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Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary
adaptation of developmental, physiological, and biochemical parameters give advantage
over a single window of stress but not multiple. On the other hand transcription
factors like WRKY can regulate diverse responses through a complicated network of
genes. So molecular orchestration of WRKYs in plant may provide the most anticipated
outcome of simultaneous multiple responses. Activation or repression through W-box
and W-box like sequences is regulated at transcriptional, translational, and domain level.
Because of the tight regulation involved in specific recognition and binding of WRKYs to
downstream promoters, they have become promising candidate for crop improvement.
Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain
the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face
the paradox of having several beneficial affects but with some unwanted traits. These
overexpression-associated undesirable phenotypes need to be identified and removed
for proper growth, development and yeild. Taken together, we have highlighted the
diverse regulation and multiple stress response of WRKYs in plants along with the future
prospects in this field of research.

Keywords: WRKY, multiple response, proteasome-mediated degradation, retrograde signaling

INTRODUCTION

Environmental fluctuations consisting of abiotic and biotic stresses impart detrimental effect on
economically important plants. Evolutionary alterations helped the plants to adapt under these
adverse conditions. Some genus, rather species or varieties show higher tolerance level to these
stresses than others (Phukan et al., 2014). This variation is regulated through a wide network of
transcriptional and hormonal crosstalk. The response to external hazardous stimuli is percieved
by signal molecules which induce primary genes associated with the stress. Subset of these genes
include many transcription factors (TFs) like WRKY, ERF, NAC, and MADS. WRKYs are of
particular interest as they are involved in diverse biotic/abiotic stress responses as well as in
developmental/physiological processes (Jiang et al., 2015). They recognize the W-box present in
the promoter of target genes and induce their expression to achieve cellular homeostsis. In this
review we will mainly emphasize the importance of WRKYs in regulating various plant processes
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including rarely discussed topics like proteasome-mediated
degradation, epigenetic regulation, and retrograde signaling. We
will highlight their mode of action, phosphorylation properties,
also interaction at both protein and DNA level. In previous
studies the focus was mainly on the roles of WRKYs in regulation
of stress and development. Although stress and developmental
response would be considered but we will highlight the recent
progress made in this area to the best of our knowledge. Our aim
is to make a comprehensive review to answer how a single TF can
regulate various contrasting responses.

WRKYs: CLASSIFICATION AND
FUNCTIONAL DOMAINS

WRKY is a major TF family of plants though there are reports
of WRKY in soil-living amoeba like Dictyostelium discoideum
and flagellated protozoan like Giardia lamblia. Large numbers
of WRKY are found in plants like 109 in rice and 74 in
Arabidopsis. They contain ≈60 amino acid long four-stranded
β-sheet WRKY DNA binding domain/s (DBD) and Zinc-finger
motifs. Based on these they are divided into group I (2 WRKY
DBDs), II (single DBD with different C2H2 zinc finger), and
III (single DBD with C2HC zinc finger). Group II that is not
monophyletic is divided into IIa, IIb, IIc, IId, and IIe based
on the primary amino acid sequence (Rushton et al., 2010).
Additionally they contain basic nuclear localization domain,
leucine zippers, serine-threonine-rich region, glutamine-rich
region, proline-rich region, kinase domain, and TIR-NBS-LRR
domain (Chen et al., 2012). A Calmodulin (CaM)-binding
domain (DxxVxKFKxVISLLxxxR) is also observed inArabidopsis
Group IId WRKYs like AtWRKY7 (Park et al., 2005). The
primary WRKYGQK motif of DBD shows some anomaly like
WRRY, WSKY, WKRY, WVKY, or WKKY (Xie et al., 2005).
WRKY TFs interact with W-box (with core motif TTGACC/T)
and clustered W-boxes present in the promoter of downstream
genes to regulate the dynamic web of signaling through kinase
or other phosphorylation cascades. Although WRKYs bind
specifically to W- box there are reports of them binding to
non-W box elements like OsWRKY13 binds to both PRE4
element (TGCGCTT) and W box (Cai et al., 2008). HvWRKY46
(SUSIBA2) can bind to both W box and a sugar-responsive
(SURE) element – TAAAGATTACTAATAGGAA (Sun et al.,
2003). In contrast NtWRKY12 can bind to a SURE-like element
but not to the W box. NtWRKY12 has the sequence WRKYGKK
instead of WRKYGQK and binds specifically to the WK box –
TTTTCCAC (Sun et al., 2003). WRKY DBD is mostly conserved
and it interacts mainly with W-box cis motif, though the
activation of downstream genes under a particular condition is
very specific. This might be because of the motifs and domains
outside of DBD that provides binding specificity to WRKY
TFs under different conditions. Based on their class and amino
acid sequence it is observed that β1 and β2 sheets of DBD
are mostly conserved while β3 and β4 sheets shows discripancy
either in terms of number of amino acids or conservation.
Therefore nature of binding affinity of different groups of WRKY
to W-box and others seems to be ambiguous, which needs

further study and exploration of the domains present outside of
DBD.

WRKYs IN MULTIPLE RESPONSES

WRKYs act through various interconnecting networks to regulate
multiple responses simultaneously whether it is biotic, abiotic, or
physiological (Banerjee and Roychoudhury, 2015) (Figure 1).

