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Writing, erasing and reading histone lysine
methylations

Kwangbeom Hyun, Jongcheol Jeon, Kihyun Park and Jaehoon Kim

Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine

methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action

of methyltransferases (‘writers’) and demethylases (‘erasers’). In addition, distinct effector proteins (‘readers’) recognize specific

methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of

histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine

methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown

promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological

processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for

histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
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INTRODUCTION

In eukaryotic cells, genetic information stored in DNA is
present in a highly organized chromatin structure. The
nucleosome, the basic unit of chromatin, is composed of two
copies of each core histone, H2A, H2B, H3 and H4, wrapped
by about two turns of DNA.1 Protruding unstructured
N-terminal tails as well as structured globular domains of
each histone are subject to post-translational modifications
that include methylation, acetylation, phosphorylation and
ubiquitylation, among others.2,3 These histone modifications
affect chromatin structure and also provide binding platforms
for diverse transcription factors, such as chromatin remodelers,
histone chaperones, DNA/histone-modifying enzymes and
general transcription factors.2,3 Thus, histone modifications
have important roles in many cellular events, including gene
expression, DNA replication and repair, chromatin compaction
and cell-cycle control.2,3 Misregulation of histone modifications
has been implicated in the pathogenesis of cancer and in
developmental defects, further emphasizing the importance of
the regulation of histone modifications.4,5

Although histone methylation and its involvement in
transcription were first reported in the 1960s,6 it was only
about 15 years ago that the first histone methyltransferase,
SUV39H1, containing a catalytic SET (Su(var)3–9, Enhancer
of Zeste, and Trithorax) domain, was identified,7 igniting

discoveries of numerous histone methyltransferases based
on SET-domain homology searches.8 Until the discovery
of an H3K4 demethylase LSD1 (lysine-specific histone
demethylase 1),9 histone methylations had been thought to
turn over more slowly than other histone modifications.
The subsequent discovery of the JmjC (jumonji C) domain
as a key signature of demethylating enzymes10 has substantially
broadened our repertoire of histone demethylases.

There are three lysine methylation states—mono-, di- and
trimethylation (me1, me2 and me3, respectively)—none of
which changes the electronic charge of the amino-acid side
chain; therefore, histone lysine methylation functions are
considered to be mainly exerted by effector molecules that
specifically recognize the methylated site.11 These ‘reader’
proteins contain methyl-lysine-binding motifs, including
PHD, chromo, tudor, PWWP, WD40, BAH, ADD, ankyrin
repeat, MBT and zn-CW domains, and also have the ability to
distinguish target methyl-lysines based on their methylation
state and surrounding amino-acid sequence.12

Unlike other histone modifications, which simply specify
active or repressed chromatin states, histone lysine methyla-
tions confer active or repressive transcription depending on
their positions and methylation states.13 Generally, H3K4,
H3K36 and H3K79 methylations are considered to mark active
transcription, whereas H3K9, H3K27 and H4K20 methylations
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are thought to be associated with silenced chromatin states.13

These histone lysine methylations also interact with other
histone modifications as well as DNA methylation to regulate
precisely gene expression. For example, H3K4 and H3K79
methylations are known to require prior H2B ubiquitylation in
yeast.14 Also, bivalent chromatins marked simultaneously by
H3K4 and H3K27 methylations have an important role in
shifting gene expression from a poised state to active or inactive
states in embryonic stem cells (ESCs).15

Numerous studies have shown that mutation or misregula-
tion of histone methylation, methyltransferases, demethylases
and methyl-lysine-binding proteins are associated with various
diseases.16 Therefore, many histone methylation-related pro-
teins are being studied as potential therapeutic targets.17 Recent
advances in next-generation sequencing, mass spectrometry,
X-ray crystallography and cryo-EM techniques for analyzing
histone modification-related proteins have allowed a more
detailed understanding of relationship between histone
methylation and diseases.3,18

In this review, we summarize how histone lysine
methylations are regulated by histone methyltransferases
(‘writers’) and demethylases (‘erasers’), as depicted in
Figure 1. We also discuss the biological roles of histone lysine
methylations and associated diseases caused by misregulation of
histone lysine methylations, as summarized in Table 1.

H3K4 METHYLATION

H3K4 methyltransferases
H3K4 methylation is an evolutionarily conserved histone
modification that marks active transcription and is highly
enriched at the promoter region and transcription start site.19

In yeast, all H3K4 methylations are carried out by Set1

methyltransferase, which forms a multisubunit Set1complex,
also known as COMPASS, with seven other subunits: Swd1,
Swd3, Bre2, Sdc1, Swd2, Spp1 and Shg1.20–22 Set1 contains a
catalytic SET domain, in which H3K4 methyltransferase
activity is assisted by associated Swd1, Swd3, Bre2 and Sdc1
subunits. The loss of individual Set1 complex subunits
differentially affects Set1 stability, complex integrity, global
H3K4 methylation level and distribution of H3K4 methylation
along active genes.23 H3K4 methyltransferases are highly
conserved from yeast to human. Drosophila melanogaster
contain three Set1 homologs (SET1, TRX and TRR), whereas
mammals have six such homologs (SET1A/KMT2F,
SET1B/KMT2G, MLL1 (mixed-lineage leukemia 1)/KMT2A,
MLL2/KMT2B, MLL3/KMT2C and MLL4/KMT2D).19 Each
Set1 homolog, which functions as a scaffold protein within the
complexes, associates with four common subunits (WRAD:
WDR5 (WD repeat domain 5), RbBP5 (retinoblastoma-
binding protein 5), ASH2L (absent, small or homeotic-2 like)
and DPY30), as well as unique subunits that specify distinct
functions.19

The association of WRAD with the SET domain of each
SET1/MLL family protein (core complex) produces distinct
enzymatic properties. The SET domain of MLL1 alone exhibits
weak H3K4 monomethylation activity, but complex formation
with WRAD allows it to predominantly mono- and dimethy-
late H3K4 in vitro.24 The interaction of WDR5 with the MLL1
SET domain is crucial for association of ASH2L and RbBP5
with the MLL1 SET domain and H3K4 dimethylation activity
of the assembled MLL1 core complex.25,26 Biochemical analyses
with purified proteins have further shown that MLL1/2 core
complexes can catalyze H3K4 mono- and dimethylation,
whereas the specificity of MLL3/4 core complexes is restricted

Figure 1 A schematic depiction of a nucleosome showing principal lysine methylation sites on histones H3 and H4. The reported writers
(methyltransferases) and erasers (demethylases) for each lysine methylation are also depicted with their methylation state specificities:
single circle ( ), me1; double circle ( ), me2; triple circle ( ), me3.
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to H3K4me1.27 These observations indicate that WRAD
proteins participate differentially in H3K4 methylation process
in each SET1/MLL complex. How SET1/MLL family complexes
differentially regulate H3K4 methylation is not precisely
known. One possible mechanism is that distinct amino acids
within the SET domain of each SET1/MLL proteins, in
conjunction with WRAD proteins, create different active sites
that differentially modulate H3K4 methyltransferase activity.

