WATER RECYCLING OF SEWAGE EFFLUENT BY IRRIGATION: A FIELD STUDY ON OAHU

Final Progress Report for August 1971 to June 1975

Technical Report No. 94

Project Principal Investigator

L. Stephen Lau

Co-Investigators

Paul C. Ekern Soil and Irrigation
Philip C.S. Loh Virology Studies
Reginald H.F. Young Water Quality Analysis
Nathan C. Burbank, Jr. Public Health Aspects
Gordon L. Dugan Data Management and
Report Preparation

July 1975

The research reported herein was funded by the Board of Water Supply and the Department of Public Works, City and County of Honolulu, and was conducted with the cooperation of the Hawaiian Sugar Planters' Association and the Oahu Sugar Company.

PROJECT PERSONNEL

Principal Investigator:

L. Stephen Lau . Director, Water Resources Research Center

Co-Investigators and Executive Group:

Paul C. Ekern · Professor of Soils

Philip C.S. Loh · Professor of Microbiology

Reginald H.F. Young • Professor of Civil Engineering

Nathan C. Burbank, Jr. · Professor of Public Health

Gordon L. Dugan . Professor of Civil Engineering

Project Staff:

Roger S. Fujioka • Virologist

Catherine Foster • Research Associate (virus)

Carol A. Stratford • Research Associate (virus)

Janice C. Beene · Laboratory Associate

Enid Chibana • Laboratory Associate

Kenneth M. Tenno · Laboratory Associate (virus)

Christopher Rossi • Field Assistant

George K. Uyehara • Field Assistant

Sidney T. Ihori • Graduate Assistant

Daniel K.T. Leung • Graduate Assistant

Krystyna Miedzybrodzka • Graduate Assistant (virus)

Ivan K. Nakatsuka • Graduate Assistant

Somsri Sinanuwong • Graduate Assistant (virus)

Vernon Yamamoto • Graduate Assistant

Lester Chin . Laboratory Assistant

Sang Duck Hahn • Laboratory Assistant

Georgia Kise • Laboratory Assistant

Randy G. Moon • Laboratory Assistant

Delfin W.G. Ng · Laboratory Assistant

Myra J. Tuggle • Graphics Specialist

Sharon N. Takaesu • Stenographer

Participating Staff from Cooperating Agencies:

Board of Water Supply, City and County of Honolulu

John Y.C. Chang • Water Resources Engineer

Lawrence H.Y. Whang . Sanitary Engineer

Robert G. Hayashi • Chief Microbiologist

Chester Lao • Hydrologist-Geologist

Michael Shigetani • Sanitary Engineer

Department of Public Works, City and County of Honolulu

Chew Lun Lau • Environmental Engineer

George Richardson • Sanitary Engineer

George M. Uyema • Sanitary Engineer

Sidney Kansako • Sanitary Engineer

Hawaiian Sugar Planters' Association

Minoru Isobe • Head, Department of Agronomy

Lawrence L. Buren • Associate Agronomist

David Ashby · Associate Agronomist

David S. Judd • Superintendent, Field Experiments (retired)
Oahu Sugar Company, Ltd.

Louis H. Herschler . Manager, Land and Civil Engineering

Jerry K. Wakatsuki · Director, Agricultural Research and Control

Oscar Thompson • Chief Civil Engineer

Howard Wagoner • Crop Control Superintendent

Michael Furukawa • Assistant Agriculturist

Raymond Uchida • Assistant Agriculturist

ABSTRACT

The specific project objectives were to: (1) evaluate by field lysimeters and pilot plots and augment by laboratory studies the feasibility of utilizing water reclaimed from sewage for irrigation under Hawaiian conditions; (2) assess the probable effects of surface-applied reclaimed water on groundwater quality particularly in terms of potential viral transmission and long-term buildup of solids; (3) evaluate the effects of various water quality parameters on the soil, percolation, and vegetative growth when grassland or sugarcane is irrigated with sewage effluents; (4) explore any problem in sugarcane culture, either in technology or in crop quality that might be involved in the irrigation of sugarcane with water reclaimed from sewage.

The central Oahu project site area is located near the Mililani Sewage Treatment Plant (STP) which, in 1975, received approximately 3217 m³/day (0.85 mgd) of essentially domestic sewage from the nearby expanding Mililani Town development. The STP utilizes the Rapid Bloc activated sludge process (secondary treatment) that achieves a suspended solids and BOD5 removal rate that averages 90%. The location of the project site was chosen in part because the adjacent field soils are of the Oxisol order similar to that on which approximately 90% of the sugarcane cultivated under irrigated conditions on Oahu is grown. The general project site area receives an average annual rainfall of approximately 102 cm (40 in.), and is situated at an elevation approaching 152 m (500 ft).

The research activities were grouped into three major areas: soils and irrigation, viral analysis, and water quality analysis. In general, the values of guideline chemical parameters for the Mililani STP effluent are below the maximum value for irrigation of sensitive crops. Pesticides and heavy metal concentrations were either below the level of concern or level of detectability. Nitrogen was given special emphasis for several reasons: its use as a major component of most fertilizers; its known adverse effect (lowered sugar yields) on matured sugarcane; its essential solubility in the nitrite and nitrate form; its relationship in concentrations above 10 mg/l as N to methomoglobinemia, the disease of infants; and its potential role in the eutrophication of open bodies of water receiving excessive nitrogen loads.

Commencing in August 1971, the project activities consisted of: the installation of field grass-sod, bare soil, and field lysimeters at the Mililani STP; coordinating laboratory facilities and analytical capabilities for determining the constituents in water, waste water, and soils; development of virus culturing and assaying techniques under field conditions, and studying the application of secondary effluent to maturing sugarcane in OSC Field No. 240, located approximately 3.2 km (2 miles) from the Mililani STP. The results of these studies helped establish procedures and guidelines for the principal focus of the project, the sequential application of sewage effluent, ditch water, and combinations thereof, to sugarcane in 30 test plots with uniform areas of 0.04 ha (0.1 acre) each in the newly planted (February 1973) OSC Field No. 246, located approximately 1.6 km (1 mile) from the Mililani STP. The test plots were divided into three basic irrigation schemes of ten plots each: A, B, and

C. Plots "A" were scheduled to received only ditch water for the 2-yr growth cycle, "B" plots to receive secondary effluent for the first half of the growth cycle and ditch water thereafter, and "C" plots to have only effluent irrigation applications for the full growth cycle.

Fifty ceramic point samplers were installed in representative "A", "B", and "C" plots at depths of 23 to 30 cm and 46 to 53 cm (9 to 12 in. and 18 to 21 in.), which resulted in the shallower points being positioned in the tillage zone and the deeper points being positioned approximately 15 cm (6 in.) below the tillage zone. Thus, leachate collected by the shallower points represented liquid available to the sugarcane root zone, whereas, leachate collected from the deeper points is assumed to be generally unavailable to the sugarcane and potentially may percolate to the groundwater table. Two 1.52-m (5 ft) deep field lysimeters were also installed in a furrow row adjacent to the test plot. The sugarcane growing on one lysimeter was irrigated with ditch water while sugarcane on the other lysimeter received secondary effluent. Sugarcane parameters were monitored periodically throughout the culture cycle.

Field No. 246 was harvested in March 1975 and the associated laboratory analysis of the yields was completed and evaluated in April 1975.

The Mililani STP secondary treated and chlorinated domestic and municipal sewage effluents containing insignificant amounts of toxic chemicals represent a generally usable irrigation supply for sugarcane and grasslands in central Oahu.

Application of sewage effluent for the first year of a 2-yr cane crop cycle increased the sugar yield by about 6% compared with the control plots. However, when sewage effluent was applied for the entire 2-yr crop cycle, sugar yield was reduced by about 6% and the cane quality by about 16% even though the total cane yield increased by about 11%.

There was no apparent evidence of significant surface clogging of the soil or of soil chemical properties impairment resulting from sewage effluent irrigation during the first full 2-yr sugarcane crop cycle. Under a no moisture stress condition, a 1-mgd supply is sufficient to irrigate 61 to 81 ha (150 to 200 acres) of sugarcane by the furrow method.

The quality of percolate from the effluent-irrigated sugarcane-cultured soil was of acceptable concentration from the standpoint of ground-water quality protection: the only possible concern was for nitrogen which sporadically exceeded the 10 mg/l limit for drinking water during the first 6 to 7 months of cane growth. However, similar exceedance occurred in the ditch water-irrigated sugarcane plots and the plots irrigated with effluent during the first year and with ditch water during the second year. Furthermore, there was no major difference in the total quantity of nitrogen produced in the percolate among the three different treatments. Phosphorus, potassium, suspended solids, biochemical oxygen demand, total organic carbon, and boron were removed effectively from the applied effluent by means of irrigation; however, chloride in the percolate was essentially unaffected except for a transient increase during fertilization. Both total dissolved solids and chloride in the percolates met drinking water standards.

Human enteric viruses have been shown to be present in the majority of effluent samples examined and, hence, can be assumed to be present in the effluent applied to the irrigated field. However, the absence of these viruses in all sugarcane and grass percolates sampled over a 2-yr period, plus other project virus studies conducted, suggest strongly that the possibility of contaminating deep underground water sources is extremely remote.

Survival of poliovirus was minimal in an open field area which was exposed to direct sunlight, high temperature, and dessication. In contrast, the viability of the virus was maintained for up to two months in a field of mature sugarcane where the virus was protected from the physical elements.

Bermudagrass, with periodic cutting and harvesting, proved to be an excellent utilizer of sewage effluent applied nitrogen and, thus, excelled sugarcane from the standpoint of groundwater protection. Essentially no nitrogen was recovered from the percolate at the 1.52-m (5 ft) depth below the grassed surface, whereas nearly 25% of the total nitrogen applied from chemical fertilizers and sewage effluent was recovered at the same depth in sugarcane percolate. Up to 40.47 ha (100 acres) of grassland may be irrigated with 1 mil gal/day of effluent under a no moisture stress condition. However, it has been demonstrated that fallow or bare soil appears incapable of removing significant amounts of nitrogen from the applied effluent.

Disinfected sewage effluent, similar in composition to that used in the Mililani study, may be used for irrigation of sugarcane in the first year followed by irrigation with surface water in the second year, however, when used for the entire 2-yr crop cycle without added treatment, poorer sugar yield will result.

Establishing a virus monitoring and quality control program for the treated sewage effluent before application is an essential part of an irrigation recycling program. Furthermore, development of more effective methods of virus inactivation prior to recycling is highly recommended. Precautionary sanitation measures for field workers should be practiced.

Further research on the use of effluent for irrigation sugarcane would be desirable, specifically:

- 1. Repeat test plot studies for a ration crop cycle to confirm the yield and to assess long-term effects on the soil
- 2. Test with various dilutions of sewage effluent and with chemical ripeners to improve the yield
- 3. Investigate plugging of drip orifices in irrigation tubings in anticipation of extensive future use.

CONTENTS

ABSTRACT	٧
INTRODUCTION	1
Need for Study	1
Objectives of Study	2
Nature and Rationale of Study	3
Organization of Study	4
ACKNOWLEDGEMENT	5
PREVIOUS PROJECT REPORTS	5
First Progress Report, WRRC TR 62	5
Second Progress Report, WRRC TR 79	6
1975 Interim Progress Report	7
FIELD INVESTIGATIONS	9
VIRAL STUDIES	23
	24
	25
	25
	37
	37
	39
Soil Sampling Procedure	40
RESULTS AND DISCUSSION OF CROP AND SOIL RESPONSES	41
Crop Development	41
·	47
	48
	50
, i = 1	52
Treatment Plant Effluent	52
Irrigation Water Quality Standards	53
Rainfall and Evaporation	54
Quality of Sod Lysimeter Leachate	56
OSC Field No. 240 Leachate Water Quality	57

Q	Quality of Bare Soil Leachate	. 59
0	OSC Field No. 246 Test Plot, Water Quality Parameters	. 61
MAJO	OR SUMMARY CONCLUSIONS	. 67
MAJO	OR SUMMARY RECOMMENDATIONS	. 68
	VISIONAL PRINCIPLES AND GUIDELINES FOR IRRIGATION WITH SEWAGE EFFLUENT IN HAWAII	. 69
E	Effluent Quality Requirements for Irrigation	. 69
S	Soil and Plants	. 71
I	Irrigation Methods and Quantity and Fertilization for Sugarcane and Grasslands	. 73
M	Monitoring Methodology	
G	Geohydrologic Considerations	. 75
D	Disinfection of Sewage Effluent and Public Health Aspects	. 76
REFE	ERENCES	. 77
APPE	ENDICES	. 79
	FIGURES	
1	General Hydrologic and Geologic Characteristics of Oahu	. 10
2	Test Plot Layout for Irrigation and Fertilization Practices, OSC Field No. 246	. 19
3	Plan and Cross-Section Views of 5-ft Deep Lysimeters Installed in the Test Plots of OSC Sugarcane Field No. 246	. 21
4	Diagram of the 5-ft Deep Sod Lysimeter	. 22
5	Effect of Sewage Effluent on Sheath Moisture of Sugarcane, OSC Field No. 246	. 43
6	Effect of Sewage Effluent on Leaf Blade N of Sugarcane, OSC Field No. 246	. 43
7	Effect of Sewage Effluent on P-Index of Sugarcane, OSC Field No. 246	. 44
8	Effect of Sewage Effluent on K-H ₂ O Values of Sugarcane, OSC Field No. 246	. 44
9	Comparison of Sheath Moisture-Time and the Desired Moisture-Time Line for Sugarcane, OSC Field No. 246	. 45

TABLES

1	Soil Analysis, OSC Field No. 246	12
2	Actual Chemical Fertilizer Application on Test Plots, OSC Field No. 246	17
3	Viral Concentration Methods and Their Relative Efficiencies	26
4	Viral Isolates and Soil Percolate from Mililani STP Samples	27
5	Viruses Identified in Mililani STP Sewage Effluent	29
6	Viral Isolates from Other Sewage Treatment Plants	30
7	Poliovirus Movement and Survivability in Lahaina Soils: Marker Experiments	33
8	Efficiency of Eluants to Elute Soil-Adsorbed Poliovirus	34
9	Effect of Burning of Cane Field No. 246 on Soil-Absorbed Poliovirus: Marker Experiments	36
10	Scheduled Application of Nutrients by Commercial Fertilizers and Sewage Effluent to Test Plots, OSC Field No. 246	38
11	Actual Total Application of Nutrient, SiO ₂ , and Na Supplied from Commercial Fertilizers, Sewage Effluents, and/or Waiahole Ditch Water to Test Plots, OSC Field No. 246	39
12	Monthly Rainfall at Mililani STP and Oahu Sugar Company Field No. 246	46
13	Effect of Sewage Effluent of Nutrient Content of Aboveground Portion of the Sugarcane at Harvest, OSC Field No. 246	48
14	Effect of Sewage Effluent on Nutrient Content of the Soil in OSC Field No. 246	49
15	Effect of Sewage Effluent on Nutrient Content of 3-4 in. Soil Surface of Irrigation Furrows, OSC Field No. 246	50
16	Effect of Sewage Effluent on Cane Yield, Cane Quality, and Sugar Yield in OSC Field No. 246	51
17	Monthly Temperatures, OSC Field No. 246	52
18	Median Constituent Values of Secondary Sewage Effluent, Mililani STP, Central Oahu, Hawaii	53
19	Pan Evaporation Rates, OSC Field No. 246	55
20	Monthly Rainfall, Mililani STP	56
21	Hydraulic and Nutrient Aspects of Bare Soil Lysimeter Near Mililani STP	60
22	Hydraulic and Nitrogen Aspects of Lysimeters D and E, OSC Field No. 246	62
23	Nitrogen Inventory from June 1973 through November 1974 for Lysimeters D and E, OSC Field No. 246	64
	·	

24	Total Dissolved Solids Characteristics of Various Field Lysimeters	64
	PHOTOGRAPHS	
1	Newly Planted Project Sugarcane in Oahu Sugar Company Field No. 246	13
2	Mature Project Sugarcane on Oahu Sugar Company Field No. 246. Cane Growth about 25 Months just before Harvest	13
3	Mature Project Sugarcane in Oahu Sugar Company Field No. 240	14
4	Transport and Distribution Systems for the Irrigation Water: PVC Pipe for Sewage Effluent and Aluminum Flume for Ditch Water	14
5	Cylindrical Hydraulic Lysimeter for Bermudagrass Testing	15
6	Rectangular Hydraulic Lysimeter for Bare Soil Testing (background)	16
7	Harvested Project Sugarcane in Oahu Sugar Company Field No. 246	16
8	Specially Arranged Hand Harvesting for the Project Sugarcane in Oahu Sugar Company Field No. 246	16
9	A Portion of the Harvested Project Sugarcane in Oahu Sugar Company Field No. 246	16

INTRODUCTION

This is the final completion report for the project, "Recycling of Water from Sewage by Irrigation: A Pilot Field Study on Oahu" covering the period August 1971 to June 1975. Prior progress reports include two progress reports (Lau et al. 1972, 1974) and the 1975 interim progress report. The project originated as the result of an act of the 1971 Hawaii State Legislature to supplement the City and County of Honolulu's Water Quality Program for Oahu with a feasibility study of recycling sewage effluents by the Board of Water Supply. Funded jointly by the Board of Water Supply and the City and County of Honolulu, the project was conducted by the Water Resources Research Center of the University of Hawaii.

This report presents field and laboratory studies of changes in water quality factors, viral content in the applied and percolating water and in the soil, and sugar yields and quality when sugarcane fields as well as grasslands are irrigated with sewage effluent. An overall evaluation of the project results is presented together with proposed principles and guidelines for irrigation of sugarcane and grasslands with sewage effluent in Hawaii.

Need for Study

The study was undertaken from the standpoint of both general national considerations and specific situations peculiar to Hawaii. At the National level, the concept that water resource conservation is necessary for the public welfare is accepted widely and the belief in the reclamation and reuse of water in order to maximize use and to minimize adverse environmental quality effects has become essentially a social and cultural ethic. Environmental standards have become so restrictive that there is generally no place that waste water may be discharged without first purifying it to a degree which approximates the minimum quality acceptable for uses such as irrigation of crops and grasslands, or as industrial cooling water. Consequently, in communities faced with the necessity of investing in more sophisticated treatment works to meet water quality standards, public clamor for reclamation is increasing. This national climate of attitudes and constraints, as evidenced in the 1972 Amendments to the Federal Water Pollution Control Act (PL 92-500), is shared by Hawaii. However,

the need for study is a local, rather than a national, matter because most research on water reclamation and reuse has been done on the mainland under conditions not comparable to those in Hawaii in a number of significant ways.

First, essentially all of Oahu's water supply comes from groundwaters in contrast to the mainland where some 75% of the drinking water is derived from surface sources; thus, protection of the groundwater quality is of primary, rather than of secondary importance to Hawaii. Second, Hawaiian soil properties differ greatly from that of mainland soils to the degree that it is impossible to apply mainland soils criteria to the design of land disposal systems in Hawaii. Third, the urban areas of Hawaii, which are located mainly along the coast, have been able to discharge sewage into Thus, there has been little pressure to invest heavily in sewage treatment. As a result, reuse of water is an alternative yet to be considered in planning waste water treatment systems for Hawaii. Fourth and finally, trends and projections of the economic growth and of the water needs of Oahu indicate the necessity to augment Oahu's water resources for its future needs. Reuse of water, desalination of ocean water or brackish groundwater, and artificial rainmaking are the more common alternatives that are being considered in Hawaii. At the present state of the art, reuse is the most feasible means from the standpoint of technology and economics.

From the foregoing considerations, it is clear that there is a need for an Oahu feasibility study of recycling water reclaimed from sewage. The transport of pollution parameters which cannot be extrapolated from experience elsewhere must be assessed in direct relation to Hawaiian soils. There is a need to determine how reclaimed water might be used on land to lessen the draft on groundwaters without contaminating such waters and to evaluate the economics of reclaiming the recycling water now being wasted and discharged into the ocean.

Objectives of Study

The general objectives of the study are implicit for study. Specific objectives are to:

- 1. Evaluate by field lysimeters and pilot plots, and augment by laboratory studies, the feasibility of utilizing water recalimed from sewage for irrigation under Hawaiian conditions.
- 2. Assess the probable effects of surface-applied reclaimed water on groundwater quality, particularly in terms of potential viral transmission and long-term buildup of dissolved solids.
- 3. Evaluate the effects of various water quality parameters on the soil, percolation, and vegetative growth when grassland or sugarcane is irrigated with sewage effluents.
- 4. Explore any problem in sugarcane culture, either in technology or in crop quality that might be involved in the irrigation of sugarcane with water reclaimed from sewage.

Nature and Rationale of Study

The project was designed initially to study the field application and the effects of secondary, primary, and tertiary treated effluent over a period of three to six years, depending upon the success of each research The research plan called for the project to begin with the application of secondary sewage effluent to grassland and to plots of sugarcane over a period of several crop cycles and to monitor the effects of runoff and percolation and then, if successful in terms of safety to groundwater quality and acceptability to grass and sugarcane culture, to proceed to the application of primary effluent to the same culture types during the fourth year. Finally, during the fifth and sixth years, experiments would be conducted with tertiary effluent. The project phases using secondary effluent were scheduled to be completed within three years. Since the initiation of the project, two highly pertinent articles of legislation have been signed into law (Federal PL 92-500 and Hawaii's Department of Health Public Health Regulations, chap. 38) which specify that sewage receive a minimum of secondary treatment before being used for irrigation, thus, limiting the scope of study.

Some limited irrigation with treated sewage effluents with or without dilution is already being practiced in Hawaii where the overlying strata protect groundwater or where the underlying water is brackish. Therefore, the first logical phase of study was to determine whether the extension of local practices and the adoption of the minimum (secondary) level of treat-

ment commonly accepted in the conterminous U.S. is compatible with the groundwater quality objectives of Hawaii. Considering the expense and the limited present use of tertiary treatment in Hawaii, and the minimum of secondary treatment of sewage at both the state and national levels, the Project Executive Group decided to concentrate the entire research effort on the use of secondary treated effluent.

Organization of Study

The overall responsibility and direction of the project was delegated to L. Stephen Lau, Director of the Water Resources Research Center as Principal Investigator of the project. He is assisted by an Executive Group consisting of University faculty from various departments and the staff of the Water Resources Research Center, engineers from both the Board of Water Supply and Division of Sewers, City and County of Honolulu, and agronomists and engineers from the Hawaiian Sugar Planters' Association and the Oahu Sugar Company, Ltd. The Executive Group meets on a regular basis, at least once a month, to review and discuss progress, and to conduct detailed planning and coordination of the research.

The following University staff has been responsible for the five major activity areas:

Paul C. Ekern

Philip C.S. Loh

Reginald H.F. Young

Nathan C. Burbank, Jr.

Gordon L. Dugan

Soils and irrigation

Virology

Water quality analyses

Public health

Data management and report

preparation

Cooperating agencies have made the following contributions in addition to providing technical advice:

Division of Sewers (Pearl City Treatment Plant Laboratory), City and County of Honolulu

Board of Water Supply, City and County of Honolulu

Hawaiian Sugar Planters' Association

Oahu Sugar Company, Ltd.

Laboratory and field support

Laboratory and field support

Field and laboratory studies of sugarcane and soil responses

Sugarcane fields for experimental studies

Construction of facilities and instrumentation for the field studies were undertaken jointly by all cooperating agencies.

ACKNOWLEDGMENTS

Special acknowledgment is due to all personnel contributing to and assisting in the project and to project consultant, Dr. P.H. McGauhey, professor emeritus, of the University of California, Berkeley.

PREVIOUS PROJECT REPORTS

Pursuant to the contractual agreement and amendments, three progress reports have been submitted, prior to the final report, to the funding agencies. The three progress reports, which consist of the First Progress Report (Lau et al. 1972, Tech. Rep. No. 62); Second Progress Report (Lau et al. 1974, Tech. Rep. No. 79); and the 1975 Interim Progress Report, will be summarized briefly.

First Progress Report, WRRC Tech. Rep. 62

The First Progress Report, covering the period from project initiation in August 1971 to July 1972, consisted of a site description and installation of field grass-sod and pan lysimeters at the Mililani Sewage Treatment Plant (STP); laboratory facilities and analytical capabilities for determining the constituents in water, waste water, and soils; development of viral culturing and assaying techniques under field conditions; and studying the application of secondary effluent to maturing sugarcane on a test plot in the Oahu Sugar Company (OSC) Field No. 240. The experimental results, for the period which commenced in January 1972, basically indicated that the grass-sod and soils of the test area were very effective in removing a high percentage of BODs, suspended solids, TOC, nitrogen, phosphorus, potassium, boron and coliforms.

Second Progress Report, WRRC Tech. Rep. 79

The Second Progress Report, covering the period from July 1972 to July 1973, involved: continued operation, measurement, and analysis of percolates from the grass-sod and pan lysimeters started during the period of the First Progress Report; installation of a 76-cm (30-in.) deep pan lysimeter; near completion of the studies involving secondary effluent application to maturing sugarcane (OSC Field No. 240); installation of a hydrualic lysimeter kept fallow; and initiation of the thrust of the project which involved the sequential application of secondary sewage, ditch water, and combinations thereof to sugarcane in 30 test plots with uniform areas of 0.04 ha (0.1 acre) each in the newly planted (February 1973) Field No. 246. The test plots were divided into three basic irrigation schemes of 10 plots each: A, B, and C. Plots "A" were scheduled to receive only ditch water for the 2-yr culture cycle; "B" plots to receive secondary effluent for the first half of the growth cycle and ditch water thereafter; and "C" plots to have only effluent irrigation applications for the full growth cycle.

Fifty ceramic point samplers were installed in representative "A", "B", and "C" plots at depths of 23 to 30 cm (9 to 12 in.) and 46 to 53 cm (18 to 21 in.). Two 1.52-m (5-ft) deep field lysimeters were also installed in a furrow row adjacent to the test plot. Sugarcane growing on one lysimeter was irrigated with ditch water while the sugarcane on the other lysimeter received secondary effluent. Cane growth parameters were monitored periodically throughout the culture cycle. The soil within the test sites of both the grass and sugarcane areas is of the Oxisol order, Lahaina series, the general soils type on which approximately 90% of Hawaii's irrigated sugarcane is grown.

Raw sewage, secondary effluent, and leachate from the soils continued to be assayed for various physical, chemical, sanitary, viral, and other microbiological quality parameters. Analyses for pesticides and heavy metals were also performed occasionally.

The grass-sod and soils at Mililani continued to be very effective in removing BOD_5 , TOC, nitrogen, phosphorus, potassium, boron, coliforms, and viruses as evidenced by analyses of the leachate passing through the 1.52-m (5-ft) deep grass-sod lysimeter. Nitrogen, however, was not removed effectively until after 5 months of operation, whereas, the other constituents were fairly rapidly attenuated. There appeared to be inconclusive evidence

of a base exchange or similar phenomenon in the soil at least between so-dium and calcium in the Field No. 240. Similar results were also found for leachate collected by the point samplers in the sugarcane fields. Virus cultures were obtained from the sewage effluent, however, only one positive virus culture was identified from leachate passing through the 1.52-m (5-ft) deep lysimeter.

1975 Interim Progress Report

The 1975 Interim Progress Report consisted of the major findings from data collected over a period exceeding 3 yrs (August 1971 to December 1974). Essentially, the report was based primarily on the first two progress reports (Tech. Rep. Nos. 62 and 79) and on the project related technical paper "Land Disposal of Sewage in Hawaii--A Reality?" presented to the 47th Annual Conference of the Water Pollution Control Federation in Denver, Colorado, 6-11 October 1974 (Dugan et al. 1974).

During the period from the "Second Progress Report" (WRRC TR 79, July 1972 to July 1973) until the completion of the reporting period for the "1975 Progress Interim Report" (December 1974), the status of the activities included continued monitoring of the grass-sod lysimeter; discontinuance of the operation of the pan lysimeters; completion of the studies in OSC Field No. 240; continued water quality and viral monitoring; and continued sequential secondary effluent and ditch water application and the collection of the leachate for quality analysis from the lysimeters and ceramic points in the test plots of OSC Field No. 246.

At the end of the interim report period, water quality studies on grass-sod, bare soil, and sugarcane lysimeters were essentially completed, and irrigation and water quality sampling and analysis for the Field 246 test plots, were to be terminated, depending on the weather and sugarcane moisture content, after one additional irrigation cycle. Marker virus experiments were being continued in order to obtain a better understanding of the virus removal mechanism from irrigation waters in the plant-soil-water system.

Percolate pans, which were placed at various depths in an in situ soil column, collected very limited amounts of leachate, even when heavy irrigation applications were applied directly above the lysimeters in an 46-cm (18-in.) by 76-cm (30-in.) diameter metal ring installed within the overlying soil directly above the lysimeters. The results suggest that a dense

subsoil exists in the area which resists vertical percolation and, thus, promotes lateral soil water movement.

Cane growth in Field No. 240 test plots was estimated to be nearly 40% greater than that for the unanticipated water-short adjacent sugarcane fields. Although the single plot could not be considered adequate to measure sugarcane growth and sugar yield, chemical analysis of sugarcane samples indicated that the sugar purity difference was approximately 1% (14% vs. 15%) with the ditch water irrigated fields having the higher value. It should be noted, however, that the Field No. 240 test plot study was not designed to ascertain sugar yields.

As of July 1974, the value of secondary effluent at sugarcane field sites was estimated to be equivalent to \$78.29 per mil gal in terms of the value of both water and fertilizers.

Virus results showed that human enteric viruses survived secondary treatment at the Mililani STP even after chlorination. Fifty-eight percent of the analyzed chlorinated effluent samples yielded viruses at concentrations ranging from 2 to 750 PFU/L. The viruses isolated over a nearly 2-yr period were predominately poliovirus types 1, 2, and 3, ECHO virus type 7, and coxsackie viruses B-4 and B-5.