Biotic Stress
If we consider biotic stress several WRKYs are able to
confer resistance towards multiple bacterial or fungal agents.
AtWRKY52 containing a TIR–NBS–LRR (Toll/interleukin-1
receptor–nucleotide-binding site-leucine-rich repeat) domain
acts together with RPS4 to provide resistance against fungal
pathogen Colletotrichum higginsianum and bacterial pathogen
Pseudomonas syringae (Narusaka et al., 2009). AtWRKY52 also
shows nuclear interaction with the bacterial effector PopP2 and
provides immunity to bacterial pathogen Ralstonia solanacearum
(Deslandes et al., 2002). NBS–LRR–WRKY interaction is also
seen in AtWRKY52/RRS1, AtWRKY16/TTR1, and AtWRKY19,
which helps in the activation of defense related genes (Rushton
et al., 2010). AtWRKY16 and AtWRKY19 also possesses similar
TIR–NBS–LRR domain suggesting the involvement of these
proteins in defense related ETI pathway (Chi et al., 2013).
AtWRKY50/51 mediates SA- and low oleic acid- dependent
repression of JA signaling, resulting in enhanced resistance to
Alternaria brassicicola but increased susceptibility to Botrytis
cinerea (Gao et al., 2011). AtWRKY1 binds to its own promoter
and acts as an activator of fungal elicitor-induced gene PcPR1–1
in parsley (Turck et al., 2004). PtrWRKY73 is involved in diseases
resistance in Arabidopsis (Duan et al., 2015). CC-NB-LRR
(coiled coil-nucleotide-binding site-leucine-rich repeat) protein
Pb1 (Panicle blast 1) confers broad-spectrum resistance to
Magnaporthe oryzae by physically interacting with OsWRKY45
(Inoue et al., 2013). This property of a single TF to provide
multiple resistance against biotic agents can be targeted for
improved variety development.

Abiotic Stress
Similarly a single WRKY can mediate several abiotic responses.
OsWRKY74 modulates Pi homeostasis, Fe starvation, and cold
stress in rice (Dai et al., 2016). AtWRKY71 on one side
accelerates flowering by regulating FLOWERING LOCUS T
and LEAFY while on the other side regulates shoot branching
by activating RAX genes (Guo et al., 2015; Yu et al., 2016).
GhWRKY41/SpWRKY1 enhances salt and drought tolerance in
transgenic tobacco by regulating stomatal conductance and ROS
levels (Chu et al., 2015; Li J.B. et al., 2015). FcWRKY70 is
involved in drought tolerance and putrescine synthesis (Gong
et al., 2015). GbWRKY2 (from Ginkgo biloba), PgWRKY1
(from Panax ginseng), and SiWRKY066/082 (from Setaria
italica) are involved in stress and hormone signaling (Liao
et al., 2015; Muthamilarasan et al., 2015; Nuruzzaman et al.,
2016). AtWRKY46 regulates development, stress and hormonal
response by facilitating growth of lateral roots in osmotic/salt
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stress through ABA signaling and auxin homeostasis (Ding
et al., 2015). HaWRKY76 from sunflower confers drought
and flood tolerance in transgenic Arabidopsis (Raineri et al.,
2015a). GmWRKY13/54 are involved in drought and salt
tolerance (Zhou et al., 2008). BhWRKY1 binds to BhGolS1
promoter involved in providing drought and cold tolerance
(Wang et al., 2009). PsWRKY from Papaver somniferum is
shown to be induced by various treatments like wounding,
cold, salt, ABA, drought as well as MeJA and regulate
Benzylisoquinoline Pathway (Mishra et al., 2013). GbWRKY1
in transgenic Arabidopsis led to enhanced auxin sensitivity
and resulted in attenuated Pi starvation stress symptoms like
reduced accumulation of pigments mainly anthocyanin and
impaired density of lateral roots (Xu et al., 2012). Many
Arabidopsis WRKYs (6, 16, 18, 19, 27, 32, and 40) regulate
diverse cellular functions by physically interacting with 14-3-3
proteins (Chang et al., 2009). Many WRKYs like AtWRKY33
via its C-terminal domain interact with multiple VQ proteins
(with VQ-related motif -FxxxVQxLTG) including SIB1 and
SIB2 (Sigma Factor-Interacting Protein) to regulate multiple
abiotic stresses (Lai et al., 2011; Wang M. et al., 2015).
Crop loss in climate challenging regions could be averted
if transgenic approach of crop improve ment is applied to
diverse economically important plants. Therefore WRKYs are of
prime importance as they can regulate multiple abiotic stresses
simultaneously.

Biotic and Abiotic Stress
There are some WRKYs which regulate both biotic as well as
abiotic responses. Gossypium hirsutum WRKY25 (GhWRKY25)
negatively regulates drought stress and B. cinerea infection
but positively regulates salt stress in transgenic tobacco (Liu
et al., 2015). Overexpression of GhWRKY27a reduces tolerance
to drought and resistance to Rhizoctonia solani infection in
transgenic tobacco (Yan et al., 2015). VvWRKY1 induces
expression of JA pathway-related genes and confers higher
tolerance to the downy mildew and provides tolerance to
osmotic stress in Vitis (Liu et al., 2011; Marchive et al., 2013).
VvWRKY11 also regulates drought tolerance in Arabidopsis (Liu
et al., 2011). In pepper CaWRKY40 is regulated by CaWRKY6,
which in turn regulates R. solanacearum resistance, also provides
tolerance towards high-temperature and high-humidity (Cai
et al., 2015). Growth and yeild of plants are severely affected
by the stagnant waterlogged or submerged condition (Phukan
et al., 2015). AtWRKY22 provides submergence tolerance by
interacting with the ACS7 promoter and activating downstream
ethylene signaling (Hsu et al., 2013). AtWRKY22 also regulates
dark induced leaf senescence, promotes susceptibility to aphids,
modulates salicylic acid and jasmonic acid signaling (Zhou et al.,
2011; Kloth et al., 2016). If a plant can withstand multiple biotic
as well as abiotic stresses without compromising growth and yield
in field condition, agricultural revolution could be attained. By
manipulating expression of a single TF like WRKY this multiple
tolerance trait could be developed. For this purpose there is
a necessity to understand the proper structural and functional
relationship of these multiple regulatory WRKY TFs. Further
exploration of their function in contrasting verities against stress

treatments will also help us to develop plants which may naturally
sustain themselves under multiple stress response.