In addition to WRAD proteins, unique subunits in each
SET1/MLL complex also have roles in regulating H3K4
methylation. For example, it has been shown that WDR82
(WD repeat domain 82) and CFP1 (CXXC finger protein 1) are
required for appropriate levels of SET1A/B complex-mediated
H3K4 trimethylation.28,29 More specifically, CFP1 directly
binds to unmethylated CpG islands through its CXXC domain
and regulates the genome-wide distribution of H3K4me3 in
ESCs.30,31 H3K4me3 levels in specific genes are dependent on
the MLL1/2-specific subunit menin during initiation and
progression of sporadic pancreatic endocrine tumors.32 PTIP
(Pax transactivation domain-interacting protein), a unique
subunit of MLL3/MLL4, has been shown to regulate
H3K4me3 levels at the Ntrk3 (neurotrophic tyrosine kinase
receptor, type 3) locus, whose function is important for
podocyte foot process patterning.33 These results indicate that
unique subunits in SET1/MLL complexes interact with distinct
transcription factors and thus have important roles in the
expression of specific target genes for given SET1/MLL
complexes.

Structural analyses have recently begun to aid our under-
standing of the detailed molecular mechanism of H3K4
methylation. A cryo-EM analysis of partial yeast Set1 (SET
domain plus Swd1, Swd3, Bre2 and Sdc1) and human MLL1
(SET domain plus WRAD) complexes revealed that the two
subunits, Swd1 (RbBP5) and Swd3 (WDR5), are positioned in
the top lobe of the Y-shaped structure, whereas Bre2 (ASH2L)
and Sdc1 (DPY30) occupy the bottom base.34 A recent X-ray
crystallographic analysis of human MLL1-SET/RbBP5/ASH2L
and MLL3-SET/RbBP5/ASH2L complexes found that associa-
tion of heterodimeric RbBP5/ASH2L with the MLL SET
scaffold stabilizes the catalytic SET domain and further showed
that substrate binding induces a conformational change in the
active site that facilitates H3K4 methylation.35 A structural
understanding of H3K4 methyltransferase complexes has only
begun to be established. Notably, difficulties in biochemical
purification of high-molecular-weight and multisubunit
complexes have hampered structural analyses of any
holo-H3K4 methyltransferase complex. Continuing efforts
should ultimately afford a detailed understanding of the
mechanism of action of H3K4 methyltransferase complexes.

H2B ubiquitylation-dependent H3K4 methylation in yeast
was the first-discovered histone trans-tail relationship, where
H3K4 di- and trimethylation were shown to require prior
monoubiquitylation at lysine 123 (corresponding to lysine
120 in mammalian cells) of histone H2B.36–39 Following up
on this interesting relationship, two groups reported that Swd2
is a key player in this process, although through different

mechanisms.40,41 However, this assertion was challenged by a
biochemical analysis showing that the Set1 complex lacking
Swd2 exhibits even higher H2B ubiquitylation-dependent
H3K4 methylation activity.42 Instead, the authors of this latter
study showed that the n-SET domain within Set1 is essential
for H2B ubiquitylation-mediated H3K4 methylation activity of
the Set1 complex.42 The H2B ubiquitylation dependence of
human H3K4 methyltransferases is unclear, because reducing
H2B ubiquitylation by knocking down the human homologs of
Bre1 (BRE1A/RNF20 and BRE1B/RNF40) results in only a
partial decrease in H3K4 methylation in human cells.43–45 The
incompleteness of this decrease is probably attributable to
inefficient knockdown of Bre1 proteins. Interestingly, however,
these studies also suggest that six human H3K4 methyltrans-
ferase complexes may differentially require H2B ubiquitylation
for their H3K4 methylation activity.

H3K4 demethylases
Until the identification of the FAD (flavin adenine
dinucleotide)-dependent nuclear amine oxidase LSD1 (also
known as KDM1A), the first histone H3K4 demethylase
discovered,9 histone methylation was believed to be stable
and inheritable. LSD1, and the related LSD2/KDM1B, can
demethylate H3K4me1 and H3K4me2.9,46 It has been shown
that LSD1 is recruited to target genes by CoREST-, BHC80-
and SFMBT1-containing repressive complexes and members
of the zinc-finger transcription factor family, Snail.47–49

In addition to amine oxidases, JARID1 (jumonji AT-rich
interactive domain-1) family proteins (JARID1A/KDM5A,
JARID1B/KDM5B, JARID1C/KDM5C and JARID1D/KDM5D)
and the JmjC domain-containing protein NO66 (also known as
MAPJD)50 were found to demethylate H3K4. NO66 is able to
demethylate all three states of H3K4 methylation using
α-ketoglutarate and Fe(II) as cofactors,51 whereas JARID1A,
JARID1B, JARID1C and JARID1D were shown to be
specific for demethylation of H3K4me2 and H3K4me3.52–55

These proteins function as transcriptional corepressors by
demethylating H3K4 or recruiting other corepressors.56,57

Distribution of H3K4 methylation
Gene expression is associated with the position of histone
methyl-lysine residues within genes and their degree of
methylation. H3K4me1, H3K4me2 and H3K4me3 have been
shown to differentially mark actively transcribing genes.
H3K4me1 is highly enriched at enhancers, H3K4me2 is highest
toward the 5′ end of transcribing genes, and H3K4me3 is a
hallmark of the promoters of actively transcribing and poised
genes.58–61 Although the strong correlation between H3K4
methylation and active transcription is well documented,
how SET1/MLL methyltransferase complexes are recruited to
specific gene loci is still an open question. However, it has been
shown that SET1/MLL complex subunits HCF-1 (host cell
factor-1) and menin are required for proper recruitment of
these complexes to herpesvirus immediate early promoters
and HOX genes, respectively.62,63 In addition, cell-type-specific
transcription factors and cofactors were also shown to mediate
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recruitment of H3K4 methyltransferases. For example, the
transcription factors bZIP28 and bZIP60 bring SET1/MLL
complexes to endoplasmic reticulum stress-responsive genes
through interactions with Ash2 and WDR5a.64 A direct
interaction with p53 was shown to be responsible for recruit-
ment of the SET1 complex to DNA damage-responsive genes.65

In addition, it was reported that the Paf1 transcription
elongation complex mediates interactions between Set1 and
the C-terminal domain of RNA polymerase II such that the
Set1 complex can be recruited to transcribing genes.66

Transcriptional coactivators that recognize H3K4
methylation
Each state of H3K4 methylation recruits distinct downstream
effectors containing specific ‘reader’ domains that further
regulate gene expression. Several chromatin remodelers are
known to read H3K4 methylation and participate in the
regulation of gene expression. For example, the ATP-
dependent chromatin-remodeling enzyme, CHD1, recognizes
H3K4me2 and H3K4me3 through its two N-terminal
chromodomains.67 In addition, BPTF (bromodomain PHD
finger transcription factor), a subunit of the ATP-dependent
chromatin remodeling complex NURF (nucleosome remodel-
ing factor), was shown to interact with H3K4me3 via its
PHD domain.68 As an example of a general transcription factor
that binds to H3K4 methylation, transcription factor IID
was shown to be recruited to H3K4me3 through its PHD
domain-containing TAF3 subunit, resulting in more efficient
preinitiation complex formation.69,70

The activity of several histone-modifying enzymes is modu-
lated by recognition of H3K4 methylation. For instance, the
yeast SAGA complex binds to H3K4me2 or H3K4me3 through
its Sgf29 subunit, which contains a C-terminal H3K4me2-
or H3K4me3-binding tudor domain, and thus efficiently
acetylates neighboring histones.71 The acetyltransferase activity
of the NuA3 histone acetyltransferase complex can be effi-
ciently targeted to H3K14 through recognition of H3K4me3
by the Yng1 subunit, which contains a PHD domain.72