With one possible exception, viruses were not isolated in the leachate samples (sample volume primarily 76 to 95 & [20 to 25 gal]) collected over a period of about 18 months, from the 1.5-m (5-ft) deep grass-sod and sugarcane lysimeters which were irrigated regularly with effluent. The results to date from test soil profiles indicate that the chances of the presence of virus in the leachates are remote. These same results also suggest that the test soils in the lysimeters are highly effective in removing viruses from the applied secondary effluent. In addition, no positive fecal coliform test results were obtained for the bottom leachate samples.

The behavior of viruses in the field soil was studied in a series of marker virus experiments in the five field lysimeters as described in the section: bare soil (I and II), grass sod, and sugarcane (D and E). Marker viruses introduced at extremely high concentrations (nine orders of magnitude higher than normally expected in secondary sewage effluent) on the soil surface of the lysimeters were recovered at depths down to 117 cm (46 in.) on the first day on two occasions although they were generally only detected in the first few inches during the first two to three days.

It should be noted that these experiments represented a highly artifical condition in comparison to the application of secondary effluent irrigation being studied in the field.

All available data indicated that the chances of virus-caused diseases occurring under test conditions are extremely remote. However, the field worker should follow every normal precaution, such as, the maintenance of their poliovirus immunizations and the exercise of standard hygienic practices.

FIELD INVESTIGATIONS

The project site area (Fig. 1) is located near the Mililani Sewage Treatment Plant (STP) which received during 1975 approximately 3217 $\rm m^3/day$ (0.85 mgd) of essentially domestic sewage from the nearby expanding Mililani Town development. In operation since 1969, the sewage treatment plant presently utilizes the Rapid Bloc activated sludge process that achieves a suspended solids and BOD₅ removal rate that averages approximately 90% (Table A-1, App. A). In the fall of 1973, a primary sedimentation tank was added and an anaerobic digester replaced the aerobic digester.

The location of the project site, situated at an elevation approaching 152 m (500 ft), was chosen not only because of its close proximity to the Mililani STP, but because the sugarcane on adjacent fields are grown on soils similar to that on which approximately 90% of the sugarcane under irrigation on Oahu is grown. The predominate Oxisol is the Lahaina silty clay, a Tropeptic haplustox, which was developed on a thick deposit of Koolau lava. These soils are compacted readily by conventional sugarcane tillage operations to high bulk densities (1.3 to 1.4) which considerably reduce their infiltration capacity. The general area, as can be observed in Figure 1, receives an average annual rainfall of approximately 102 cm (40 in.), primarily from northeast tradewind showers and winter cyclonic storms.

The research activities are grouped into three major areas: soils and irrigation, viral analysis, and water quality analysis. Inasmuch as progress and findings at various sequential stages have been presented in three technical reports (Lau et al 1972, 1974, 1975) and at national and local meetings (Dugan et al. 1974; Young, Ekern, and Lau 1972; Young et al.

FIGURE 1. GENERAL HYDROLOGIC AND GEOLOGIC CHARACTERISTICS OF OAHU

1974), only a summarization of the past information will be presented as appropriate for the final report study.

At the initiation of the study, effort was directed primarily at measuring rainfall and solar radiation, determining evapotranspiration and percolation, characterizing transported irrigation water and Mililani STP raw sewage and secondary effluent, monitoring ongoing turf irrigation with secondary effluent at the Mililani STP grounds, conducting field lysimeter and soil studies, perfecting viral assay techniques, and applying effluent to 5 rows of sugarcane crop in the test plot of Oahu Sugar Company's (OSC) Field No. 240, which was midway through its normal 2-yr growth cycle.

Under normal fertilization practices, various forms of nitrogen, phosphorus, and potassium for the 2-yr sugarcane crop, are applied during the first 10 months of the growth cycle. Of all the factors that are important to the overall assessment of the feasibility of sugarcane irrigation by treated sewage effluent, nitrogen is considered to be the one of the most critical of all factors due to its potential effect on cane growth and sugar yield. Nitrogen application to sugarcane after the first 10 months of the growth cycle is traditionally considered to reduce sugar yield. Thus, monitoring of the nitrogen application rates and the concentration in the soil water is of prime interest, not only because of its possible effect on total sugar yield, but also its danger to children's health in the form of methemoglobinemia when nitrate builds up in potable groundwater supplies to concentrations of >10 mg/ ℓ as N.

Monitoring of the chemical constituent concentrations in Field No. 240 was conducted by collecting percolate samples from 29 porous ceramic points installed in both furrows and ridges of the irrigated field at depths varying from 23 to 84 cm (9 to 33 in.). Soil water samples were withdrawn under 0.67-bar (9.7-psi) or 0.68 kg/cm² suction on the points during irrigation. It is obvious that for an overall assessment of the potential effects of secondary sewage effluent being used as an irrigation source for sugarcane culture, it would be best conducted over at least the complete 2-yr sugarcane growth cycle; however, there were no sugarcane fields within a practical distance of the Mililani STP that were scheduled for replanting for approximately 17 months after the initiation of the project.

Effluent irrigation of the pilot plot in Field No. 240, in its second year of growth with normal fertilization completed, nonetheless, afforded

the opportunity to perfect lab and field techniques as well as to monitor changes in the constituent concentrations within the plant root zone, however, the single plot could not reliably measure the effects on cane growth and sugar yield. The secondary effluent was transported 3.22 km (2 miles) to Field No. 240 from the Mililani STP in 8327-& (2200-gal) lots by a tank truck. Adjacent furrows and ridges, in fields receiving normal irrigation water, were also monitored by using ceramic points.

Test plots that were established in January 1973 cooperatively with the Oahu Sugar Company (OSC) and the Hawaiian Sugar Planters' Association (HSPA) in OSC Field No. 246 afforded the opportunity to conduct, for the approximately 2-yr sugarcane growth cycle, irrigation with sequential applications of both ditch water and secondary effluent to a newly planted sugarcane field within approximately 1.6 km (1 mile) of the Mililani STP and about 3.22 km (2 miles) from Field No. 240. The soil of Field No. 246 is of the same general type as in Field No. 240. A detailed soil analysis from five samples collected in the test plots of Field No. 246 is shown in Table 1. However, the inherent field variability (coef of variation ±10%) of soil chemical and physical properties precludes detection unless very significant quantitative changes occur.

TABLE 1. SOIL ANALYSIS, OSC FIELD NO. 246 (Sampled 26 January 1973)

· <u></u>						NITR	DGEN
TEST	DEPTH	рН	Р*	K	Ca	AVAIL-	MINERAL-
PLOT	in.†				Ib/ac	ABLE re-ft‡	IZABLE
	111.				TD/ ac	ie-iti	
9A	0-12	5.9	135	290	4300	25	50
21B	0-12	5.8	160	330	4250	25	60
290	0-12	6.9	175	205	6100	25	60
14A	0-12	5.7	185	315	3950	20	55
25C	0-12	6.0	100	130	3950	25	55
AVERAGE	E	6.1	151	254	4510	24	56

NOTE: Soil analysis performed by the Hawaiian Sugar Planters' Association, Honolulu, Hawaii; K and Ca extracted in $1\underline{N}$ NH₄OAc, available N and mineralizable N in $0.5\underline{N}$ K₂SO₄; P extracted in $0.5\underline{N}$ NaHCO₃.

^{*}NaHCO3-P.

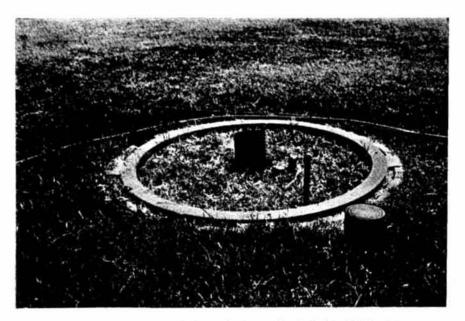
[†]in. $\times 2.54 = cm$.

[†] $1b/acre-ft \times 0.367 = g/m^3$.

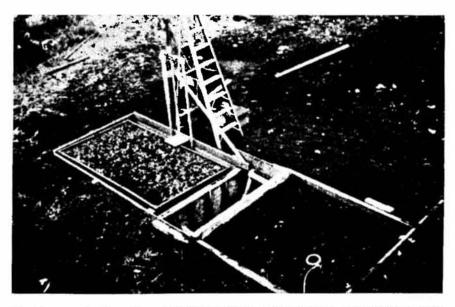
Photograph No. 1. NEWLY PLANTED PROJECT SUGARCANE IN OAHU SUGAR COMPANY FIELD NO. 246

Photograph No. 2. MATURE PROJECT SUGARCANE ON OAHU SUGAR COMPANY FIELD NO. 246. CANE GROWTH ABOUT 25 MONTHS JUST BEFORE HARVEST.

Photographs by P.C. Ekern



Photograph No. 3.
MATURE PROJECT SUGARCANE ON OAHU SU-GAR COMPANY FIELD NO. 246



Photograph No. 4.
TRANSPORT AND DISTRIBUTION SYSTEMS
FOR THE IRRIGATION WATER: PVC PIPE
FOR SEWAGE EFFLUENT AND ALUMINUM
FLUME FOR DITCH WATER.

Photographs by P.C. Ekern

Photograph No. 5. CYLINDRICAL HYDRAULIC LYSIMETER FOR BERMUDAGRASS TESTING

Photograph No. 6. RECTANGULAR HYDRAULIC LYSIMETER FOR BARE SOIL TESTING (BACKGROUND)

Photograph No. 7. HARVESTED PROJECT SUGARCANE IN OAHU SUGAR COMPANY FIELD NO. 246

Photograph No. 8.

SPECIALLY ARRANGED HAND HARVESTING
FOR THE PROJECT SUGARCANE ON OAHU
SUGAR COMPANY FIELD NO. 246.

Photograph No. 9.
A PORTION OF THE HARVESTED PROJECT SUGARCANE IN OAHU SUGAR COMPANY FIELD NO. 246

Photographs by P.C. Ekern

Thirty test plots, laid out in Field No. 246 in widths of 10 sugarcane rows 16.8-m wide x 24.4-m long (55-ft wide x 80-ft long), resulted in a total area of 408.76 m^2 (4400 ft^2) per plot or about 0.04 ha (0.1 acre). The 1.62-ha (4-acre) triangular field containing all test plots is shown in Figure 2.

The planting of sugarcane variety H59-3775 in Field No. 246 occurred on 8 to 9 February 1973 and was scheduled for harvest in November 1974; however, a sugarcane workers strike during the spring of 1974 resulted in a postponement of harvesting until March 1975. At the time of planting, treble superphosphate was applied to all plots at an application rate of approximately 170.39 kg/ha (152 lb/acre) as P. This application and subsequent applications of urea and muriate of potash in various quantities to the different plots are shown in Table 2.

TABLE 2.	ACTUAL CHEMICAL	FERTILIZER A	PPLICATION
	ON TEST PLOTS,	OSC FIELD NO.	246

TEST PLOT	8-9 FEB. 1973	27 FEB.		9 MAY		20 JUNE	1975	8 AUG.	,	FE	TOTAL RTILIZE PLICATI	
SECTION	p*	N [†]	к [‡] 	N ⁺	κ [‡]	N [†]	к [‡] 	N [†]	κ [‡] 	P*	N [†]	κ [‡]
A	152	95	47	100	50	110	65	75	66	152	380	228
В	152	95	47	80	50	40	22			152	215	119
С	152	95	47	40	17					152	135	64

^{*}As treble super phosphate; applied mechanically with initial seeding.

Ditch water application to all test plots was initiated on 15 February 1973 and was later repeated on 27 February, 2 and 14 March, and 4 April 1973. After the 4 April 1973 irrigation, only "A" plots received ditch water, "B" plots received effluent through 1973 and ditch water in 1974 and "C" plots received only effluent after 4 April 1973. The actual quantity of ditch water applied to the furrows, due to the method of application by the use of flumes with no flow control, is difficult to determine to a high degree of accuracy, however, by rough measurements it is estimated to average, including rainfall, approximately 13.97 cm (5.5 in.) every 2 weeks. This quantity of application, which is considered in the optimum range for sugarcane growth in central Oahu, is nearly one-third more than the irrigation

[†]As urea; applied by hand.

^{*}As muriate of potash; applied by hand.

^{\$}lb/acre x 1.12l = kg/ha.

water being applied to the water-short adjacent sugarcane fields.

Secondary effluent was pumped from the Mililani STP to the test plots through 1524.0 m (5000 ft) of 7.6 cm (3 in.) PVC pipe at a rate of approximately 7.89 \$\mathbb{k}/\sec (125 gpm)\$ with a static lift of approximately 30.5 m (100 ft). The secondary effluent, after being delivered to the test plot area, is distributed to the furrows of the test plots through PVC pipes with 2.54-cm (1-in.) openings at each furrow. The application rate for satisfactory advance time in the furrows of the effluent irrigated plots was 1.26 \$\mathbb{k}/\sec (20 gpm)\$ per plot. To supply this required three 4542-\$\mathbb{k}\$ (1200-gal) interconnected storage reservoirs and a booster pump which were installed at the test plot site. The ditch water irrigation of the "B" plots during 1974 was also done through the booster pump and the pipe distribution system, rather than through the flumes used for the "C" plots, so that the water application could be metered more precisely.

Secondary effluent applications to the "B" and "C" plots were initiated on 13 April 1973 and followed with due consideration given to soil moisture stresses and periods of heavy precipitation. Soil tension was maintained at less than 0.5 bar (7 psi) at 45.72 cm (18 in.) below the bottom of the furrow. Four days were needed, with the available manpower and equipment, to complete both the ditch water and secondary effluent irrigation to all 30 test plots. Replicate plot series, however, were irrigated sequentially so that the interval between irrigation was nearly identical. Not only the physical factors, but also the changing nitrogen concentration in the secondary effluent caused difficulty in determining both the hydraulic and nutrient loads for the replicate test plots.

In order to monitor the chemical constituents in the soil water, a total of 50 ceramic point samplers (similar to those used in the Field No. 240 test plot) were installed in test plots 10, 11, 19, 20, and 21 of Field No. 246. The point samplers were placed at one of two separate depths—just above the tillage pan and approximately 15.24 cm (6 in.) below the tillage pan. The tillage pan produced by plowing averages approximately 22.86 cm (9 in.) below the bottom of the furrow. The sampling less than 0.5-bar suction (7 psi) from these point samplers commenced in April 1973.

Two 1.52×2.74 -m (5 x 9-ft) metal field lysimeters, 1.52-m (5 ft) deep, were installed along furrow lines adjacent to the test plots in Field No. 246 as shown in Figure 2. A plan view and cross section of the 2 lysim-

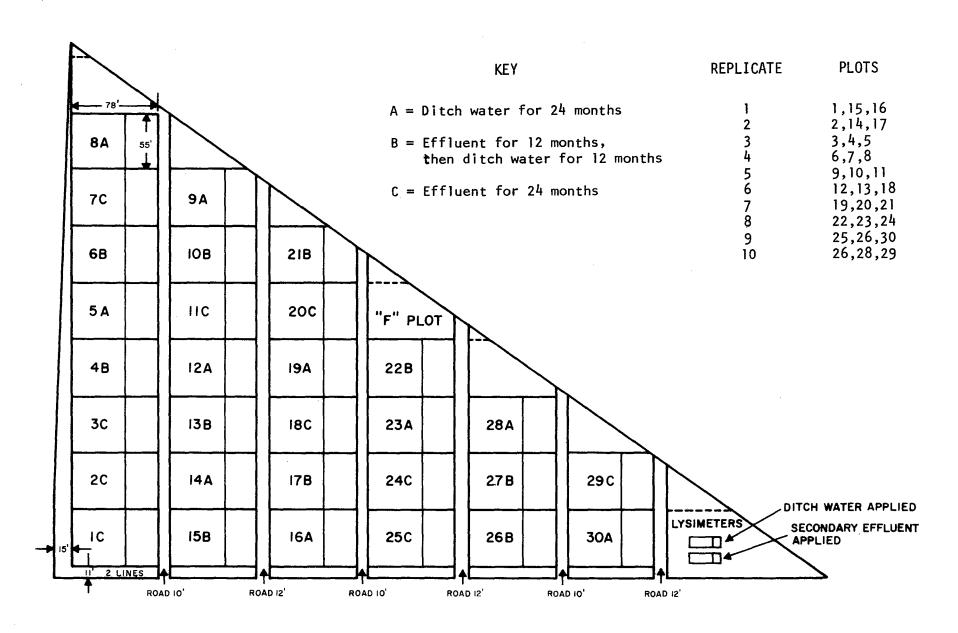


FIGURE 2. TEST PLOT LAYOUT FOR IRRIGATION AND FERTILIZATION PRACTICES, OSC FIELD NO. 246

eters are illustrated in Figure 3. The lysimeter designated "D" refers to ditch water application and "E" refers to secondary effluent application. Percolate samples were pumped from a collection well at the bottom of the lysimeter. Both lysimeters have sugarcane stalks growing along their lengths which in turn are aligned with the furrows they intersect. Also shown in Figure 3 inside the pit at the head of each lysimeter, are nine 91.44-cm (36-in.) long horizontally positioned ceramic-point samplers that are set at 22.86-cm (9-in.), 45.72-cm (18-in.), and 60.96-cm (24-in.) depths. The 91.44-cm (36-in.) horizontal samplers are thus able to collect leachate soil water samples under 0.5-bar suction (7 psi) from not only the intersected furrow, but also from the adjacent furrows on each side of the lysimeters. The horizontal samplers placed at 45.72-cm (18-in.) and 60.96 cm (24-in.) depths collected soil water from undisturbed soil. Analysis of leachate collected from the lysimeters and ceramic point samplers began in the latter part of June 1973.

Lysimeters D and E complement a nearly 1.22-m (4-ft) diameter x 1.52-m (5-ft) deep hydraulic stainless steel lysimeter, illustrated in Figure 4, that was installed at the Mililani STP grounds in the first year of the study. The top of the hydraulic lysimeter, which has a Bermudagrass-sod growing on repacked soil and positioned level with the surrounding grass-covered ground surface is supported by water-filled tubes that are connected to a gage and recorder to provide a continuous record of the lysimeter's weight. This design provides an opportunity to determine both water or secondary effluent application and evapotranspiration losses. Percolate passing through the hydraulic lysimeter was collected at the bottom or at various depths through ceramic point samplers. The grass-sod lysimeter, which was operated and monitored continuously since January 1972, received secondary effluent when the surrounding area was irrigated in addition to receiving effluent during certain experimental program phases.

A bare soil (fallow) lysimeter, identical in size to lysimeters D and E (Fig. 3), except that it was equipped with an hydraulic device similar to that shown for the grass-sod lysimeter (Fig. 4), was operated from August 1973 through February 1975, with an interruption during 1 to 17 April 1974 when an electric transformer station was constructed at the original bare soil lysimeter site. Porous PVC (PORVIC) tubes, 1.22-m (4-ft) long, were set at 10.16-, 22.86-, 45.72-, and 60.96-cm (4-, 9-, 18-, and 24-in.) depths with-

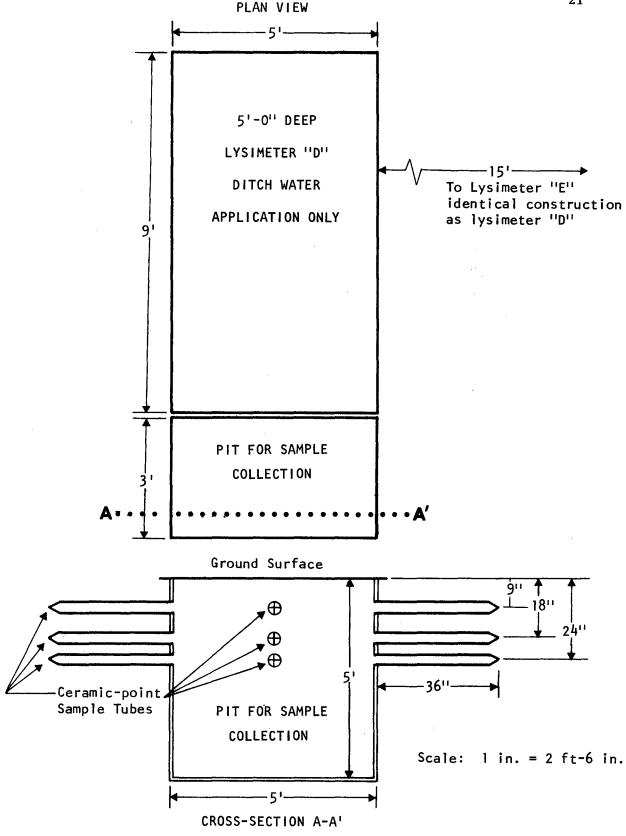


FIGURE 3. PLAN AND CROSS-SECTION VIEWS OF 5-FT DEEP LYSIMETERS INSTALLED IN THE TEST PLOTS OF OSC SUGARCANE FIELD NO. 246

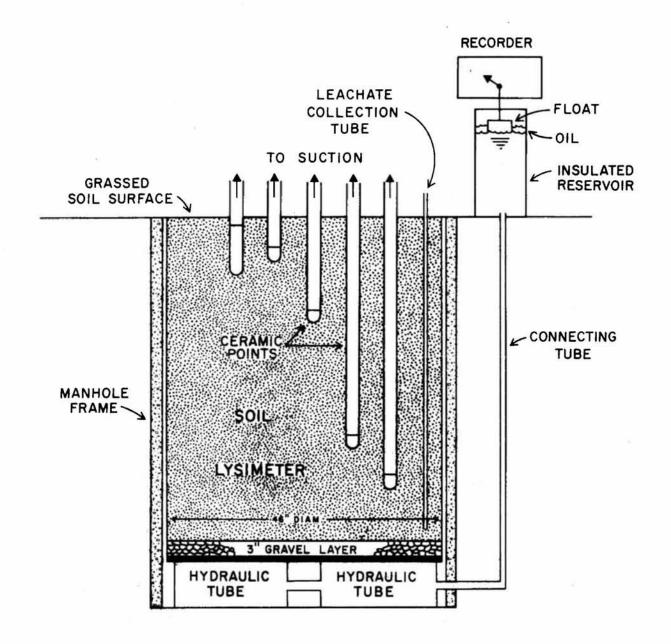


FIGURE 4. DIAGRAM OF THE 5-FT DEEP SOD LYSIMETER

in the lysimeters. Through these tubes, soil water samples as great as 1 \$l/min\$ (0.26 gal/min) were removed under 0.1-bar (1.45-psi) suction to aid in viral transmission studies. Measurements were made of both the water and chemical budgets when irrigation with secondary effluent was applied. Similar porous tubes were set horizontally into undisturbed soil from the pit at the head of the lysimeter. The site of the second phase of operation was approximately 46 m (150 ft) from the original site. The bare soil was operated to not only ascertain the water budget but also the leachate composition when irrigation with secondary effluent was applied to bare soil. Leachate from the ceramic points and bottom of the lysimeters was pumped out on a regular basis for characterization.

Periodic sugarcane growth parameter analyses were scheduled to be conducted throughout the sugarcane culture cycle. Crop logs, which include analysis of moisture, plant nutrients, and sugar, performed on samples from the sheath and blade, were conducted during the entire sugarcane growth cycle until harvest. Stand density was monitored periodically during the early stages of crop growth. Leaf punch samples for leaf nitrogen status were taken monthly during periods when crop log samples were not obtained.

The laboratory activities conducted for the project can be classified into the following general categories of analyses: standard water and sewage quality analyses which include major cations (calcium, magnesium, sodium, and potassium) and anions (carbonate, bicarbonate, sulfate, chloride, and nitrate), pH, total dissolved solids, conductivity, suspended solids, biochemical oxygen demand, total organic carbon, total phosphate, nitrogen series, silica dioxide, boron, grease, and fecal and total coliforms, pesticides, heavy metals, soils, and enteric viruses.

Pesticides, heavy metals, and soil chemical constituent analyses were performed on an infrequent basis, while the standard water and sewage quality and viruses analyses have been conducted on a fairly intense regular basis. The standard water and sewage quality analyses are in accordance with well-established laboratory procedures (APHA, AWWA, WPCF 1971; Strickland and Parsons 1972).

VIRAL STUDIES

Viral studies were conducted to accomplish the following project ob-

jectives:

- 1. To determine the concentration and the identification of human enteric viruses in the Mililani STP raw sewage and treated effluent
- 2. To assess the efficiency of the present sewage treatment process in removing viruses found in the raw sewage
- 3. To determine whether viruses present in the recycled sewage effluent can percolate through the soil and potentially contaminate the underground water source
- 4. To determine the fate of viruses in the effluent used to irrigate sugarcane and evaluate the hazard they may represent to the field workers and possibly to the surrounding communities.

Viral studies for the project required the development of special assay techniques and a complete virus laboratory. The established virus laboratory represents the first facility of its kind in Hawaii and is one of the few similar facilities in the nation.

Materials and Methods

CELLS AND MEDIA. African green monkey kidney cells, either primary, secondary or tertiary passaged (AGMK) of an established line (BGM) as well as the human diploid cells, WI-38, were used for virus isolation and growth. The mouse L-cells were used to plaque and identify reoviruses while the established rhesus monkey kidney cells (LLC-MK2) was used in many of the enterovirus identification tests. All cell lines were grown in Eagle's basal medium using either Hank's or Earle's salt and supplemented with 5 to 10% fetal calf serum.

VIRUS AND VIRAL ASSAY. Stock pools of poliovirus type 1, originally isolated from a case in Hawaii and prepared in BGM cells and purified by isopycnic banding in CsC1, were used to evaluate the various viral concentration methods used. The Sabin type 1 attenuated poliovirus strain was used as a control in the test to determine the genetic temperature marker (T) of the poliovirus isolates. Viral growth was quantified by using either the 50% tissue culture infectious dose (TCID $_{50}$) method under liquid overlay or as plaque forming units (PFU) under agar overlay. The isolated enteroviruses were identified by the neutralization test using the Lim-Benyesh-Melnick pooled antisera as described and supplied by the NIH (1972). Reo-

virus was identified using the fluorescent antibody technique (Spendlove et al. 1963).

WATER SAMPLES AND SAMPLING SITES. The sewage effluent from the Mililani STP was used throughout the study; however, comparative sewage samples were obtained from the Wahiawa STP (secondary treatment-activated sludge with chlorination) and Pearl City STP (primary treatment with chlorination). The sewage samples were collected by the grab method. Soil water percolates were obtained from the grass-sod lysimeter (Fig. 4) on the Mililani STP grounds, lysimeter E (Fig. 3) in the test plots of OSC Field No. 246, and bare soil lysimeter (Fig. 3). All water samples were transported back to the laboratory and immediately processed or stored overnight at 4° C. Water samples were clarified initially by filtration through an AP-25 fiberglass pad (Millipore Corp.) before they were concentrated and the final concentrates were freed of bacteria by filtration through a 10% calf serum or 3% beef extract washed, $0.45-\mu$ membrane filter (Millipore Corp.).

Methods of Sample Concentration

The relative paucity of information regarding viruses in sewage has been due to the limitations of the available techniques to efficiently concentrate water-borne viruses which are diluted in large volumes of water. Based on previous published reports, the following methods to concentrate viruses were selected (App. B):

Method	Source
Polyelectrolyte-60 (PE-60) (Batch)	Sewage effluent
Polymer two-phase	Sewage effluent
PE-60 (Sandwich)	Soil percolates
Membrane adsorption	Soil percolates

The above methods were modified for the project and were used primarily for the isolation of human enteroviruses. Other methods employed were the protamine sulfate and Al(OH)₃ (aluminum hydroxide) methods which were used to preferentially isolate reovirus and adenovirus from sewage samples.

Results

EVALUATION OF CONCENTRATION METHODS. The efficiency of the concentra-

tion methods used in this study was evaluated by adding 10^3 - 10^5 PFU/ml of poliovirus type 1 to a known volume of Mililani STP sewage effluent and the sample concentrated by the selected methods. The resulting concentrate was assayed for virus and the virus recovery efficiency determined.

The results (Table 3) show that the efficiencies of the various methods to remove the added type 1 poliovirus from the sample and to recover them in the final concentrate varied were comparable to those obtained by other laboratories. As has been the experience of most other investigators (Hill, Akin, and Benton 1971; Berg 1973), none of the concentration methods approached 100% efficiency of virus recovery under field conditions, indicating that much improvement is still needed in this area. Although the

TABLE 3. VIRAL CONCENTRATION METHODS AND THEIR RELATIVE EFFICIENCIES

METHOD	SUSPENDING MEDIUM	TOTAL VOLUME	STRAIN OF TYPE 1 POLIOVIRUS ADDED	% OF VIRUS REMOVED	% OF VIRUS RECOVERED
PE-60 (Batch)	Chlorinated Effluent	1 2	Laboratory Strain	42	36
Two-Phase	Ħ	11	Laboratory Strain	79	68
Protamine	tt .	11	Laboratory Strain	10	3
Sulfate	u	11	Field Isolate	66	60
A1 (OH) 3	ř1	11	Laboratory Strain	97	44
Membrane Adsorption	Soil Percolate	5 gal	Laboratory Strain	92	40
PE-60 (Sandwich)	ii .	D.	Laboratory Strain	41	35

NOTE: Concentration used 103-105 PFU/ml.

polymer two-phase method resulted in the highest recovery efficiency (68%), it was severely limited for practical reasons to only 4 to 6 ℓ of sample. The protamine sulfate had been reported to be selective for the larger viruses (reovirus and adenovirus) rather than the smaller enteroviruses. Our results indicate that the efficiency of the protamine sulfate method may be dependent on the strain or perhaps the past history of the enterovirus as the method was ineffective in concentrating our laboratory strain of type 1 poliovirus but was relatively effective in concentrating a recent isolate of type 1 poliovirus. The A1(OH) $_3$ method became cumbersome as the volume of the sample was increased over 3.785 ℓ (1 gal). Technically, the PE-60 (Batch) method was the most feasible and volumes up to 18.93 ℓ (5 gal) of sample could be easily processed. However, the PE-60 lot obtained from Monsanto varied greatly in their efficiency to adsorb virus and, at

best, only 36% of the added poliovirus was recovered. Both the membrane adsorption and PE-60 (Sandwich) methods are limited to processing only clean waters and up to 94.63 ℓ (25 gal) of soil percolates were processed by these methods with the expectation of approximately 35 to 40% efficiency of virus recovery.