Secondary Metabolism
Secondary metabolites are specialized plant products that are
associated with a broad assortment of biological functions.
WRKY TFs are shown to regulate production of several
secondary metabolites like phenolic compounds along with
lignin, flavanols, and tannins (Guillaumie et al., 2010; Wang
et al., 2010). AtWRKY23 in Arabidopsis regulates the production
of flavanols in auxin inducible manner (Grunewald et al.,
2012). Another important subset of tannin compounds,
proanthocyanin is regulated by AtWRKY44 (TRANSPARENT
TESTA GLABRA2) (Johnson et al., 2002). MYB-bHLH-WD40
controls the expression of AtWRKY44 that is a key regulator of
anthocyanin production indicating the crosstalk of WRKY TFs
with other networks regulating specialized metabolism (Ishida
et al., 2007). WRKYs also act as a key regulator of alkaloid
biosynthesis. In Catharanthus species 25% of WRKYs are
induced in response to jasmonate and could potentially regulate
terpene indole alkaloid biosynthetic genes (Schluttenhofer
et al., 2014). In Catharanthus roseus CrWRKY1 regulate the
expression of TRYTOPHAN DECARBOXYLASE that is involved
in the synthesis of indolic tryptamine precursors (Suttipanta
et al., 2011). Additionally, TIA pathway metabolites such as
catharanthine and serpentine accumulates differentially in
CrWRKY1 RNAi lines of hairy root cultures, suggesting that
CrWRKY1 regulates the metabolic flux by regulating the genes
within the pathway. CjWRKY1 from Coptis japonica governs
the expression of berberine biosynthetic gene without affecting
the primary metabolism (Kato-Noguchi et al., 2008). Similarly,
benzylisoquinoline alkaloids (BIAs) are also regulated by WRKY
TFs. Wound induced PsWRKY may substantially regulate BIA
pathway as it interacts in vitro with the W-box cis-elements
present in the promoter of seven transcripts involved in the
pathway (Mishra et al., 2013). Overexpression of AtWRKY1
in Eschscholzia californica accumulates sanguinarine and
chelirubine (Apuya et al., 2008). GaWRKY from Gossypium
arboreum regulates sesquiterpene cyclase at a pathway branch
point enhancing the production of gossypol, an antifeedant
phytoalexin (Xu et al., 2004). Solanum lycopersicum SlWRKY71
is involved in the activation of three monoterpene synthase
genes, suggesting multiple simultaneous regulation by a
single WRKY TF (Spyropoulou et al., 2014). Biosynthesis of
antimalarial drug artimisinin produced in trichomes of Artimisia
annua is regulated by AaWRKY1 (Ma et al., 2009). TcWRKY1
from Taxus chinensis regulates the expression of rate limiting
gene DBAT (10-deacetylbaccatin III-10 β-O-acetyl transferase)
involved in the biosynthesis of anticancer drug taxol (Li et al.,
2013). Rice produces terpenes for defense against pathogens
and herbivores. OsWRKY45 found to regulate the production
of diterpenoid phytoalexin like momilactone, phytocassane
and oryzalexin by priming the expression of biosynthetic
genes (Akagi et al., 2014). Rice OsWRKY76 activates cold
stress tolerance but suppresses PR genes and production of
phytoalexins like terpene and phenylpropanoid sakuranetin
(Yokotani et al., 2013). PqWRKY1 from Panax quinquefolius, is
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associated with increased accumulation of ginsenosides, a group
of triterpene compounds (Sun et al., 2013). Ectopic expression
of PqWRKY1 in Arabidopsis up-regulates genes involved in
triterpene biosynthesis, indicating that WRKYs are capable of
regulating metabolic pathways in other species. The expression
of HbWRKY1 has been associated with increased biosynthesis
of natural rubber, a polyisoprenoid derived from wounding the
bark of the tropical tree Hevea brasiliensis (Zhang et al., 2012).
So directly or indirectly WRKYs regulate plant defense response
and development by altering/enhancing secondary metabolite
biosynthesis. So WRKY based elicitor/stimuli responsive over-
expression systems should be developed for exploiting the
regulatory role of these TFs on secondary metabolism.

CROSSTALK OF WRKYs IN MULTIPLE
RESPONSES

The regulation of multiple responses includes a huge
interconnecting network and interactions. Therefore it is
observed that many WRKY TFs work in cluster to mediate
various responses in stress tolerance and development.

AtWRKY18–40–60 Cluster
AtWRKY18 stimulates SA-signaling and enhances resistance
to P. syringae while its coexpression with AtWRKY40 or
AtWRKY60 enhances their susceptible (Xu et al., 2006).
AtWRKY18 and AtWRKY60 also enhance plant sensitivity to
salt and osmotic stress while AtWRKY40 antagonizes this effect
(Chen et al., 2010). The three WRKY proteins form both
homocomplexes and heterocomplexes through Leu zipper motif.
AtWRKY60-18 interaction increases DNA binding ability of
AtWRKY18 while AtWRKY60-40 interaction decreases DNA
binding ability of AtWRKY40 (Xu et al., 2006). AtWRKY18
and AtWRKY40 recognize a cluster of W-box sequences in
the AtWRKY60 promoter to probably activate ABA signaling
(Geilen and Böhmer, 2015). 14-3-3 proteins also interact and
phosphorylate AtWRKY18 and AtWRKY40 to regulate ABA
and stress-activated signaling (Shen et al., 2003; Shang et al.,
2010). Also in excess of ABA Mg-chelatase carrying an ABA
receptor interacts and represses AtWRKY18, AtWRKY40, and
AtWRKY60 (Shang et al., 2010). AtWRKY18, AtWRKY40,
and AtWRKY60 are involved in transcriptional regulation of
ABFs/AREBs by binding to the W-box element present in
their promoters (Antoni et al., 2011). Also AtWRKY18 and
AtWRKY40 both stimulates JA-signaling via suppression of
JAZ repressors and negatively regulates the expression of the
defense genes FMO1, PAD3, and CYP71A13, finally leading to
the enhanced Trichoderma root colonization (Brotman et al.,
2013). Trichoderma spp. stimulates plant growth and resistance
to a wide range of adverse environmental conditions. AtWRKY18
and AtWRKY40 also negatively regulates Golovinomyces orontii
infection (Schön et al., 2013). PtrWRKY40 from Populus
trichocarpa shows similarity with AtWRKY18/40/60 and have a
negative role in resistance to Dothiorella gregaria infection in
poplar but acts as a positive regulator of resistance toward the
B. cinerea in Arabidopsis (Karim et al., 2015). These interactions