In addition, the HBO1 histone acetyltransferase complex was
reported to acetylate histone H3 in a manner that depends on
the PHD domain-containing ING4 (inhibitor of growth family
member 4) subunit and facilitates apoptosis by enhancing the
expression of genotoxic stress-responsive genes.73

In addition, H3K4 methyl-binding domains within H3K4
methyltransferase complexes further contribute to the precise
regulation of their enzymatic activities. For example, the PHD
domain-dependent binding of CFP1 to H3K4me3 is respon-
sible for recruitment of SET1A/B complexes to H3K4me3-
containing chromatin regions.74 CFP1 was also found to be
required for deposition of H3K4me3 near the promoters of
DNA damage-responsive genes in ESCs.75 Among MLL family
H3K4 methyltransferases, only MLL1 is recruited through its
PHD domain to regulate HOX gene expression. The roles of
PHD domains within other MLL family proteins remain to be
characterized.76,77

H3K4 methylation and cancers
Mutations in H3K4 methyltransferases highly increase the
susceptibility to various cancers.78 About 70% of infant
leukemia is related to chromosomal translocation of MLL1
genes, which results in fusion of its N-terminal fragment to
more than 50 partner proteins. MLL1 translocations are also
frequently found in mixed-lineage leukemia, acute lympho-
blastic leukemia and acute myeloid leukemia.79 Interestingly,
aberrant H3K4 methylation caused by MLL1-AF9 fusion
proteins was shown to require an intact MLL1 protein.80

Therefore, considerable effort has been devoted to developing
inhibitors that target MLL1 as a cancer therapy strategy.
Although inhibitors that directly target the MLL1 SET domain
have not yet been discovered, the chemical compounds
MM102 and MM-401, which specifically disrupt the interac-
tion between WDR5 and MLL1, but not other SET1/MLL
family methyltransferases, has been reported to inhibit pro-
liferation of leukemia cells.81,82

Mutations in H3K4 demethylases are also related to a
number of diseases. JARID1 family proteins often function as
transcriptional corepressors that are important for expression
of development-related genes. JARID1A was shown to be
important in regulating HOX gene expression in Caenorhabditis
elegans.52 It has also been reported that cryptic fusion of
NUP98 (nucleoporin 98) and JARID1A causes HOXA/B gene
overexpression and results in pediatric acute leukemia in
humans.83 Increased expression of JARID1B, often found in
breast carcinomas and testicular cancer, causes misregulation of
14-3-3σ, BRCA1 (breast cancer 1, early onset), CAV1 (caveolin 1)
and HOXA5 (homeobox A5) genes.53 X-linked mental retarda-
tion patients have a large number of sense or missense
mutations in JARID1C genes, implying an important role for
the encoded protein during brain development.84 In addition, a
number of inhibitors have been developed for LSD1, which is
involved in embryonic development and hematopoiesis, and
many types of cancer. Some of these inhibitors were designed
to irreversibly deactivate LSD1 by forming a covalent adduct
with the cofactor FAD within LSD1.85

H3K4 and H3K27 methylations and bivalent domains
in ESCs
Bivalent chromatin has an important role in regulating changes
in gene expression from poised to active or inactive states
in ESCs.15 In bivalent promoters, coenrichment of active
H3K4me3 and repressive H3K27me3 marks was shown be
responsible for differentiation into specific cell types.61,86 It was
further found that MLL2 is mainly responsible for H3K4
methylation on bivalent promoters.87,88 H3K27 methylation is
an abundant modification that is crucial for fate determination
in ESCs. In embryonic fibroblast cells, H3K27me3 was shown
to be highly enriched at the promoters of thousands of
genes that are responsible for embryonic development and
differentiation.89 Subunits of the H3K4 methyltransferase
complex also participate in ESC fate determination. For
example, WDR5 interacts with Oct4 (octamer-binding
transcription factor 4) and mediates H3K4 methylation at
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key development loci in ESCs.90 During ESC differentiation,
ASH2L downregulation correlates with decreased expression of
pluripotent transcription factors and increased expression of
differentiation-related genes.91 In addition, a specific role for
DPY30 in the differentiation of ESCs, but not the maintenance
of their self-renewal capacity, has also been reported.92

H3K9 METHYLATION

H3K9 methyltransferases
H3K9 methylation is a histone modification that is a well-
known indicator of silenced transcription and heterochromatin
structure.86 Fission yeast has a single H3K9 methyltransferase
(Clr4/KMT1) that is responsible for all three states of H3K9
methylation93 and regulates silencing at pericentromere and
mating-type loci.94,95 In mammalian cells, several H3K9
methyltransferases—SUV39H1/KMT1A, SUV39H2/KMT1B,
SETDB1/KMT1E, dimeric G9a/KMT1C-GLP (G9a-like pro-
tein)/KMT1D and PRDM family—with different catalytic
activities and target genes, have roles in diverse cellular
events.96 SUV39H1 and SUV39H2 catalyze H3K9 di- and
trimethylation in constitutive heterochromatin, including the
pericentromeric region.7,97 Recombinant SUV39H1/2 proteins
were shown to possess H3K9 mono-, di- and trimethylation
activity;98 however, a cell line lacking SUV39H1/2 proteins was
shown to lose H3K9me2 and H3K9me3, but not H3K9me1,
marks.99 SETDB1 catalyzes H3K9 monomethylation at the
pericentromeric region and provides a substrate for SUV39H1/2
to produce H3K9me3.100 Another H3K9 methyltransferase,
a heterodimer of G9a and GLP (G9a-GLP), mono- and
dimethylates H3K9 in euchromatin regions to repress gene
expression.101 When either G9a or GLP is deleted, H3K9me1
and H3K9me2 levels are reduced in euchromatin. Interestingly,
in vitro analyses have shown that G9a and GLP can individually
form homodimers that exhibit H3K9 mono-, di- and trimethy-
lation activity.98,102 In a related observation, the multi-zinc-
finger-containing protein Wiz interacts with the G9a-GLP
heterodimer and stabilizes its conformation,103 indicating that
Wiz-assisted G9a-GLP heterodimer formation is crucial for
modulation of G9a-GLP enzymatic activity in vivo.104 Several
PRDM (PRDI-BF1 and RIZ homology domain) proteins also
contribute to H3K9 methylation. Among 17 members of the
PRDM family (PRDM1–17), all of which contain a PR domain
similar to the SET domain,105 several are known to possess
intrinsic H3K9 methyltransferase activity, whereas the
remaining members regulate H3K9 methylation by interacting
with other H3K9 methyltransferases, such as G9a.106 However,
whether PRDM protein-mediated regulation of H3K9
methylation is direct or indirect is still controversial, and more
detailed biochemical studies are necessary to clarify this issue.

H3K9 demethylases
Three classes of mammalian proteins—JHDM2/KDM3,
JHDM3(JMJD2)/KDM4 and PHF8/KDM7—have H3K9
demethylation activity. Three JHDM2 (jumonji domain-
containing histone demethylase-2) family proteins
(JHDM2A–C) have the ability to demethylate H3K9me1 and

H3K9me2107 and regulate hormone-dependent transcriptional
activation.108 JHDM3 family proteins can demethylate
H3K9me2 and H3K9me3 in addition to H3K36me2 and
H3K36me3 in vitro.107–109 PHF8, a member of the PHF
(PHD finger) protein family that acts as a demethylase for
H3K9me1 and H3K9me2,110 is a mononuclear Fe(II)-depen-
dent hydroxylase that uses 2-oxoglutarate and oxygen as
cosubstrates.111 Because PHF8, like other members of the
PHF family, contains a PHD domain, it preferentially removes
H3K9 methylations from H3K4me3-containing histone peptide
substrates.112 This activity would largely account for the
mutually exclusive distribution of H3K4 and H3K9
methylations.