VIRAL ASSESSMENT. To determine the concentration of human enteric viruses in raw sewage and the effectiveness of the sewage treatment processes in reducing the concentration, $1.89~\mbox{$\ell$}$ to $18.93~\mbox{$\ell$}$ (0.5 to 5.0 gal) of either the raw, activated sludge treated or the final chlorinated effluent from Mililani STP were concentrated and assayed for enteric viruses for a period of over 2 yr. It was found (Table 4) that 11/11 (100%) of the raw

TABLE 4. VIRAL ISOLATES AND SOIL PERCOLATE FROM MILILANI STP SAMPLES

SOURCE OF SAMPLES	NO. OF SAMPLES TESTED	LITERS OF SAMPLE ASSAYED	NO. AND % OF SAMPLES POSITIVE FOR VIRUS	RANGE OF VIRUS CONCENTRATION (PFU/1)	
Raw Sewage	11	1-6	11 (100%)	27-19,000	
Unchlorinated Effluent	17	2-16	13 (76%)	7-5,222	
Chlorinated Effluent	53	5-20	31 (58%)	2-750	
5-ft Lysimeter Soil Percolate	35	5-75	1 (2.9%)	*	

^{*}Not tested.

sewage tested positive for virus at concentrations ranging from 43 to 19,000 PFU/L, while 13/17 (76%) of the activated sludge treated effluent tested were positive at concentrations ranging from 7 to 5,222 PFU/L. In the final chlorinated effluent, 31/53 (58%) of the samples tested were positive for viruses at concentrations ranging from 2 to 750 PFU/L. These results show that the raw, domestic sewage always contains infectious human viruses and often at a relatively high concentration. Furthermore, it should be noted that although sewage treatment at the STP effectively reduces this concentration of viruses, the final treated sewage effluent still contains infectious viruses in 58% of the samples assayed with a concentration as high as 750 PFU/L. The consistent isolations of human enteric viruses from raw sewages and their persistence although at reduced concentrations after the raw sewage had undergone standard secondary sewage

treatment with final chlorination have also been reported by other investigators (Shuval et al. 1969; Berg 1973).

IDENTIFICATION OF VIRAL ISOLATES. The viruses isolated from the Mililani STP sewage samples were identified and correlated with the method of concentration, the date of isolation, and the source of sewage (Table 5). The results showed that over the 2-yr study period, the viruses most frequently isolated were poliovirus types 1, 2, and 3, as well as coxsackies B-4, B-5, and ECHO-7. From the present data, it was noted that the various methods of virus concentration employed were not inherently selective for any given type of virus. Different types of viruses were isolated by all of the concentration methods used and in certain experiments the same virus was isolated when two or more methods were used on the same sample.

Twenty-six of the enteroviruses isolated were identified as polioviruses and it is of public health significance to determine whether these isolates belong to either the attenuated (vaccine strain) or the virulent strains. One of the most stable genetic markers for poliovirus virulence is temperature (T). Virulent poliovirus has been found to grow effectively at both 37°C and 40°C (T+), whereas the attenuated strain grows well at 37°C but is inhibited at 40°C (T-). The T marker property of all the poliovirus isolates was determined and compared with the attenuated Sabin strain of poliovirus type 1. The isolates were considered T- when growth at 40°C was not greater than 1 log10 TCID50 (tissue culture infectious dose) less than at 37°C, and were considered T+ when the difference between the growth at 37°C and 40°C was not greater than 1 log10 TCID50. Of the 26 poliovirus isolates tested, only 3 isolates (type 1) were considered T+ or indicative of the virulent strain. It is apparent that most of the poliovirus isolates are of the attenuated strain and are the result of immunization practices. The presence of the wild strain indicates that the virus either is present endemically or has been introduced into the community. In any case, virulent poliovirus is still present and represents a potential public health problem.

It is interesting to note that ECHO-7 virus was isolated exclusively over a 3-mo span indicating that the Mililani community underwent an epidemic of ECHO-7 virus infection during this period. However, since only a small percentage of people infected with ECHO-7 virus will develop clinical symptoms, the community was probably unaware of its presence. On the

VIRUSES IDENTIFIED IN MILILANI STP SEWAGE EFFLUENT UNCHLORINATED CHLORINATED RAW SEWAGE DATE METHOD **EFFLUENT EFFLUENT** PE-60 E CHO - 1 07-05-72 . PE-60 07-18-72 Coxsackie B-4 Reo 08-02-72 Two Phase Polio-1 08-29-72 PE-60 Coxsackie B-5 09-05-72 Two Phase Coxsackie B-5 PE-60 09-12-72 Polio-3 . 10-26-72 Coxsackie B-5 . Two Phase 11-21-72 Coxsackie B-5 Coxsackie B-5 12-05-72 12-07-72 ECH0-7 12-12-72 Two Phase ECHO-7 PE-60 ECH0-7 ECH0-7 12-18-72 Two Phase PE-60 E CHO - 7 Two Phase 01-03-73 ECH0-7 PE-60 E CHO-7 PE-60 01-09-73 ECHO-7 01-16-73 PE-60 ECHO-7 02-13-73 ECHO-1 Two Phase ECHO-7 02-20-73 PE-60 . ECH0-27 03-27-73 Two Phase Coxsackie A-16 04-19-73 Two Phase Polio-1 05-10-73 Two Phase Coxsackie B-5 Two Phase 05-15-73 Polio-3 PE-60 05-22-73 Polio-2 Reo 05-23-73 Two Phase Coxsackie B-5 . 06-01-73 Prot. Sulfate ECHO-1 A1 (OH) 3 07-17-73 Reo 08-14-73 A1 (OH) 3 Polio-2, -3 . 09-11-73 PE-60 Polio-2 09-27-73 A1 (0H) 3 Coxsackie B-4 10-02-73 Two Phase ECHO-15 12-11-73 Two Phase Coxsackie B-4 . Prot. Sulfate Coxsackie B-5 Two Phase 12-18-73 Coxsackie B-4 Prot. Sulfate Polio-1 02-06-74 Prot. Sulfate Coxsackie B-4 Two Phase PE-60 Coxsackie B-5 Coxsackie B-4 02-13-74 Prot. Sulfate Coxsackie B-5 PE-60 Polio-1 02-20-74 Prot. Sulfate Polio-3 PE-60 Polio-3 02-27-73 Two Phase Polio-3 PE-60 Polio-3 03-20-74 PE-60 Polio-2 04-03-74 PE-60 Polio-1 04-29-74 Two Phase Polio-1, -3 07-13-74 Two Phase Polio-1 08-06-74 PE-60 Polio-1 08-29-74 Two Phase Polio-1

other hand, polioviruses and coxsackie B-4 and B-5 viruses appear to be endemic in Mililani, as these viruses were isolated from the sewage throughout the testing period.

STP SAMPLE COMPARISON. Since Mililani STP processes sewage from a small, strictly residential community, the question was raised whether the results obtained were typical of all other sewage treatment plants in the state. Sewage samples from two other sewage treatment plants which serve much larger residential communities, including industrial and commercial land uses were obtained and assayed for viruses.

The Wahiawa STP employed settling, activated sludge, and chlorination while the Pearl City STP employed only settling and chlorination. As was found for the Mililani STP, 100% of the raw sewage samples tested from both the Wahiawa and Mililani STPs were positive for virus (Table 6).

TABLE 6. VIRAL ISOLATES FROM OTHER SEWAGE TREATMENT PLANTS

SOURCE OF SAMPLE	NO. OF SAMPLES TESTED	NO. OF POSITIVE SAMPLES	TYPES OF VIRUS	RANGE OF VIRUS CONCENTRATION (PFU/L)
A. Wahiawa STP				
l. Raw Sewage	2	2	ECHO-15, Polio-1, Coxsackie B-5	50-118
Chlorinated Effluent	9	2	Polio-3, -2	*
B. Pearl City STP				
 Unchlorinated Effluent 	2	2	Coxsackie B-2,	5-268
2. Chlorinated Effluent	2	2	ECHO-15, Coxsackie B-4, Coxsackie B-5, Polio-3	25-34

^{*}Not tested.

Furthermore, the sewage treatment processes of both plants were not capable of completely destroying the viruses in raw sewage. It was noted that the kinds and concentrations of viruses isolated were similar to that found at the Mililani STP and indicate that the wastes were primarily of human origin.

PERCOLATION OF SEWAGE-BORNE VIRUSES THROUGH THE SOIL. Since viruses were shown to be present in the chlorinated effluents which were used to irrigate the sod and sugarcane lysimeters, the possibility existed that these sewage-borne viruses might percolate through the soil and eventually contaminate the underground water sources. To test this possibility, chlorinated effluent was applied to the 1.5-m (5-ft) deep sugarcane lysimeter E and sod lysimeter. At different times during a 2-yr period, percolate lysimeter samples in quantities ranging from 18.93 \(\ell \) to 94.63 \(\ell \) (5 to 25 gal) were collected, concentrated, and assayed for virus. Only one of 28 percolated samples obtained from the sod lysimeter was positive for virus, while none of the 7 percolate samples obtained from lysimeter E yielded viruses. The possibility that the single virus isolated may represent a laboratory contaminant cannot be ruled out. However, the identification of this isolate, coxsackie B-5, as one of the predominant viruses found in the Mililani sewage, and the fact that this virus was not being used in the laboratory argues against this. Although it was not possible to determine the probability of virus movement through the soil profile, the results indicate that the viruses in the sewage effluent are retained effectively by the 1.5-m (5-ft) deep soil lysimeter.

SURVIVAL OF THE SEWAGE-BORNE VIRUSES IN SUGARCANE FIELDS. Since viruses were found in the sewage effluents used to irrigate the sugarcane, the important question on the fate and extent of viruses present in the cane field was examined. Briefly, 2 to 100 g of surface soil samples were obtained from the effluent-irrigated cane field and were treated in the laboratory with borate buffer plus 10% calf serum (final pH 9-10) in order to elute the viruses adsorbed to the surface soil. Of 30 different soil samples assayed, only one soil sample which was obtained immediately after irrigation with the effluent was positive for virus (poliovirus type 1). This extremely low frequency of virus recovery from the soil was found to be due in part to the inefficient elution of virus from the soil, an efficiency which became poorer as the size of the soil sample increased (see following Corollary Studies section). Recognizing the limitations in sampling and processing of soil samples, it is difficult at present to make any generalization as to the extent of virus contamination of the soil in the irrigated cane field. It is clear, however, that sewage-borne viruses

are applied to the sugarcane field, but that these viruses are not accumulated at the soil surface in an infectious form which can be easily dissociated from the soil.

COROLLARY STUDIES USING TYPE I POLIOVIRUS AS A MARKER. The results of the field studies (Percolation of Sewage-Borne Viruses; Survival of Sewage-Borne Viruses) have yielded no evidence as to the extent and the possible mechanism of virus-soil interactions. In order to obtain a clearer understanding of the interaction of viruses with soil, poliovirus type 1 was added to the Lahaina type soils and the fate of the virus followed. be clearly understood that these experiments using added poliovirus as a marker are not directly analogous to natural field conditions. This is especially true with the extremely high concentrations of virus added, a concentration one would never expect to approach under natural field conditions but that was used in these experiments in order to facilitate dections but that was used in these experiments in order to facilitate detection of vi-Nevertheless, similar mechanisms of virus soil interactions are very likely to operate whether under natural or artificially created field condi-Information obtained from these experiments, therefore, can provide useful data of the mechanisms and virus-soil interactions in operation and, when extrapolated, provide some reasonable explanation of the fate of enteroviruses in the soil under normal irrigation practices.

probability of virus movement through the soil profile under field conditions, poliovirus at concentrations ranging from 10^7 to 10^{10} PFU was added to 3.79 ℓ to 204.39 ℓ (1 to 54 gal) of Mililani chlorinated effluent and either dripped or poured onto the surface of the sod lysimeter, bare soil lysimeter, and the undisturbed soil plot, respectively. Additional water was added daily and the water passing through the soil profile was collected by using a suction pump attached to ceramic points at various depths. The results (Table 7) show that the maximum depth at which poliovirus was detected was 117 cm (46 in.) in the sod lysimeter 91 cm (36 in.) in the bare soil lysimeter, and 38 cm (15 in.) in the undisturbed soil profile. These results indicate that virus movement through the soil profile is not extensive and that naturally packed soil appears to be a better retardant of virus movement than repacked soil.

The Virus-Soil Interaction Mechanism. The field study (p. 37) indicated that virus movement through the soil was being retarded effectively.

TABLE 7.	POLIOVIRUS MOVEMENT AND SURVIVABILITY IN LAHAINA
	SOILS: MARKER EXPERIMENT

							
TEST SITE	ENVIRONMENTAL CONDITIONS	SURFACE FOL I AGE	SURFACE MOISTURE	SUN- LIGHT	TEMPERA- TURE	VIRUS RECOVERY FROM SOIL PER- COLATES MAXI- MUM DEPTH	VIRUS RECOVERY FROM SOIL SUR- FACE MAXIMUM DURATION
Sod Lysimeter	Field	Short grass	Wet-Dry	Direct	10-40°C	46 in.	9 days
Bare Soil Lysimeter	Field	None	Wet-Dry	Direct	10-40°C	36 in.	7 days
Undisturbed Soil Plot	Field	None	Wet-Dry	Direct	10-40°C	15 in.	8 days
Lysimeter E	Field	Tall cane plant, thick underbrush	Wet-Dry	None	10-20°C	*	61 days
Laboratory	Refrigeration	None	Damp	None	4°C	*	108 days

*Not tested.

However, it was not possible to determine whether virus movement was being retarded by the sieving or adsorptive capacity of the soil. To differentiate between these two mechanisms, Lahaina type soil samples taken from the test field site were returned to the laboratory. Initially, a thin soil column measuring 47 mm in diameter and 6 to 12 mm deep (20 g of soil) was made in a Millipore filtre apparatus and wetted with water. To this was added 104 to 106 PFU of the poliovirus in 10 to 20 ml of water which was allowed to percolate by gravity through the soil column. The filtrate was assayed for virus and found to contain approximately 1% of the added virus. The thinness of the soil column precluded efficient sieving of virus and indicated that the soil was an effective adsorbent of viruses. more conclusively that the soil was an efficient virus adsorbent, 10⁴ to 106 PFU of poliovirus in 20 to 100 ml of water were added to a flask containing 20 to 40 g of soil and mixed well for 15 to 60 min at room temperature. The entire mixture was then centrifuged at 10,000 rpm for 10 min to pellet the soil particles and the supernatant assayed for virus. Again, less than 1% of the added virus was detected in supernatant indicating that greater than 99% of the virus was adsorbed to the soil particles. these results, it is concluded that the primary mechanism by which soil retards virus movement is by adsorption of viruses. It is of interest to note that the Lahaina type soil is comprised of a high concentration of iron oxide which, in its purified form, is an excellent adsorbent of viruses.

Since poliovirus was shown to adsorb to soil, two obvious questions arise. First, can the soil lose its adsorptive capacity especially after prolonged treatment with sewage effluent and, secondly, can viruses already adsorbed to the soil be readily eluted in an infectious form? Experiments dealing with both questions are presently being made.

Preliminary experiments on the first question employing three thin soil columns pretreated for 1 hr with water and Mililani chlorinated effluent on 10% calf serum indicated however, that while pretreatment of the soil column with either water or sewage effluent did not interfere with its adsorptive capacity for virus, pretreatment with 10% calf serum reduced virus adsorption by 32%. The early data suggest that some kind of concentrated proteinaceous material can interfere with the virus adsorptive capacity of the Lahaina type soils. While pretreatment of the soil with serum proteins is an artificially created condition, proteinaceous material is present in sewage effluents (Table 8).

TABLE 8. EFFICIENCY OF ELUANTS TO ELUTE SOIL-ADSORBED POLIOVIRUS

ELUANT	FINAL pH	% OF ADDED POLIOVIRUS RECOVERED IN ELUATE
Water	6.6	<1
Chlorinated Effluent	7.7	<1
Borate Buffer	8.9	25
Borate Buffer + 10% Calf Serum	9.3	43
Borate Buffer + 10% Calf Serum	10.4	45

To determine whether prolonged treatment of this soil with sewage effluent would appreciably reduce the soil's adsorptive capacity, soil samples were obtained from OSC Field No. 246 which had been irrigated with sewage effluent for at least 6 months. These soil samples retained their ability to effectively adsorb viruses, indicating that under normal field conditions of irrigation with sewage effluent, the capacity of Lahaina type soils to adsorb virus was not impaired appreciably.

In relation to the second question on the elution of infectious virus

from the soil, preliminary experiments indicated that both unbuffered water and Mililani chlorinated effluents did not elute virus from the soil. It was found that a high pH of greater than 8 was required to efficiently elute virus. The data indicated that the bond between virus and soil was fairly stable and, since sewage effluents normally rarely attain a pH of 8 or greater, it does not appear likely that any extensive virus elution would result due to sewage-soil interactions. However, the long term effects of sewage effluent interactions on the soil-virus complex cannot be answered by these experiments.

Virus Survival Under Field Conditions. Another pressing question, concerning sewage-borne viruses in irrigation water, is the expected duration of their survival under field conditions. In an attempt to answer this question, 1.89 to 18.93 ℓ (0.5 to 5.0 gal) of water containing 10^6 to 10¹⁰ PFU of poliovirus were sprinkled over a 0.91 x 1.5 m (3 x 5 ft) surface area of the test plot site. Five grams of top soil were collected at different time intervals and the virus that was complexed to these soil samples were eluted by 15-min treatments with 10 ml of borate buffer plus 10% calf serum at a final pH of 9 to 10. The resulting eluates were centrifuged for 10 min at 10,000 rpm to pellet the soil particles and the pH of the supernatant was readjusted to 7 to 7.5 with 0.6 N HCl. This supernatant was then filtered through a 0.45-µ membrane filter (Millipore, type HA) to remove contaminating bacteria and fungi and assayed for virus. results (Table 7) show that infectious virus was recovered 61 days after seeding lysimeter E, but only 7, 8, and 9 days after seeding the bare soil lysimeter, undisturbed soil plot, and sod lysimeter, respectively. In a separate experiment, poliovirus was added to Lahaina soil and stored in a refrigerator. After 108 days, infectious virus was recovered readily on the last test day from this soil sample. These results clearly show that survival of viruses in the soil is dependent on the environmental conditions which are known to be fatal to poliovirus, namely high temperature, ultraviolet light (sunlight), and dessication. Thus, poliovirus survived longest in the refrigerator which was kept cold (4°C), humidified, and free of ultraviolet light. Even under field conditions (lysimeter E) when the soil was always moist, relatively cool, and hidden from the sunlight by the tall sugarcane canopy and the thick underbrush, poliovirus survived for at least 61 days. On the other hand, when the soil was exposed directly to the elements, such as sunlight, dessication, and periods of high temperature, perhaps 40°C, poliovirus survival time was reduced drastically to 7 to 9 days post seeding.

Survival of Soil-Bound Virus Following Cane Field Burning. Prior to cane harvesting, the entire field is burned to eliminate the leafy plant parts and the fallen trash. To determine whether this procedure can be relied upon to purify the soil of any residual viruses, 7 identical aluminum cans, measuring 6.35 cm (2.5 in.) in diameter and 4.44 cm (1.75 in.) in depth, were filled with soil taken from the cane field and 2 x 107 PFU of type 1 poliovirus was added to each of these 7 soil samples. One of these soil samples was kept as a control, while the remaining 6 cans of soil samples were placed in the ridges and furrows of 3 different irrigation ditches in field lysimeter E. The cans were carefully placed to ensure that the level of the soil in the can was equal to that of the ground. burning of the cane in field lysimeter E was started within 10 min of emplacing the soil sample containers and the entire field was completely burned out in 30 min. Five minutes after the burn, the soil in the cane field was barely warm and the soil samples were recovered and returned to the laboratory. Equal aliquots of soil sub-samples were taken from the center of each can and the adsorbed virus eluted as described previously. All recoveries were compared with the recovery obtained from the control soil sample. The results (Table 9) show that the field burning procedure inactivated from 0 to 93% of the poliovirus added to the soil samples. As was expected, the virus in the soil samples which were closer to the surface (ridge samples) appeared to be destroyed more effectively by the burn-

TABLE 9. EFFECT OF BURNING FIELD ON SOIL-BOUND POLIOVIRUS: MARKER EXPERIMENTS

FIELD NO. 246 SITE OF SOIL-BOUND VIRUS	VIRUS RECOVERED PFU/ml × 10 ³	PERCENT VIRUS INACTIVATED
Unexposed Soil (control)	216	0
Furrow of Irrigation Ditch #20	230	0
Ridge of Irrigation Ditch #20	14	93
Furrow of Irrigation Ditch #18	112	48
Ridge of Irrigation Ditch #18	136	37
Furrow of Irrigation Ditch #16	100	54
Ridge of Irrigation Ditch #16	62	71

ing procedure than the virus in the soil samples planted in the deeper furrows of the irrigation ditches. These results indicate that the burning procedure will inactivate soil-bound virus in the cane field, but that the extent of virus inactivation was variable and not excessively effective.

CROP AND SOIL RESPONSES TO EFFLUENT-IRRIGATION IN THE TEST PLOTS

The major study objectives of the OSC Field No. 246 test plots were: to determine whether satisfactory cane and sugar yields can be produced by using sewage effluent for sugarcane irrigation, and to determine the possible changes in the soil properties when sewage effluent is used to irrigate sugarcane. It should be understood that the findings are related to the soil type, cane variety, and weather conditions encountered in this experiment and may not necessarily be transferable to other situations if these factors are changed.

Fertilization Programs

In addition to the portion of the crop cycle to which sewage effluent was applied in the three different types of test plots A, B, and C, each type had to be fertilized (with commercial fertilizers) on a different schedule because of the nutrient content of the effluent. After considering present plantation practices, results of soil analysis and nutrient levels in the effluent, the fertilization schedule that was agreed on is presented in Table 10. The amounts of commercial fertilizers applied at planting was considered necessary to obtain a rapid and uniform start for the crop. In the fertilization program, N is the most critical element under most conditions because it has the greatest influence on cane tonnage, and cane and juice quality. The extra 28.03 kg/ha (25 1b/acre) N scheduled for the C plots was necessary to keep water application equal in all plots. there is no significant adverse effect from applying phosphorus or potassium in quantities greater than that which is adequate for good cane growth. The amounts of P and K applied in all plots is greater than that normally required for good growth as judged by the soil analyses. Soil analysis from 5 samples collected in the test plots of Field 246 in January 1973 is shown in Table 10.

TABLE 10. SCHEDULED APPLICATION OF NUTRIENTS BY COMMERCIAL FERTILIZERS AND SEWAGE EFFLUENT TO TEST PLOTS, OSC FIELD NO. 246

				CROP	AGE	(mo)									
TRÉAT- MENT		0 2 4 6 TOTAL COMMERCIAL FERTILIZERS								FERTILIZER AND EFFLUENT TOTAL					
CODE	P ₂ 0 ₅	N	K ₂ 0	N	K ₂ 0	N	K ₁ 0	N -lb/aci	K ₂ 0	N	P ₂ 0 ₅	K ₂ 0	N	P ₂ 0 ₅	K ₂ 0
Α	350	95	114	100	120	110	156	70	90	375	350	480	375	350	480
В	350	95	114	40	72	40	54	, -		175	350	240	375	550	480
С	350	95	114							95	350	114	400	655	480

NOTE: P_2O_5 as treble superphosphate (applied mechanically with initial planting); N as urea (hand applied); K_2O as muriate of potash (hand applied).

Median, minimum, and maximum levels of N, P, K in the secondary treated effluent for the period January to July 1972 were 10.8, 5.7, 21.9 mg/ ℓ N; 10.11, 6.68, 11.25 mg/ ℓ P; and 9.5, 5.8, 11.4 mg/ ℓ K. Using the median value for each nutrient, calculations show that the effluent would be roughly equivalent to a 11-23-11 (N, P205, and K20, respectively) fertilizer. However, as shown in Table 11, the N level in the effluent during the months when it was used for irrigating Field 246 plots was much higher, and P and K levels slightly higher, than in the earlier samples. The effluent approximated a 20-25-12 (as N, P205, and K20, respectively) fertilizer. Heavy raintainfall reduced irrigation, thus also reducing the total N application to the C plots. The curves in Appendix C show the application dates and the cumulative amounts applied for N, P205, and K20, respectively (points for nutrients applied via effluent represent monthly totals) for each of the treatments. Total amounts of various nutrients and other elements or compounds, applied in each treatment are shown in Table 11.

The increase in the N content of the effluent to nearly twice the expected level could not be corrected. Furthermore, the initial starter fertilization, once applied, could not be rescinded. Additional K was applied to the "A" plots at the final application in an attempt to raise the K values from the crop logs, hence the final K applications to the "A" plots exceeded those for the "B" and "C" plots. Moreover the K estimations had been predicated on 10.16-cm (4-in.) rounds, and 9.40-cm (3.7-in.) rounds were actually applied.

TABLE 11. ACTUAL TOTAL APPLICATION OF NUTRIENTS, SIO₂, AND Na SUPPLIED FROM COMMERICAL FERTILIZERS, SEWAGE EFFLUENT, AND/OR WAIAHOLE DITCH WATER TO TEST PLOTS, OSC FIELD 246.

ELEMENT or		TREATMENT*	
COMPOUND	Α	В	С
		lb/acre [†]	
n‡	380	508	622
Ρ‡	153	312	420
К	498	394	374
Са	320	347	364
Mg	154	142	195
SO ₄	270	706	1066
SiO ₂	925	1311	1811
Na	308	867	1352
C1 ·	578	958	1312

^{*}Treatment A = Ditch water, 24 mo.

Sugarcane Sampling Procedures

One of the major components of yield is the number of millable stalks per unit of land area. For this reason, shoot and/or stalk counts were made at 2.1, 4.0, and 6.2 months. Each census consisted of counting the total number of shoots and/or stalks in the premarked final harvest area (approximately .008 ha or 0.02 acre) of each plot.

When the cane was large enough (about 4 months of age for this test), crop log sampling was begun. Collecting and analyzing of these samples continued to within one week of harvest. A crop log sample is obtained by

B = Effluent, 12 mo. followed by Ditch water, 12 mo.

C = Effluent, 24 mo.

[†]lb/acre x 1.121 = kg/ha.

[†]Insignificant quantities of N and P_2O_5 contained in Waiahole Ditch water not included.

collecting 5 representative stalks, in this case, from each plot. Then the leaf blades (a 15.24-cm or 6-in. section from the middle of the blade) and the leaf sheath of leaves 3, 4, 5, and 6 (counting down from the top) are separated out. All analyses are then made on the leaf sheaths, except N (leaf blade) and the Amplified Phosphorus Index (which is derived by a formula using leaf sheath P, moisture, and total sugar content, and the fifth mature internode P content). Unless otherwise specified, all nutrient levels or indices are expressed on a sugar-free, dry-weight basis.

The amount of nutrient in the harvested cane is estimated by collecting an approximately 90.8-kg (200-1b) subsample of the hand-cut cane from the final harvest area after the field is burned to destroy the leafy trash. This subsample is then run through an ensilage chopper. The chopped cane is thoroughly mixed and an approximately 0.91.kg (2-1b) subsample is collected and analyzed for nutrient concentration. Nutrient concentration times the weight of gross cane per acre gives the weight of nutrient per acre in the above ground portion of the crop.

Soil Sampling Procedure

Soil samples were collected and analyzed prior to planting and after harvesting the test area. For the initial soil sampling, 5 soil samples (0-to 30.48-cm or 0- to 12-in. depth), each from 1/5 of the general experiment area (corresponding approximately to plots 9A, 14A, 21B, 25C, and 29C in Fig. 2) were collected on 26 January 1973. Each sample was a composite of 4 subsamples. On 3 and 4 April 1975, after the irrigation furrows were reshaped by OSC's reshaping machine, a sample was collected from each plot. The samples were obtained with a soil auger by extracting a 5.08-cm (2-in.) diameter coil core to a 30.48-cm (12-in.) depth from halfway up the reshaped furrow bank. Each sample was a composite of 3 such soil columns, one from each of 3 furrows in the final harvest plot area. A preliminary sampling was made on 6 March 1975, by collecting soil from the 0- to 7.62- or 10.16-cm (0- to 3- or 4-in.) depth in the bottom of an old furrow (before reshaping) in each plot.

The gross cane weight per acre, expressed as tons cane per acre (TCA), at harvest is determined by slash-cutting the cane around the perimeter of the premarked final harvest plot. This is done after burning the leafy trash. Cane attached to stools within the harvest plot is then cut at

ground level and all of the cane in the plot is weighed by a hydraulic scale in a grab mechanism mounted on a tractor.

The cane quality expressed as yield of sugar per ton of cane (YD/C), and juice quality, the percent of soluble solids (sucrose) in the cane, expressed as % purity or just purity, are determined by taking a subsample of chopped cane (same cane as used for nutrient content determinations) and extracting the juice from it. The pol (sucrose) is measured by a saccharimeter and soluble solids by a refractometer. Purity is then calculated by (pol/soluble solids) x 100. The cane weight, pol value, and purity value are then all subjected to a series of standard formulae which ultimately produce an estimated tons sugar per acre (ETSA) figure.

In Hawaii's sugar industry, the nutrient content of plant and soil samples are reported as the elemental form. However, because the fertilizer industry reports and labels the nutrient content of their fertilizer products on an oxide basis, the sugar industry uses this basis for reporting fertilization rates. The basis used in practice, for the respective analyses, will be used in this report. The following conversion factors are appropriate for converting the oxide form to the elemental form: $P_2O_5 \times 0.436$, $K_2O \times 0.830$, $CaO \times 0.715$, $SiO_2 \times 0.467$, $MgO \times 0.603$, and $SO_4 \times 0.334$.