and crosstalk does not limit within this cluster but extend to
downstream cascades to regulate multiple responses. To identify
the entire web of interaction, large-scale studies should be carried
out on regulatory networks.

OsWRKY45 Cluster
OsWRKY45-1/2 are involved in the basal defense response
in rice. The regulation is also differentially modulated like
OsWRKY45-1 negatively regulates X. oryzae response while
OsWRKY45-2 is a positive regulator of plant responses to
X. oryzae (Tao et al., 2009). OsWRKY45-1 modulates SA
and JA levels, while OsWRKY45-2 modulates only JA levels.
OsWRKY45s also negatively regulate ABA response and provide
enhanced salt and drought tolerance (Xie et al., 2005; Qiu and
Yu, 2009). Cluster of OsWRKY45-2, OsWRKY13, OsWRKY42
is required for development of resistance to fungal pathogen
M. oryzae in rice (Cheng et al., 2015). In vivo and in vitro DNA-
protein as well as protein-protein interaction studies would be
helpful to explore the integrating network involved. With high
throughput bioinformatics approaches genome wide interactions
should be studied for proper understanding of the regulatory
mechanisms.

OsWRKY24–51–71 Cluster
Another WRKY cluster present in rice is OsWRKY51/71 that
represses RAmy1A α-amylase and thus regulates crosstalk of GA
and ABA signaling in embryos. These two are ABA inducible
which physically interacts in the nucleus and promotes the
binding of OsWRKY71 to the Amy32b (GAMYB) promoter.
Even though OsWRKY51 itself does not bind, it leads to the
supression of GA inducible GAMYB through this interaction.
When GA level increases, it induces the expression of GAMYB
and inhibits OsWRKY51 and OsWRKY71, finally inducing
expression of α-amylase (Zhang et al., 2004; Xie et al., 2006).
OsWRKY24 also negatively regulates GA and ABA signaling
though OsWRKY51/71 possess single DBD while OsWRKY24
possess two DBD. OsWRKY24 too represses the expression
of Amy32b and HVA22 to regulate several developmental
responses (Zhang et al., 2009). Along with them OsWRKY53 and
OsWRKY70 acts as negative transcriptional regulators of GA and
ABA signaling (Zhang et al., 2015). Rice cultivation is widespread
and so thus agents that affects its productivity. Therefore it is very
important to identify the factors that may provide tolerance to
these environmental stresses without compromising the yeild.

Other Clusters
AtWRKY53 and AtWRKY70 negatively regulate leaf senescence
in Arabidopsis (Miao et al., 2004; Ulker et al., 2007). AtWRKY53
also physically interacts with AtWRKY30 to control senescence
progression by regulating ROS level (Besseau et al., 2012). Cross
regulation among AtWRKY25, AtWRKY26 and AtWRKY33
is necessary for promoting plant thermo-tolerance (Li et al.,
2011). ThWRKY4 from Tamarix hispida can form both homo-
and hetero-dimers with ThWRKY2 and ThWRKY3 to mediate
various abiotic responses (Wang L. et al., 2015). GmWRKY27
physically interacts with GmMYB174 to suppress expression
of GmNAC29 under different stresses to induce tolerance
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in soybean plants (Wang F. et al., 2015). MaNAC5 from
banana physically interacts with MaWRKY1/2 and cooperatively
regulates defense response (Shan et al., 2016). HvWRKY38/1
both act as repressors of seed germination (Xie et al., 2007).
HvWRKY38 is also involved in cold and drought response
and its close homolog HvWRKY1 is involved in repression of
basal defense. (Mare et al., 2004; Shen et al., 2007; Zou et al.,
2008). LtWRKY21 from Larrea tridentate binds to the promoter
of HVA22 an ABA-responsive gene to regulate multiple stress
responses. During abiotic stresses LtWRKY21, VP1, and ABI5
interacts to regulate downstream of ABI1 in ABA-mediated
response cascade (Zou et al., 2004). Arabidopsis and rice are
model plants and lots of studies have already been done but
non-model economically important plants are still susceptible
to climatic aberrations. So equal importance should be given to
identify the crosstalks and regulatory responses of these plants
under different conditions.