Cross-talk between H3K9 methylation and DNA methylation
A number of studies have reported physical and functional
interactions between H3K9 methyltransferases and DNA
methyltransferases (DNMTs). For example, SUV39H1/2 and
DNMT3A/B interact which each other and can be recruited via
their interaction with HP1 (heterochromatin protein 1) to
methylate H3K9-enriched constitutive heterochromatin
regions, thereby reinforcing the condensed chromatin
structure.113,114 In addition, DNMT3A/B interacts with G9a-
GLP and is involved in facultative heterochromatin formation
in ESCs.115,116 Moreover, the fact that G9a, DNMT1 and
PCNA (proliferating cell nuclear antigen) are colocalized at the
replication fork117 implicates H3K9 methylation in the main-
tenance of DNA methylation during DNA replication. UHRF1
(ubiquitin-like, containing PHD and ring finger domain 1) also
has been reported to have a role in maintaining DNA
methylation by bringing DNMT1 to the replication fork
through its interaction with methylated H3K9, hemimethylated
CpG and DNMT1.117,118 Furthermore, the methyl-CpG-
binding protein MBD1 was shown to recruit SETDB1 to the
chromatin assembly complex CAF-1, facilitating SETDB1-
mediated methylation of H3K9 on newly deposited
nucleosomes.119

Establishment of pericentromeric heterochromatin
SETDB1 and SUV39H1/2 are recruited to pericentromeric
heterochromatin and catalyze H3K9 methylation.7,100,120 HP1α
and HP1β bind to H3K9me3 through their chromodomains
and form multimers that interact with SUV39H1/2. As
SUV39H1/2 also contains a chromodomain, they can be
further recruited to methylated H3K9 at the pericentromeric
region by HP1α/β as well as by themselves.97,121 These multiple
interactions enable SUV39H1/2 to spread H3K9me3 to neigh-
boring nucleosomes.122 HP1α/β contributes to heterochroma-
tin formation by recruiting many other proteins involved in
heterochromatin formation, such as histone deacetylase, tran-
scriptional repressors and chromatin remodelers.123–125 H3K9
methylation also increases nucleosome occupancy and has an
important role in maintaining transposon repression in peri-
centromeric heterochromatin.126 In fission yeast and plants,
heterochromatin formation mediated by interactions of
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methylated H3K9 with the RNA interference machinery has
been well established.127,128

H3K9 methylation-mediated transcriptional repression
The G9a-GLP heterodimer deposits H3K9me1 and H3K9me2
and represses target gene expression.101 G9a-GLP can be
recruited to target gene promoters through direct interactions
with diverse DNA-binding proteins.103,129–131 Once it binds
and methylates H3K9 on target genes, G9a-GLP recruits
additional dimers through its ankyrin repeat domain and
spreads H3K9me1 and H3K9me2 to neighboring
nucleosomes.101 The resulting repression of gene expression
is crucial in many biological processes, such as memory
formation, immune responses and differentiation.132–134 Dur-
ing ESC differentiation, G9a/GLP-mediated facultative hetero-
chromatin formation silences Oct3/4 and Nanog.101

Furthermore, G9a-GLP regulates H3K9me2 and represses
different sets of genes in a tissue-specific manner. G9a/GLP-
mediated silencing also represses non-neuronal genes in
neurons135 and skeletal muscle genes in brown adipose
tissue.136 In the immune system, H3K9me2 inhibits uncon-
trolled interferon induction and regulates naïve T-helper cell
differentiation.133 Moreover, H3K9me2 is dynamically altered
in the hippocampus and entorhinal cortex in response to
contextual fear conditioning, and mediates memory
formation.132 These observations indicate that the distribution
of H3K9me2 in euchromatin is dynamically altered according
to cell type and external stimuli. Collectively, the results of
these studies imply that G9a-GLP interacts with a large number
of DNA-binding proteins in different contexts. Numerous
studies have revealed that diverse biological processes are
regulated by H3K9 methylation. However, only a few down-
stream target genes, and no upstream regulators of H3K9
methyltransferases, have been identified. Clarifying the detailed
molecular mechanisms by which H3K9 methyltransferases
mediate transcriptional repression will require a greater effort
to identify upstream regulators that bring H3K9 methyltrans-
ferases to target genes.

Interestingly, it has been reported that H3K9me3 and HP1γ
are enriched in the coding region of certain active genes in
several cell lines.137 In contrast to HP1α/β, HP1γ recruits
elongating RNA polymerase II and induces gene expression.137

Consistent with this, the D. melanogaster HP1γ homolog,
HP1c, recruits the histone chaperone FACT to RNA polymer-
ase II and enhances transcription elongation of heat-shock
genes.138

H3K9 methylation and alternative splicing
Alternative splicing is regulated by nucleosome occupancy and
post-translational modifications in transcribing genes.139,140 A
recent study has revealed that local increases in H3K9me2 and
H3K9me3 enhance exon inclusion, whereas H3K9 demethyla-
tion correlates with exon skipping. Moreover, a genome-wide
study showed that H3K9me2 and H3K9me3 are enriched in
internal exons.141 Although how H3K9 methylation facilitates
exon inclusion is not fully understood, two hypotheses have

been proposed. First, H3K9 methylation-bound HP1γ could
recruit the splicing regulatory protein SRSF1 for efficient
splicing.142 Alternatively, H3K9 methylation would increase
nucleosome occupancy and slow down RNA polymerase II
elongation, prolonging the time for RNA splicing.143,144

H3K9 methylation-related diseases
H3K9 methylation is often misregulated in various diseases,
such as neurodegenerative diseases, drug addiction and
cancer.145,146 In a mouse Alzheimer disease model, aberrantly
increased H3K9 methylation levels in the BDNF (brain-derived
neurotrophic factor) gene leads to downregulation of BDNF
expression in neurons. BDNF is critical for synaptic plasticity;
hence, reduced BDNF levels are thought to be an important
contributor to the pathogenesis of Alzheimer disease.147 In
addition, overexpression of SETDB1 and elevated levels of
H3K9 methylation are often found in Huntington disease
patients.148 Although a correlation between abnormal H3K9
methylation and neurodegenerative diseases is well established,
more studies are required to identify target genes through
which misregulated H3K9 methylation causes these diseases.

Uncontrolled H3K9 methylation is also linked to cancer. In
particular, G9a is often overexpressed in various types of
cancer.149–151 Overexpression of G9a hypermethylates H3K9
on tumor suppressor genes and thus represses their expression.
The tumor suppressors, DSC3 (desmocollin 3) and MASPIN
(mammary serine protease inhibitor) in breast cancer152 and
CDH1 (cadherin 1), DUSP5 (dual specificity phosphatase 5)
and SPRY4 (sprouty homolog 4) in ovarian cancer,149 are often
silenced by G9a. These results suggest that H3K9 methyltrans-
ferases could be good therapeutic targets in cancer treatment.