RESULTS AND DISCUSSION OF CROP AND SOIL RESPONSES Crop Development

The shoot census taken at 2.1 and 4.0 months after planting showed no significant differences among treatments. However, the later census revealed that "B" plots contained 16% more shoots than "A" plots (significantly different at the 5% probability level), and about 8% more than "C" plots. Normally, many more shoots are produced than survive beyond the leaf canopy "close-in" stage. Millable stalk counts made at 6.2 months, after close-in and the normal stabilization of stalk population, revealed that the plots receiving A, B, or C treatments contained approximately 29,600, 30,400, and 30,500 stalks/acre. These small differences were not significant and all plots contained an adequate number of stalks to produce high yields.

Standard crop log samples were collected by OSC personnel starting at a crop age of 4.2 mo and continuing until harvest (24.6 mo). These samples normally were analyzed for the water, K, P, Ca, Mg, and total sugar content in the leaf sheaths, weight of the sheaths, N in the leaf blade, and P in the stalk. The mean value for sheath moisture, leaf blade N, sheath P, sheath K-H₂O in each treatment on the various sampling dates are plotted in Figures 5, 6, 7, and 8, respectively.

Moisture content in the leaf sheath and N level in the leaf blade normally move up and down together, although not always by the same magnitude. Sheath moisture was about normal for sugarcane irrigated on an optional schedule for the first 15 mo. The moisture level started to decline by the 12.1mo sampling and continued through the 15.2-mo sampling. This was expected of cane of this age coming into the warmer and drier season of the year, although it may have been just a little early. Normally, the sheath moisture would continue to decline slowly with age throughout the summer. However, the 5 August samples taken at 17.9 mo showed that moisture levels had returned to approximately what they had been at 12.1 mo. Moisture differences among treatments were not significantly different until 17.9 mo, when the moisture for cane in the C plots was greater than that in the A and B plots. At crop ages 20.9, 23.9, and 24.6 mo, sheath moisture content for C plots was significantly greater than that for the A but not the B plots. The higher moisture values were due to more N in the cane produced by the continuing supply of N from sewage effluent. At several other samplings (five replicates only) between 17.9 mo and harvest, none of the differences were significant.

The linear moisture-time line in Figure 9 shows the desired rate of reduction for sheath moisture as the harvesting age (25 mo) is approached. Mean sheath moisture values, for each treatment plotted above this line, show that during this interval moisture levels were always considerably higher than desired because of higher than normal rainfall (Table 12) and extra applied N. This graph alone would indicate the juice quality would be considerably below that desired.

By 4.2 mo, 218.60, 313.88, and 269.04 kg N/ha (195, 280, and 240 lb N/acre, respectively) had been applied to A, B, and C plots, repectively. Leaf blade N content was in the same order at the 4.2-crop log sampling. The differences between B and A were significant. By the 15.2-mo sampling 425.98, 569.47, and 586.28 kg N/ha (380, 508, and 523 lb N/acre, respectively) had been

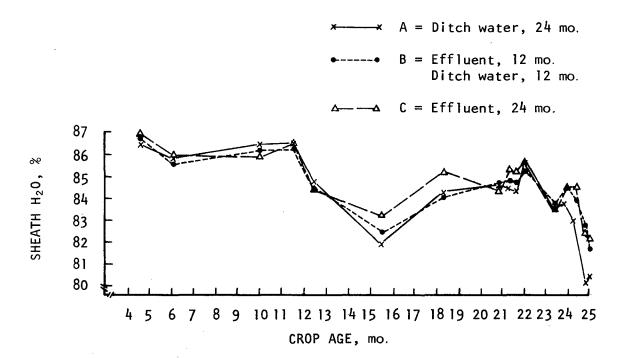


FIGURE 5. EFFECT OF SEWAGE EFFLUENT ON SHEATH MOISTURE OF SUGARCANE, OSC FIELD 246

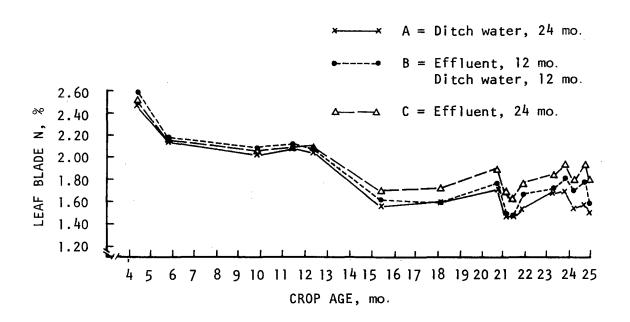


FIGURE 6. EFFECT OF SEWAGE EFFLUENT ON LEAF BLADE N OF SUGARCANE, OSC FIELD 246

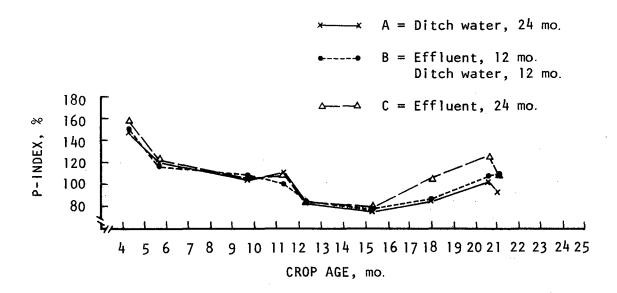


FIGURE 7. EFFECT OF SEWAGE EFFLUENT ON THE P-INDEX OF SUGARCANE, OSC FIELD 246

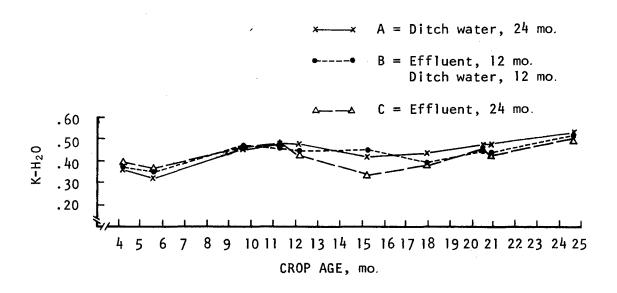


FIGURE 8. EFFECT OF SEWAGE EFFLUENT ON THE K-H₂O VALUES OF SUGARCANE, OSC FIELD 246

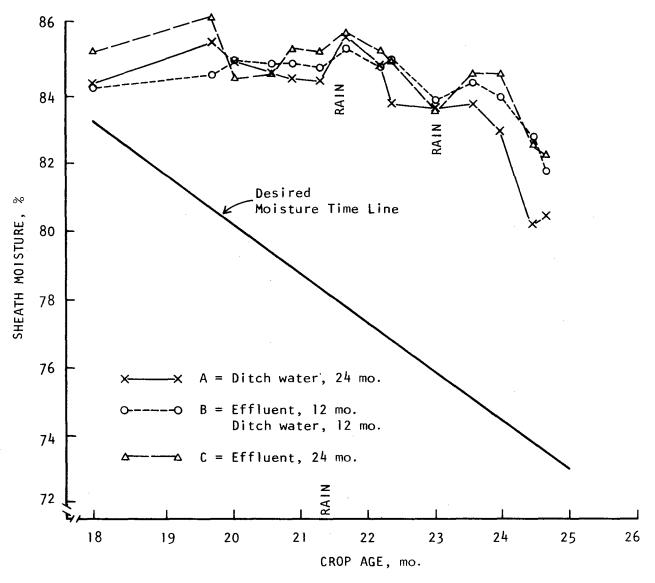


FIGURE 9. COMPARISON OF SHEATH MOISTURE- AND THE DESIRED MOISTURE-TIME LINES FOR SUGAR CANE, OSC FIELD 246

TABLE 12.	MONTHLY RAINFALL AT MILILANI	SEWAGE TREATMENT
	PLANT AND OAHU SUGAR COMPANY	FIELD NO. 246

	MI	LILANI ST	Р	OAHU S	UGAR CO.	FIELD 246	
DATE	1973	1974	1975	1923-73 in	1973	1974	1975
January	0.93	8.69	7.71	5.6	0.87	8.82	1.19
February	0.63	4.34	5.90	4.1	1.27	4.57	6.16
March	1.69	5.79		4.6	2.34	7.27	
April	1.13	4.23		3.2	1.27	5.93	
May	1.60	2.84		1.9	2.04	3.74	
June	0.58	0.97		1.3	1.16	2.08	
July	0.93	2.47		1.5	1.24	1.81	
August	0.89	0.31		1.8	1.27	0.37	
September	0.99	8.78		1.6	1.70	8.52	
October	2.51	2.81		3.3	3.42	3.07	
November	3.14	4.31		3.9	3.46	5.31	
December	5.98	1.20		5.4	6.48	1.95	
Total	21.00	46.74	13.61	38.2	26.52	53.44	7.35

applied to A, B, and C plots, respectively, and the leaf-N levels were in the same order (1.55, 1.60, and 1.68% N). The leaf-N values for A and C were significantly different. From this age on, leaf-N levels were always in the order of A, B, and C (lowest to highest). Usually, only the values for treatments A and C were significantly different from each other. As with the sheath moisture values, leaf-N values (especially for cane irrigated with effluent) were higher than desired during the last 4 months of the crop.

According to Clements (1959), the critical K-H₂O value (K% tissue moisture) is 0.425. Using this criteria, the K content was deficient in cane in all treatments at the 4.2- and 5.6-mo sampling (Fig. 8). By 15.2 months the A, B, and C plots had received 616.5, 510.0, and 414.8 kg K₂O/acre, respectively (550, 455, and 370 lb K₂O/acre, respectively). In the 15.2- and 17.9-mo samples, the K-H₂O values were low in cane receiving treatment C and low for B in the 15.2-mo samples. Low K-H₂O values have been observed frequently when high moisture levels are maintained in sugarcane

irrigated by drip irrigation. Because of the high moisture content of the cane in this experiment, it is not certain whether the low $K-H_2O$ values observed at various times in this test were low enough to cause any yield reduction.

The results of crop log analysis for P (P-index and amplified P index) indicated that at no time was there a deficient level of P in the plant, with the exception of a borderline case at 15.2 mo indicated by the P index only. The only time there was a significant difference in the P index among treatments was at the 17.9- and 20.9-mo samplings. The P index revealed that cane in all treatments was adequate at this time. However, in the former sampling, C treatment produced significantly higher P index values than the other two treatments, while in later samplings, treatments B and C produced higher sheath P values than did A. The soil type involved in this experiment is capable of fixing large amounts of P, therefore the large differences in applied P 414.77, 171.51, and 470.82 kg/ha (153, 312, and 420 lb/acre for A, B, and C, respectively) did not produce differences of comparable magnitude in P index values for the various treatments.

The analysis of crop log samples for Ca content indicated that Ca was never low for any of the treatments. In the samples collected at 9.6, 15.2, and 17.9 mo, the Ca content in cane from the various treatments did show some significant differences, but the actual differences were relatively small.

The crop log Mg index was similar to that of Ca in that the levels were always adequate.

Nutrient Content of Cane

The nutrient content of the aboveground portion of the cane plant after the trash was burned is shown in Table 13. Although the treatment effect was not significant in many cases, numerically the content of each nutrient measured increased as more sewage effluent (and consequently more of each nutrient) was applied, except for K. Because of the differential in K applied as commercial fertilizer, more K was applied to the A plots than to the B or C plots. It can be seen in the table that the K content in the plants was very similar among treatments. Both percentage-wise and in absolute terms, the greatest effect of sewage effluent on nutrient concent in the plant was for N. Although 687.17 kg/ha (613 lb/acre) more P_2O_5 was applied

to the C plots than to the A plots, the nutrient content only increased by 11 kg/ha (10.2 lb/acre). Nevertheless, this 11 kg/ha represents a 33% increase which is a significant amount. In fact, the P content increased as effluent application increased in each treatment and C>B>A were all significant at the 5% level. The Mg content was not significantly different between cane in A and B plots but values for each of these were significantly lower than for C plots.

TABLE 13. EFFECT OF SEWAGE EFFLUENT ON NUTRIENT CONTENT OF ABOVEGROUND PORTION OF THE SUGARCANE AT HARVEST, OSC FIELD NO. 246

TOPATMENT				MEAN I	NUTRIEN	CONTEN.	T	
CODE	TCA	N	P	K lb/a	Ca cre	Si	Mg	S
Α	138.1	109.6	31.0	260.5	26.5	131.4	48.4	52.6
В	144.6	151.4	36.7	261.1	29.9	154.7	53.9	66.8
С	152.9	225.3	41.2	247.8	34.6	162.5	60.5	73.2
Statistic A vs. B	al Summa *	ary: *	*	n.s.	n.s.	*	n.s.	*
A vs. C	*	*	*	n.s.	n.s.	*	*	*
B vs. C	*	*	*	n.s.	n.s.	n.s.	*	+

^{*}Difference significant at 5% probability level. †Difference significant at 10% probability level.

Nutrient Content of Soil

The nutrient content in the soil at the beginning of the test is presented in Table 1. The values indicate an adequate supply of P and Ca, but a relatively low content of K and a very low content of N with respect to sugarcane production.

"Comparable" samples, i.e., samples taken from the 0- to 12-in. depth, that were taken after the furrows were reshaped in 1975 (Table 14) indicate that changes were produced by the addition of sewage effluent and by the growing of sugarcane. Comparing Treatment A values in Table 14 with values in Table 1, it appears that the combination of the growing crop and the ferlization program for Treatment A has resulted in the reduction of soil P content and an increase in the soil K level. Mineralizable N data indicate virtually no effect.

n.s. = Difference nonsignificant.

EFFECT OF SEWAGE EFFLUENT ON NUTRIENT CONTENT TABLE 14. OF THE SOIL IN OSC FIELD NO. 246

TDEATMENT				MEAN NU	TRIENT	CONTENT			
TREATMENT CODE	AVAIL.	MIN.N	Р	K	Ca	Si	Mg	S	рH
	<u>N</u>			lb.	/acre -				——————————————————————————————————————
А	54	57	128.5	406.5	4128	215.5	831.0	20.3	6.06
В	65	79	174.0	529.5	4125	203.5	958.5	28.1	5.92
С	65	92	224.0	441.5	3945	221.0	974.0	24.8	5.84
Statistica	l Summar	y:							
A vs. B	n.s.	n.s.	*	*	n.s.	n.s.	*	n.s.	n.s.
A vs. C	n.s.	n.s.	*	n.s.	n.s.	n.s.	*	n.s.	n.s.
B vs. C	n.s.	n.s.	*	†	n.s.	n.s.	n.s.	n.s.	n.s.

Application of sewage effluent (B and C plots) has resulted in significantly higher soil P levels as compared to plots irrigated with ditch water and only commercial fertilizers (A plots). The more effluent applied, the more P applied, and the higher the soil P content. Also, the Mg content of the soil was raised by applying sewage effluent, but the differences in the B and C plots were not significant. There was a tendency for the soil K levels to increase with the addition of effluent (the effect was significant for B plots) even though the total (commerical fertilizers plus effluent) K applied was less in plots irrigated with effluent.

Table 15 contains the results of the nutrient analyses of soil samples taken from the top 7.6 to 10.2 m (3 to 4 in.) of soil in the bottom of the furrows immediately after harvesting the cane. The values are expressed as ppm since the sample was not taken to the 0.30-m (1-ft) depth. point brought out by data in this table is that the effects of effluent application on the soil nutrient level are apparently greatest at the initial point of contact between effluent and soil. Therefore, by examining this area, it might be possible to detect changes that would be missed in the more conventional type sampling. It might indicate the changes which would occur to a greater portion of the soil profile, if the effluent were applied year after year. In this regard, P and pH levels should be monitored closely in future tests.

NOTE: Samples collected 3-4 April 1975. *Difference significant at 5% probability level. †Difference significant at 10% probability level. n.s. = Difference nonsignificant.

TABLE 15. EFFECT OF SEWAGE EFFLUENT ON NUTRIENT CONTENT OF 3-4 IN. SOIL SURFACE OF IRRIGATION FURROWS, OSC FIELD NO. 246

TD = 0 TM = 11T		MEAN NUTRIENT CONTENT										
TREATMENT	AVAIL.	MIN.N	Р	K	Ca	Si	Mg	S	рΗ			
CODE	Nlb/acre											
A	10.6	23.0	59.0	347.5	1266	67.8	338.5	10	5.99			
В	13.3	27.9	128.4	228.0	1252	43.4	356.5	11	5.64			
С	18.3	29.4	198.5	229.5	1089	41.6	344.5	13	5.47			
Statistica	al Summai	ry:										
A vs. B	*	*	*	*	n.s.	አ	n.s.	n.s.	*			
A vs. C	*	*	*	*	n.s.	*	n.s.	n.s.	*			
B vs. C	*	n.s.	*	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.			

NOTE: Samples collected 6 March 1975.

*Difference significant at 5% probability level. n.s. = Difference nonsignificant.

Cane and Sugar Yields

The test area was burned on 5 March 1975 when the crop was 24.93 mo Hand-harvesting of the center 4 lines by 12.19 m (40 ft) began the following day and was completed on 7 March. Ideal weather conditions prevailed at harvest time.

Tons cane per acre (TCA), yield percent cane (YD/C), and estimated tons sugar per acre (ETSA) for each treatment are shown in Table 16. As expected, the more sewage effluent (and therefore, N) applied the more cane produced. The additional cane tonnage was 6.5 and 14.8 for application of effluent for the first year and the entire crop cycle, respectively. Cane tonnages for each treatment were significantly different from each other.

Compared to the quality (expressed as YD/C) of the cane irrigated with surface water, effluent only reduced the quality when applied for the entire This was caused by the N contained in the effluent. figure for Treatment C was significantly lower (1% probability level) than for Treatments A or B. Inasmuch as plant moisture and N levels are the predominant factors controlling cane and juice quality, and as shown earlier, Treatment B usually had moisture and N levels intermediate to A and C during the 7 mo prior to harvest, it was expected that cane quality for Treatment B would be intermediate to Treatments A and C.

CODE	TREATMENT	TCA	YD/C	ETSA
Α	Ditch water, 2 yr	138.1	12.2	16.8
В	Effluent 1st year, followed by ditch water 2d year	144.6	12.3	17.8
С	Effluent, 2 yr	152.9	10.3	15.8
Stati	stical Summary: A vs. B	*	n.s.	n.s.
	A vs. C	†	†	n.s.
	R ve C	.	+	*

TABLE 16. EFFECT OF SEWAGE EFFLUENT ON CANE YIELD, CANE QUALITY, AND SUGAR YIELD IN OSC FIELD NO. 246

*Difference significant at 5% probability level. †Difference significant at 1% probability level.

In the case of Treatment B, the increase in TCA due to the addition of effluent was translated directly into increased sugar production (1.0 ETSA increase). This was because neither cane quality nor juice quality (purity) was lowered by the addition of effluent in the first year of the crop, if it was followed by surface water irrigation for the second year of the crop However, if the irrigation with sewage effluent was continued through the second year, the large drop in juice and cane quality more than offset the increase in TCA. The net result was lower ETSA. The 1.0 ETSA differences between Treatments A and B or A and C were not significant from a statistical standpoint, even at the 10% probability level. The 2.0 ETSA diference between B and C was significant at the 5% level. However, from an economical standpoint, a "real" 1.0 ETSA difference would be very important. To be able to statistically detect such a difference, the treatments would have to be replicated more times or the variability between replications would have to be reduced. In this test, the coefficient of variability was quite low for TCA, but relatively high for YD/C and ETSA.

Yields from small plots which are hand harvested are biased upward. The amount of the bias depends, among other factors, on the size of the It is not uncommon for yield results obtained from conventional harvesting and milling methods to be about 80% of those obtained from small plot harvests. Nevertheless, the yields look satisfactory to good.

Based on these preliminary test results, it appears that sugar yields

n.s. = Difference nonsignificant.

would not be decreased by applying sewage effluent for the first year only, but could quite likely be decreased by applying the effluent during the entire crop cycle. Effects from applying sewage effluent to sugarcane might be altered significantly if the variety, soil type, or weather conditions were different, or if a chemical ripener were applied. Variety 59-3775 which was grown in this test is known for its superior cane and juice quality and its ability to withstand high N applications.

Although rainfall was considerably above normal for the year and slightly above normal (Table 12) for the 6-mo period preceding harvest (which would promote lower juice quality), the lower-than-normal temperatures (Table 17) during the latter period tended to counterbalance the rainfall effect.

TABLE 17. MO	ONTHLY TEMPERATURE,	OSC	FIELD	NO.	246
--------------	---------------------	-----	-------	-----	-----

YEAR	MONTH	MAX.	MIN.	MEAN F	RANGE	YEAR	MONTH	MAX.	MIN.	MEAN	RANGE
1956-	JAN.	76.7	60.0			1973	SEPT.	78.6	64.7	71.7	13.9
	FEB.	76.7	59.5			13/3	OCT.	•	64.5	69.8	
1970	MAR.	78.4						75.0			10.5
			59.6				NOV.	72.0	62.8	67.4	9.2
	APR.	79.3	61.3				DEC.	74.1	59.9	67.0	14.2
	MAY	81.9	63.1			1071		0			
	JUNE	83.4	64.9			1974	JAN.	75.8	63.5	69.7	12.3
	JULY	83.7	65.9				FEB.	70.8	59.5	65.2	11.3
	AUG.	84.7	66.5				MAR.	67.3	60.3	63.8	7.0
	SEPT.	84.9	65.7				APR.	72.4	62.5	67.6	9.9
	OCT.	83.3	65.4				MAY	73.9	62.8	68.4	11.1
	NOV.	80.2	64.2				JUNE	76.1	63.3	69.7	12.8
	DEC.	77.7	62.1				JULY	76.4	63.3	69.9	13.1
							AUG.	77.9	65.0	71.5	12.9
1973	JAN.	71.3	57.2	64.3	14.1		SEPT.	78.0	63.7	70.9	14.3
	FEB.	68.8	57.4	63. Î	11.4		OCT.	72.8	64.3	68.6	8.5
	MAR.	70.6	62.3	66.5	8.3		NOV.	69.9	61.7	65.8	8.2
	APR.	72.7	61.1	66.9	11.6		DEC.	68.2	60.7	64.5	7.5
	MAY	72.8	63.1	68.0	9.7				,		,.,
	JUNE	75.3	64.3	69.8	11.0	1975	JAN.	65.6	57.4	61.5	8.2
	JULY	75.9	65.9	70.9	10.0	1373	FEB.	65.6	57.0	60.8	7.6
	AUG.	77.6	65.0	71.3	12.6		MAR.	77.2	62.8	70.0	14.4
	704.	//.0	0,0	, 11.3	14.0		(1-7)	11.2	02.0	70.0	14.4

NOTE: $^{\circ}F-32 \times .555 = ^{\circ}C$.

EVALUATION OF WATER QUALITY PARAMETERS

Treatment Plant Effluent

Selected median water quality constituent values, from 218 grab samples of Mililani STP secondary effluent obtained between April 1973 through December 1974, are shown in Table 18. Although some secondary effluent quality data have been reported previously for the project (Lau et al. 1972,

TABLE 18.	MEDIAN CONSTITUENT VALUES OF SECONDARY SEWAGE EFFLUENT,
	MILILANI STP, CENTRAL OAHU, HAWAII

DATE	NO. OF	TOTAL N	P04-P	К	Na	Са	Mg	S0 ₄	S10 ₂	Cl	TDS	COND.
DATE	SAMPLES					MEDIAN mg/&-						µmhos/cm
1973						<u> </u>						***
APR.	8	17.4		10.8	55	14	7	43	63	49		400
MAY	10	23.2	12.55	10.6	55	8	9	42	64	55		420
JUNE	13	20.7	11.16	9.5	58	- 16	4	52	67	48	354	420
JULY	13	18.1	10.74	9.7	48	14	4	43	64	54	327	370
AUG.	11	20.3	9.95	10.0	48	12	1	38	70	66	290	345
SEPT.	9	19.6	10.57	9.0	50	17	5	38	66	45	198	410
OCT.	10	23.2	10.83	9.6	50	17	7	38	67	48	311	400
NOV.	14	22.2	12.67	11.2	50	7	12'	46	71	48	353	420
DEC.	17	20.9	13.22	9.4	63	10	10	40	73	50	311	480
1974												
JAN.	7	24.7	14.27	10.0	61	11	10	42	70	48	232	500
FEB.	13	17.3	13.54	10.4	59	10	9 -	3 5	75	48	324	440
MAR.	6	20.1	12.82	9.8	57	10	. 9	36	74	50	315	455
APR.	10	24.6	10.82	9.6	62	9	9	41	74	48	337	520
MAY	12	26.7	11.15	10.2	53	10	8	40	74	46	383	580
JUNE	12	19.3	10.31	10.2	54	8	9	44	73	52	360	485
JULY	12	16.8	10.97	10.6	57	8	10	49	73		353	505
AUG.	13	13.3	8.47	9.2	53	8	10		72	53		415
SEPT.	5	13.3	9.72	9.7	49	8	9		72	50	326	450
OCT.	8	16.1	8.87	9.1	50	8	9		72	51	354	465
NOV.	7	17.8	9 .7 0	10.3	50	8	10		71	52	325	420
DEC.	8	20.8	10.37	8.6	51	10	10		80	55	335	540
APR. 7	73-DEC. 74	20.1	10.83	9.7	EDIAN (54	OF MEDI	ANS 9	42	72	50	327	440

1974), the time period for Table 18 was chosen to coincide with the test plot studies in Field No. 246.

In addition to the numerous grab sample values, 8 sets of composited samples were collected between October 1971 and January 1975 for comparison with the grab samples. All the composited samples, shown in Appendix A-1, except for the October 1971 set, were collected over a 16-hr period. The composited samples were quite comparable, thus indicating that the grab samples were not unduly influenced by anomalies due to time of collection.

Irrigation Water Quality Standards

Numerous parameters have been advanced to evaluate suitability of a

water supply for irrigation such as soil type, drainability, type of crops, and chemical composition of the water. For the conterminous U.S. temperate zones, total dissolved solids, electrical conductivity, chlorides, sodium percentage, and boron have been the chemical parameters that have been used traditionally. As may be noted in Table 18, total dissolved solids, electrical conductivity, and chlorides of the effluent are considerably less than the mainland-established limiting values for sensitive crops of <700 mg/l, <1000 \(\mu\)mhos/cm, and 175 mg/\(\ell\), respectively. The percentage of sodium in comparison to the total major cations (calcium, magnesium, sodium, and potassium) on an equivalent basis was nearly 62%, which is slightly greater than the <60% established for sensitive crops, However, the sodium level satisfies another commonly used criterion, the sodium adsorption ratio (SAR). should be noted that the SAR is not deleterious to soil structure, especially for these aggregated soils. The median concentration of boron, during a 7mo period at the beginning of the project (Lau et al. 1972), was 0.39 mg/ℓ which is less than the <0.5 mg/ ℓ value set for sensitive crops. low concentration of boron, its analysis on a regular basis was discontinued. Pesticides and heavy metal concentrations were either below the level of concern or the level of detectability as shown on Appendix Tables B-1 and B-3.

Rainfall and Evaporation

Rainfall is monitored extensively at numerous locations on sugarcane plantations for purposes of irrigation management. The quantity of rainfall, measured at a rain gage located adjacent to the Mililani STP control building from January 1972 through February 1975 is presented in Table 19. As can be observed in Table 19, rainfall for 1973 was nearly one-half of the 101.6-cm (40-in.) approximate annual average; however, the rainfall amount for 1972 was about average, and the 118.72 cm (46.74 in.) for 1974 was slightly above average.

Pan evaporation data, collected at OSC Field No. 245 (approximately one mile from both the Mililani STP and OSC Field No. 246 test plots), are presented in Table 20. The total quantity of evaporation for 1973 and the resulting corresponding values for 1974 were not recorded for several weeks due to pan overflow from excessive rainfall and the sugar plantation employees strike during March and part of April.