REGULATION OF WRKYs AT DIFFERENT
LEVELS

Regulation at Transcriptional or
Post-Transcriptional Level
To obtain an accurate balance in stress and developmental
responses, expression of WRKYs and their downstream
activation is tightly regulated. For activation of certain WRKYs
under biotic stress, ETI (Effector-triggered immunity) mediated
regulation is required. HvWRKY1/2 are activated when fungal
avirulence AVR10 effector is recognized by resistance protein
MLA (mildew-resistance locus A) in the cytoplasm and the
subsequent association of MLA with the WRKYs in the nucleus
(Shen et al., 2007). Nicotiana attenuate NaWRKY3 is required
for NaWRKY6 activation by fatty acid–amino conjugates found
in the oral secretions of Manducasexta larva. After wounding
mediated activation they process responses to herbivory
(Skibbe et al., 2008). In another case of herbivory, Spodoptera
littoralis induces the synthesis of JA-isoleucine that binds to a
complex of receptor COI1 and repressor JAZ finally activating
AtWRKY18 and AtWRKY40 (Schweizer et al., 2013). Similarly
AtWRKY23 is upregulated upon Heterodera schachtii nematode
infection (Grunewald et al., 2008). OsBWMK1 phosphorylates
OsWRKY33, which binds to the W box element present in
the promoter of several PR genes (Koo et al., 2009). PAD4,
a key regulator of SA signaling regulates AtWRKY33 which
provides resistance to B. cinerea and regulates genes involved
in redox homeostasis, SA signaling, ET-JA-mediated cross-
communication and camalexin biosynthesis (Qiu et al., 2008).
BHLH and R2R3MYB TFs (WEREWOLF, GLABRA1, and
TRANSPARENT TESTA) regulate the expression of TTG2 that
plays a role in trichome and seed development by regulating
expression of GLABRA2 (Ishida et al., 2007). TTG2 also
increases sensitivity to salt stress through suppression of auxin
biosynthetic genes (Li Q. et al., 2015). Zinc-finger protein Zat12
is induced by drought, osmotic, salinity, temperature, oxidative
stress, and wounding which in turn transcriptionally regulates

AtWRKY25 (Davletova et al., 2005; Mittler et al., 2006). Auxin
regulates the expression of Auxin response factors (ARF7 and
ARF19), which controls proper growth and development of
root by regulating the expression of AtWRKY23 (Grunewald
et al., 2012). AtWRKY22 positively regulates senescence and
can influence the expression of its own gene and of AtWRKY53
and AtWRKY70 (Zhou et al., 2011). AtWRKY70 functions
downstream of SNC2–1D (suppressor of npr1–1, constitutive
2) and regulates plant immunity (Zhang et al., 2010). At post
transcriptional level miRNAs can regulate the expression of
various WRKY TFs to modulate various processes. As shown
in Figure 2, miR396 regulates high temperature response in
sunflower through HaWRKY6 (Giacomelli et al., 2012). Stress
responsive WRKYs are tightly regulated during normal condition
but after occurrence of a stress particular signal is transmitted
that lead to activation of the responsive TFs.

Regulation by Kinases
MAP Kinases (MPK) play an important role in the activation
of WRKYs to regulate various responses (Adachi et al., 2015).
AtWRKY33 forms a complex with MAP kinase MPK4 in the
nucleus. Upon triggered by MAMP or PAMP perception MPK,
MKK (MAP kinase kinase) and MEKK (MAP kinase kinase
kinase) are activated, which leads to nuclear dissociation of
the MPK4–MKS1–WRKY33 complex releasing AtWRKY33 and
MKS1. Then AtWRKY33 activates PAD3 (phytoalexin deficient
3) that is required for antimicrobial camalexin synthesis (Qiu
et al., 2008). During post-association with MKS1 (MAPK
substrate1), VQ protein interacts with AtWRKY33/25 to act as
a substrate of MAPK4 (Qiu et al., 2008). Also MEKK1 directly
binds to the WP1 region in the promoter of AtWRKY53 that is
present upstream of a W box where AtWRKY53 itself binds to its
promoter. It leads to phosphorylation of AtWRKY53 by MEKK1
that increases the binding affinity of AtWRKY53 to its own
promoter (Miao et al., 2007). Activation domain protein (AD
protein) also interacts with the promoter of AtWRKY53. Actually
both MEKK1 and AD protein physically interacts with each other
and enhances AtWRKY53 expression. However MEKK1 does not
phosphorylate AD protein, which can phosphorylate itself (Miao
et al., 2008). Many WRKYs like AtWRKY28 are substrates of
calcium-dependent protein kinases like CPK4 and CPK11 (Gao
and He, 2013). P. syringae pv. Tomato DC3000 infection induces
expression of PKS2 (SOS2-like protein kinase 5) that interacts
with the AKR (Ankyrin Repeats) motif and phosphorylates NPR1
(Non-expressor of Pathogenesis-Related gene 1). This interaction
results in the upregulation of AtWRKY38 and AtWRKY62
involved in mediating plant defense responses (Xie et al., 2010).
OsWRKY53 suppresses herbivore-induced defense in rice by
negative feedback modulation of MPK3/MPK6 activity (Hu et al.,
2015). MAPK4 interacts with MKS1, which in turn interacts with
AtWRKY25 and AtWRKY33 to act as a negative regulator of
SA-mediated defense responses to P. syringae (Andreasson et al.,
2005). When M. oryzae or Xanthomonas oryzae pv oryzae attacks
rice, MAPK regulates expression of OsWRKY45 and provides
resistance to these infection by SA/benzothiadiazole (BTH)-
mediated defense (Matsushita et al., 2012; Nakayama et al., 2013).
AtWRKY22 and AtWRKY29 are involved in MAPK pathway
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FIGURE 1 | Multiple role of WRKYs under different environmental conditions. In response to multiple stimuli plants recruit various WRKYs to regulate
downstream cascade. The green arrows indicate a positive or beneficial regulation while red arrows indicate negative or harmful regulation. In response to different
stresses WRKYs provide tolerance or resistance to the respective plants; like AtWRKY29, 38, 62 provide resistance to pathogen attack; AtWRKY3, 6, 18, 40 provide
resistance to herbivores; OsWRKY89 protects plant from harmfull UV radiation; many WRKYs impart drought and salt tolerance; AtWRKY22 provides waterlogging
tolerance; GbWRKY1 helps plant in phosphate starvation and AtWRKY25, 26 provide thermotolerance. They are also involved in metabolic and developmental
responses; like CrWRKY1, AaWRKY1, GaWRKY1 are involved in secondary metabolism; AtWRKY71, TTG2 are involved in growth and development; SUSIBA2,
AtWRKY34 are involved in sugar metabolism and AtWRKY18, 40 are involved in trichoderma colonization. AtWRKY53, 70 induce leaf senescence while OsWRKY23
prevents it.

regulated responses to both bacterial and fungal pathogens
(Göhre et al., 2012). Therefore phosphorylation and activation
by kinases is an important regulatory mechanism that can be
targeted for controlled expression of certain TFs.