H3K27 METHYLATION

H3K27 methyltransferases
H3K27me3 is a hallmark of transcriptional repression. The
EZH2 (enhancer-of-zest homolog 2) subunit (also known as
KMT6A) within PRC2 (polycomb repressive complex 2)
complex, an evolutionarily conserved class of polycomb group
proteins, is an H3K27 methyltransferase153 responsible for all
three states of H3K27 methylation.154–156 The mammalian
PRC2 complex is composed of four core subunits: EZH1/2,
SUZ12, EED and RbAp46/48.157,158 PRC2 can also associate
with other accessory proteins, such as AEBP2 (AE binding
protein 2), JARID2 and PCLs (polycomb-like proteins).159

These accessory proteins are thought to be involved in
recruiting PRC2 to target genes and regulating its activity.158

EZH1/2 alone has no enzyme activity, but incorporation into a
PRC2 complex with other subunits enables it to methylate
H3K27.160,161 The PRC2 subunits SUZ12 and EED have the
ability to bind the histone H3 N-terminal tail and H3K27me3,
respectively. Thus, a positive feedback mechanism is used to
spread H3K27me3-repressive marks to adjacent gene
loci.162–164
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H3K27 demethylases
UTX/KDM6A, UTY/KDM6C and JMJD3/KDM6B demethylate
H3K27me2 and H3K27me3 and are primarily involved in gene
derepression.165–167 UTX contains six TPR (tetratricopeptide
repeat) domains and one JmjC domain. The evolutionarily
conserved TPR domain mediates multisubunit complex
assembly.165 UTX, one of the subunits in the MLL4 H3K4
methyltransferase complex, mediates crosstalk between H3K4
and H3K27 methylations.168 Interestingly, UTX target genes
responsible for cancer proliferation and invasiveness are also
regulated by MLL4, as evidenced by the fact that individual
knockdown of UTX or MLL4 phenocopies the traits of breast
cancer cells.169 JMJD3, a JmjC-domain-containing protein that
catalyzes demethylation of H3K27me2 and H3K27me3,165

activates transcription of development-related genes and directs
differentiation of ESCs into definitive endoderm.170 Microbial
stimuli cause nuclear factor-κB-mediated enrichment of JMJD3
at the transcription start site of lipopolysaccharide-responsive
genes in macrophages.171 PHF subfamily proteins, including
KIAA1718/KDM7A and PHF8, also demethylate H3K27 using
α-ketoglutarate and iron as cofactors. KIAA1718 contains PHD
and JmjC domains, which allow selective demethylation of
H3K27me2 on H3K4-trimethylated nucleosomes.112 The JmjC
domain-containing PHF8 is specific for H3K27me2.110

Maintenance of gene repression
The PRC2 subunit EED also binds to H3K27me3 through its
WD40 domain, and disruption of this interaction leads to
reduced H3K27 methylation and developmental defects.162

Binding of PRC2 to H3K27me3 spreads H3K27 methylation
to neighboring nucleosomes, and thus has and important role
in the maintenance of gene-expression status. Consistent with a
repressive role of H3K27 methylation, the inactivated X
chromosome in mammalian cells is highly enriched for
H3K27 methylation, which stabilizes the inactive chromatin
structure.172

H3K27 methylation and cancers
Misregulation of H3K27 methylation is associated with
tumorigenesis as well as metastasis. In this context, over-
expression of the PRC2 subunit EZH2 has been reported in
human breast and prostate cancers as well as lymphoma.173–176

For instance, an Y641F mutation in the EZH2 SET domain
increases H3K27me3 levels and contributes to the pathogenesis
of germinal center B-cell lymphomas.177 In addition, another
EZH2 mutant lymphoma cell line harboring an A677G
mutation shows elevated levels of H3K27me3 and decreased
levels of H3K27me2 and H3K27me1. A structural study
reported that the A677G mutation enlarges the lysine
tunnel, enhancing the ability of PRC2 to catalyze H3K27
dimethylation.178 These results suggest that inhibition of
hyperactive PRC2 could be a potential treatment strategy for
specific types of lymphoma. In this regard, several EZH2
inhibitors that target B-cell and follicular lymphomas have
been developed.17 For example, the EZH2 inhibitor GSK126
was shown to decrease global levels of H3K27 methylation,

reactivate PCR2 target genes, and decrease tumor progression
in a mouse model.179

H3K27 methylation can be recognized by chromodomain-
and WD40 domain-containing proteins. Among several
chromodomain-containing proteins that bind to H3K27
methylation, the PRC1 complex subunit CBX7 (chromobox 7)
has received attention as a therapeutic target owing to its
involvement in tumorigenesis as well as stem cell self-renewal
and differentiation. The recently developed chemical
compound, MS37452, binds the methyl-binding pocket of
the chromodomain of CBX7, resulting in transcriptional
derepression of PRC1 complex target genes and inhibition of
the proliferation of prostate cancers.180

H3K36 METHYLATION

H3K36 methyltransferases
In yeast, a single H3K36 methyltransferase, Set2/KMT3,
catalyzes all three states of H3K36 methylation.181 The SRI
(Set2 Rpb1 interacting) domain in Set2 enables it to interact
with the S2- and S5-phosphorylated C-terminal domain of
RNA polymerase II and methylate H3K36 during transcrip-
tional elongation.181 Mammalian cells contain at least eight
H3K36 methyltransferases: NSD1/KMT3B, NSD2/KMT3G,
NSD3/KMT3F, SETD2/KMT3A, SETD3, SETMAR, SMYD2/
KMT3C and ASH1L/KMT2H.182 Among these, NSD1–3 and
SETD2 are considered major H3K36 methyltransferases.
Only SETD2 can catalyze H3K36 trimethylation, whereas the
methyltransferase activity of the other seven enzymes is
restricted to H3K36 mono- and/or dimethylation.183 NSD
(nuclear receptor-binding SET domain) enzymes have addi-
tional methylation sites on histones as well as non-histone
target proteins.184 Biochemical analyses have shown that NSD
enzymes lose their H3K36 specificity if histone octamers
are used as a substrate instead of physiologically relevant
nucleosomes.184 From a structural perspective, NSD1–3
enzymes have an autoinhibitory loop that blocks the
substrate-binding site. Interaction of a short segment of
nucleosomal DNA appears to interact with the autoinhibitory
loop, dislodging it from the substrate-binding site. Therefore,
H3K36 located close to the nucleosome core region can enter
the substrate-binding site, thus imparting H3K36 specificity on
NSD enzymes.185 The H3K36 trimethyltransferase SETD2 has
important roles in many biological processes.186–189 Although
recombinant SETD2 was shown to generate all three states of
H3K36 methylation in vitro, only H3K36me3 levels were found
to decrease in SETD2-knockdown cells.186,187 In addition,
it was reported that not only H3K36me1 and H3K36me2
levels but also H3K36me3 levels are decreased in NSD1–3-
deficient cells.190 These results suggest that NSD enzymes
provide H3K36me1 and H3K36me2 to SETD2, which then
subsequently generates H3K36me3 in vivo.

