was estimated from
calculated body composition based on BH, BM, age, and gender with the equation from
Deurenberg et al (1991), assuming 73% hydration of fat-free mass. The subjects consumed no
foods or fluids for 10 h after dose administration during overnight equilibration of the isotopes
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with body water. Subsequent urine samples were collected from the second and third voiding
on the morning of day 1, and from the first and second voiding on the morning of day 8. Isotope
quantities (deuterium and oxygen-18) in the urine were measured with an isotope ratio mass
spectrometer (Optima, VG Isogas, Middlewich, UK), and CO2 production was calculated from
isotope ratios at the baseline and days 1 and 8 using the equations from Schoeller et al (1986).
CO2 production was converted to daily metabolic rate using an energy equivalent based on the
individual macronutrient composition of the diet (Black et al 1986). AEEDLW was calculated
as TEEDLW × 0.9 – BMR, assuming diet-induced thermogenesis of 10% (Poehlman 1989).
To remove the confounding effect of body size (Ekelund et al 2004), AEEDLW was adjusted
for BM (AEE/BMDLW). BM was measured on days 1 and 8, and the average of these two
measurements was used as individual BM.

Sick leave, substitution of lost AR data. Sick leave was non-attendance in daily service
because of illnesses or injuries examined by a physician. Three of the subjects had a maximum
of a 24 h period when they did not wear the AR because of sick leave. During that time their
wrist activity counts were set to a very low level in the daytime (corresponding to PAL =
1.6), and to zero activity at night (10 p.m.–7 a.m.). Other non-wear time was excluded from
further analysis and we assumed that the individual average PAL of the analyzed wear time
represented the entire 7 d period. In order to be included in further analysis, the subjects had
to have successfully recorded AR data from a minimum of 4 d.

2.5. Treadmill test

To determine VO2max and to observe the relationship between f_handAR and the intensity of
exercise in treadmill walking and running, the conscripts performed a maximal treadmill test.
The test was performed in 3 min stages starting by walking at 4.6 km h−1 (1.0◦ inclination).
Thereafter, treadmill speed and inclination were increased gradually every 3 min to induce
an increase in intensity up to maximal effort. The procedure was the following: second stage:
6.3 km h−1 (1.0◦), third stage: 7.7 km h−1 (1.4◦), fourth stage: 9.0 km h−1 (1.9◦), fifth stage:
10.3 km h−1 (2.3◦), sixth stage: 11.3 km h−1 (3◦), seventh stage: 12.6 km h−1 (3.2◦), and
eighth stage: 13.2 km h−1 (4.2◦). Pulmonary ventilation and respiratory gas exchange data
were measured online by using the breath-by-breath method (Jaeger Oxygen Pro, VIASYS
Healthcare GmbH, Hoechberg, Germany), and mean values were calculated at 1 min intervals
for later analysis. Heart rate was continuously recorded at 5 s intervals using a heart rate monitor
(Polar810i, Polar Electro Oy, Kempele, Finland). Blood lactate was determined 1 min after
completion of exercise from a fingertip blood sample using a lactate analyzer (LactatePro R©,
Arkray, Japan). The criteria used to determine maximal effort were: VO2 and heart rate did not
increase despite an increase in inclination and speed of the treadmill, a respiratory exchange
ratio higher than 1.1, and a post-exercise blood lactate higher than 8 mmol l−1 (ASCM
2001).

Median f_handAR from each 3 min stage, as well as oxygen consumption (VO2) and
carbon dioxide production (VCO2) from the final minute of each stage were extracted from
the measured data. Only those 3 min stages that the subjects were able to finish were included
in the analysis. A reference value (PALIC) was calculated from respiratory gases and BM as
follows: EE = 3.8149 ∗ O2 (l) + 1.2321 ∗ CO2 (l) (Lusk 1924), BMR = 15.1 ∗ BM + 692
(Schofield 1985), and finally, PALIC = EE/BMR.

2.6. Field march test

To assess the validity of the AR in quantifying the intensity of a typical military activity,
f_handAR was determined during a 45 min field march test while the subjects carried a total
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of 20 kg of military equipment. The subjects marched in small groups at a constant speed in
an indoor hall on a fine gravel surface. The speed was individually selected for each subject
to match about 70% of measured VO2max. Five subjects marched at 6 km h−1, 12 at 7 km h−1,
and 2 subjects at 8 km h−1. Constant and precise speed was ensured by a group leader who
monitored the speed using a Polar S625X training computer (Polar Electro Oy, Kempele,
Finland) equipped with an individually calibrated foot pod. The average f_handAR measured
during the march test was compared with the f_handAR value measured during treadmill
walking and running at the same speed. The average frequency was calculated over the
45 min march excluding 2 min from the beginning and the end. Because the speeds on the
treadmill were not exactly the same as during marching, the treadmill data were individually
interpolated between two treadmill stages to achieve f_handAR that would best correspond to
the same speed.