Regulation by Epigenetic Mode
Non-genetic influence of WRKY gene expression is also seen
which deeply affect several physiological responses. ATX1
(Trithorax) activates the expression of AtWRKY70 epigenetically.

They leads to nucleosomal histone H3K4 trimethylations
that activates AtWRKY70, which in turn activates PR-1 and
THI2.1 defense genes (Alvarez-Venegas et al., 2007). SUVH2
histone methyltransferase leads to H3K4me2 and H3K4me3
methylation that epigenetically regulates AtWRKY53 to mediate
leaf senescence responses (Ay et al., 2009). Histone Deacetylase 19
(HDA19) represses transcription of AtWRKY38 and AtWRKY62
by removing acetyl groups from histone tails and thus
negatively regulates basal defense (Kim et al., 2008). Histone
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FIGURE 2 | miRNA and proteasome mediated degradation of WRKYs in different conditions. Under normal condition, stress responsive WRKYs are tightly
regulated by various mechanisms and after getting stress stimulus they are phosphorylated/activated by different mechanisms to regulate downstream genes.
miRNA either lead to degradation or translational inhibition of WRKYs to regulate unwanted expression. An example of regulation/degradation of HaWRKY6 by
miR396 cascade is shown. Also proteasome mediated degradation of AtWRKY45, VpWRKY11, and AtWRKY53 by UPS, EIRP1, and UPL5 has been shown,
respectively. Single color has been given to all the factors involved in a paricular cascade. After onset of stress these WRKYs are phosphorylated by different MAPKs
and they in turn regulate expression of downstream stress responsive genes. Abbreviations: UPL5: Ubiquitin protein ligase 5, UPS: nuclear ubiquitin-proteasome
system, EIRP1: Erysiphe necator-induced RING finger protein 1, MAPK, Mitogen-activated protein kinase; Ub, Ubiquitin; RISC, RNA isolated silencing complex.

methylations at the AtWRKY40 promoter activate the SA-
dependent pathway to control plant immunity (Alvarez et al.,
2010). Also histone methylation at AtWRKY40 promoter
inhibits expression of ABI5 and negatively regulates ABA
signaling in seed germination and post-germination growth
(Shang et al., 2010). FLD (flowering locus D- a homolog
of human-lysine-specific histone demethylase) epigenetically
influences systemic-acquired-resistance induced expression of
AtWRKY29 and AtWRKY6 through histone modifications at
their promoters (Singh et al., 2014). Linker histone H1 gene
MaHIS1 interacts with MaWRKY1 to regulate physiological
processes like ripening and stress responses in banana fruit
(Wang et al., 2012). As discussed earlier WRKYs tend to interact
with different VQ proteins, which have been hypothesized
to induce histone modification and chromatin remodeling to
regulate downstream genes (Lai et al., 2011). Whether it is

covalent modifications, structural inheritance or nucleosome
positioning, gene expression and downstream translation is
dependent on theses factors. Therefore these epigenetic mode of
regulations need to be addressed before turning to genetic way of
modifications.

Regulation by Proteasome System
Expression level of stress responsive WRKYs under normal
condition are kept under check by different mechanisms one
of which is proteasome-mediated degradation. As stated above
OsWRKY45 plays a major role in SA/BTH induced defense,
which is actually regulated through nuclear UPS (ubiquitin
proteasome system). Under normal condition UPS rapidly
degrades OsWRKY45 in nuclei in order to suppress defense
responses but onset of pathogen attack inhibits proteasomes
and induces accumulation of polyubiquitinated OsWRKY45
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(Matsushita et al., 2013). The domains required for UPS-
dependent degradation lie closely to the transactivation domain
of OsWRKY45 (Matsushita et al., 2013). AtWRKY53 that
positively regulates pathogen response negatively regulates leaf
senescence. HECT domain E3 ubiquitin ligase UPL5 (Ubiquitin
protein ligase 5) interacts with AtWRKY53 via its leucine zipper
domain for its polyubiquitination and degradation. AtWRKY53
expression is tightly regulated as to induce pathogen response or
senescence in the proper time frame (Miao and Zentgraf, 2010).
Ubiquitin-mediated regulation of WRKYs is also observed in
Vitis pseudoreticulata for positive regulation of defense responses
to pathogen attack. EIRP1 (E3 ubiquitin ligase Erysiphenecator-
induced RING finger protein 1) interacts with VpWRKY11
through the RING domain. EIRP1 mediates proteolysis of
VpWRKY11 via degradation by the 26S proteasome and inhibits
W-box-dependent transcription (Yu et al., 2013). Proteasome
mediated regulation of various WRKYs at normal condition and
their activation by kinases under stress is shown in Figure 2.
So this aspect is also necessary to identify the entire network
involved in stress response and very limited information is
available at this time. Particular attention is required in the field of
other crops so that stress tolerance and susceptibility issues could
be attended.