TABLE 19. PAN EVAPORATION RATES, OSC FIELD NO. 245, CENTRAL OAHU

1973 Jan. 1-4 5-11 12-18 19-25 26-31	in. In./day 0.618 0.986 1.391 1.522	July 1-5	in. in./	day	1974	in. in./day		in.	in./day
Jan. 1-4 5-11 12-18 19-25 26-31	0.986 1.391				107/				
Jan. 1-4 5-11 12-18 19-25 26-31	0.986 1.391				19/4				
5-11 12-18 19-25 26-31	0.986 1.391		1.036		June 1-6	1.606	Sept.13-26	2	
12-18 19-25 26-31	1.391	6-12	1.898		7-13	1.784	27-30	0.445	0.231
19-25 26-31		13-19	1.958		14-20	1.374		•	-
26-31		20-26	1,998		21-27	1.894	Oct. 1-3	0.333	
_	1.233 0.185	27-31	1.591 0.2	74	28-30	² 0.247	4-10	1.480	
eb. l		-, ,		•		•	11-17	1.126	
	0.206	Aug. 1-2	0.637		July 1-4	²	18-28	2	
2-8	1.408	3-9	2.167		5-11	1.824	29-30	0.380	
9-15	1.498	10-16	1.888		12-18	1.548	31	0.163	0.174
16-22	1.497	17-23	1.462		19-25	1.500	-	•	
23-28	1.408 0.215	24-30	1.799		26-31	1.286 0.199	Nov. 1-7	1.143	
		31	0.240 0.2	64	-		8-14	1.060	
lar. 1	0.235	•			Aug. 1	0.214	15-21	2	
2-8	1.724	Sept. 1-6	1.439		2-8	1.684	22-26	0.538	
9-15	1.708	7-13	1.834		9-15	1.446	27-30	0.426	0.138
16-22	1.492	14-20	1.808		16-22	1.850			
23-29	1.785	21-27	1.598		23-29	1.496	Dec. 1-5	0.532	
30-31	0.425 0.238	28-30	0.771 0.2	48	30-31	² 0.231	6-12	1.317	
		-					13-19	1.476	
Apr. 1-5	1.062	Oct. 1-4	1.029		Sept. 1-5	²	20-26	0.880	
6-12	1.508	5-11	1.545		6-12	2.090	27-31	0.643	0.156
13-18	1.666	12-18	1.852		1071 TOTAL F	V4.000.471.011		Lr. 072	
19-26	1.714	19-25	1.312		1974 TOTAL E			45.873	0.100
27-30	1.130 0.236	26-31	1.527 0.2	34	19/4 AVERAGE	EVAPORATION RATE		<u></u>	0.196
				*-	1975				
May 1-3	0.848	Nov. 1	0.255			0.037	Feb. 7-13	0.036	
4-10	2.009	2-8	0.720		Jan. 1-2	0.237	14-20	0.936 1.277	
11-17	1.874	9-15	1.272		3-9	0.784	21-27	1.173	
18-24	2.046	16-20	0.673		10-12	0.490	21-27	0.176	0.161
25-31	1.732 0.274	21-29	1.250		13-16 17-23		20	0.170	0.101
		30	0.201 0.1	46	24-30	0.758	Mar. 1-6	1.056	
June 1-7	1.764				24-30 31	1.731 ² 0.149	7-13	1.572	
8-14	1.974	Dec. 1-6	1.209) 1	0.149	14-20	1.607	
15-21	1.956	7-13	1.372		Feb. 1-2	2	21-26	1.282	
22-28	1.669	14-20	1.078		3-6	0.622	27-31	2	0.212
.29-30	0.415 0.251	21-27	0.810	"		0.022	2/)!		
		28-31		<u> </u>	1975 TOTAL E	VAPORATION		13.721	
1973 TOTAL EV	/APORATION EVAPORATION RAT	-	82.732 0.2	17 ·	1975 AVERAGE	EVAPORATION RATE			0.174
	LVACURATION KAT	<u> </u>		<u></u>	NOTE: Evapo	ration data obtain	ed from the Ha	waiian S	ugar
<u> 1974</u>					Plant	ers' Association,	Climatological	Section	, Exper-
Jan. 1-17	2	Apr. 1-25	3			al Station. Colle			
18-24	1.204	26-30	1.065 0.2	13		y 0.1-ml from both No. 246 Test Plot		oir and t	/3 L
25-33	² 0.172					evaporation data		at approx	imately
		May 1-2	0.426		7:30 A.M.	the date is assume	d to be repres	sentative	of the
Feb. 1-7	1.305	3-9	1.696		evaporation	for the previous	day.		
8-14	1.214	10-16	1.216			wed due to excessi	ve rainfall du	iring the	month.
15-21	1.317	17-23	1.340		³ Data not co	llected.			
22-28	1.284 0.183	24-30	2						
Mar. 1-31	3	31	0.268 0.3	06					

TABLE 20. MONTHLY RAINFALL, MILILANI STP

DATE	1972	1973	1974 in	1975
JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER	8.38 5.17 2.67 7.90 0.27 1.03 0.84 0.92 2.78 3.27 2.22 3.39	0.93 0.63 1.69 1.13 1.60 0.58 0.93 0.99 2.51 3.14 5.98	8.69 4.34 5.79 4.23 2.84 0.97 2.47 0.31 8.78 2.81 4.31 1.20	7.67 5.90 2.33
TOTAL	38.84	21.00	46.74	

NOTE: 1 in. $\times 2.54 = cm$.

Quality of Sod Lysimeter Leachate

The constituent changes in secondary effluent passing through the 5-ft (1.5 m) deep grass-sod lysimeter and accompanying water balance, since its installation in January 1972, shown in Figure 4, has been reported previously in detail up to July 1973 (Lau et al. 1972, 1974). The constituent values of the grass-sod lysimeter percolate from its inception in January 1972 to February 1975 are tabulated in Appendix Table B-4 and the monthly water balance from July 1972 through February 1975 are shown in Appendix Table B-5. The combination of soil and turf in the sod lysimeter removed nearly all detectable levels of total nitrogen and phosphate, between 90 and 95% of the suspended solids and total organic carbon, nearly 90% of the potassium and approximately 70% of the silica dioxide from the applied effluent. duction in the silica dioxide concentration of the leachate from that of the secondary effluent suggests resilication of the soil profile and a reversal of the natural tropical soil genesis patterns (Roy et al. 1971; Tenorio et al. 1970). Total nitrogen, however, was not removed effectively until after four months of operation. These results, with the exception of nitrogen, were as expected. Other parameters such as total dissolved solids, chloride and electrical conductivity appeared to be essentially uneffected. Calcium, magnesium and sulfate increased considerably from applied effluent to the

percolate, thus indicating base exchange or similar phenomena. The evapotranspiration from the grass-sod lysimeter, which was determined hydraulically by actual weight differences, proved to be within a few percent of the values measured by the pan evaporation method.

As previously indicated, there is considerable concern over nitrogen, particularly the oxidizable forms of nitrite and nitrate which are essentially found in nature only in the soluble form, except for saltpeter deposits. Anion sorption can play a major role in sulfate and nitrate balances of tropical soils, however, the relatively low content of amorphous material in the Lahaina soils minimizes the importance of the sorption in the nitrate balance. Consequently, the nitrite and nitrate forms have the potential of being transported to the groundwater zone. In an attempt to quantify the apparent nitrogen deficiency, an inventory was made of the known nitrogen input and output for the lysimeter. The readily measured inputs were the applied secondary effluent and precipitation, and the outputs were the percolate and the Bermudagrass clippings. A summation of the inputs and outputs over a period of several months still leaves an "unaccounted nitrogen loss" of 39% (Lau et al. 1974). Even assigning a liberal estimate of 25% of the total nitrogen being removed in grass clippings to the roots and that portion of organic and ammonia being sorbed in the soil system (both of which would be expected to be in a reasonable steady-state), the unaccounted loss is still approximately 24%. It is assumed, at this time, that the major portion of the unaccounted nitrogen loss can be attributed to bacterial nitrification-denitrification, which can result from the alternately wet-dry operation of the lysimeter, and/or possibly through ammonia gas loss, depending on the pH of the soil water.

OSC Field No. 240 Leachate Water Quality

With the exception of nitrogen and sulfate, the chemical constituent results from percolate collected in the point samplers from the 5 test rows of Field No. 240, between June 1972 to June 1973 as shown in the analyses of composite leachate samples (App. Table B-4) produced the same general trends for most chemical constituents as was observed for the 5-ft (1.5-m) deep grass-sod lysimeter during the same time period. Chloride and sodium remained in the same range as the applied secondary effluent; total organic

carbon decreased from a median of 24 mg/ ℓ in the applied secondary effluent to a value of approximately 8 mg/ ℓ , and calcium increased from a median value of 10 mg/ ℓ in the secondary effluent to greater than 70 mg/ ℓ in the point sampler leachate. The calcium values increased considerably higher than the 145% increase in the grass-sod lysimeter. This sharp increase may be attributed possibly to the large amount of calcium-bearing coral used for an airplane runway at this particular site during World War II.

Electrical conductivity of the point sampler leachate ranged from 50 to 200 µmhos/cm higher than in the applied effluent, whereas, the conductivity level was changed very little in passage through the grass-sod lysimeter. This may be in part a reflection of the high quantity of calcium leaching or base exchange. Sulfate decreased from approximately 50 mg/ ℓ in the applied secondary effluent to about 20 mg/ ℓ in the point sampler leachate as compared to the sod lysimeter where the concentration of sulfate increased from 48 mg/ ℓ applied effluent to 75 mg/ ℓ percolate during the same 1-yr period.

Potassium in the leachate from the point samplers, with some fluctuations, remained less than 1 mg/ ℓ to slightly greater than 3 mg/ ℓ after the first two months of operation, compared to a median of 10 mg/ ℓ for applied secondary effluent, which is essentially the same reaction that occurred in the grass-sod lysimeter. Silica dioxide also exhibited the same general trend as potassium in both the point samplers and the grass-sod lysimeter. The concentration of silica dioxide in the point samplers ranged from 10 to 30 mg/ ℓ compared to a median value of 70 mg/ ℓ for the applied secondary effluent.

Nitrogen was extensively monitored in the 5 test rows of Field No. 240. Inasmuch as nitrate was the predominant nitrogen form in the leachate, it was used to monitor the individual point samplers where the sample volume was minimal. Determinations for other forms of nitrogen that comprise total nitrogen were perfomed on a composite of the individual samples remaining after nitrate analysis.

The sugarcane crop in Field No. 240 had already received the scheduled plantation fertilizer application of 356 kg/ha (318 lb/acre) prior to the initiation of secondary effluent application. The total nitrogen concentration in the applied effluent ranged from median monthly values of nearly 8 mg/ ℓ to over 20 mg/ ℓ as N with a total 396-cm (156-in.) hydraulic depth

which resulted in an additional nitrogen load of 518 kg/ha (462 lb/acre) over a 1-yr period. The additional nitrogen from secondary effluent resulted in a nearly uniform nitrate concentration increase in the point sampler leachate that reached, after eight months of application, maximum median values which ranged from approximately 10 to 15 mg/l as nitrogen. However, as shown in Table 20, this coincided with a period of unusually low seasonal rainfall. The nitrogen concentration from the leachate in adjacent rows receiving normal irrigation ditch water was generally less than 1.0 mg/l. These results tentatively indicate that sugarcane is not nearly as effective a nitrogen sink as bermudagrass.

Quality of Bare Soil Leachate

As previously stated the bare soil lysimeter was operated in two phases: August 1973 to April 1974 and then relocated approximately 46 m (150 ft) to a new location due to the construction of an electric transformer station at the original bare soil lysimeter site. Operation of the relocated bare soil lysimeter commenced on 17 April 1974 and continued through February 1975.

In both cases the lysimeter was carefully repacked with soil at about the same density and position as the soil material excavated to construct the lysimeter. Although the two lysimeter locations were only separated by approximately 46 m, they were recently managed in significantly different ways. Both sites had been planted in pineapple for several decades, however, the first site had its top soil reshaped, without further cultivation, during the construction of the Mililani STP in 1968, whereas, the second site had been in cultivated pineapple until approximately the last two years. Thus, the second site had at least two additional 2-yr growing cycles than the first site, which results in a more recent nitrogen fertilizer application. Pineapple cultivation usually requires a higher nitrogen fertilizer application than sugarcane.

The various water quality constituent parameters from individual bare soil lysimeter percolate samples are tabulated in Appendix Table B-7. Essentially the same general applied secondary effluent-percolate removal performance occurred in the bare soil lysimeter as was observed in the grass-sod lysimeter except for nitrogen. The median monthly nitrogen and phosphorus values for Phases I and II are shown in Table 21. In addition the

TABLE 21. HYDRAULIC AND NUTRIENT ASPECTS OF BARE SOIL LYSIMETER, NEAR MILILANI STP

					IED EFFLL				PERCOLATE				
		RAIN		TOT	AL N	P	04-P	EVAPO-		T0	TAL N	P)4-P
	DATE	FALL []] in./mo	in./mo	mg/l ²	lb/ acre-mo	mg/ℓ	lb/ acre-mo	RATION 1 acre-mo	in./mo	mg/Ջ	ib/ acre-mo	mg/l	lb/ acre-mo
1	1973												
- 1	Aug.	0.89		0.74		4				13.7		0.05	
	Sept.	0.99		0.74		4							
	Oct.	2.51		0.74		4							
1	Nov.	3.14		22.2		12.67				9.9		0.05	
	Dec.	5.98		20.9		13.22				19.4		ND*	
PHASE	1974									•			
₹.	Jan.	8.69		24.7		14.27				22.6		ND*	
	Feb.	4.34		17.3		13.54							
	Mar.	5.79		20.1		12.82							
	Apr. (1-16)	0.80							 .				
1	Apr.												
- 1	(17-30)	3.43	5.5	24.6	30.7	10.82	13.5		2.64	11.8	7.1	0.02	
Ţ	May	2.84	11.0	26.7	66.6	11.15	27.8	4.32	9.36	12.5	26.5	ND*	0.00
ţ	June	0.97	10.0	19.3	43.7	10.31	23.4	4.03	5.99	17.55	23.8	0.015	0.01
l! elocated	July	2.47	10.0	16.8	38.1	10.97	24.9	4.61	8.90	22.5	45.4	0.01	0.02
= =	Aug.	0.31	11.0	13.3	33.2	8.47	21.1	4.32	6.93	18.5	29.1	0.01	0.02
	Sept.	8.78	3.0	13.3	9.0	9.72	6.6	3.49	7.35	28.0	46.6	0.01	0.02
PHASE eter r	Oct.	2.81	7.25	16. 1	26.5	8.87	14.6	3.39	7.06	31.9	51.0	0.01	0.02
¥ #	Nov.	4.31	0.6	17.8	2.4	9.70	1.3	2.46	4.10	25.0	23.2	0.01	0.01
Ē	Dec.	1.20	2.0	20.8	9.4	10.37	4.7	2.03	1.17	29.0	7.7	0.015	0.00
PHAS Lysimeter	1975												
-	Jan.	7.67	0.0		0.0		0.0	2,05	5.63	29.06	37.0	ND st	0.00
-	Feb.	5.90	0.0		0.0		0.0	2.10	4.59	29.0 ⁶	30.2	ND*	0.00
	TOTAL				259.6		137.9				327.6		0.10

*ND = none detected.

⁴Tap water.

⁵Interpolated value.

hydraulic loading aspects for Phase II is also presented, thus, total nitrogen and phosphate monthly loading rates could be determined.

Tap water, with very little nitrogen and phosphorus concentrations, was used as the applied liquid during the initial three months of the Phase I operation. The percolate quality results indicated that nitrogen was being leached out while very little phosphate was emitted from the lysimeter. monthly nitrogen and phosphate input and output rates for Phase II operation indicate that approximately 118 kg (260 lb) of nitrogen were applied while nearly 149 kg (328 lb) were removed in the percolate, thus, illustrating nitrogen leaching is still occurring. During this same time period, essentially 100% of the nearly 63 kg (138 lb) of phosphate was not recovered in the It is obvious that before meaningful nitrogen related results from the operation of the bare soil lysimeter can be obtained the lysimeter will have to be operated for a sufficiently (undetermined) long time period to leach out the excess residual entrained nitrogen.

¹Chemical composition of rainfall neglected.

Hydraulically measured by weight difference of lysimeter.

⁶Assume concentration to be equal to December 1974 value.

OSC Field No. 246 Test Plot, Water Quality Parameters

Of all the monitored chemical constituents passing through the soil profiles under the varied hydraulic and nutrient loading and meteorological conditions encountered in the OSC Field No. 246 test plots and lysimeters, nitrogen appears to be of prominent importance. Nitrogen's prominance is due to a combination of attributes which include: its use as a major component of most fertilizers; its reported adverse effect on matured sugarcane; being essentially soluble in the oxidized forms (nitrite and nitrate); its relationship to the disease of infants, methomoglobinemia, in nitrate concentrations exceeding 10 mg/& as N; and its potential role in the eutrophication of bodies of water receiving nitrogen loads.

As previously indicated, the studies in the test plots of Field 246 can be segregated basically into 2 categories: lysimeters D and E, and 30 test plots.

The monthly hydraulic and nitrogen values for lysimeters D and E are tabulated in Table 22. The individual chemical constituents analyzed for lysimeters D and E are presented in Appendix Tables B-8 and B-9, respectively. For the 18-mo period, the approximately 254 cm (100 in.) of secondary effluent application to lysimeter E and 224 cm (88 in.) of ditch water application to lysimeter D, together with 155 cm (61 in.) of rainfall on both lysimeters, produced evapotranspiration losses of about 239 and 229 cm (94 and 90 in.), respectively, with percolation through the 5-ft (1.5-m) soil profiles of 170 and 150 cm (67 and 59 in.), respectively. The chemical constituents analyzed for applied ditch water are tabulated in Appendix Table B-On an annual basis, August 1973 through July 1974, the evapotranspiration loss was 143 cm (56.4 in.) and 159 cm (62.5 in.), respectively, for lysimeters E and D. Although these values have an evaporation difference of 8%, they are considered to be within a reasonable range for the period of time and conditions under review. Soil moisture differences within the lysimeters may alter these values, however, this source of potential error decreases as the length of monitoring time increases.

The effective pore volume of the soil, defined in this study as the volume of water that will drain freely from a thoroughly wetted volume of soil under natural gravity conditions is approximately 15%. Thus, the 5-ft (1.5-m) deep lysimeters should have a theoretical complete free soil water change for approximately each 23 cm (9 in.) of percolate. On this assumption, the

TABLE 22. HYDRAULIC AND NITROGEN ASPECTS OF LYSIMETERS D AND E, OSC FIELD NO. 246

				YSIMET	EK U				
			APPL. S	ECOND.	EFFL.	Ĺ	EACHAT	E	EVAPO-
	MONTHLY	N-FERT.		T0	TAL N		TO	TAL N	TRANS-
DATE	RAINFALL in.	APPL. 1b/acre	QUANTITY in./mo	mg/l	lb/ acre-mo	QUANTITY in./mo	mg/l	lb/ acre-mo	PIRATION in./mo
1973									
May 30	0.58	100	8.14	0.1	0.2	2.15	12.7	6.2	6.57
July	0.93		7.40	0.2	0.4	1.30	7.2	2.1	7.08
Aug. 15	. 0.89	150	8.14	0.3	0.6	0.00	27.0 ¹	0.0	9.03
Sept.	0.99		8.88	0.2	0.4	0.19	46.7	2.0	9.68
Oct.	2.51		7.77	0.2	0.4	1.78	41.5	16.7	8.50
Nov.	3.14		4.07	0.2	0.2	2.89	11.6	7.6	4.32
Dec.	5.98		4.44	0.2	0.2	4.89	1.1	1.2	5.53
1974		•							
Jan.	8.69		0.00	0.2	0.0	10.00	0.8	1.8	-1.31^{2}
Feb.	4.34		4.44	0.1	0.1	4.81	0.4	0.4	3.97
Mar.	5.79		0.00	0.1	0.0	4.03	0.1	0.1	1.76
Apr.	4.23		4.44	0.1	0.1	4.21	0.2	0.2	4.46
May	2.84		5.55	0.1	0.1	3.02	0.1	0.1	5.37
June	0.97		2.22	0.7	0.4	0.89	0.1	0.1	2.30
July	2.47		8.12	0.1	0.2	1.69	0.2	0.1	8.90
Aug.	0.31		7.40	0.3	0.5	3.41	0.1	0.1	4.30
Sept.	8.78		3.70	0.1	0.1	8.38	0.1	0.2	4.10
Oct.	2.81		0.00	0.1	0.0	1.86	0.3	0.1	0.95
Nov.	4.31		3.70	0.6	0.5	3.56	0.1	0.1	4.45
TOTAL	60.56		88.41		4.4	59.06		39.1	89.91
			L	YSIMET	ER E				
1973									
June	0.58	100	8.14	20.7	39.4	3.85	12.1	10.6	4.87
July	0.93		15.75	18.1	63.1	6.57	8.0	11.9	10.11
Aug. 15	0.89	75	9.63	20.3	47.5	3.94	12.6	11.2	6.57
Sept.	0.99	,,,	8.88	19.6	39.4	1.48	20.3	6.8	8.39
Oct.	2.51		7.77	23.2	40.8	4.45	23.3	23.5	5.83
Nov.	3.14		4.44	22.2	22.3	2.59	20.4	12.0	4.99
Dec.	5.98		4.44	20.9	21.0	7.93	18.1	32.5	2.49
1974	,								
Jan.	8.69		0.00	24.7	0.0	8.13	16.1	29.6	0.56
Feb.	4.34		4.44	17.3	17.4	4.65	4.5	4.7	4.13
Mar.	5.79		0.00	20.1	0.0	3.97	1.0	0.9	1.82
Apr.	4.23		4.44	24.6	24.7	3.22	0.5	0.4	5.45
May	2.84		8.88	26.7	53.7	2.40	0.6	0.3	9.32
June	0.97		4.44	19.3	19.4	2.90	1.3	0.9	2.51
July	2.47		4.44	16.8	16.9	2.56	1.7	1.0	4.35
Aug.	0.31		11.10	13.3	33.5	0.70	0.8	0.1	10.71
Sept.	8.78		0.00	13.3	0.0	2.50	0.6	0.3	6.28
Oct.	2.81		0.00	16.1	0.0	2.60	0.7	0.4	0.21
iov.	4.31		3.70	17.8	14.9	2.13	1.0	0.5	5.88
TOTAL	60.56		100.48	•	454.0	66.57		147.6	94.47

NOTE: Leachate collected by means of ceramic point samplers.

linterpolated between two adjacent months.

Negative value results from apparent changes in moisture content which were not utilized in the determinations of the evaporation rate for Lysimeters D and E.

18-mo operation of lysimeters D and E shown in Table 22 would represent approximately 7 effective pore volumes.

The correlation between the change in leachate nitrogen concentration as compared to the number of effective pore volumes passed through the soil column is not apparent. A significant portion of the applied nitrogen under normal plantation practices is taken up by the sugarcane crop and a portion of the ammonia and organic nitrogen is sorbed into the soil system. These latter nitrogen forms are, under certain conditions, biologically converted to the oxidizable nitrogen forms (nitrite and nitrate) which are considered in nature only to be found in soluble form. Nitrogen gas loss from the soil system through the nitrification-denitrification process, or possibly by means of direct ammonia gas loss at higher basic pH values, is difficult to determine quantitatively except by means of a nitrogen inventory. Another complicating factor could be nitrogen fixation by soil bacteria. In this study nitrate comprises at least 95% of the oxidizable nitrogen in lysimeter leachates.

In an attempt to estimate the fate of nitrogen through the lysimeter soil profile, a nitrogen inventory, shown in Table 23, was made for both lysimeters D and E using results from Table 22 and an assumed nitrogen concentration of 0.4 mg/ ℓ for rainfall. The "unaccounted for" nitrogen (N), as can be observed in Table 24, of 293 and 123 kg/ha (261 and 110 lb/acre), respectively, for lysimeters E and D, has important implications for future consideration of secondary effluent as an irrigation source.

Of the 290 kg/ha (259 lb/acre) of nitrogen applied to lysimeter D for the 18-mo period used in Table 23, 44 kg/ha (39 lb/acre) of leachate essentially escaped the root zone and 123 kg/ha (110 lb/acre) is assumed to be in the sugarcane, based on Table 13, for Plots A, which was irrigated with sewage effluent. The 44 kg/ha of nitrogen in the leachate or approximately 15% of the applied total, which is primarily in the nitrate form at concentrations above 1 mg/ ℓ , has the potential of eventually reaching the groundwater zone. This compares to the 166 kg/ha (148 lb/acre) of leachate from lysimeter E on 23% of the nitrogen input. Based on the results of Table 13, for Plots C, 252 kg/ha (225 lb/acre) is assumed to be in the sugarcane. Under actual practices the high input would undoubtedly be reduced through dilution and/or reduction in the quantity of fertilizer applied. The "unaccounted for" nitrogen of 293 and 123 kg/ha (261 and 110 lb/acre) for lysimeters D and

TABLE 23. NITROGEN INVENTORY FROM JUNE 1973 THROUGH NOVEMBER 1974 FOR LYSIMETERS D AND E, OSC FIELD NO. 246

	INPUT N:	
	Fertilizer	250 lb/acre
	Ditch Water	4 11
	Rainfall ^l	5 ''
LVCIMETER D	Total Input N	259 lb/acre
LYSIMETER D	OUTPUT N:	
	Leachate	39 lb/acre
	Harvested Sugarcane ²	110 ''
	Total Output N	149 lb/acre
	ΔΝ	110 lb/acre
	INPUT N:	
	Fertilizer	175 lb/acre
	Secondary Effluent	454 ''
·	Rainfall ¹	5 ''
IVCINETED E	Total Input N	634 lb/acre
LYSIMETER E	OUTPUT N:	
	Leachate	148 lb/acre
	Harvested Sugarcane ³	225
	Total Output N	373 lb/acre
	ΔN	261 lb/acre

NOTE: Values rounded off to the nearest whole number; lb/acre x 1.121 = kg/ha.

TABLE 24. TOTAL DISSOLVED SOLIDS CHARACTERISTICS OF VARIOUS FIELD LYSIMETERS

	TOTAL	DISSOLVED SOL	IDSMONTHLY MI	EDIAN
	INPUT		PERCOLATE	
DATE	Secondary	Bare Soil	D	E
•	Effluent	Lysimeter	Lysimeter	Lysimeter
		mç	g/l	
July 1973	327		394	538
Aug.	290	336		721
Sept.	198		808	699
Oct.	311		966	680
Nov.	353	296	581	6 <u>2</u> 2
Dec.	311	280	379	580
Jan. 1974	232	284	398	450
Feb.	324			402
Mar.	315		336	419
Apr.	337	190	318	397
May	383	203	230	400
June	360		310	380
July	353		365	415
Median of monthly median values	315	282	394	450

¹Assume total N in the rainfall to be 0.4 mg/ ℓ .

²Assume N content to be equal to the value obtained from Plot A (Table 13).

³Assume N content to be equal to the value obtained from Plot C (Table 13).

E, respectively, could possibly be ascribed to the sorption process in the soil system or nitrogen gas losses. As previously stated, on the basis of all available pertinent information, nitrogen in the percolate has stood out as the single most important chemical parameter that appears in quantities at concernible levels. Chloride, on the other hand, which is reflective of total salt, has been and will continue to be the single most convenient and pertinent indicator of groundwater quality in Hawaii. However, in the case of the Mililani STP effluent, chloride appears virtually independent of total dissolved solids (TDS).

A time series study of the nitrogen concentration in the percolate of Plots A, B, and C reveals high nitrogen concentration of about 20 mg/ ℓ as N occurring only at the beginning followed by a gradual lowering in nitrogen concentration, as shown in Appendix Table B-11. The individual analysis of the other analyzed constituents from the percolate collected in the ceramic points in Plots A, B, and C are also shown in Appendix Table B-9. For Plots A, the percolate nitrogen was not less than the effluent irrigated plots during the first 6 to 7 months, however, it dropped thereafter to one or less mg/ ℓ . It is interesting to note the coincidence of the high nitrogen period and the commercial fertilization period. In Plots C, the percolate nitrogen levelled off at about 3 mg/ ℓ . In Plots B, the percolate nitrogen levelled off to one or less mg/ ℓ as was the case for Plots A.

The total percolate quantity is of considerable interest not only for nitrogen considerations but also for the potential accretion of material in any intercepting subsurface water body; however, there is no precise direct measurement possible on a practical scale for the test plots A, B, and C. Nevertheless, indirect methods can be employed by correlating the measured evaporation quantities of lysimeters D and E (Table 22) with the pan evaporation rates of Table 21 together with the applied irrigation liquid and rainfall to obtain the calculated percolation quantities shown in Appendix Table B-12. From these determinations, the quantity of water calculated to percolating below the root zone (assumed to be unavailable to sugarcane) amounted to 48, 41, and 41%, of the rainfall and irrigation liquid, respectively for Plots A, B, and C.

In terms of the quantities of nitrogen, percolated below the root zone over the period February 1973 through November 1974, approximately 232, 224, and 211 kg/ha (207, 200, and 188 lb/acre), respectively were calculated to

be derived from Plots A, B, and C. The unaccounted for nitrogen in the test plots using the indirect determination method is 77, 179, and 235 kg/ha (69, 160, 210 lb/acre), respectively, for Plots A, B, and C. Although the period of study for the field plots was 4 months longer than that for lysimeters D and E (Table 23), the unaccounted for nitrogen of 77 kg/ha (69 lb/acre) for Plot A compares to the unaccounted for nitrogen of 123 kg/ha (110 lb/acre) for lysimeter D (both receiving ditch water); while 235 kg/ha (210 lb/acre) for Plot A compares to the 292 kg/ha (261 lb/acre) sewage effluent.

As to the chloride in the field plot percolates, the initial concentration varies around 120 mg/ ℓ with sporadic peaks up to 250 mg/ ℓ . It is interesting to note that all plots produced percolate chloride at a level higher than the chloride contained in the irrigation water, namely, 15 mg/ ℓ for the ditch water and 50 mg/ ℓ for the effluent, and that this period coincides with the application of commercial fertilization in the form of potassium chloride to all plots. After the initial period, the percolate chloride dropped in concentration and levelled off at about 15 mg/ ℓ for the ditch water irrigated plots (A) and 50 mg/ ℓ for the effluent irrigated plots (C). The fact that the ultimate concentration approximately equals the concentration in the applied irrigation waters, with due consideration given to the dilution effect of percolated rainwater, is expected because of the conservative nature of chloride.

The effect of liquid passing through the soil column of the bare soil, E and D lysimeters over the period July 1973 through July 1974, as measured by TDS, is shown in Table 24. For all three lysimeters rainfall traversing through the soil diluted the concentration of the percolate. As previously mentioned, lysimeter D was irrigated with ditch water which had a median TDS concentration of 106 mg/k, whereas, the bare soil and E lysimeters received secondary effluent which had a median TDS of 315 mg/k. It is interesting to note that the TDS median of the percolate for the bare soil lysimeter was 282 mg/k while the percolate from lysimeters E and D received a quantity and quality of fertilizers that were in the normal range for sugarcane plantation practice, while the bare soil lysimeter did not receive a fertilizer application.

The TDS concentration of the percolate of lysimeter E compared to D, 450 mg/l to 394 mg/l, respectively, indicated that the full strength of secondary effluent only increased the percolate TDS by about 14%. The concen-

tration of the percolate from all lysimeters was below the desirable TDS level of 500 mg/l for drinking water, as established in the 1962 U.S. Public Health Service Drinking Water Standards.