2.7. Statistical analysis

Customized model between the AR and PAL. Post-processing of the measured AR data
was performed using Matlab software (The Mathworks Inc., Natick, MA). In order to
derive EE parameters from the AR data, the first step was to model a piece-wise linear
relationship between f_handAR and PAL. Four pairs of f_handAR and PAL were determined:
two intermediate points and the extreme values of f_handAR (0 and 100 movements min−1). As
the second step, two per-cent-wise factors were determined to adjust PAL based on differences
in BH and BM compared with the group mean values. The model parameters were selected so
that the model would yield a best fit between the AR and DLW over the 7 d period. PALAR was
determined as the average of the minute-by-minute values over the 7 d period. TEEAR was
calculated as PALAR × BMR, and AEE/BMAR as (TEEAR × 0.9 – BMR)/BM. Minimal
95% limits of agreement between TEEAR and TEEDLW and a lack of trend in a Bland–Altman
plot (Bland and Altman 1986) were used as the criteria of the best model.

Linear regression models. The statistical analyses were performed using PASW Statistics,
version 18.0.0 (SPSS Inc). A Shapiro–Wilk test was used to verify that the data were normally
distributed. In order to allow comparison with earlier studies and to identify the predictors
of PALDLW, TEEDLW, and AEE/BMDLW in the 7 d assessment, stepwise multivariate linear
regression analysis was used with f_handAR, BH, and BM as independent variables. In order
to account for the effects of nonlinearity observed between f_handAR and PAL, minute-by-
minute f_handAR values were normalized based on the best piece-wise linear model so that
the original range between 0 and 100 was maintained. The average normalized frequency of
hand movements for the whole 7 d period is later referred to as f_hand_nAR.

A paired-samples t-test was used to compare the measures of the AR (PALAR, TEEAR,
AEE/BMAR) with the reference DLW values (PALDLW, TEEDLW, AEEDLW) and to compare
f_handAR between the march and treadmill tests. Pearson correlation coefficients were
computed to determine the linear relationships between the parameters studied. The level of
statistical significance was set at p < 0.05. Unless otherwise mentioned, all data are presented
as mean ± SD.

3. Results

3.1. Military training and DLW measurement

Accomplishment of activity measurement. Two of the subjects had the AR data collected from
3 d only, and thus they were excluded from the analysis of the 7 d period. The remaining
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Figure 1. Customized four-point linear model between the frequency of hand movements and
physical activity level (PAL, solid line) in 7 d of military training (N = 22).

Table 2. EE measured by the AR and DLW, N = 22. With the AR, a customized model predicted
PAL using frequency of hand movements, BH, and BM.

AR DLW t-test r (p) SEE SEE (%)

PAL 2.17 ± 0.19 2.17 ± 0.23 0.984 0.80 (<0.001) 0.136 6.3%
TEE (MJ d–1) 16.6 ± 1.80 16.6 ± 2.1 0.991 0.86 (<0.001) 1.05 6.3%
AEE/BM (kJ kg–1 d–1) 98.3 ± 19.9 98.1 ± 23.5 0.977 0.84 (<0.001) 12.5 12.8%

SEE: standard error of estimate. SEE (%): standard error of estimate in per cents. PAL: physical activity level
(multiple of BMR). TEE: total energy expenditure (MJ d–1). AEE/BM: activity energy expenditure adjusted with
body mass (kJ kg–1 d–1).

22 subjects’ activity measurements were accomplished successfully, and the percentage of
measured time share was similar during the days and at night (80% ± 19% and 78% ± 12%,
respectively, p = 0.499). When comparing 24 h periods with each other, the measured time
share varied between 59% and 96% and was not associated with average PALAR. Between
the subjects, the measured time varied from 51% to 97%, and it was not associated with the
individual differences between AR and DLW in PAL, TEE, or AEE/BM.