Regulation by Retrograde Mechanism
WRKYs are also regulated through inter-organelle retrograde
signaling. One example of chloroplast-mediated retrograde
regulation revolves around AtWRKY18-40-60 cluster.
AtWRKY18, AtWRKY40, and AtWRKY60 act as negative
regulators of ABA signaling, inhibiting seed germination
and post-germination growth. They interact with cytosolic
C-terminus of ABAR (magnesium-protoporphyrin IX chelatase
H subunit that function as an ABA receptor) that is located
in the chloroplast envelope. AtWRKY40 acts as a central
negative regulator that inhibits expression of ABA-responsive
genes like ABI4, ABI5, and ABF4. In presence of high
level of ABA, AtWRKY40 is recruited in the cytosol from
nucleus that promotes ABAR-AtWRKY40 interaction. ABAR
represses expression of AtWRKY40 and allow expression of
ABA responsive genes (Shang et al., 2010). An example of
mitochondrial retrograde regulation involves plant NDPKs
(nucleoside diphosphate kinases) that are involved in stress,
hormone response, and light signaling (Hammargren et al.,
2008). NDPK3a is located in mitochondria and carry 2
WBOXHWISO1 boxes in its promoter that are involved in
sugar metabolism and signaling. SUSIBA2 (HvWRKY46),
AtWRKY4 and AtWRKY34 are associated with sugar induction
and expression of NDPK3a (Pesaresi et al., 2007; Hammargren
et al., 2008). As mentioned earlier AtWRKY53 has diverse
roles and its expression is tightly regulated (Sun and Yu, 2015).
AD protein, which physically interacts with AtWRKY53 and
induces its expression, is also located in plastids (Miao et al.,
2008). Whirly1 a dual-targeted protein too regulates AtWRKY53
expression. Nuclear isoform of Whirly1 acts as an upstream
regulator and directly represses the expression of AtWRKY53
during un-intended leaf senescence. Whirly1 interacts with the
elicitor response element motif-like sequence (GNNNAAATT)

and an AT-rich telomeric repeat-like sequence present in
the promoter of AtWRKY53 suppressing its expression and
of downstream genes like AtWRKY33, SAG101, and SAG12
involved in senescence. The plastid form of Whirly1 is involved
in positive regulation of AtWRKY53 in nucleus through
retrograde signaling (Miao and Zentgraf, 2010; Miao et al.,
2013). AtWRKY40 acts as a repressor of high-light-induced
signaling and antimycin A-induced mitochondrial retrograde
expression while AtWRKY63 acts as an activator. They are
involved in the regulation of stress-responsive organelle proteins
which are responsive to both mitochondrial and chloroplast
dysfunction (Van Aken et al., 2013). AtWRKY57, AtWRKY63,
and AtWRKY75 show stress response by regulating nuclear
encoded organelle proteins like AOX1a (Van Aken et al.,
2013). AtWRKY15 leads to expression of genes involved in
mitochondrial dysfunction regulon and negatively regulates
retrograde signaling (Vanderauwera et al., 2012). Interaction
of WRKYs with VQ proteins have been assumed to play roles
in regulation of transcription and retrograde signaling from
chloroplast/mitochondria to the nucleus (Lai et al., 2011).
Retrograde signaling of different WRKYs operating from
chloroplast and mitochondria to nucleus is shown in Figure 3.
Anterograde and retrograde mechanism are dependent on each
other and this signaling has many lacunas that need to be filled
prior development of genetically modified plants.

CROP IMPROVEMENT BY REGULATING
MULTIPLE RESPONSES AND/OR TRAITS
THROUGH WRKYs

Plants being non-motile are susceptible to various environmental
factors. As stated above they can be engineered to overcome that
susceptibility through controlled regulation of TFs like WRKY.
They display multiple, interconnected, complex, and flexible
expression patterns in response to various stimuli which could
be exploited to obtain varieties that are resistant and tolerant
to environmental fluctuations. Also complete control over an
entire network by modulation of a single gene responsive to
a particular action is not possible. But TFs like WRKY can
regulate multiple sets of genes involved in an interconnected
network cooperatively and simultaneously. Initiation of crop
improvement through transgenic approach is still in its early
phase. But certain productive steps have been taken to ensure
success in long term projects.

Rice
It is the most widely consumed staple food for a large part of
the world’s human population as a cereal grain. Also it is a
model plant where substantial research has been done, which
can be exploited for generation of improved breeds with very
limited unwanted traits. OsWRKY11 under control of HSP101
promoter leads to more chlorophyll content and low leaf wilting
in rice under drought stress (Wu et al., 2009). OsWRKY30/47
overexpressed transgenic rice displayed drought tolerance (Shen
et al., 2012; Raineri et al., 2015b). Rice with overexpressed
OsWRKY76 showed susceptibility to pathogens while tolerance
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FIGURE 3 | Retrograde regulation in multiple responses. WRKYs play an imortant role in organellar interactions. During plastid disfunction AtWRKY13/40/57
are activated which regulate chloroplast associated genes like LHCB2.4 and HEMA1. Under normal condition AtWRKY40 represses expression of stress-responsive
genes like DREB2a, ABI4, ABF4, and MYB2. When ABA is accumulated under stress it leads to translocation of AtWRKY40 to the chloroplst membrane located
protein ABAR so that expression of stress-responsive genes could be elevated. Chloroplst targeted proteins SIB1/2 help in the activation and binding of AtWRKY33
to the promoter of downstream genes with the help MAPK4 and MKS1. Mitochondrial disfunction also activates certain WRKYs like AtWRKY57/63/75 which in turn
activates mitochondria associated genes AOX1a, BCS1, and NDB2. AtWRKY4/34 regulate NDPK3a and sugar metabolism probably through mitochondrial
retrograde signaling. Abbreviations: ABAR, ABA receptor; NDPK3a, Nucleoside diphosphate kinase 3a; ABF4, ABRE-binding factor 4; MPK4, Mitogen activated
protein kinase 4; MKS1, MAP kinase substrate 1; SIB, Sigma factor binding protein; ABI4, ABA insensitive 4; LHCB, Photosystem II chlorophyll a/b-binding
polypeptide gene; AOX1a, Alternative oxidase 1a; NDB2, type II NAD(P)H dehydrogenases B2.