The time series of nitrogen and chloride observed in the field plots were generally confirmed in the field lysimeters (one receiving 2 years of effluent and the other 2 years of ditch water) grown with sugarcane.

It is interesting to note further that grassland can produce percolate equal to about 55% of the total combined water received from irrigation and rain for the period July 1972 through February 1975.

MAJOR SUMMARY CONCLUSIONS

Mililani STP secondary treated and chlorinated domestic and municipal sewage effluents containing insignificant amounts of toxic chemicals represent a generally usable water supply for irrigation of sugarcane and grasslands in central Oahu.

Application of sewage effluent for the first year of a 2-yr cane crop increases the sugar yield by about 6% compared with the control plots. However, when sewage effluent was applied for the entire 2-yr crop cycle, sugar yield was reduced by about 6% and the cane quality by about 16% even though the total cane yield increased by about 11%.

There was no apparent evidence of significant surface clogging of the soil or of soil chemical properties impairment resulting from sewage effluent application for irrigating the first full cycle 2-yr sugarcane crop. Under a no-moisture stress condition, a 1 mgd supply is sufficient to irrigate 61 to 81 ha (150 to 200 acres) of sugarcane by the furrow method.

The quality of percolate from the effluent-irrigated sugarcane-cultured soil is of acceptable concentration from the standpoint of groundwater quality protection with the only possible concern for nitrogen which sporadically exceeded the 10 mg/l limit for drinking water during the first 6 to 7 months of growth. However, similar exceedance occurred in the ditch water irrigated sugarcane plots and the plots irrigated with effluent during the first year and ditch water during the second year. Furthermore, there was no major difference in the total quantity of nitrogen produced in the percolate among the three different treatments. Phosphorus, potassium, suspended solids, biochemical oxygen demand, total organic carbon, and boron

were removed effectively from the applied effluent by means of irrigation; however, chloride in the percolate was essentially unaffected except for a transient increase during fertilization. Both total dissolved solids and chloride in the percolates met the drinking water standards.

Human enteric viruses have been shown to be present in the majority of effluent samples examined and, hence, are applied with the effluent to the irrigated field. However, the absence of these viruses in all sugarcane and grass percolates sampled over a 2-yr period plus other project virus studies conducted, suggest strongly that the possibility of contaminating deep underground water sources is extremely remote.

Survival of poliovirus was minimal in an open field area which was exposed to direct sunlight, high temperature, and dessication. In contrast, the viability of the virus was maintained for up to 2 months for a field of mature sugarcane where the virus was protected from physical elements.

Bermudagrass, with periodic cutting and harvesting, proves to be an excellent utilizer of sewage effluent applied nitrogen and, thus, excels sugarcane from the standpoint of groundwater protection. Essentially no nitrogen was recovered from the percolate at the 5-ft depth below the grassed surface, whereas nearly 25% of the total nitrogen applied from chemical fertilizer and sewage effluent was recovered at the same depth in the sugarcane culture. Up to 100 acres of grassland may be irrigated with 1 mil gal of effluent under a no-moisture stress condition. However, fallow or bare soil has been demonstrated to be incapable of removing significant amounts of nitrogen from the applied effluent.

MAJOR SUMMARY RECOMMENDATIONS

- 1. Disinfected sewage effluent of composition similar to that used in the Mililani study may be used for irrigation of sugarcane in the first year followed by irrigation with surface water in the second year. However, use of the effluent to irrigate sugarcane for the entire 2-yr crop cycle without added treatment will result in a poorer sugar yield.
- 2. Establishing a virus monitoring and quality control program for the treated sewage effluent before application is an essential part of a recycling by irrigation program. Furthermore, development of more effective methods of virus inactivation prior to recycling is highly recommended.

Precautionary sanitation measures for field workers should be practiced.

- 3. Further research on the use of effluent for irrigating sugarcane is desirable, specifically:
 - a. Confirm the yield and assess long-term effects on the soil by repeating the first ration test plots study for a second crop cycle
 - b. Test with various dilutions of sewage effluent and with chemical ripeners to improve the yield
 - c. Investigate plugging of drip orifices in irrigation tubings in anticipation of extensive use in the near future.

PROVISIONAL PRINCIPLES AND GUIDELINES FOR IRRIGATION WITH SEWAGE EFFLUENT IN HAWAII

In Hawaii the concept of water recycling from waste waters for irrigation emerged in recent years as a result of one or a combination of several major situations: (1) as an alternative to ocean disposal, (2) to augment the natural surface and subsurface water sources for irrigation supply and, hence, afford an alternative in meeting the long-term water needs to meet all domestic, agricultural, and industrial requirements.

The situations mentioned above represent opportunities as well as possible problems. Incidental to the application of effluent on land is the recharge of the groundwater. On the other hand, Hawaii's fresh groundwater sources must be protected from all possible contamination including that through application of sewage effluent on agricultural lands. Sugarcane as a cash crop and grassland as in golfcourses and public parks are presently the potential high volume users of the effluent.

As the concept of water and nutrient recycling is being developed and tested, several interrelated principles have emerged and may well serve as provisional guidelines to aid consideration of waste water recycling in Hawaii. As presented here, waste water is limited to domestic and municipal sewage, and excludes agricultural and industrial waste waters.

Effluent Quality Requirements for Irrigation

Secondary treated and chlorinated domestic and municipal sewage effluent containing insignificant amounts of toxic chemicals represents a usable water supply for irrigation because it possesses many acceptable and even

desirable water quality parameters for the crops presently considered in Hawaii. Nitrogen in the effluent applied to sugarcane during the second year of growth can be undesirable from the standpoint of sugar yield. However, management techniques including dilution, post-secondary treatment, and storage of the effluent can improve their acceptability. Generally speaking, a desirable sewage effluent for the crops considered is characterized by its nutrient content with concentrations commensurate with the crop requirement, by the low concentration of total dissolved solids, boron, sodium, suspended solids, and grease, and by its acceptability for groundwater and public health protection.

From the standpoint of groundwater quality protection, the effluent should possess low concentrations of chloride and total dissolved solids. This requirement is especially important in the case of sugarcane because chemical fertilizers that are added in addition to the nutrients in the effluent to promote initial growth contribute additional leachable residue to the percolating water in the subsurface.

Toxic chemicals, such as heavy metals and pesticide residues, at this time receive national attention in the context of the safety of drinking water because many of the species and their concentration in drinking water potentially may have an effect on human health with continuous consumption of this water. Domestic sewage without the admixture of industrial waste water should be reasonably free of toxic chemicals but monitoring is a necessary and desirable requirement to assure the quality of the effluent.

Nutrient contents present in sewage effluent generally are desirable for plant growth. These include the major nutrients: nitrogen, phosphorus, and potassium, and micronutrients. Secondary effluent retains a considerable amount of the nutrients present in the raw sewage because secondary treatment processes are not designed to effectively remove nutrients. Sewage effluent, however, does not necessarily contain balanced nutrients for all plants, hence supplementary chemical fertilizers may be required, such as is the case for sugarcane. On the other hand, additions of nitrogen are not desirable after the first 10 to 12 months of the crop growth. It is only through plant yield and pathology observations that the ultimate crop response can be determined as was done in this project. Grasslands generally can utilize the sewage nutrients on a year-round basis without chemical fertilizers; however, addition of chemical fertilizers should promote more lush

growth.

Nitrogen in its nitrate form, in concentrations exceeding 10 mg/l as N, is undesirable in drinking water for infant health reasons (methemoglobinemia). Plants, like sugarcane, that cannot fully utilize and retain all of the applied nitrogen allow nitrogen to escape the root zone and potentially add to the underlying groundwater. This fact is demonstrated by this project. To this end, it is desirable to employ special measures to reduce the quantity of excess nitrogen and restrict its movement out of the root zone and the field.

Boron which is deleterious to sensitive crops is generally below the level of concern in secondary treated sewage effluent.

Sodium in soil water exchanges with calcium in the soil thereby causing an expansion of the clay structure and physical swelling of the soil and a reduction of the soil permeability. A level of suspended solids exceeding 10 mg/L is known to result in a clogging soil surface deposit. In similar fashion, grease in irrigation water adversely affects the infiltration capacity of soils, therefore high concentrations of sodium, suspended solids, and grease in irrigation water are undesirable. Secondary sewage effluent produced by well designed and operated treatment plants should be free of excesses in suspended solids and grease.

Infiltration of brackish or salt water into sewer pipes, a phenomenon which many Hawaii sewerage systems are susceptible to because of their construction in coastal areas below the groundwater table, presents a potential problem in terms of both sodium, chloride, and salinity. Monitoring these quality parameters appears to be essential.

Consistency of the effluent quality through high performance of the sewage treatment plant operation and maintenance is also essential for successful crop growth. It is especially true for sugarcane which has a prolonged 2-yr growth period in Hawaii.

Microbiological and public health aspects are extremely significant and therefore require separate attention.

Soils and Plants

Soils that have the desirable physical and chemical properties for selected crops, with other than sewage as irrigation water, should be the starting point in soil selection and management for sewage irrigation. These

may include such factors as water holding and drainage properties, soil acidity, nutrient availability, and others.

Continued applications of sewage effluent may alter or even impair the desirable properties of good agricultural soils. The sodium-calcium relation already mentioned is an example. The nutrient content in soils, such as available nitrogen, phosphorus, and potassium, will change continuously with crop growth, fertilizer application, leaching and soil physical-chemical and microbiological environment. However, impairment of the project soil was not apparent in the soil planted with cane and subjected to effluent irrigation for up to 2 years. In this test, an apparent accretion of phosphorus and potassium in the soil was experienced. Effects of changes are apparently the greatest at the initial point of contact between the effluent and the soil such as was noted by an increase in phosphorus and a drop in acidity. Continuous monitoring during successive crops is clearly desirable to determine any long-term effects on the soil.

Adsorptive capacity of a soil has been demonstrated to be the principal factor related to virus removal from the percolating water. The Oxisol Lahaina soils which are the project soils and the soils on which most sugarcane is grown, exhibit exceptionally high virus adsorption capacity perhaps because of its high iron oxide content. The initial sorption capacity and continuous maintenance of this property for a soil subjected to effluent irrigation is absolutely essential for groundwater protection.

The project in of itself has been shown to be incapable of removing significant amounts of the effluent-applied nitrogen without crop or plant cover. Hence, from the standpoint of reducing the transmission of excess nitrogen to the groundwater, fallow or bare soil represents a rather important condition to be considered especially during the rainy season when heavy rainfall would result in rapid percolation.

Field preparation for sugarcane and golf-course fairways in Hawaii commonly utilizes heavy grading equipment. Relatively watertight or less permeable subsoil conditions that exist in nature or that can be created by land preparation of this type can result in perching of the percolating water and, hence, temporarily retaining or possibly diverting the downward path of the percolating water. Periodic field infiltration measurements are desirable.

The sugarcane variety, H59-3775, that was studied was capable of pro-

ducing acceptable yields of cane, sugar, and juice quality when irrigated with undiluted effluent for the first 12 months followed by regular ditch water for the second 12 months. This treatment of supplying nutrients when needed was consistent with plantation practice for obtaining good sugar yield. Application of sewage effluent for the first year of a 2-yr cane crop appears to have no detrimental effect on the cane or sugar production and may be beneficial. Applications of sewage effluent for the entire crop cycle appear to benefit cane production, but lowers cane quality and commercial sugar production and is, therefore, undesirable.

Other cane varieties known for their superior cane and juice quality and their tolerance for nitrogen should be experimented with to determine their adaptability for effluent irrigation.

With periodic cutting, Bermudagrass [Cynodon daetylon (L.) Pers.] is an excellent user of sewage nutrients, including nitrogen. It is possible that other plants with similar thickly matted surface root systems could utilize equally well sewage nutrients and, hence, reduce concern for groundwater quality.

Although all crops that are grown in Hawaii for consumption may be tested for the effects of treated sewage effluent irrigation, psychological and health reasons may well exclude such crops as table vegetables that are consumed without cooking.

Irrigation Methods and Quantity and Fertilization for Sugarcane and Grasslands

The rationale for irrigation is to maintain a no water stress condition (moisture above wilting point) for plants. The measurement of moisture by tensiometer is a recommended practice for determining when to irrigate.

In the case of irrigation with sewage effluent, an additional no-excess condition is highly desirable: no excess in application to produce surface tailwater, and deep percolation or perched lateral flow in the subsurface.

Storage or bypass measures are necessary during rainy periods when irrigation is unnecessary.

Under a no-moisture stress condition and by means of field furrow irrigation methods, a supply of 1 mgd is sufficient to irrigate 61.7 to 80.9 ha (150 to 200 acres) of sugarcane with the following schedule:

	AVERAGE FREQUENCY	AVG. QUAN- TITY APPLIED IN EACH APPLICATION	TOTAL IRR WATER REQU		ACREAGE IRRI- GATED
		acre-in./ acre	acre-in./ acre/2 yr	gpd/ acre	per mgd
Effluent, 24 mo		4.2	170	6300	160
Effluent, 12 mo, followed by 12 mo ditch water	Every 2 wk; irrigation omitted duri rainy period	-	130	4800	210

Sprinkler irrigation of grasslands appears to be a satisfactory method for effluent irrigation application. Up to 14,392 m³ (140 acre-in.) of effluent may be applied to each acre of grassland per year or 1 mgd may be sufficient to irrigate about 40.47 ha (100 acres) of grassland under a nomoisture stress condition.

In effluent irrigation of sugarcane, addition of commercial fertilizers is desirable to give the cane a rapid start. All necessary phosphorus may be added at the beginning of the crop cycle and nitrogen and potassium may be totally applied during the first 6 months. It is a well known fact that nitrogen is the most critical element under most conditions in influencing cane tonnage and cane and juice quality. However, there is no significant adverse effect to the yield if phosphorus and potassium are added in excess. A 20-10-10 (N-P-K) effluent with initial commercial fertilizers added was apparently sufficient fertilization in the study reported herein.

It is highly desirable to be able to control or to have available consistent nutrient quality in the effluent. It should also be remembered that heavy rain periods not only eliminate the necessity of irrigation, but also leach out and, hence, negate partially the effluent nutrients added.

Monitoring Methodology

The needs for monitoring include water quality on a relatively frequent basis, and soil and crop parameters on a relatively infrequent basis.

The water quality monitoring should consist of a schedule of location, frequency, and quality parameters to be assessed. The experience gained from this project helps narrow down the following essential (E) and desirable (D) schedules:

MONITORING POINTS		FREQUENCY	WATER QUANTITY PARAMETER GROUPING*	Y REMARKS
Sewage treatment plant effluent	(E)	Weekly Monthly 6 mo	1, 2 3, 4 5, 6	
Leachate at bottom of root zone	(D)	Monthly ,	1, 3	Porvic points at selected locations
Groundwater (baseline quality)	(E)	Start of each grow- ing cycle	2, 5, 6	Upgradient and downgradient from site as feasible
Groundwater (potable) Groundwater (brackish)	(D)	3 mo 6 mo	2, 5, 6 2, 5, 6	

^{*1 =} Nitrogen series;

2 = Viruses;

3 = Chloride, TDS, pH;

4 = Sodium, suspended solids, grease;

5 = Toxic chemicals: heavy metals (As, Pb, Cu, Zn, Cd, Hg, Ni, Cr)
pesticides (chlordane, dieldrin, DDT, DDD, lindane,
pentachlorophenol)

6 = Complete analysis (TDS, total hardness, suspended solids, BODs, TOC, N series, total P, Ca, Mg, Na, K, Cl, SO₄, CO₃, HCO₃, SiO₂, B, electrical conductivity, grease, fecal coliform, total coliform).

The laboratory analytic method for water quality parameter groupings 1, 3, 4, 5, and 6 should follow either the Standard Methods or EPA specifications. The Water Resources Research Center, University of Hawaii, may be consulted for parameter grouping 2.

Soil monitoring should be made before planting and after harvesting each sugarcane crop for the (1) adsorption/desorption capacity of viruses, and (2) selected physical and chemical properties, i.e., pH, N, P, K, Ca, Mg, SiO_2 , both for the top few inches of soil and for standard depth of plantation practice.

Sugarcane monitoring should conform to standard industry tests, as conducted by the Hawaiian Sugar Planters' Association, such as the periodic leaf punch for specific parameters.

Geohydrologic Considerations

A geohydrologic survey is essential as part of the project planning program to ascertain any probable pathway of deep percolation, groundwater occurrence and circulation, ambient water quality, water level, and groundwater recharge and discharges.

For water table aquifers which are far more susceptible to deep percolation than pressure aquifers, certain natural formations offer highly desirable protection and should be ascertained in the process of site selection: (1) a minimum 5-ft (1.5-m) thickness of high adsorptive capacity, (2) a minimum allowable depth to water table to be determined case-by-case on a geohydrologic study basis of the potable groundwater quality, and (3) water perching formations such as clay layers, ash bed, or buried soils if present.

Disinfection of Sewage Effluent and Public Health Aspects

Human enteric viruses have been shown to be present in all raw sewage tested in the project and although in reduced concentrations are also present in the majority of the secondary treated effluent samples tested even after final chlorination. Thus, the treated sewage effluent used to irrigate sugarcane and grassland does contain infectious human viruses.

Complete inactivation using a more effective disinfection method than presently used and the improvement of the existing treatment plant operations should be held as the ultimate objectives. The development and use of more powerful disinfection methods (which may well be ozone and bromine chloride methods) are now being studied preliminarily in Hawaii.

Evidence was presented that the survival of sewage-borne viruses in the field is adversely affected by environmental conditions including direct sunlight, high temperature, and dessication. Thus, the possible health hazard posed by the presence of viruses in the sewage effluent used to irrigate sugarcane cannot be completely ignored. Fortunately, these viruses are not transmitted by physical contact but must be ingested before they can infect a person. Thus, the following precautionary measures for field workers should minimize the risk of contracting infection:

- 1. Post signs warning unauthorized persons from entering the sewage irrigation area
- 2. Thoroughly wash hands which may have come into direct or indirect contact with the effluent
- 3. Outer garments used when working with effluent should be washed daily.

REFERENCES

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation. 1971. Standard methods for the examination of water and wastewater. 13th ed.
- Berg, G. 1973. Reassessment of the virus problem in sewage and in surface and renovated waters. *Prog. Water Technol.* 3:87-94.
- . 1973. Removal of viruses from sewage, effluents, and waters. Bull. Wildlife Health Org. 49:451-60.
- City and County of Honolulu, Board of Water Supply. 1971. 2020 Plan.
- Clements, H.F. 1959. Sugarcane nutrition and culture. Indian Institute of Sugarcane Research, Lucknow, India.
- Dugan, G.L.; Young, R.H.F.; Lau, L.S.; Ekern, P.C.; and Loh, P.C.S. 1974. Land disposal of sewage in Hawaii--A reality? Paper presented to 47th Ann. Conf., Water Pollution Control Federation, 6-11 October 1974, Denver, Colorado.
- E1-Swaify, S.A. 1972. Quality standard for irrigation water in the tropics. Water Resources Seminar Series 1:51-63, Water Resources Research Center, University of Hawaii.
- England, B. 1972. Concentration of reovirus and adenovirus from sewage and effluents by protamine sulfate (salmine) treatment. *Appl. Microbiol*. 24:510-12.
- Hill, W.F.; Akin, E.W.; and Benton, W.H. 1971. Detection of viruses in water: A review of methods and application. Water Res. 5:967-95.
- Lau, L.S.; Ekern, P.C.; Loh, P.; Young, R.H.F.; and Dugan, G.L. 1972. Water recycling of sewage effluent by irrigation: A field study on Oahu-First progress report for August 1971 to July 1972. Tech. Rep. No. 62, Water Resources Research Center, University of Hawaii.
- ; Ekern, P.C.; Loh, P.C.S.; Young, R.H.F.; Burbank, N.C., Jr.; and Dugan, G.L. 1974. Water recycling of sewage effluent by irrigation: A field study on Oahu-Second progress report for July 1972 to July 1973. Tech. Rep. No. 79, Water Resources Research Center, University of Hawaii.
- Melnick, J.L. 1960. Problems associated with the use of live poliovirus vaccine. Amer. Jour. Public Health 50:1013-35.
- Research Resources Branch, National Institute of Allergy and Infectious Diseases. 1972. Procedure for using the dried Lim Benyesh-Melnick pools for typing enteroviruses. National Institute of Health.
- Roy, A.C.; Ali, M.Y.; Fox, R.L.; and Silva, J.A.. 1971. Influence of calcium on phosphate solubility and availability in Hawaiian latosols. *Proceedings*, International Symposium on Soil Fertility Evaluation, New

- Delhi, 1:757-65.
- Shuval, H.I.; Fattal, B.; Cymbalista, S.; and Goldblum, N. 1969. The phase-separation method for the concentration and detection of viruses in water. *Water Res.* 3:225-40.
- Spendlove, R.S.; Lennette, E.H.; Knight, C.O.; and Chin, J.N. 1963. Development of viral antigen and infectious virus in HeLa cells infected with reovirus. *Jour. Immunol.* 90:548.
- Strickland, J.D.H., and Parson, T.R. 1972. A practical handbook of seawater analyses. 2d ed. Bull. No. 167, Fisheries Research Board of Canada, Ottawa.
- Tenorio, P.A.; Young, R.H.F.; Burbank, N.C., Jr.; and Lau, L.S. 1970.

 Identification of irrigation return water in the sub-surface, Phase III:

 Kahuku, Oahu and Kahului and Lahaina, Maui. Tech. Rep. No. 44, Water

 Resources Research Center, University of Hawaii.
- Wallis, C., and Melnick, J.L. 1967a. Concentration of enteroviruses on membrane filters. *Jour. Virol.* 1:472-77.
- and Melnick, J.L. 1967b. Concentration of viruses on aluminum and calcium salts. *Amer. Jour. Epidem.* 85:459-68.
- _____, and Melnick, J.L. 1970. Detection of viruses in large volumes of natural waters by concentration on insoluble polyelectrolytes. Water Res. 4:787-96.
- ; Melnick, J.L.; and Fields, J.E. 1971. Concentration and purification of viruses by adsorption to and elution from insoluble polyelectrolytes. *Appl. Microbiol.* 21:703-9.
- Water Resources Research Center. 1975. "Water recycling from sewage by irrigation: A field study on Oahu." 1975 Interim Progress Report, Water Resources Research Center, University of Hawaii.
- Young, R.H.F.; Ekern, P.C.; and Lau, L.S. 1972. Wastewater reclamation by irrigation. *Jour. Water Poll. Control Fed.* 44(9):1808-14.
- ; Lau, L.S.; Dugan, G.L.; Ekern, P.C.; and Loh, P.C.S. 1974. Waste water reclamation by irrigation in Hawaii. Presented to the ASCE Water Resources Conference, 21-25 January 1974, Los Angeles, California. 28 p.

APPENDICES

CONTENTS

APPEN	DIX TABLES	
A-1	Mililani STP Sewage Analyses	80
B-1	Weighted Composite Mililani STP Analyses	92
B-2	Pesticide Analyses of Raw Sewage and Unchlorinated Secondary Effluent, Mililani STP	97
B-3	Heavy Metal Analyses of Raw Sewage and Unchlorinated Secondary Effluent, Mililani STP	98
B-4	Percolate Analyses from Grass-Sod Lysimeter with Replaced Soil, Mililani STP	99
B-5	Grass-Sod Lysimeter Water Balance	100
B-6	Composite Leachate from Ceramic Point Samplers in OSC Field No. 240 Test Plot Irrigated with Secondary Sewage Effluent	110
B-7	Quality Constituents of Bare Soil Lysimeter Percolate	114
B-8	Quality Constituents of Lysimeter D Percolate	116
B-9	Quality Constituents of Lysimeter E Percolate	118
B-10	Waiahole Ditch Irrigation Water	120
B-11	Quality Constituents from Ceramic Point Samplers in OSC Field No. 246 Test Plot Percolate	123
B-12	Hydraulic and Nitrogen Conditions in Test Plot A, OSC Field No. 246	143
B-13	Hydraulic and Nitrogen Conditions in Test Plot B, OSC Field No. 246	144
B-14	Hydraulic and Nitrogen Conditions in Test Plot C, OSC Field No. 246	145
APPEN	DIX C. METHODS OF SAMPLE CONCENTRATION FOR VIRAL ASSAY	146
APPENI	DIX FIGURES	
D-1	Amount and Timing of N Application by Commercial Fertilizer and/or Sewage Effluent for Each Treatment in OSC Field 246	147
D-2	Amount and Timing of P_2O_5 Application by Commercial Fertilizer and/or Sewage Effluent for Each Treatment in OSC Field 246	148
D-3	Amount and Timing of K_2O Application by Commercial Fertilizer and/or Sewage Effluent for Each Treatment in OSC Field 246	149
APPENI	DIX E. PUBLICATIONS AND PRESENTATIONS	150

DATE	WASTE WATER TYPE	pН	TDS mg/l	COND.@ 25°C µmhos/ cm	TOTAL HARD- NESS	SS	BODs	тос	NITE KJEL- DAHL	NOa	TOTAL	PO4-P		_		K	C1		S102		GREASE	FECAL	FORMS TOTAL	C12	ALK. as CaCO3 g/l—
(1972)					-														-		·				
JAN 25			548			164	174	55		1.0					17	10.0	38	66	66	0.52	56.6				
FEB 28			546			272	237	118	28.6	1.1	29.7				21	9.8	35	82	68	0.45	56.8				
MAR 9			514			248	270	125	23.5	1.3	24.8	18.22			32	11.0	39	100	68	0.65	34.8				
MAR 23			594		~-	130	259	105	51.6		52.9	22.23			35	9.8	28	60	61	1.02	39.6				
APR 6			492			192	183	101	41.6	1.3	42.9	16.37			52	19.6	44	55	61	0.29	22.9				
APR 20			500			168	310	127	25.5		26.6	23.22			47	11.0	45	100	- 73	1.10	48.7				
MAY 4			494	~-		312	298	95	57.8	0.7	58.5	16.26			50	11.4	43	109	52	1.15	54.8				
MAY 18			432			164	172	70	49.0	1.0	50.0	15.74			58	9.0	40	105	57	0.85	24.2				
JUN 1	ŀ	7.3	620	580		280	248	68	36.1	0.1	36.2	21.90			75	12.3	48	86	62	0.85	31.6				
JUN 15	1.	7.0	468	440	70	240	248	70	53.0	0.1	53.1	11.85	17	7	75	11.4	49	68	61	0.55	43.7				
JUL 13		7.4		500	60	220	208	87	34.2	0.1	34.3	21.75	13	7	72	9.8	45	98	82						
AUG 10			436			200	204	90	28.4	0.7	29.1	14.15			54	10.8	42	69	61	0.47				,	
AUG 31	i i		484			288	204	88	38.8	0.2	39.0	12.30			56	11.0	44	69	59	0.38	67.0				
SEP 28	SEWAG		488			176	199	80	20.8	0.1	20.9	16.71			55	13.0	48	62	61	0.30					
OCT 12		7.0	586	500	144	168	204	95	19.0	0.1	19.1	17.36	37	13	70	9.6	42	70	72						
NOV 16	RAW	7.6	487		72	215	183	110	56.0	0.1	56.1	18.45	38	0	70	11.0	44	82	78						
DEC 21		7.4	318	520	55	240	226	72	47.5	0.1	47.6	11.90	10	7	47	12.5	44	33	70						
(1973) JAN 11		7.8	530	670	58	252	209	70	43.5	0.1	1.7 C	15 00		•	F1.	11.0	1.1.	1.0	60						
FEB 1	ĺ	7.0	503	500	50 48	225		72 07				15.06	9	9	54	11.8	44	46	62						~_
MAR 7		7.0	506	580	56	160	175 202	87 90	31.4 38.6	0.1		16.43 16.56	12	4	57	11.0	42	38	71						
APR 5		7.2	550	600	58	192	232	100	36.1				11	7	52	12.0	36	40	70						
MAY 30	}	7.1	590	520	62	136	170		41.0	0.1		21.27	14	6	72	10.6	43	78	89						
JUN 12		7.1	J90 				•				41.0	39.81	18	4			42		- -		~				
JUL 3	ł	7.1	393	540 468	62 106		- -	85 105	38.8 32.8	0.0	38.8 32.9	20.38	19	4	54 50	11.0	38 40		65 60						
								105					18	15	50	9.2	49	42	68						
AUG 8		6.9			40				36.4	0.1	36.5	12.40													
SEP 5	ļ	7.0			63					0.1		26.11					78								
OCT 2					75					1.55		_						-							
DEC 11	f				64				17.9										~-						