Customized model between the AR and PAL. The four-point piece-wise linear model
that yielded the best fit between TEEAR and TEEDLW is presented in figure 1. The best BH
adjustment factor was 1.00% of the minute-by-minute PAL above resting value per 1 cm
difference from the group mean BH, and the BM adjustment factor was −0.65% of the
minute-by-minute PAL above resting value per 1 kg difference from the group mean BM.

Figure 2 shows physical activity graphs over the 7 d measurement period derived from the
AR and anthropometric parameters from two different subjects. During the 7 d measurement
period, no statistical differences were found in PAL, TEE, and AEE/BM measured with the
AR and DLW techniques (table 2, figure 3). A Bland–Altman plot of TEE and AEE/BM
showed no significant trend between the mean and the difference of the two methods, and
the 95% confidence intervals were −2.1–2.1 MJ d–1 in TEE and −25.1–25.2 kJ kg–1 d–1 in
AEE/BM (figure 4).
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Figure 2. Physical activity of two example subjects measured by the AR during 1 week of military
training. The average PAL of the two subjects was 2.41 and 1.90 (gray and black, respectively).
The dashed horizontal lines for each day represent full rest and the gap between successive
days is scaled to 10 metabolic equivalents. Subject in gray: BM 87.4 kg, BH 187 cm, f _hand
14.0 mov. min−1 (12.3 n.u.), TEE 20.3 MJ d–1. Subject in black: BM 98.8 kg, BH 183 cm,
f _hand 11.0 mov. min−1 (10.0 n.u.), TEE 17.4 MJ d–1. f_hand: average frequency of hand, n.u.:
nonlinearity normalized units, TEE: total energy expenditure.
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Figure 3. Total energy expenditure (TEE, (A)) and activity-induced energy expenditure adjusted
for body mass (AEE/BM, (B)) measured by the AR and DLW technique over the 7 d period of
military training (N = 22).

Linear regression models. AR-measured f_hand_nAR explained 46% of the variation in
PALDLW with no significant additional contribution by inclusion of BH and BM in the model.
In the TEE model, BM explained 29% of the variation in TEEDLW with a significant added
contribution by inclusion of f_hand_nAR (58%) and BH (70%). Regarding AEE/BMDLW,
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Figure 4. Bland–Altman plots of total energy expenditure (TEE, (A)) and activity energy
expenditure adjusted for body mass (AEE/BM, (B)) measured by the AR and DLW technique
over the 7 d period of military training (N = 22).

Table 3. Multivariate regression models for explaining the variation in EE parameters (N = 22).

Prediction equation Adjusted r2 r p SEE SEE (%)

PALDLW = 0.153 ∗ f_hand_nAR + 0.531 0.46 0.69 <0.001 0.172 7.9
TEEDLW = 0.064 ∗ BM + 1.25 ∗ f_hand_nAR + 0.70 0.86 <0.001 1.168 7.0

0.120 ∗ BH – 22.9
AEE/BMDLW = 15.2 ∗ f_hand_nAR – 0.70 0.86 <0.001 12.96 13.2

1.01 ∗ BM + 1.30 ∗ BH – 213

SEE: standard error of estimate. SEE (%): standard error of estimate in per cents. PALDLW: physical activity level
(multiple of BMR). TEEDLW: total energy expenditure measured with DLW (MJ d–1). DLW: double labeled water.
AEE/BMDLW: activity energy expenditure adjusted with body mass (kJ kg–1 d–1). BM: body mass (kg). BH: body
height (cm). f_hand_nAR: frequency of hand movements registered by Polar AR, normalized for nonlinearity, and
averaged over the 7 d period.

f_hand_nAR explained 41% of the variation with a significant added contribution by inclusion
of BM (59%) and BH (70%). The prediction equations are shown in table 3.

3.2. Treadmill test

All 24 subjects performed the treadmill test and reached the criteria set for maximal effort.
The subjects were able to walk and run 5.3 ± 1.1 three-minute stages on the treadmill (range
3–7). In 2 subjects the AR apparently failed to detect all steps at the lowest walking speed
(<45 counts min−1 at 4.6 km h−1); they were excluded from the analysis. On an individual
level, measured f_handAR correlated strongly with PALIC, r = 0.97 ± 0.2 (range 0.93–1.00).
There was, however, some individual variation in the relationship between f_handAR and
intensity of exercise (figure 5).