H3K36 demethylases
There are two H3K36 demethylase families in mammalian
cells: JHDM1/KDM2A-B and JHDM3/JMJD2/KDM4A-D. The
H3K36me1- and H3K36me2-specific demethylase, JHDM1,
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contains multiple histone-binding domains, including a PHD
domain,10,191 and it accounts for mutually exclusive distribu-
tion of H3K4me3 and H3K36me3 in same genes.60,192 JHDM3
is specific for H3K36me2 and H3K36me3 demethylation and
has also been shown to demethylate H3K9me2 and H3K9me3
in vitro.109,111

Regulation of transcription initiation and elongation
H3K36 methylation has been implicated in preventing abortive
initiation of transcription within the gene body and in
regulation of transcription elongation. In yeast, Set2 binds to
the phosphorylated C-terminal domain of RNA polymerase II
and catalyzes H3K36 methylation in newly deposited
nucleosomes.182 The RPD3 deacetylase complex is recruited
to nucleosomes through recognition of H3K36me1 and
H3K36me2, and then deacetylates histones. Local deacetylation
maintains a repressive chromatin state that prevents aberrant
transcription initiation.193 In mammalian cells, different players
participate in this process. NSD3, LSD2 (lysine demethylase 2)
and G9a form a complex that interacts with transcription-
elongation factors and the S2-phosphorylated C-terminal
domain of RNA polymerase II. This complex, in turn,
maintains newly incorporated nucleosomes in a repressed state
by methylating H3K9 and H3K36, and demethylating H3K4.194

Moreover, PWWP domain-containing NSD2 and DNMT3A
bind to H3K36-methylated nucleosomes and further contribute
to repression of aberrant transcription.194,195 Collectively,
these observations indicate that H3K36 methylation, H3K9
methylation and DNA methylation simultaneously accumulate
in newly incorporated nucleosomes to control accurate
transcription elongation in mammalian cells.

In addition to its preferential localization to the gene body,
H3K36 methylation is also enriched in the promoter region
of several genes.196 Promoter-enriched H3K36 methylation
inhibits activity of the PRC2 complex and prevents
PRC2-mediated expansion of H3K27 methylation.197 This
observation is further supported by chromatin immunopreci-
pitation sequencing analyses showing a mutually exclusive
distribution H3K27 methylation and H3K36 methylation.198

DNA damage responses
Several studies have demonstrated roles of H3K36 methylation
in DNA damage repair. SETD2 induces DNA mismatch repair
by catalyzing H3K36me3 at mismatch sites.199 In addition,
the H3K36 dimethyltransferase, SETMAR, facilitates non-
homologous end joining at DNA double-strand break (DSB)
sites.200 When a DSB occurs, SETMAR is recruited to DSB sites
and catalyzes H3K36 methylation. NBS1, a subunit of the MRN
complex, and Ku70 recognize H3K36 methylation and stabilize
DSB until other non-homologous end-joining -related proteins
are recruited. Homologous recombination is also known
to be regulated by H3K36me3.201 If a DSB occurs, the
H3K36me3-interacting protein LEDGF/p75, also known as
PSIP1 (PC4- and SFRS1-interacting protein 1), recruits CtIP
(C-terminal-binding protein-interacting protein), which carries
out DSB resection. RPA (replication protein A) and RAD51

are then recruited to the site and promote homologous
recombination repair.201 In the absence of SETD2, homologous
recombination repair cannot be performed properly because
reduced H3K36me3 levels lead to dissociation of LEDGF from
chromatin. This explains why SETD2 functions as a tumor
suppressor. Homologous recombination repair is a very
accurate DNA-repair process, and it is usually carried out in
H3K36me3-enriched coding regions.183 Therefore, H3K36me3
seems to function as surveillance for DNA damage in coding
regions to maintain genome stability.

H3K36 methylation and exon exclusion
Similar to H3K9 methylation, H3K36 methylation also has a
role in alternative splicing.139 For example, SETD2-mediated
H3K36 trimethylation stimulates exon exclusion.202

H3K36me3-bound MORF4L1 (mortality factor 4-like 1; also
known as MRG15) recruits PTB (polypyrimidine tract binding
protein), which is a well-known exon-inclusion repressor.139 In
addition, a recent study showed that H3.3K36me3-recognizing
ZMYND11 protein causes large-scale intron retention.203 These
studies imply that H3K36me3 exclusively marks exons in the
alternative splicing process. In support of this, H3K36me3
levels are very low in intron-less genes.204 Alternative splicing
is also regulated by the level of SETD2.189 Specifically,
downregulation of SETD2 levels by polyubiquitylation
mediated by the E3 ubiquitin ligase complex, SPOP/CUL3,
reduces H3K36me3 on SETD2 target genes and induces their
splicing alternatively. Taken together with studies on H3K9
methylation, these results indicate that various histone
modifications participate actively in RNA splicing processes.

H3K36 methylation-related diseases
Misregulation of H3K36 methylation often leads to various
diseases.182 A defect in NSD1 was reported to cause Sotos
syndrome, a neurological disorder characterized by macro-
cephaly and cognitive and motor skill deficiencies.205 In
addition, Ndh2-knockout mice die shortly after birth with
symptoms of Wolf-Hirschhorn syndrome.186 These studies
suggest that a deficiency of H3K36 methyltransferases disrupts
neuronal development, although additional investigation will
be required to elucidate the detailed molecular mechanism.
The NSD genes also often function as oncogenes when
overexpressed or translocated to other genes.206,207 For
instance, a fusion protein caused by joining of the NSD1 gene
with the NUP98 gene causes acute myeloid leukemia.208 This
NSD1–NUP98 fusion protein facilitates H3K36 methylation
and induces inappropriate activation of HOX genes.206 In
addition, NSD2 overexpression induces multiple myelomas
by promoting the expression of several oncogenes, such as
TGFA (transforming growth factor alpha), MET and p21.207

Thus, their causal role in such distinctive diseases strongly
suggests that NSD1 and NSD2 have different downstream
target genes, despite sharing a common methylation site on
histones. Moreover, the fact that a loss-of-function mutation of
SETD2 causes renal cell carcinoma development implies that
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SETD2 acts as a tumor suppressor209,210 reflecting its roles in
DNA repair and alternative splicing.

H3K79 METHYLATION

H3K79 methyltransferases
Unlike other histone lysine methylations, which are located on
unstructured histone tail domains and are catalyzed by SET
domain-containing methyltransferases, H3K79 methylation
occurs on the globular domain of histone H3 and is mediated
by Dot1, which lacks a SET domain.211 Dot1 was originally
identified as a disruptor of telomeric-silencing genes in yeast,212

and subsequent genetic and biochemical studies showed that
Dot1, as well as evolutionarily conserved homologs, including
human DOT1L (DOT1-like)/KMT4, are responsible for all
three states of H3K79 methylation.213–217

On the basis of structural studies, Dot1 homologs are
categorized as a class I S-adenosyl methionine-dependent
methyltransferase.218,219 Despite structural similarities between
human DOT1L and the arginine methyltransferase PRMT1,211

Dot1 homologs exhibit methyltransferase specificity toward
lysine rather than arginine.213,214,220 In this context, it will be
interesting to determine whether Dot1 homologs methylate
arginine rather than lysine residues, if present, on novel target
proteins.

Intriguingly, in vitro histone methyltransferase assays have
demonstrated that Dot1 proteins preferentially methylate
nucleosomal substrates rather than free histone H3.214,220,221

In addition, it has been shown that a positively charged region
within human DOT1L (amino-acid residues 390–407) is
required for direct interaction with nucleosomes and histone
methyltransferase activity.218 These observations suggest that a
newly created surface on the nucleosome produced by
participation of histones and DNA provides an environment
preferential for recognition and methylation by Dot1 proteins.