TABLE A-1--CONTINUED

	WASTE		С	OND. @	TOTAL					ROGEN a	s N											COLIF	ORMS	
DATE	WATER TYPE	pН	TDS .	25°C µmhos/ cm	HARD- NESS	SS	BOD 5	тос	KJEL- DAHL	NO ₃	TOTAL	PO ₄ -P	Ca g/l -	Mg*		к 	C1		SiO ₂	В G	REASE	FECAL no./	TOTAL	Cl₂ mg/l
(1974)																					·			
JAN 9		6.9		520	32		-		25.2			16.87												
AUG 21				620	60		,					13.56	13	7	57	9.8	42		84					
SEP 11	ł		576	580	72	72	182		31.1			19.21	18	7	63	9.8	46		74					
ОСТ 9	AGE		482	550	48	144	185		28.3	~~		17.90	11	5	60	9.1	41		85					
NOV 6	SEWAGE		556	570	58	200	342		34.2			10.96	12	7	59	12.3	53		87					
NOV 20	RAW		496	530	54	128	182		25.5	0.02		11.36	12	6	61	9.2	41		81					
DEC 4	≥ .		492	490	54	136	188		31.4	0.13	31.5	12.45	11	6	70	6.6	41		91					
DEC 18	1		406	400	56	240	268		29.7			16.33	12	6	56	8.8	43		91					
(1975) JAN 8			456		60	224	223		32.5			9.64		9	63	9.6			92					
FEB 5	- 1		580	560	60	184	196		29.1	0.05	29.2	19.40		9	72	10.8			73					
(1972) JAN 25	1		328			88	49	25		1.4					38	5.8	53	53	60	0.70				
FEB 1	- 1		- <u>-</u>			_																9	70	
FEB 10	ļ		415			13	18	20	7.1	1.1	8.2				41	8.5	50	57	53	0.80	5.1			
FEB 28			372			28	14	62	7.4	1.2	8.6				45	10.0	53	58	62	0.31	11.1			
FEB 29	눌					_																0	0	
MAR 9	EFFLUENT		358			16	. 6	26	10.1	1.4	11.5	6.68			41	8.5	51	41	61	0.21	16.8			
MAR 14	监																			<u>-</u> _		0	0	
MAR 23	≿		330			12	23	16	13.8	4.3	18.1	10.73			39	9.0	42	42	58	0.28	8.7			
MAR 29	SECONDARY																					2	2	
APR 6	g		344			4	17	28	3.2	2.5	5.7	9.88			45	9.2	50	40	58	0.50	19.1	_		
APR 18																						2	2	
APR 20	₩		335			7	13	22	4.4	2.8	7.2	9.59			49	9.1	50	40	61	0.26	12.8			
MAY 2	CHLORINATED																					0	0	
MAY 4	¥		325			5	11	14	3.6	5.4	9.0	10.34			46	10.1	48	39	57	0.43	30.4			
MAY 16	ı						·								<u>-</u> _							3	4	
MAY 18			.353			11	9	17	20.8	1.1	21.9	10.75			46	11.4	56	42	60	0.23	5.6			
MAY 30																						0	2	
JUN 1	Į	7.1	346	450		12	7	18	11.5	1.0	12.5	10.85			54	9.9	48	60	55	0.70	4.8			

TABLE A-1--CONTINUED

				COND.@	TOTAL	-				ROGEN												COLI	FORMS		ALK.
DATE	WASTE WATER TYPE	рН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	55	BOD ₅	тос	KJEL- DAHL	NO ₂ +	TOTAL	PO ₄ -P				К	CI	SO ₄	SiO ₂	В	GREASE	FECAL	TOTAL 100ml	C1 ₂	as CaCO: /l—
(1972)														-											
JUN 15	1	6.9	374	400		10	17	5	10.0	0.8	10.8	11.25			50	9.7	50	57	57	0.35					
JUN 16				350				17		8.0					51	9.8	42	61	56	0.70	6.1				
JUN 22				370				19	18.3	2.4	20.7				48	11.0	48	56	56	0.72	6.8				
JUN 27	İ																				· 	10	30		
JUN 29		6.8	350	390		4	21	19	9.5	0.1	9.6	9.58			43	9.6	46	53	56	0.75	3.6				
JUN 29		6.6		355				47	11.6	1.5	13.1				50	9.5	46	72	57	0.26	54.4				
JUL 6	1	7.0	_	315	52			16	4.8	2.8	7.6		5	9	54	8.8	50	50	57	0.35					
JUL 13		7.0	366	395	24	24	10	18	12.3	2.3	14.6	8.21	8	1	48	7.7	52	52	60						
JUL 20	⊢	7.1		385	62			24	14.0	0.5	14.5		18	4	55	10.0	50	50	60						
JUL 27	NEN.	7.0	413	540	55	134	148	32	20.4	0.1	20.5	11.75	. 8	9	49	11.2	49	53	73						
AUG 3	<u>u</u>	7.2		400	54			17	12.3	0.6	12.9		8	8	47	9.8	49	48	59						
AUG 8	□														·							37	160	0.8	
AUG 10	ECONDARY	7.1	361	410	55	11	12	21	4.5	2.5	7.0	10.50	7	9	56	10.0	50	50	55						
AUG 16	8															_						4	20	1.0	
AUG 17	S	7.2		350	54			17	3.6	1.4	5.0	7.10	9	8	53	9.0	52	54	61						
AUG 24	TED	7.1		425	57			20	12.1	3.5	15.6		8	9	51	9.5	51	51	57					- -	
AUG 31	INATED	7.4	348	380	48	18	17	8	7.5	0.4	7.9	6.26	8	7	48	8.5	47	52	55						97
SEP 8	CHLOR	7.0		450	59			24	7.7	0.7	8.4		10	8	54	8.0	50	60	57						
SEP 9	동																					1	13	0.7	
SEP 14		7.1	336	350	59	53	31	32	7.0	0.3	7.3	5.20	8	9	51	7.8	46	53	53						100
SEP 21		7.0		395	50			26	10.0	0.4	10.4		6	9	54	7.5	49	55	59						
SEP 28		7.0	302	350	52 ·	32	29	24	9.4	0.3	9.7	3.43	13	5	52	8.1	48	61	55						
SEP 28		7.1	262	400	55	8	11	9	11.1	0.3	11.4	3.00	9		50										100
OCT 4											,											0	4	1.8	
OCT 5				390	59			19	9.1	0.4	9.5		12	7	53	7.9	50	60	61						
OCT 12	-		342	395	49	27	18	17	9.4	0.4	9.8	3.26	13	4	53	8.9	49	40	64						
OCT 12			328	380	59	8	10	23	8.1	0.4	8.5	3.36	11	8	52	7.8	48	94	64						
OCT 18																				·		0	4	1.8	
OCT 19		7.0		365	55			29	8.3	0.5	8.8		11	7	53	9.3	48	48	59						

TABLE A-1--CONTINUED

	MACTE			COND.@	TOTAL				NITE	ROGEN a	s N											201.	FORMS		ALK.
DATE	WASTE WATER TYPE	pН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	S S	BOD 5		KJEL- DAHL	NO ₃	TOTAL			Mg*		К	C1		SiO ₂	В	GREASE	FECAL	FORMS TOTAL 100ml		as CaCO₃ g/l—
(1972)																						,		_	
OCT 26		7.3		400	58			24	20.2	0.5	20.7		13	6	55	9.4	48	47	58						
VOV 2	- }	7.0		370	54			19	7.4	0.8	8.2		10	7	48	10.0	45	51	72						
VOV 14	. 1																					0	4	1.5	
VOV 16		7.1	308	405	51	22	19	27	16.6	0.6	17.2	3.71	11	6	50	9.4	47	45	61						
VOV 16	- 1	7.6	312	380	61	20	25	30	12.6	0.5	13.1	3.60	13	7	51	8.3	46	42	68						
VOV 18																						4	6	1.1	
NOV 30		7.4		400	58			27	14.0	0.6	14.6		13	6	- 54	8.4	49	39	59						
DEC 8	}.	7.2		445	50			25	10.3	0.6	10.9		10	6	56	7.6	49	32	55						
DEC 12	ł																					2	26	0.8	
DEC 21	岩	7.4	283	400	62	28	20	20	11.3	0.5	11.8	5.10	8	10	55	8.3	47	28	68						
DEC 27	EFFLUEN	7.7		450	58			27	11.3	0.7	12.0		11	7	58	9.5	60	28	60						
(1973)	· III																								
JAN 11	Ϋ́	7.1	386	490	58	22	22	22	15.6	0.7	16.3	9.39	24	0	51	10.2	47	40	67						
JAN 11	ECONDARY	7.2		500	55			34	15.9	0.8	16.7		- 8	8	51	10.0		39	63						
JAN 16	ည္ထ																					·	490	1.0	
JAN 26	<u>S</u>	7.0		400	45			23	10.3	2.3	12.6		8	6	52	11.2	50	34	45						
JAN 30	INATED											_										:	33,000	0.7	
EB 1	S. I.N	7.1	327	360	43	25	13	25	12.3	1.4	13.7	8.36	7	6	49	10.0	47	33	70						
FEB 13	을													-									330	1.4	
EB 15	ပ •	7.2		400	48			25	14.3	0.3	14.6		10	6	45	10.0	48	47	72						
EB 27	İ.									 ,												5	278	1.0	
MAR 1	1	7.1		400	48			28	11.2	0.6	11.8		8	6	60	10.0	51	40	65						
1AR 7	- 1	7.1	342	420	60	12	22	28	22.2	0.9	23.1	7.86	15	5	49	9.5	44	42	68						
1AR 27																						0	49	0.8	
APR 5	.)	7.1		400	77			30	16.7	2.1	18.8		14	10	60	9.8		63	68						
APR 5	- 1	7.1		420	63			25	14.9	1.9	16.8		14	7	54	8.8	50	45	68						
APR 10	1																					5	110	0.9	
APR 16	1	7.2		400	63				15.8	0.1	15.9		14	7	56	11.0	48	45	60					0.4	
APR 18	- 1	6.8		430	115				16.0	0.3	16.3		30	10	56	11.5	49	40	62						
APR 21		6.9		450	55			28	17.7	0.2	17.9		8	6	54	10.5	50	40	58						

TABLE A-1--CONTINUED

DATE	WASTE WATER TYPE	pН	TDS	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS		BOD ₅	тос		ROGEN a NO ₂ + NO ₃	TOTAL	PO ₄ -P	Ca mg/l -	Mg*		К	c1		SiO ₂	в G 	REASE		FORM TOTAL 100 &	
(1973) APR 24]	6.9		400	50				21.1	0.3	21.4		10	6	56	11.0	50	38	61			0	4	0.4
APR 25		7.0		380	60				24.3	0.4	24.7		13	. 7	55 .	11.5	47	50	66					
APR 26		7.2		400	60				18.0	0.1	18.1		13	7	54	10.6		41	64					
MAY 1		6.9		400	48				25.3	0.1	25.4		14	3	54	10.1	53	41	64					
MAY 3	j	6.9		450	48	_			21.3	0.5	21.8		8	2	58	9.2	54	56	64					
MAY 5		7.0		400	62				18.8	0.1	18.9		8	10	53	10.0	60	52	62					
8 YAM	l				·	_																110	490	0.8
MAY 14		7.0		430	62				24.4	0.2	24.6		9	10	57	11.7	53	45	62					
MAY 15	<u> </u>	7.0		410	53				23.8	0.1	23.9		7	9	60	10.7	58	42	65					
MAY 16	EFFLUENT	6.9		410	63				25.7	0.1	25.8	12.55	7	11	55	10.0	48	41	68					
MAY 17	EFF	7.1		400	62				26.0	0.1	26.1		7	11	55	10.6		41	68					
MAY 22														. 								4900	>2200	0 0
MAY 29	SECONDARY	7.2		480	62				19.5	0.3	19.8	, 	16	5	50	10.8	53							
MAY 30	8	7.2		480	58				22.1	0.4	22.5		14	6	56	10.8	50							
JUN 1				400	62					0.2		13.20	20	3	49	9.5								
JUN 5	ATE										_	· 			'							1110	3300	0.9
JUN 7	RIN	6.9		480	62				17.0			13.04	16	5	58	10.2								
JUN 8	CHLOR INATED	7.0		420	62				17.5	0.8	18.3		15	4	49	9.5	46							
JUN 12	1	7.1		400	53				21.2			8.64					86							
JUN 12		7.0		415	58			·	19.5	0.1	19.6	11.41					50		68					
JUN 13	- 1	7.1		420	58			29	17.5	0.1	17.6	9.29					_							
JUN 14		7.0		450	62			30	16.2	0.2	16.4				59	9.8	46							
JUN 15		6.9		380	67			30	21.0	0.2	21.2				58	10.0	48							
JUN 20		7.0		400								13.86					48							
JUN 25		7.2	388	500	67				21.0	0.1	21.1		14		60	11.2		53	62					
JUN 26		7.1	376	500	62				24.3	0.2	24.5		14		60	10.2		59	67					
JUN 27		6.9	332	480	58				20.3	0.4	20.7	10.92	16		46	9.7		48	65					
JUN 28		7.0	328	410	62				23.3	0.5	23.8	10.75	16		48	9.7		51	67					
JUL 2		7.0	322	420	62				9.4	5.7	15.1	10.43	16	5	45	10.3	61	38	64					
JUL 3	ļ	7.0	342	370	62				10.5	5.6	16.1	10.59	14	7	44	9.7	59	51	66					

TABLE A-1--CONTINUED

	WASTE			COND. @	TOTAL					ROGEN a	s N											COLIF	ORMS	
DATE	WATER TYPE	pН	TDS mg/l	25°C μmhos/ cm	HARD- NESS	S S	BOD ₅	тос	KJEL- DAHL	NO ₂ + NO ₃	TOTAL	PO ₄ -P	Ca ng/l	Mg*		K	C1		SiO ₂	В	GREASE	FECAL no./1	TOTAL 00ml	
1973) IUL 6	i	6.7	339	360	62				9.5	6.8	16.3	7.66	14	7	45	9.7	59	44	67					
UL 9	- 1	7.0	376	400	58				18.1	0.3	18.4	17.12	12	7	58	10.0	71	53	64					_
JL 10		7.1	324	350	58	- -			26.8	0.9	27.7	11.74	16	4	48	9.7	49	46	64					_
JL 11		7.4	324	370	62			,	18.0	1.5	19.5	10.60	20	3	44	9.7	56	42	59					_
JL 12		7.4	354	370	62				18.7	0.4	19.1	12.06	18	4	48	10.0	54	50	64					_
JL 16	1	6.9	330	400	38				16.8	0.6	17.4	11.90	12	2	54	9.5	56	49	64					-
JL 23		7.1	328	500	48				19.6	0.4	20.0	11.88	12	4	50	9.8	51	29	71		·			-
JL 24	-	7.0	278	370	43				17.5	0.2	17.7	10.74	12	3	45	8.2	47	35	61					-
JL 25	- 1	7.0	306	400	34	<u> </u>			16.5	2.3	18.8		12	1	50	9.1	49	31	63					
JL 26	1	7.4	·	340	43				11.8	1.1	12.9	10.30	14	2	56	8.7	47	31	44					
JL 30	ž	6.6	544	410	75					0.7			22	5	53	12.0	54		78			- -		
G 1	EFFLUENT	6.7	354	380	45				24.4	0.5	24.9	12.40	14	2	48	9.5	49	42	74					
ig 6	Ë	7.0		400	40				22.4	0.2	22.6	13.20	14	1	48	10.0	70	31	70					
IG 7	¥κ	6.7	336	300	30				17.6	0.9	18.5	7.10	12	0	46		48		72					
JG 7	SECONDARY	7.0	196	360	50				14.8	0.5	15.3	6.60	22	0	45	9.6			73					
KG 8	SEC	6.8		320	40				16.8	0.3	17.1	5.20	16	0	49	8.0	45	29	70					
IG 8		6.8	144	330	50				21.8	0.3	22.1	8.50	18	1	60	10.0	65		69					
JG 9	¥	6.7	290	330	45				20.7	0.2	20.9	11.40	24	0	48	10.0	73	30	70					
JG 20	CHLOR INATED	6.6		410	50				20.2	0.1	20.3	12.80	5	9	53	11.0	70	45						
JG 22	쿰	6.9		340	40				10.6	1.0	11.7		6	6	51	10.0	63	40	·	_				
JG 23	1			370	45				11.5				4	9	49	10.0	68	46						
JG 24	Ì												6		48	10.0	68	36						
EP 4		6.9	338	380	65				19.5	0.1	19.6	10.55	15	7	51	11.0	53	38	76					
EP 5]	6.8	254	410	60				19.0	0.3	19.3	10.54	14	6	61	11.0	48	39	76					
P 5	1	6.9	314	450	58				15.3	0.1	15.4	10.57	13	6	51	11.0	43	37	76			0	0	
P 8		6.8	332	450	60				20.9	0.1	21.0	11.85	17	4	50	9.0	45	23	66		- -			
EP 18		7.0	174	440	55				22.3	0.1	22.4	10.82	17	3	49	8.8	45	32	. 66					
P 18								- ;-														79	490	0
EP 19		7.0	170	400	60				19.6	0.1	19.7	10.62	17	4	50	8.5	45	30	66					
EP 20	1	7.0	166	370	60				17.2	0.3	17.5	8.83	17	4	49	6.5	43	36	66					

TABLE A-1--CONTINUED

	WASTE			COND. @ 25°C	TOTAL H AR D-					ROGEN a											COLIF	ORMS	
DATE	WATER TYPE	pН	TDS mg/l	µmhos/	NESS	\$S	BOD ₅	TOC	KJEL- DAHL	NO ₂ + NO ₃		PO ₄ -P	Ca ng/l	Mg*		K 	C1		\$10 ₂	GREASE	FECAL no./I	TOTAL 00ml	
(1973) SEP 21		6.8	198	410	65				18.1	0.2	18.3	9.04	18	5	48	8.0	48	38	66	 			
SEP 22	1	7.1	198	410	64				24.0	0.1	24.1	11.98	17	6	30	9.4		41	67	 			
XT 1	ı	6.9	170	420	70				21.6	0.2	21.8	12.28	19	6	36	8.2	48	43	67	 			
CT 2					73								17		54	10.3				 			
CT 2		6.9	220	380	60				11.9	0.3	12.2	10.83	18	4	50	7.9	48	35	66	 			
XCT 3		6.8	340	410	70				21.6	0.3	21.9	11.14	19	6	48	8.4	48	32	67	 			
CT 4	- 1	6.8	350	410	75				23.1	0.1	23.2	11.77	19	7	51	9.2	48	43	69	 			
CT 5		6.5	340	390	75				27.2	0.1	28.3	11.14	18	7	49	8.2	45	34	67	 			
CT 15		6.9	322	400	70				25.4	0.1	25.5	9.22	12	10	54	10.3	48	43	67	 			
CT 16	F .	6.8	200	420	63				26.2	0.3	26.5	10.26	12	8	54	10.6	48	41	68	 	2	2	1.0
CT 17	EFFLUENT	6.9	300	400	65				23.1	1.0	24.1	8.62	12	9	54	10.4	48	34	68	 			_
CT 18	띮	6.9	308	370	63				20.2	0.6	20.8	8.74	12	8	50	10.9	43	41	68	 			
OV 1		6.8	384	390	68				16.2	2.0	18.2	10.62			48	11.1	48	44	70	 			
IOV 5	SECONDARY	6.7		370	60				15.8	0.1	15.9	9.63	10	9	54	7.5	50	28	71	 			
10V 5	Ŝ	6.9	336	420	73				23.5	0.7	24.2	10.88	7	14	48	11.1	50	54	71	 			
юу 6		6.8		590	60				17.9	0.3	18.2	11.31	5	12	48	11.4	45	35	71	 	5	23	0.7
10V 6	ATE	6.6	420	400	60				24.6	0.1	24.7	14.46			63	10.8	50	45	70	 			
10V 7	ZI Z	6.7										12.67					48	47	71	 			
8 VO	CHLORINATED	6.7	300	480	72				34.2			15.36	5	15	50	12.0	45	55	69	 			
IOV 9	ت ا	6.7	290	380	64				23.1			12.67	11	9	48	10.8	48	39	72	 			
10V 19	1	7.2	434	575	60				24.9	0.1	25.0				64	11.7	40	60	74	 			
VOV 21		7.0		440	64				21.8	0.1	21.9	15.09					70	57	72	 			
IOV 23	l	6.7	370	400	60				22.1	0.1	22.2				50	12.3	70	68	73	 			
1OV 26	}	6.8	328	400	60				14.4	0.7	15.1				54	11.1	60	54	63	 			
IOV 27																				 	0	33	0.5
10V 28		7.1		555	60				33.7	0.1	33.8				50	5.7	38	41	63	 			
VOV 28		7.1		440	60				25.5	0.1	25.6	12.75			48	11.3	38	34	94	 			
DEC 3		6.8	452	700	67				28.6	0.1	28.7		12	9	65	10.8	50	50	74	 			
DEC 5		7.1	410	500	60				14.0	0.8	14.8	13.28	11	8	70	10.0	58	47	72	 			
DEC 7		7.0	384	540	67				16.0	0.1	16.1	14.28	10	10	67	10.0	55	38	72	 			

TABLE A-1--CONTINUED

	WASTE			COND. @	TOTAL				NITE	ROGEN a	s N											COLIF	ODMO	
DATE	WATER TYPE	pН	TDS mg/l	25°C μmhos/ cm	HARD- NESS	SS	BOD ₅	тос	KJEL- DAHL	NO ₂ + NO ₃		PO ₄ -P	Ca mg/l	Mg*		K	C}		SiO ₂	В (GREASE	FECAL no./l		Cl ₂
(1973) DEC 11	1				64				16.8					~_								130	330	0.5
DEC 12		7.0	324	500	67				24.9	1.4	26.3		12	9	61	10.5	53	39	75					~-
DEC 14		7.1	110		53					0.1		12.24	10	7			48		73					
DEC 17		6.9	336	450	60				19.3	0.7	20.0	13.46	20	9	63	9.4	48	47	73					
DEC 17		6.7	380	480	73			~-	22.1	0.9	23.0	11.34	10	12	63	9.0	48	40	73					
DEC 18		6.7	304	490	67				21.6	1.0	22.6	13.17	7	12	45	7.8	50	38	73					
DEC 18		6.8	316	420	60			· 	16.2	0.8	17.0	13.80	10	9	65	9.2	50	42	73					
DEC 19		6.6	270	380	53				11.2	0.9	12.1	10.98	10	7	58	9.0	50	40	73					
DEC 19		7.0	306	440	60				20.2	1.1	21.3	10.44	5	12		2.5	46	51	62					
DEC 20	i ⊢	7.5	286	470	53				10.6	2.1	12.7	11.18	9	7		5.8	50	39	61					
DEC 21	GEN	6.6	290	420	67				20.2	0.7	20.9	11.71	10	10	60	9.2	46	52	73					
DEC 22	FF L	6.8	336	490	67				27.2	0.2	27.4	13.49	10	10	59	10.8		40	75					
DEC 24	, ш ≻	6.8	280	480	60				22.9	0.5	23.4	15.50	10	9	63	10.0	48	40	73					
(1974) JAN 7	SECONDARY EFFLUENT	7.4	244	430	60				23.0	0.5	23.5	11.09	10	9	61	9.4	50	46	61					
JAN 8	SECC																					5	23	
JAN 9		7.2		500	36				23.0			13.53												
JAN 11	.¥	6.6	`	560	80				34.4	0.1	34.5	15.83	13	12	59	10.4	48	45	75					
JAN 18	CHLOR INATED	6.7		500	73				25.7	0.1	25.8	15.00	11	11	61	10.2	46	37	73					
JAN 21	Ä	6.9							15.2	3.0	18.2		12		61	10.0		39	70					
JAN 21	Ĭ	6.9								3.0							48		70					
JAN 23			220	450	60				14.0	2.6	16.6		10	9	63	10.0						23	46	0.7
FEB 12		6.7	234	400	60				14.0	2.6	16.6	13.61	10	9	63	10.4	46	33						
FEB 13			324	420	60				9.3			11.83	12	7	63	10.4	48	33	74					
FEB 14			338	420	60				14.0			12.60	12	7	63	10.5	<u>'-</u>	34	74					
FEB 15		7.1	320	430	60				14.0	3.8	17.8	14.62	12	7	59	11.0	44	38	75					
FEB 19			350	430	64				8.7			14.77	11	. 9	57	9.6	48	29	76					
FEB 20		6.7	346	440	64				9.3	4.9	14.2	13.05	13	7	61	10.8	48	33	73			8	33	1.2
FEB 20	}	7.0	200	520	64				26.8	1.6	18.4	13.54	10	10	59	10.4	46	43	74					
FEB 21	ł		332	450	60				17.4			13.46	10	8	57	10.0	50	34	74					

TABLE A-1--CONTINUED

	WASTE			COND. @	TOTAL					ROGEN a	s N											COLIF	ORMS	
DATE	WATER TYPE	рΗ	TDS mg/l	25°C µmhos/ cm	HARD- NESS	ss 	BOD ₅	TOC	KJEL- DAHL	NO ₂ + NO ₃		PO ₄ -P	Ca ng/l.	Mg*		K	C1		SiO ₂	В	GREASE	FECAL		Cl ₂
(1974) FEB 25	1	7.0	274	440	64				15.2	0.5	15.7	12.81	8	10	61	10.0	54	38	74					
FEB 25		7.1	350	460	64				16.3	1.3	17.6	10.44	8	11	57	10.0	48	41	75					
EB 26		7.1	260	570	68				28.3	0.3	28.6	15.99	9	11	54	11.4	46	57	75					
EB 27		7.1	310	540	68				28.0	1.4	29.4	14.19	10	11	52	10.7	48	43	75					
EB 27		6.7	356	445	68				16.2	0.8	17.0	14.36	10	9	60	10.5	50	35	7 5					
1AR 8		6.8	320	450	68				12.9	4.2	17.1	12.81	12	9	62	9.8	48	33	74					
1AR 11		7.0	362	460	68				19.6	0.1	19.7	16.32	10	10	66	9.8	50	39	74					
1AR 20		6.8	364	440	6 8				17.1	3.3	20.4	13.54	12	9	57	9.3	50	39	74					
MAR 21	Ä	6.9	276	455	68				20.7	1.1	21.8	12.64	9	8	57	9.0		3	74					
1AR 25	EFFLUENT	6.9	330	430	68				17.1	1.3	18.4	11.75	10	8	67	10.7	48	38	74					
1AR 29		7.4	310	520	56				19.3	2.1	21.4	12.83	9	8			52	36	84					_
NPR 1	4RY	7.0	320	510	64				21.6	0.9	22.5	10.44	10	7	55	10.3		33	75					_
APR 2	SECONDARY	7.0	220	540	60				22.4	0.4	22.3	10.60	7	10	60	9.6	46	43	74					_
VPR 4	SEC	6.8	314	490	56				21.8	1.7	23.5	12.54	11	7	60	9.8		45				4	130	1.
NPR 4	Д	7.0	270	540	60				23.5	0.3	23.8	11.01	7	10	59	9.4	48	45	74					_
APR 5	₹	7.0	240	520	68				26.0	0.4	26.4	10.12	5	14	66	9.0	48	40	74					-
APR 11	CHLORINAT	7.1	354	520	60				25.8	1.7	27.5	12.24	7	13	70	9.0	48	55	84					-
APR 12	붐	7.2	354	510	60				26.9	0.8	27.7	12.00	9	10	64	10.0	48	49	84					_
APR 15	- 1	7.2	360	520	60				25.2	0.1	25.3	8.65	10	7	65	9.5	48	33	84					-
APR 17	İ	7.6	390	480	56				26.3	0.2	26.5	11.94	11	7	69	9.8	46	25	74			79	130	1.
APR 30	ŀ	7.3	354	585	56				18.8	0.2	19.0	10.54	9	8	60	9.6		31						_
MAY 1																						30	460	1.
MAY 6			588	480	56				26.3	0.2	26.5	10.31	11	7	60	9.3		31						-
1AY 7	1	7.2		590	60				26.3	0.7	27.0	10.90	10	9	55	9.6		40						_
1AY 8		7.1		600	60				36.4	0.9	37.3	10.81	9	, 9	53	10.2		33						-
4AY-8		7.1	,	700	72				37.8	0.4	38.2	16.16	12	10	55	11.2		76						-
1AY 9		7.2	386	630	68				32.2	0.2	32.4	11.70	12	9	51	10 5		43						-
MAY 10		7.3	380	600	60				27.2	0.4	27.6	2.71	10	9	53	10.5		43						
MAY 10	1	7.3		565	56				24.9	0.5	25.4	11.41	9	8	53	10.2		39						-

TABLE A-1--CONTINUED

	WASTE			COND. @	TOTAL					ROGEN a	s N											COLIF	ORMS	
DATE	WATER TYPE	pН	TDS mg/l	25°C μmhos/ cm	HARD- NESS	SS	BOD ₅	тос	KJEL DAHL	NO ₂ + NO ₃	TOTAL	PO ₄ -P	Ca mg/l -	Mg*		K	C1		SiO ₂	B 	GREASE	FECAL		C)
(1974) MAY 20	1	7.0		620	54	- <u>-</u>			30.0	0.1	30.1	11.96	8	8	53	10.4	44	45	74					
1AY 22		7.0	340	485	60				11.8	0.3	12.1	10.85	9	9	55	10.0	46	35	75					
AY 23		7.0	336	520	56				16.5	0.4	16.9	10.62	10	8	53	10.2	48	46	74					
AY 23		7.2	358	500	56				15.7	1.2	16.9	10.70	10	8	53	10.0	46	34	74					
AY 24		7.1	350	495	52				14.0	1.3	15.3	11.79	9	7	53	9.8	46	37	74					
JN 3		7.0	360	575	54				24.6	0.8	25.4	10.31	9	8	55	9.8	52	35	64					
JN 10		7.4	370	540	56				20.2	0.1	20.3	12. 2	. 8	9	52	10.0		48	75					
JN 12		7.3	588	480	52				9.5			10.31	9	7	55	9.8		37						,
JN 13		7.0		510	56				16.5	2.0	18.5	10.93	7	9	54	10.0			. 73					
JN 14	<u> </u>	7.3	352	490	52				13.2			9.44	8	8	53	10.4		38						
N 14	EFFLUENT	7.1	370	475	52			- -	11.8			10.85	9	7	60	10.2								
N 20	EFF	7.4	332	480	56				17.4	1.4	18.8	11.16	8	9	54	10.7		46						
IN 24	کے	7.3	330	485	56				16.8	1.5	18.3	8.37	8	9	55	10.2		49						
N 26	Ž V	6.6	384	470	56				15.1			10.31	9	8	54	10.0		55						
N 27	SECONDARY	7.0			56				12.0	3.1	15.1	10.56	8	9	54	10.2								
N 28		7.7	308	485	60				17.6	2.2	19.8	10.23	9	9	55	10.7		43						
N 28	CHLORINATED	7.0		'	56				18.5	2.3	20.8	11.24	9		54	10.7								
JL 2	RI.	6.6	322	500	64				14.0	3.2	14.2	10.96	8	11	55	10.2		49	73					
JL 5	붓	6.5	346	490	60				12.6	2.8	15.4	10.20	8	10	60	10.2		43	73					
JL 8	ì	6.5	350		56				11.2	4.9	16.1	10.92	8	9	61	10.0		43	73					
JL 10		6.5	340	485	60				13.7	0.9	14.6	12.61	7	10	60	10.5		-,-						
JL 10		6.7	402	580	64				26.6	1.6	28.2	10.98	9	10	55	10.7		60						
UL 11		6.6	356	520	60				19.0	3.0	22.0	11.52	8	10	55	10.7		54						
JL 12		6.6	390	485	60				14.0	3.5	17.5	10.72	8	10	54	10.7		46						
JL 15		6.5	370		60				19.0	0.8	19.8	11.74	7	10	65	11.0		50						
JL 23										1.4														
JL 24	1						·			1.9				·										
JL 25										2.0														
UL 31		7.0		410	60				15.3	1.3	16.6	8.33			67	9.5	52		74					
UG 1	1	7.0		390	60		- -		11.3	1.8	13.1	7.68	·		60	9.0	51		72					