During walking (f_handAR = 60 mov. min−1, corresponds to 120 steps min−1 and about
6 km h−1) and running (80 mov. min−1 and about 11 km h−1), BH correlated with PALIC (r =
0.60, p = 0.002 and r = 0.65, p = 0.001, respectively). At the mentioned levels of f_handAR,
a 1 cm change in BH increased PALIC by 1.3% in walking and 1.1% in running.
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Figure 5. Hand movement frequency registered by a Polar AR and PAL measured by an indirect
calorimeter (PALIC) during treadmill walking and running (N = 24). The average individual
coefficient of correlation was 0.97 ± 0.02 (dashed lines), and for combined data the coefficient of
correlation was 0.90 (solid line).

3.3. Field march test

From a total of 24 subjects, 4 subjects did not participate in the field march test because
of being sick. On an individual level, f_handAR was very constant during the 45 min march
(SD 2.3 ± 1.0 movements min−1). The average f_handAR of marching was not different from
f_handAR measured in treadmill walking or running at the same speed (p = 0.256), and the
frequencies correlated with each other (r = 0.77, p < 0.001). Bland–Altman plot showed no
trend between the mean and the difference of the two methods (r = 0.03, p = 0.916), and the
95% confidence intervals were −7.4–5.6 movements min−1.

4. Discussion

The main focus of this study was to investigate the reliability and validity of the new and
practical AR method during military training. During the 7 d measurement period, AR-derived
parameters of EE were compared with those measured with the DLW technique, and a very low
standard error of estimate (SEE) and a high positive correlation were found. A Bland–Altman
plot showed no trend between the mean and difference of the two methods, indicating that
the accuracy of the AR was equal independent of the level of EE. In the treadmill exercise,
hand movement frequency correlated highly and positively with PALIC, and the correlation
improved further by inclusion of BH in a regression model. In the field marching test, the AR
measured similar hand movement frequencies as on the treadmill with the same speeds.

In the signal processing, the main outcome of this research was the determination of a
relationship between f_handAR and PALDLW which may provide a reliable and robust method
for estimating the EE of military training. This was accomplished iteratively by searching for
a best fit between the estimated 7 d TEE and the corresponding value measured with the DLW
technique. Furthermore, during the 45 min march on a flat surface with 20 kg of military
equipment, similar f_handAR was measured as on the treadmill at the same speed. Comparison
between the march and treadmill tests needs to be interpreted with caution because subjects
had freedom to select between walk and run in both tests, and we did not account for the
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apparent nonlinearity in the relationship between speed and stride frequency that takes place
in transition from walk to run. However, the fact that individual variability in f_handAR was
very low during marching confirmed that the AR was able to register stride frequency of
walking or running correctly even though the hands were not able to move freely during
the field march test—the subjects held the rifle in front of them. If the speed is maintained,
carrying 20 kg of extra weight increases metabolic requirements significantly (Bilzon et al
2001). Altogether, these results indicate that the AR did not account for the extra amount of
load carried. This is an expected finding because accelerometers are, in general, insensitive
to extra load carried. This implies that the accuracy of the AR might be improved further by
including the amount of extra weight as supplemental data input into the AR.

Use of a wrist-worn accelerometer was shown to be a practical approach in monitoring
military training even though the 7 d period included high-intensity activities under extreme
winter conditions. The subjects had no need to remove the device at any time except for data
download, and they were able to wear it during days and nights. Some activity data were
missed because of difficulties in organizing data downloading during overnight field training
and due to sick leave. Nevertheless, activity data were successfully recorded 79% of the time,
which can be considered high enough for reliable comparison of the EE measures of the AR
and DLW techniques. A similar percentage of data (8.2 out of 10 d) was recently measured in
the only study on a wrist-worn device that is available for comparison (van Hees et al 2011).

Comparison of the results obtained from the 7 d military training period and the treadmill
exercise indicates that at the same f_handAR, the intensity of physical activity was higher
during the 7 d period than in the treadmill test which included walking and running. The
magnitude of the difference was largest at movement frequencies typical of normal walking.
As discussed above concerning the 45 min march test, part of the difference can be attributed
to the insensitivity of the accelerometers to extra load carried during military service. Different
modes of activities (skiing, fighting) and terrain factors (snow, hills, etc) included in military
training may also induce higher energy requirements at the same movement frequencies. The
7 d military service included cross-country skiing during several days. In skiing data measured
by Vähäsöyrinki et al (2008), the poling frequency was 43 cycles min−1 at slow speed and
61 cycles min−1 at maximal skiing speed, which represent a smaller range and lower maximal
value than in walking and running.