to cold stress (Yokotani et al., 2013). OsWRKY89 overexpressed
rice plants showed increased wax deposition leading to UV-B
tolerance and disease resistance (Wang et al., 2007). OsWRKY4
mediates defense responses toward Rhizoctonia solani in rice
(Wang H. et al., 2015). OsWRKY6 positively regulates defense
response in overexpressed rice (Choi et al., 2015). OsWRKY53
regulates herbivore-induced defense responses in rice (Hu et al.,
2016). In rice OsWRKY24/45 negatively and OsWRKY72/77
positively regulates an ABA-inducible promoter which can be
engineered to promote abiotic stress response (Xie et al., 2005).
Another WRKY from rice OsWRKY74, modulates tolerance
to phosphate starvation (Dai et al., 2016). Modulation of
OsWRKY4 transcript levels by constitutive overexpression in rice
increases resistance to the necrotrophic sheath blight fungus
Rhizoctonia solani (Wang H. et al., 2015). OsWRKY6 interacts
with the promoter of OsPR10a and OsICS1 providing enhanced
disease resistance to pathogens in rice (Choi et al., 2015).
Two transcriptional repressors OsWRKY13 and OsWRKY42
and activator WRKY45-2 forms a transcriptional regulatory

cascade that provides resistance to fungal pathogen M. oryzae
(Cheng et al., 2015). So there are potential TFs that can enhance
the tolerance of rice towards different stresses but upstream
and downstream components needs to be carefully studied for
transgenic development.

Others
Overexpression in homologous system is a difficult task
as transformation and tissue regeneration protocols differ
from species to species. Nevertheless there are few examples
where WRKYs have been successfully overexpressed in their
native host and found some promising results. CmWRKY17
when overexpressed in Arabidopsis and Chrysanthemum
showed reduced salt stress tolerance (Li et al., 2011, 2015b).
CmWRKY15 facilitated Alternaria tenuissima infection by
antagonistically regulating the expression of ABA-responsive
genes while CmWRKY48 enhanced aphid resistance in
transgenic Chrysanthemum (Fan et al., 2015; Li et al., 2015a).
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CmWRKY1 leads to dehydration tolerance inChrysanthemum by
regulating ABA-associated genes (Fan et al., 2016). PtrWRKY19
when overexpressed in Populus trichocarpa, negatively regulates
secondary cell wall formation in pith parenchyma cells (Yang L.
et al., 2016). Overexpression of PtoWRKY60 in poplar resulted
in increased resistance to Dothiorella gregaria (Ye et al., 2014).
ThVHAc1 regulated by ThWRKY7 provides cadmium stress
tolerance in Tamarix hispida (Yang G. et al., 2016). CaWRKY6
regulates the expression of CaWRKY40, confers resistance to
R. solanacearum infection, and provides tolerance to high-
temperature and high-humidity in pepper (Cai et al., 2015).
GmWRKY27 interacts with GmMYB174 to reduce expression
of GmNAC29 that leads to stress tolerance in soybean plants
(Wang F. et al., 2015). Since these TFs play an important
role in increasing stress tolerance and developmental responses
in plants, they can be targeted for generation of improved
varieties using transgenic technology. Still large numbers of
WRKY transcripts are uncharacterized in Arabidopsis and
rice, and many more in other plants. Therefore much more
exploration and proper study is required to fully understand
the WRKY governed plant responses. Recent advancement in
technology would be helpful in analysis of these unanswered
questions.

CONCLUSION AND FUTURE
PERSPECTIVE

Proper growth and development of plants is critically dependent
on surrounding environmental conditions. Many times abiotic
stresses are accompanied by biotic stresses. In this review we
brought up the fact that TFs like WRKY can regulate genes
involved in multiple responses at the same time. This aspect
carries potential benefit for the economically important plants.
Transgenic approach though in its early infancy could be targeted
for development of plants with tolerance to multiple stresses.
WRKYs not only regulate stress and developmental responses
they are also involved in specialized metabolic pathways. We
also observed that WRKYs themselves are regulated tightly to
maintain normal cellular homeostasis under normal condition.
Through genetic alteration and recombinant technology, traits
regulated by WRKYs could be modulated for development of
better varieties. We strongly believe that ‘regulation of WRKY’
and ‘regulation by WRKY’ should be explored in detail; and
particular attention should be given to the following points to
understand the entire crosstalk and cascade involved in multiple
responses by a single TF:

(1) In transgenics along with WRKYs proper regulation of
promoters should be done. Also post-transcriptional and
translational changes should be monitored to remove or
minimize the negative unwanted effects. With it, orthologs
and homologs should be studied that would identify the
precursors or substrates involved in different regulatory
cascades under stressed condition.

(2) Study of signaling molecules, interacting partners and
phosphorylating agents is necessary. Further the TF-
dependent integrated web in which different other TFs
like ERF, MYB, MYC, and NAC act along with WRKY to
regulate various responses, needs to be studied.

(3) Through the advancement in high-throughput
transcriptomic, proteomic, metabolomic platforms
analysis of large set of data is quite fisible. These
technologies in association with microarray would help
us to understand the diverse WRKY-associated networks.
Novel development and stress-responsive TFs could be
identified which have naturally adapted to hazardous
environmental conditions.

(4) CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats) and CRISPR-associated (Cas) gene
system could be an effective way to study functional
aspect of WRKYs. Traditional silencing or VIGS could
not entirely mask the expression of target genes. The type
II CRISPR mechanism involving Cas9 could be targeted
to generate potential functional mutants in non-model
plants. So to elucidate and interpret the role of WRKYs,
not only overexpression but also silencing of the concerned
gene is necessary which could be attained by CRISPR/Cas9
strategy in near future. Also negative regulatory WRKY
genes could be manipulated for better response in terms of
stress tolerance or better yield.

(5) One major hinderence in the transgenic approach is the
long term field trials which has some issues with horizontal
gene transfer and unwanted characters. So proper field
trials and accurate carefull observation of modified traits
should be monitored. Commercialization of genetically
modified crops should be promoted with thorough study
and precaution. These mentioned aspects would give a
deeper understanding of the plant stress responses and
allow plants of agricultural and commercial importance to
survive under environmental fluctuations.
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