Another interesting feature of H3K79 methylation, like
that of H3K4 methylation, is the trans-tail histone
modification relationship with H2B ubiquitylation. Yeast
genetic studies have demonstrated that defects in H2B ubiqui-
tylation cause the complete disappearance of H3K79me2 and
H3K79me3.39,222,223 Importantly, biochemical approaches
have further shown that H2B-ubiquitylated recombinant
nucleosomes serve as a preferential substrate for human
DOT1L,217,224 indicating that H2B ubiquitylation directly
stimulates the H3K79 methylation activity of human DOT1L.
The Muir group has made a number of important observations
that have helped elucidate the molecular mechanism under-
lying this interesting trans-tail histone modification. An enzyme
kinetic analysis suggested that human DOT1L undergoes a
conformational change in the presence of H2B-ubiquitylated
nucleosomes.217 In addition, mutation analyses of the surface
of ubiquitin linked to nucleosomes have suggested commu-
nication of specific amino-acid residues on ubiquitin with
human DOT1L.225 Furthermore, a targeted photocrosslinking
study provided evidence that H2B ubiquitylation ‘corrals’
human DOT1L into an H3K79-proximal orientation.226

Collectively, these studies support the proposition that

installation of ubiquitin on nucleosomes converts dominant,
but unproductive, interactions between DOT1L and the
nucleosome into less dominant, but productive, interactions
that allow H3K79 methylation.

In addition to H2B ubiquitylation, another trans-tail
mechanism for regulating H3K79 methylation has been
reported. An in vitro analysis showed that a direct physical
interaction between Dot1 and the histone H4 N-terminal tail is
required for Dot1-mediated H3K79 methylation.227 In a related
observation, increased H4K16 acetylation induced by SAS2
(something about silencing 2) overexpression was shown to
cause upregulation of H3K79 methylation by inhibiting the
interaction between Sir3 (silent information regulator 3) and
the histone H4 tail.227 Collectively, these observations suggest
that, not only are structural features of the nucleosome
important, surrounding histone modifications also affect the
overall H3K79-methylation activity of Dot1.

Unidentified H3K79 demethylase
Although many demethylating enzymes responsible for histone
lysine methylations have been reported, the reversibility of
H3K79 methylations has not been clarified. The fact that
H3K79me2 is reduced to a lesser extent on non-replicating
extrachromosomal DNA than on chromosomal loci suggests
that removal of H3K79 methylation merely depends on
replication-dependent histone exchange.228 However, several
studies have shown that global H3K79 methylation levels
change dynamically during the G1/S transition.214,229 The
observed disappearance of H3K79 methylation in the G2
phase also suggests the existence of a demethylation process.
Furthermore, treatment of U-87MG cells with the demethylase
inhibitor 2-hydroxyglutarate was shown to result in increased
H3K79 methylation, strongly suggesting the presence of an
H3K79 demethylase.230 Given that Dot1 homologs preferen-
tially methylate nucleosomal substrates over free histone H3,
it is possible that an unidentified H3K79 demethylase may
also target only chromatinized H3K79 methylation. These
observations argue for the need for a biochemical approach
using H3K79-methylated nucleosome substrates to identify the
H3K79 demethylase.

Disruption of telomeric silencing
Dot1 was initially identified as a disrupter of telomeric
silencing.212 Sir proteins, important players in heterochromatin
spreading, are mislocalized to the telomeric region
following mutation of H3K79 or overexpression or deletion of
Dot1.213,220 More direct regulatory evidence was provided
by Côté and co-workers,227 who showed that an
H3K79-methylated peptide exhibits reduced binding to Sir3.
Furthermore, a yeast genetic study showed that Dot1 deletion
stimulates efficient binding between nucleosome and Sir3.231

These studies imply that proper H3K79 methylation level is
crucial for regulation of heterochromatin formation and
stability.
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DNA damage responses
Dot1/DOT1L and H3K79 methylation also serve important
functions in DNA damage responses. Recruitment of human
TP53BP1 (tumor protein p53 binding protein 1) to DSBs is
dependent on H3K79 methylation.232 Furthermore, DOT1
deletion or H3K79 mutations cause defects in G1/S checkpoint
arrest following UV irradiation, ionizing radiation or treatment
with a genotoxic agent.233–235 On the other hand, H3K79
methylation inhibits cell survival following treatment with
the alkylating agent, methyl methanesulfonate, by inhibiting
translesion synthesis, thereby preventing the bypass of DNA
lesions.236,237 Collectively, these observations support the
conclusion that H3K79 methylation has a critical role in
DNA damage responses; however, further investigation is
necessary to elucidate the molecular details of the function of
H3K79 methylation in these processes.238

Transcription elongation
H3K79 methylation is a well-known histone modification that
strongly correlates with active transcription. Numerous studies
have shown that H3K79me2 and H3K79me3 are enriched
in coding regions of actively transcribed genes in many
organisms.39,239–242 This preferential localization implicates
H3K79 methylation in transcription elongation.241,243,244 In
addition, DOT1L is often associated with the transcription-
elongation factor, ENL (eleven-nineteen leukemia), in some
human cancer cell lines, and knockdown of ENL in HEK293
cells decreases H3K79 methylation and transcription-
elongation efficiency.245 Biochemical approaches in mamma-
lian cells have further shown that DOT1L is present in a
number of complexes that also contain transcription-
elongation factors.246–248 The presence of various DOT1L-
containing complexes suggests that DOT1L may regulate
transcription elongation in certain subset of genes through
distinct mechanisms.

DOT1L: a key player in MLL-rearranged leukemia
MLL-fusion proteins generated by chromosomal translocation
are common causes of acute leukemia.249 Interestingly,
DOT1L-interacting proteins such as AF10, also known as
MLLT10 (myeloid/lymphoid or mixed-lineage leukemia
translocated to 10), and ENL are often found to be fused to
MLL in leukemia, which delivers DOT1L to MLL-regulated
genes.245,250 For example, H3K79me2 is enriched at the MLL
target gene HOXA9 in MLL-AF10-transformed cells; as a result
of this aberrant localization of DOT1L, expression of the
HOXA9 gene and leukemic transformation are highly
upregulated.250 Subsequent studies have demonstrated that
DOT1L also causes CALM-AF10-, MLL-ENL-, MLL-AF4-,
MLL-AF9- and MLL-AF10-mediated leukemogenesis through
a similar mechanism.245,251–254 Therefore, misregulation of
H3K79 methylation is thought to be a crucial cue in MLL-
rearranged leukemic cells. In this context, regulation of the
enzymatic activity of DOT1L is considered a potential ther-
apeutic target in the treatment of leukemia. Several chemicals
that specifically disrupt the interaction between the methyl

donor S-adenosyl methionine and the hydrophobic cavity of
DOT1L have been shown to inhibit tumor growth and increase
animal survival rates.255–257

Direct role of H3K79 methylation in transcription
Despite the strong correlation between H3K79 methylation and
active transcription, whether H3K79 methylation directly
stimulates transcription is an unanswered question. A recent
study using in vitro transcription assays revealed that transcrip-
tion was markedly enhanced using a nucleosome template with
fully methylated H3K79 compared with an unmethylated
nucleosome, suggesting a direct stimulatory effect of H3K79
methylation on transcription.258 However, because the entire
transcription unit, including the promoter region, was methy-
lated in this in vitro study, the specific regulatory role of H3K79
methylation at each step of the transcription process needs to
be further investigated. In addition, it would be interesting to
test whether this stimulatory effect of H3K79 methylation is
mediated by binding of as yet unidentified H3K79 methylation-
specific reader proteins.