The presented approach to assessing human EE—a wrist-worn 1D accelerometer and a
special movement counter—is a most simple and practical way to monitor activity and can be
seen as a successor to traditional wrist-worn motion sensors (Montoye et al 1983). The current
study is the first one which has compared exercise rate or hand movement frequency with
DLW. Van Hees et al (2011) recently compared a wrist-worn 3D accelerometer with DLW by
utilizing a more complex signal processing method, and found a significant but clearly smaller
contribution of wrist acceleration to AEE (24%) than what was found in the present study.
The partly divergent results obtained therefore deserve methodological discussion.

It is clear that movements of the hands only cause a fraction of AEE. However, in this
study f_handAR strongly predicted PALDLW measured over a 7 d period and PALIC measured
during treadmill walking and running. In walking and running, the strong prediction can be
explained by the linkage between hand movement frequency and walking cadence, which
was also confirmed in this study. Spontaneous choice of running cadence has been associated
with optimization of running economy (Cavanagh and Williams 1982), a fact that apparently
stabilizes hand movement frequency during walking and running and makes measurement
of hand movement frequency more reliable. A wrist-worn accelerometer may underestimate
TEE in high-intensity activities, but these usually cover only short periods of time over the
whole day and therefore do not contribute strongly to TEE (Westerterp and Plasqui 2004). If



1852 H Kinnunen et al

wrist-worn accelerometers are used to measure the intensity of structured exercise sessions,
more complex signal processing methods, including activity classification, may certainly
improve prediction accuracy (Siirtola et al 2009). In activities including standing and slow
motion, hand movements have a role in maintaining the balance of the body and subsequently
may also reflect the whole body’s activity level. It is also possible that behavioral aspects, such
as the number of restless hand movements within sedentary and standing activities, are also
reflected in both estimated and measured TEE. The independent role of the regularity of hand
movements, which affects the determination of f_handAR (Kinnunen and Miettinen 2005), was
not examined in the present study; nevertheless, use of regularity may prevent overestimation
of light-intensity activities, because repetitive hand movements are ignored within a longer
time window in the case of an irregular movement pattern.

Different parameters of TEE are supposed to strongly depend on each other: TEE =
PAL ∗ BMR, AEE/BM = (0.9 ∗ TEE – BMR)/BM, and BMR = 15.1 ∗ BM + 692.
Nevertheless, the stepwise multivariate linear regression analysis illustrated different
contributions of accelerometer data, BH, and BM for each dependent parameter. A reader might
wonder why BM was included as a predictor of AEE/BM. Inclusion was considered reasonable
because BM may affect not only AEE, but also the relationship between exercise rate and
intensity of exercise. In the customized piece-wise linear model designed to predict PALDLW,
we decided to include BH and BM as correcting factors even though the corresponding
multivariate linear regression model was not significantly improved by inclusion of the
body parameters. The use of the anthropometric parameters can be justified with both
mechanical considerations and a desire to be systematic. It is apparent that mechanical gait
characteristics, including step length and cadence, depend on body dimensions (Wixted et al
2007). Systematically thinking, one cannot affect AEE without affecting PAL and TEE—unless
there is a compensating change in BMR. Another advantage of our customized equation is
that it can also be applied to short periods of time. In addition, the method can be developed
further in different groups of people and different activities in the future, even if the DLW
technique is not available. Using the customized model, TEEAR and AEE/BMAR were derived
systematically from PALAR and estimated BMR, and the accuracy compared well with the
separate multivariate regression models.

Measurement of EE during an intensive training week of basic military training would be
challenging for any wearable monitor technology and post-processing method. Regardless
of the challenges, the magnitude of correlation between AEE/BMAR and AEE/BMDLW

(r = 0.86) and the contribution of wrist accelerometer measures alone to AEE/BMDLW (41%)
and PALDLW (46%) were among the highest that have been reported in the literature
with any accelerometer approaches (Plasqui and Westerterp 2007). However, none of the
studies available for comparison have been carried out in military training. The most
straightforward applications of this study include estimation of PAL and TEE in soldiers and
athletes in order to give feedback on training volume. The average 7 d activity level (PALDLW =
2.17) indicated a very high training volume that is comparable to that of endurance athletes.
In conclusion, compared to the DLW technique, the wrist-worn AR method estimated TEE
accurately with SEE of 6.3%. Thus the present method can be regarded as a reliable and valid
way to assess EE during intensive training.
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