H4K20 METHYLATION

H4K20 methyltransferases
H4K20 methylation is catalyzed by several enzymes whose
activities are restricted to specific methylation states. The
first identified H4K20 methyltransferase, SET8/KMT5A
(also known as PR-SET7), is a monomethylation-specific
enzyme.259,260 H4K20me1 can be further methylated to
H4K20me2 and H4K20me3 by SUV4-20H1/KMT5B and
SUV4-20H2/KMT5C.261–263 From a structural perspective, an
H4K20me1-containing peptide was shown to fit better into the
SET domain of SUV4-20H2 compared with an unmethylated
peptide.264 On the other hand, in vitro peptide methyl-
transferase assays have shown that the enzymatic activity of
recombinant SUV4-20H2 protein is restricted to H4K20me2,
suggesting the presence of additional factors that enable
SUV4-20H2 to trimethylate H4K20 in vivo.264

Interestingly, H4K20 methylation is also regulated by a
histone trans-tail mechanism. The C-terminal region of
SUV4-20H2 interacts with HP1 protein, which recognizes
H3K9 methylation.261 Thus, deletion of H3K9 methyl-
transferases (Suv39h1 and Suv39h2 in mouse; SU(VAR)3-9
in D. melanogaster) or HP1 causes decreased heterochromatic
targeting of SUV4-20H2 and a global reduction in
H4K20me3.261,263 These results suggest that targeting of
H4K20 methyltransferases to heterochromatin regions is
modulated by H3K9 methylation.265 Moreover, it was found
that p300-dependent H4K16 acetylation decreases SET8-
mediated H4K20me1.260 Similarly, reduction of H4K20me3
by knockdown of SUV4-20H2 was shown to increase
MOF1-dependent H4K16 acetylation and relieve promoter
proximal pausing of RNA polymerase II.266

H4K20 demethylases
Several distinct demethylases are involved in the removal of
specific H4K20 methylation states. PHD8/KDM7B was first
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identified as an H4K20me1-specific demethylase in a biochem-
ical analysis using a nucleosomal substrate.267,268 Intriguingly,
the JmjC family protein, PHD8, also contains a PHD domain,
enabling it to be recruited to target genes through interactions
with H3K4me2 and H3K4me3. Another study found that
LSD1n, an alternatively spliced form of LSD1/KDM1A that is
exclusively expressed in neurons, exhibits demethylase activity
towards H4K20me1 and H4K20me2 in vitro, and at least
towards H4K20me1 in vivo.269 In addition, it has been shown
that PHF2 is recruited to target genes in an nuclear factor-κB-
dependent manner and demethylates H4K20me3.270

Genome stability
H4K20 methylation has important roles in genomic
integrity.271 Genomic deletion of SET8 causes lethality in mice
and D. melanogaster.259,272 Knockdown experiments in cell
lines have revealed critical roles of SET8 in cell-cycle progres-
sion, DNA replication and genome stability.273–275 Perinatal
lethality and cell cycle defects resulting from Suv4-20h1/h2
double-knockout mice also support the function of H4K20
methylation in ensuring genomic integrity.262

DNA damage responses
A structural study has demonstrated a direct interaction
between H4K20me2 and tandem tudor domains in
TP53BP1.276 A cell-based assay has further shown that a
catalytically inactive SET8 mutant fails to restore TP53BP1
recruitment to DNA damage sites.277 Moreover, formation of
TP53BP1 foci following irradiation is reduced in Suv4-20h1/h2
double-knockout mice.262 In addition, in fission yeast, recruit-
ment of the TP53BP1 homolog, Crb2, to DSBs is also regulated
by the H4K20 methyltransferase, Set9.278 These studies suggest
that H4K20 methylation is an evolutionarily conserved
regulator of DNA-damage responses.

Chromatin compaction
Another interesting H4K20 methylation-binding protein is
L3MBTL1 (L(3)mbt-like 1), a transcriptional repressor that
contains three MBT domains.279 Using an electron microscopic
analysis followed by sucrose gradient centrifugation, Reinberg
and co-workers280 showed that direct recruitment of L3MBTL1
by H4K20 methylation is sufficient for chromatin compaction
in vitro. Consistent with this, RNA interference-mediated
knockdown of SET8 in HEK293 cells was shown to result in
the formation of aberrant nuclei and decondensation of
chromatin.274 Furthermore, recombinant nucleosome arrays
containing H4K20me3 have provided direct evidence for
H4K20 methylation-mediated chromatin condensation.281

DNA replication
The BAH domain in ORC1 (origin recognition complex
subunit 1) is known to be a specific reader of
H4K20me2.282,283 Moreover, the WD-repeat domain-contain-
ing protein ORCA, also known as LRWD1 (leucine-rich repeats
and WD repeat domain-containing 1), has been shown to
interact with H4K20me3.283 These observations indicate that

H4K20 methylation is involved in recruitment of the ORC
complex to the origin of replication. However, how H4K20 di-
and trimethylation are regulated at the replication origin
requires further investigation. Some studies have revealed that
H4K20 monomethylation mediated by SET8 affects S-phase
progression and assembly of the pre-RC complex during the
DNA replication process.284,285 However, the fact that deletion
of SET8 causes more severe defects than deletion of other
subunits in the ORC complex suggests that H4K20me1 may
serve more pivotal and diverse functions in DNA replication.

Nucleosome turnover during transcription
A recent study found that H4K20me1 correlates positively with
transcription turnover, primarily at transcription start and
termination sites.286 Interestingly, another study showed that
H4K20 methylation also marks low-turnover nucleosomes in
coding DNA sequences.287 This latter observation suggests that
transcription-dependent nucleosome recycling allows time for
progressive H4K20 methylation in coding DNA sequences. The
accumulation of H4K20 methylation in old nucleosomes
supports this hypothesis.288 Whether higher levels of
H4K20 methylation in old nucleosomes subsequently affect
transcription-mediated nucleosome recycling by functioning as
a binding platform for other chromatin readers or by affecting
intrinsic chromatin compaction functions remains to be
elucidated.

H4K20 methylation and cancers
Several lines of evidence have implicated H4K20 methylation in
cancer. The loss of H4K20me3 and H4K16 acetylation on
repetitive DNA sequences and transposons in human cancer
cell lines suggests that aberrant H4K20 methylation and the
resulting misregulated transcription contribute to cancer
development.289 Subsequent cell line and animal studies have
further reported that misregulation of H4K20 methylation
is strongly correlated with various types of cancer.290–292

However, the molecular basis for linkages between H4K20
methylation and tumorigenesis needs to be explored in greater
detail.

CONCLUDING REMARKS

Conserved histone lysine methylation, methyltransferases,
demethylases and methyl-lysine-binding proteins are important
in development, reprogramming and cancer development.
Recent years have seen an explosion of reports on these
important epigenetic regulators. Given the importance of
histone lysine methylation in the precise regulation of gene
expression and as a cause of various diseases, targeting histone
lysine methylation regulators has been in the spotlight as a
therapeutic strategy. Realizing this goal will require greater
insight into structural aspects of histone lysine methylation-
related proteins so as to obtain a more detailed understanding
of the molecular mechanisms of actions of drugs. In addition
to histone H3 and H4 lysine methylations described here are
several as yet unstudied lysine methylations at the N-terminal
tail of histone H2B and in the globular domains of histones.
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Our mechanistic understanding of downstream effectors of
these lysine methylations is also limited. In particular, lysine
methylations in histone globular domains surrounded by DNA
have so far been largely overlooked, despite the richness of their
multiple modifications. The use of nucleosomes with
homogeneously methylated lysine, generated using recently
developed genetic and chemical engineering techniques,258

will provide powerful tools for identifying and characterizing
novel methyltransferases, demethylases and binding proteins
targeting methyl-lysines located in the histone globular
domain.
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