DATE	WASTE WATER TYPE	pН	TDS	COND. @ 25 C µmhos/ cm	TOTAL HARD- NESS	- cc	BOD ₅	NITE KJEL- DAHL	NO 2	TOTAL	PO ₄ -P	Ca ng/l -	Mg ^x		к	C1	SiO ₂	B G	REASE	FECAL	FORMS TOTAL 100ml	
(1974) AUG 2	1	7.0		410	60			 10.1	1.3	11.4	8.34			60	9.0	51	 72					
AUG 5		6.7		420	60			 11.9	2.3	14.2	8.01			67	10.0	56	 72					
AUG 14				420	60			 14.7	1.5	16.2	8.07			58	9.0	52	 72					
AUG 15				400	60			 9.9	2.6	13.5	7.84		58	58	9.0	50	 72					
AUG 16				430	60			 16.8	1.6	18.4	10.62		· 	60	10.5	50	 73					
AUG 19	- 1			400	60			 12.6	0.7	13.3	9.80			63	10.5	56	 72					
AUG 21				440	60			 7.6			7.27	8	10	52	4.8	164	 75			490	1400	
AUG 22				370	60			 9.8	2.5	12.3	8.58			60	10.0	55	 73					
AUG 26				410	68			 9.0	2.6	11.6	8.66			56	8.5	53	 74					
AUG 28	Ę			430	64			 11.5	1.4	12.9	9.31			53	9.4	53	 73					
AUG 29	EFFLUENT			440	64			 12.6	3.6	16.2	9.80			57	9.9	53	 74					
AUG 29	监			430	64			 11.2	4.0	15.2	9.48			52	9.4	52	 72					
AUG 30	ξ¥			400	64			 7.0	4.8	11.8	9.80			52	7.9	50	 72					
SEP 11	SECONDARY		326	400	55	8	6	 7.8	_		9.40	8	9	50	5.3	49	 76			130	460	0.8
SEP 12	25			420	60			 8.0	4.8	12.8	9.72			47	9.7	49	 72				· 	
SEP 17				470	56			 13.3	3.4	16.7	9.97			49	10.0	53	 71					
SEP 18	₩			450	58			 11.2	3.5	14.7	9.40			47	9.7	50	 70					
SEP 19	RI N			440	58			 6.3	3.6	9.	9.72			50	9.7	51	 72					
OCT 2	CHLORINATED		~-	490	66			 14.3	1.9	16.2	6.86			63	8.6	51	 70					
OCT 9	ĺ			460	66			 13.0	3.5	16.5	9.23			58	8.6	52	 45					
OCT 9			354	470	56	10	7	 16.0			8.74	3	9	45	9.1	50	 78			130	350	0.6
OCT 10	•			470	64			 16.9	4.5	21.4	8.99			58	8.6	49	 71					
OCT 14	ł			430	66			 9.5	4.9	14.4	6.45			50	9.1	49	 72					
OCT 16	}			430	60			 11.2	4.9	16.1	8.25			49	9.5	51	 72					
OCT 4				` 460	60			 6.2	3.6	9.8	10.00			41	10.0	57	 73					
OCT 25	ŀ		~-	410	58			 8.4	6.0	14.4	9.04			41	10.2	52	 71					
NOV 2	-			390	64			 11.8	7.2	19.0	9.70	8	11	54	10.3	52	 71					
NOV 4				420	58			 13.4	6.7	20.1	8.43	7	10	50	10.7	54	 69					
NOV 5				390	58			 8.7	8.6	17.3	8.84	7	10	50	10.7	52	 7.0					
NOV 6	j		330	470	60	10	8	 17.4			9.70	9	9	50	10.3	55	 74			70	140	1.1

TABLE A-1--CONTINUED

DATE	WASTE WATER TYPE	рН	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS		BOD ₅	TOC	NITI KJEL- DAHL	ROGEN a NO ₂ + NO ₃	TOTAL	7	Ca mg/l -	Mg∺	Na	K	C1	SO ₄	SiO ₂	В	GREASE	COLIF FECAL no./	TOTAL	
(1974) NOV 20			321	460	56	5	9		11.5	2.7	14.2	7.92	10	8	47	8.8	50		76			23	23	1.5
NOV 27	<u> </u>			420	60				11.8	4.1	15.9	10.80	7	10	51	7.5	52		71					
NOV 29	LUENT			420	64				14.0	4.2	18.2	10.62	8	11	51	8.3	55		70					
DEC 2	EFFI			540	72			_	18.8	2.7	21.5	10.95	11	11	53	8.7	59		73					
DEC 3				540	68				18.2	2.6	20.8	10.43	12	9	51	8.3	54		71					
DEC 4	SECONDARY		344	440	62	8	6		14.8	4.8	19.6	9.68	12	8	49	7.9	50		90			17	49	
DEC 18	50		326	390	58	8	8		7.6			9.53	9	9	40	8.6	55		86			110	170	
DEC 19					62				8.1			10.74	7	10			99							
DEC 20	ATEI				62				15.4			10.20	8	10			47							
DEC 21	Ži				62				11.8			10.32	9	10			46							
(1975) JAN 8	· CHLORINATED		356		60	12	4		13.4			7.85	9	9	55	9.6								
FEB 5	-		398	530	58	16	7		13.2	3.1	16.3	10.40	10	8	55	10.9			79					

[&]quot; CALCULATED BY THE EQUIVALENT WEIGHT DIFFERENCE BETWEEN TOTAL HARDNESS AND CALCIUM.

TABLE B-1. WEIGHTED COMPOSITE MILILANI STP ANALYSES

CONSTITUENT* SEWAGE		OCTOBER 197	ILANI STP ANAL I [†]	1353
Description		RAW	CHLORINATED	CONSTITUENT REDUCTION (%)
CONDUCTIVITY RANGE (µmhos/cm) DISSOLVED OXYGEN RANGE	pH RANGE			
SUSPENDED SOLIDS 178 TOTAL DISSOLVED SOLIDS 307 TOTAL VOLATILE SOLIDS 188 GREASE 64.4 18.0 72 BODD 204 16 92 BODD 204 16 92 BODD 204 16 92 BODD 204 16 92 BODD 205 BO	CONDUCTIVITY RANGE (umhos/cm)		100 100	
SUSPENDED SOLIDS 178 TOTAL DISSOLVED SOLIDS 307 TOTAL VOLATILE SOLIDS 188 GREASE 64.4 18.0 72 BODD 204 16 92 BODD 204 16 92 BODD 204 16 92 BODD 204 16 92 BODD 205 BO	DISSOLVED OXYGEN RANGE	1.0-2.0	1.6-2.9	
TOTAL VOLATILE SOLIDS 188	SUSPENDED SOLIDS			
GREASE 64.4 18.0 72 BDD 204 16 92 CDD 470 28 94 CHLORIDE 75 60 20 SULFATE 64 85 -33 BORON 0.46 0.10 78 AMMONIA NITROGEN 7.7 9.5 66 NITRITE NITROGEN NITRITE NITROGEN 0.3 4.5 -1400 TOTAL NITROGEN 13.4 17.9 -34 SODIUM 64 64 0 FOTASSIUM 8.2 5.8 29 CALCIUM 12 9 25 MAGNESIUM 17 22 -23 ALKALINITY (CaCO ₃) 186 73 61 SILICA (SIO ₂) 30 44 -47 RESIDUAL CHLORINE RANGE FECAL COLIFORM RANGE (/100 m²) FECAL COLIFORM RANGE (/100 m²) FECAL STREPTOCOCCUS RANGE (/100 m²) SUSPENDED SOLIDS 436 361 17 TOTAL OLYSOLVED SOLIDS 436 361 17 TOTAL DISSOLVED SOLIDS 436 361 17 TOTAL VOLATILE SOLIDS 340 114 66 GREASE 72 60 16 SREASE 72 60 17 SREASE 72 60 17 SREASE 72 60 17 S	TOTAL DISSOLVED SOLIDS	307		
BOD	TOTAL VOLATILE SOLIDS	188	-	
COD	GREASE			72
CHLORIDE 75 60 20 SULFATE 64 85 -33 BORON 0.46 0.10 78 AMMONIA NITROGEN 27.7 9.5 66 ORGANIC NITROGEN	BOD			
SULFATE 64 85 -33 BORON 0.46 0.10 78 AMMONIA NITROGEN 27.7 9.5 66 NITRITE NITROGEN NITRATE NITROGEN 0.3 4.5 -1400 TOTAL NITROGEN ORTHOPHOSPHATE PHOSPHORUS 13.4 17.9 -34 SODIUM 64 64 0 POTASSIUM 8.2 5.8 29 CALCIUM 12 9 25 MAGNESIUM 17 22 -23 ALKALINITY (CaCO ₃) 186 73 61 SILICA (SIO ₂) 30 44 -47 RESIDUAL CHLORINE RANGE TOTAL COLIFORM RANGE (/100 m½) FECAL COLIFORM RANGE (/100 m½) FECAL STREPTOCOCCUS RANGE (/100 m½) DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 390-560 280-480 DISSOLVED OXYGEN RANGE () 5-1.0 2.0-3.3 SUSPENDED SOLIDS 340 114 66 GREASE 72 60 16 GRAGASE 73 0 GRAGANIC NITROGEN 2.80 1.20 59 GRAGANIC NITROGEN 2.80 1.20 59 GRAGANIC NITROGEN 2.90 10 12.38 57	COD			
BORON 0.46 0.10 78 AMMONIA NITROGEN 27.7 9.5 66 ORGANIC NITROGEN NITRATE NITROGEN 0.3 4.5 -1400 TOTAL NITROGEN ORTHOPHOSPHATE PHOSPHORUS 13.4 17.9 -34 SODIUM 64 64 0 POTASSIUM 8.2 5.8 29 CALCIUM 12 9 25 MAGNESIUM 17 22 -23 ALKALINITY (CaCO₃) 186 73 61 SILICA (SIO₂) 30 44 -47 RESIDUAL CHLORINE RANGE				
AMMONIA NITROGEN 27.7 9.5 66 ORGANIC NITROGEN NITRITE NITROGEN NITRATE NITROGEN 0.3 4.5 -1400 TOTAL NITROGEN ORTHOPHOSPHATE PHOSPHORUS 13.4 17.9 -34 SODIUM 64 64 0 POTASSIUM 8.2 5.8 29 CALCIUM 12 9 25 MAGNESIUM 17 22 -23 ALKALINITY (CaCO ₃) 186 73 61 SILICA (SiO ₂) 30 44 -47 RESIDUAL CHLORINE RANGE				
ORGANIC NITROGEN		0.46	0.10	78
ORGANIC NITROGEN NITRITE NITROGEN NITRITE NITROGEN TOTAL NITROGEN		27.7	9.5	66
NITRATE NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL NITROGEN TOTAL SODIUM TOTAL NITROGEN TOTAL SOLVED TOTAL SOLVED TOTAL SOLVED TOTAL COLIFORM RANGE (Mumbos/cm) TOTAL COLIFORM RANGE (Mumbos/cm) TOTAL DISSOLVED OXYGEN RANGE TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL NOLATILE SOLIDS TOTAL TOTAL VOLATILE SOLIDS TOTAL		-, -,	J. J	
TOTAL NITROGEN ORTHOPHOSPHATE PHOSPHORUS 13.4 17.9 -34 SODIUM 64 64 64 00 POTASSIUM 8.2 5.8 29 CALCIUM 12 9 25 MAGNESIUM 17 22 -23 ALKALINITY (CaCO ₃) 186 73 61 SILICA (SiO ₂) 30 44 -47 RESIDUAL CHLORINE RANGE TOTAL COLIFORM RANGE (/100 m½) FECAL STREPTOCOCCUS RANGE (/100 m½) PH RANGE 9 AUGUST 1972† PH RANGE CONDUCTIVITY RANGE (µmhos/cm) 390-560 280-480 DISSOLVED OXYGEN RANGE 0.5-1.0 2.0-3.3 SUSPENDED SOLIDS 200 11 94 TOTAL DISSOLVED SOLIDS 436 361 17 TOTAL DISSOLVED SOLIDS 436 361 17 TOTAL VOLATILE SOLIDS 340 114 66 GREASE 72 60 16 BOD 204 12 94 CCD 288 97 66 CCHLORIDE 42.5 49.0 0 CSULFATE 69 48 30 SORON 0.47 0.28 40 AMMONIA NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9				
13.4 17.9 -34		0.3	4.5	-1400
SODIUM POTASSIUM 8.2 5.8 29 CALCIUM 12 9 25 MAGNESIUM 17 22 -23 ALKALINITY (CaCO₃) 186 73 61 SILICA (SiO₂) 30 44 -47 RESIDUAL CHLORINE RANGE				
POTASSIUM CALCIUM 12 9 25 MARNESIUM 17 22 -23 ALKALINITY (CaCO ₃) 186 73 61 SILICA (SiO ₂) 30 44 -47 RESIDUAL CHLORINE RANGE				-
CALCIUM 12 9 25 MAGNESIUM 17 22 -23 ALKALINITY (CaCO ₃) 186 73 61 SILICA (SiO ₂) 30 44 -47 RESIDUAL CHLORINE RANGE				
MAGNESIUM ALKALINITY (CaCO ₃) ALKALINITY (CaCO ₃) ALKALINITY (CaCO ₃) BIB6 TOTAL (SIO ₂) TOTAL COLIFORM RANGE TOTAL COLIFORM RANGE (/100 mℓ) FECAL COLIFORM RANGE (/100 mℓ) FECAL STREPTOCOCCUS RANGE (/100 mℓ) PH RANGE CONDUCTIVITY RANGE (μmhos/cm) DISSOLVED OXYGEN RANGE TOTAL DISSOLVED SOLIDS TOTAL VOLATILE SOLIDS AGREASE TOTAL VOLATILE SOLIDS COD COD COD COD COD COD COD C				
ALKALINITY (CaCO ₃) 186 73 61 SILICA (SiO ₂) 30 44 -47 RESIDUAL CHLORINE RANGE TOTAL COLIFORM RANGE (/100 ml) FECAL STREPTOCOCCUS RANGE (/100 ml) PH RANGE 9 AUGUST 1972# CONDUCTIVITY RANGE (µmhos/cm) 390-560 280-480 DISSOLVED OXYGEN RANGE 0.5-1.0 2.0-3.3 SUSPENDED SOLIDS 200 11 94 TOTAL DISSOLVED SOLIDS 436 361 17 TOTAL VOLATILE SOLIDS 340 114 66 GREASE 72 60 16 BOD 204 12 94 COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 2.560 10.25 59 DORGANIC NITROGEN 2.580 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 0.22 0.20 9 TOTAL NITROGEN 2.9.10 12.38 57			9	
30				
RESIDUAL CHLORINE RANGE				
TOTAL COLIFORM RANGE (/100 mL)		30 	44	-4 /
FECAL COLIFORM RANGE (/100 ml) FECAL STREPTOCOCCUS RANGE (/100 ml)				
Part				
9 AUGUST 1972†		m0)		
PH RANGE CONDUCTIVITY RANGE (μmhos/cm) 390-560 280-480 DISSOLVED OXYGEN RANGE 0.5-1.0 2.0-3.3 SUSPENDED SOLIDS 200 11 94 TOTAL DISSOLVED SOLIDS 436 361 17 TOTAL VOLATILE SOLIDS 340 114 66 GREASE 72 60 16 BOD 204 12 94 COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57				
CONDUCTIVITY RANGE (µmhos/cm) 390-560 280-480 DISSOLVED OXYGEN RANGE 0.5-1.0 2.0-3.3 SUSPENDED SOLIDS 200 11 94 TOTAL DISSOLVED SOLIDS 436 361 17 TOTAL VOLATILE SOLIDS 340 114 66 GREASE 72 60 16 BOD 204 12 94 COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 25.60 10.25 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57			6.7-7.0	
DISSOLVED OXYGEN RANGE				dada mppa
SUSPENDED SOLIDS 200 11 94 TOTAL DISSOLVED SOLIDS 436 361 17 TOTAL VOLATILE SOLIDS 340 114 66 GREASE 72 60 16 BOD 204 12 94 COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57				
TOTAL DISSOLVED SOLIDS 436 361 17 TOTAL VOLATILE SOLIDS 340 114 66 GREASE 72 60 16 BOD 204 12 94 COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57				94 .
TOTAL VOLATILE SOLIDS 340 114 66 GREASE 72 60 16 BOD 204 12 94 COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57				
GREASE 72 60 16 BOD 204 12 94 COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57				
COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57	GREASE			
COD 288 97 66 CHLORIDE 42.5 49.0 0 SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57	BOD		12	94
SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57	COD	288	97	
SULFATE 69 48 30 BORON 0.47 0.28 40 AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57	CHLORIDE	42.5		
AMMONIA NITROGEN 25.60 10.25 59 DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57	SULFATE	69	48	30
DRGANIC NITROGEN 2.80 1.20 59 NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57	BORON			40
NITRITE NITROGEN 0.48 0.73 0 NITRATE NITROGEN 0.22 0.20 9 FOTAL NITROGEN 29.10 12.38 57	AMMONIA NITROGEN			59
NITRATE NITROGEN 0.22 0.20 9 TOTAL NITROGEN 29.10 12.38 57	ORGANIC NITROGEN			
TOTAL NITROGEN 29.10 12.38 57	NITRITE NITROGEN			
	NITRATE NITROGEN			
ORTHOPHOSPHATE PHOSPHORUS 14.15 10.50 25		-	_	
	UKIHOPHOSPHATE PHOSPHORUS	14.15	10.50	25

^{*}All units in mg/ ℓ unless noted otherwise. †16-hr composite samples.

TABLE B-1. CONTINUED

	9 AUGUST 1972 [†]		
CONSTITUENT*	RAW SEWAGE	CHLORINATED EFFLUENT	CONSTITUENT REDUCTION (%)
SODIUM	54	50	· 7
POTASSIUM	10.8	9.8	9
CALCIUM	20	18	10
MAGNESIUM	4.4	4.2	4
ALKALINITY (CaCO₃)	182	100	45
SILICA (SiO ₂)	61	54	11
RESIDUAL CHLORINE RANGE		0.4-1.9	
OXYGEN-REDUCTION POTENTIAL	-10-140	170-360	
RANGE (mv)			
	3 FEBRUARY 1973 [†]		
pH RANGE	6.9-8.2	6.8-7.2	
CONDUCTIVITY RANGE (µmhos/cm)		380-480	
DISSOLVED OXYGEN RANGE	2.0-4.0	3.9-5.7	
TURBIDITY (FTU)	380	20	94
TOTAL DISSOLVED SOLIDS	498	374	24
SUSPENDED SOLIDS	124	14	88
TOTAL VOLATILE SOLIDS	330	136	58
SETTLEABLE SOLIDS	4.0	0.6	85
GREASE	54.5	11.8	78
BOD	200	15	93
COD	498	148	70
CHLORIDE	51.5	49.5	3
SULPHATE	52	48	7
BORON	1.05	0.70	33
AMMONIA NITROGEN	24.5	15.7	35
ORGANIC NITROGEN	3.5	1.6	54
NITRITE NITROGEN	0.09	0.06	33
NITRATE NITROGEN	0.05	0.38	0
TOTAL NITROGEN	28.14	17.74	37
ORTHOPHOSPHATE PHOSPHORUS	11.91	8.94	24
SODIUM	60	60	0
POTASSIUM	11.5	10.5	8
CALCIUM	10	8	20
MAGNESIUM	8.5	6.9	18
ALKALINITY (CaCO ₃)	149	115	22
SILICA (SiO ₂)	73	70	4
RESIDUAL CHLORINE RANGE	7	1.2-3.0	
TOTAL COLIFORM RANGE	5.6×10^{7}	12-432	
(/100 ml)	24.2×10^{7}	12 7)2	
FECAL COLIFORM RANGE	1.24x 10 ⁷ -	6-200	
(/100 ml)	8.3×10^{7}	0 200	
FECAL STREPTOCOCCUS RANGE	2.2×10^{5}	2-168	
(/100 ml)	11.0 x 10 ⁵	2 100	
****	5 JUNE 1973 [†]	· · · · · · · · · · · · · · · · · · ·	
pH RANGE	6.9-7.8	6.8-7.2	
CONDUCTIVITY RANGE (µmhos/cm)	400-600	450-600	

^{*}All units in mg/ ℓ unless noted otherwise. †16-hr composite samples.

TABLE B-1. CONTINUED

	5 JUNE 1973†		
CONSTITUENT*	RAW Sewage	CHLORINATED EFFLUENT	CONSTITUENT REDUCTION (%)
DISSOLVED OXYGEN RANGE	1.0-3.2	1.1-3.7	
TURBIDITY (FTU)	450	21	95
TOTAL DISSOLVED SOLIDS	377	351	6
SUSPENDED SOLIDS	280	7	97
TOTAL VOLATILE SOLIDS	201	118	41
SETTLEABLE SOLIDS	10	0.6	94
GREASE	112	21.6	80
BOD	225	8	96
COD	607	113	81
CHLORIDE	48	50	0
SULFATE	66	52	21
BORON	0.85	0.50	41
AMMONIA NITROGEN	27.72	16.1	41
ORGANIC NITROGEN	6.78	1.26	81
NITRITE NITROGEN	0.00	0.29	. 0
NITRATE NITROGEN	0.00	0.21	0
TOTAL NITROGEN	34.50	17.86	48
ORTHOPHOSPHATE PHOSPHORUS	22.5	15.4	31
SODIUM	56	53	
POTASSIUM	11.1	10.5	5 5
CALCIUM	18	14.5	26
MAGNESIUM	7.5	6.5	18
ALKALINITY (CaCO ₃)	185.2	139.4	24
SILICA (SIO ₂)	65.4	60	- 8
RESIDUAL CHLORINE RANGE		1.0-3.0	
TOTAL COLIFORM RANGE	5.6 x 10 ⁵ -		
(/100 ml)	19.9 x 10 ⁵	2-1600	-
FECAL COLIFORM RANGE	0.5×10^{7}		
(/100 mg)	12.2×10^7	1-1505	
FECAL STREPTOCOCCUS RANGE	5.9 x 10 ⁵ -		
(/100 mg)	15.5 x 10 ⁵	1-1350	
	OCTOBER 1973†		
pH RANGE	7.1-7.7	6.5-7.8	
CONDUCTIVITY RANGE (µmhos/cm)	320-560	300-540	
DISSOLVED OXYGEN RANGE	0.6-2.5	0.6-3.7	
OXYGEN-REDUCTION POTENTIAL			
RANGE (mv)	10-190	125-395	-
CHLORINE RESIDUAL RANGE		0-2.0	
TOTAL COLIFORM RANGE	3.8×10^{7}	2.8×10^{2}	end esh
(/100 ml)	1.1×10^{10}	1.4×10^{5}	
FECAL COLIFORM RANGE	3.2×10^{7}	8.0×10^2	
(/100 ml)	1.2×10^{8}	8.0×10^{5}	- -
FECAL STREPTOCOCCUS RANGE	2.0×10^{5}	8.0-	
(/100 ml)	1.8×10^{7}	7.3×10^3	
•			

^{*}All units in mg/L unless noted otherwise. †16-hr composite samples.

TABLE B-1. CONTINUED

9	JANUARY 1974 [†]		
CONSTITUENT*	RAW SEWAGE	CHLORINATED EFFLUENT	CONSTITUENT REDUCTION (%)
pH RANGE	7.0-8.0	6.8-7.1	
CONDUCTIVITY RANGE (umhos/cm)	248-800	390-600	
DISSOLVED OXYGEN RANGE	1.3-2.0	1.1-2.8	
OXYGEN-REDUCTION POTENTIAL			
RANGE (mv)	(-70)-(-5)	(-15)-0	·
RESIDUAL CHLORINE RANGE		0.3-2.0	
TOTAL DISSOLVED SOLIDS	345	367	- 6.4
CHLORIDE	42	45	- 7.1
SULFATE	40	32	20
TOTAL KJELDAHL NITROGEN	31.9	16.9	47
NO ₂ + NO ₃ NITROGEN	0.04	3.20	-7900
TOTAL NITROGEN	31.94	20.10	37
ORTHOPHOSPHATE PHOSPHORUS	16.62	15.20	8.5
SODIUM	70	63	10
POTASSIUM	10.6	10.2	3.8
CALCIUM	10	8	20
MAGNESIUM	8	10	- 25
ALKALINITY (CaCO ₃)	58	60	- 3.4
SILICA (SIO ₂)	62	75	-21
26	AUGUST 1974 [†]		
pH RANGE	6.4-7.8	6.7-6.9	-
CONDUCTIVITY RANGE (µmhos/cm)	550-780	520-600	
DISSOLVED OXYGEN RANGE	0-0.9	1.8-6.1	'
OXYGEN-REDUCTION POTENTIAL			
RANGE (mv)	(-75)-(-10)	15-150	
TOTAL DISSOLVED SOLIDS	401	343	14
GREASE	50	10	80
CHLORIDE	45	53	-18
SULFATE	54	37	31
TOTAL KJELDAHL NITROGEN	31.8	13.4	
NO ₂ + NO ₃ NITROGEN	0.01	1.40	-13900
TOTAL NITROGEN	31.81	14.80	
ORTHOPHOSPHATE PHOSPHORUS	15.36	11.27	27
SODIUM	69	66	4.3
POTASSIUM	12.0	10.5	13
CALCIUM	8		13
MAGNESIUM		10	-11
			0
		61	
		0.6-2.5	
	8.0×10^{6}	-	
		48-800	
FECAL COLIFORM RANGE	1.0×10^{6}		
(/100 ml)	2.3×10^9	36-600	
CALCIUM MAGNESIUM ALKALINITY (CaCO ₃) SILICA (SiO ₂) RESIDUAL CHLORINE RANGE TOTAL COLIFORM RANGE (/100 m&) FECAL COLIFORM RANGE		7 10 56 61	13 -11

^{*}All units in mg/ ℓ unless noted otherwise. †16-hr composite samples.

TABLE B-1. CONTINUED

26	AUGUST 1974†		
CONSTITUENT*	RAW SEWAGE	CHLORINATED EFFLUENT	CONSTITUENT REDUCTION (%)
FECAL STREPTOCOCCUS RANGE (/100 ml)	$1.0 \times 10^6 - 1.0 \times 10^8$	2-58	
13	JANUARY 1975 [†]		
pH RANGE CONDUCTIVITY RANGE (µmhos/cm) DISSOLVED OXYGEN RANGE OXYGEN-REDUCTION POTENTIAL	6.7-8.1 460-700 0	6.4-7.0 440-540 2.7-3.4	
RANGE (mv) SUSPENDED SOLIDS TOTAL DISSOLVED SOLIDS TOTAL VOLATILE SOLIDS VOLATILE SUSPENDED SOLIDS BOD ₅	(-230) - (+75) 159 411 252 135 241	150-285 6 333 65 3 12	96 19 74 98 95
CHLORIDE SULFATE MBAS RANGE TOTAL KJELDAHL NITROGEN NO ₂ + NO ₃ NITROGEN	48 76 1.5-19.0 36.4 0.02	55 33 0.3-0.9 13.9 3.62	-15 57 62 18000
TOTAL NITROGEN ORTHOPHOSPHATE PHOSPHORUS SODIUM POTASSIUM CALCIUM	36.42 15.9 50 10.0	17.52 13.5 55 9.2	52 15 -10 8 -10
MAGNESIUM ALKALINITY (CaCO ₃) SILICA (SiO ₂) RESIDUAL CHLORINE RANGE TOTAL COLIFORM RANGE	6.6 52 84 1.3 × 10 ⁷ -	7.9 60 81 0.7-3.0	-20 -15 3.6
(/100 ml) FECAL COLIFORM RANGE (/100 ml) FECAL STREPTOCOCCUS RANGE (/100 ml)	1.3 × 10 ⁹ 2.4 × 10 ⁶ 1.0 × 10 ⁸ 3.0 × 10 ⁵ 4.0 × 10 ⁸	52-650 0-260 0-62	 ,

^{*}All units in mg/ ℓ unless noted otherwise. †16-hr composite samples.

TABLE B-2. PESTICIDE ANALYSES OF RAW SEWAGE AND UNCHLORINATED SECONDARY EFFLUENT, MILILANI STP

					SAMPLII	NG DATE				
PESTICIDE	22-23 0 raw	CT 1971 ¹ eff1.	9 AUG raw	1972 ² effl.	raw	1973 ² effl.	26 AUG raw	1974 ² effl.	13 JAN raw	1975 ² eff1.
					mg,	/L				
LINDANE	0.000295	0.000032	0.000180	0.000146	0.000176	0.000024	0.000131	0.000075	0.000160	0.000120
HEPTACHLOR		~- .	ND	ND	ND	ND	ND	ND	ND	ND
HEPTACHLOR EPOXIDE			ND	ND	ND	ND	ND	ND	ND	ND
ALDRIN			ND	ND	ND	ND	ND	ND	NĐ	ND
DIELDRIN	0.000051	0.000017	0.000054	0.000020	0.000019	0.000013	0.000032	0.000022	0.000015	0.000010
DDE			ND	ND	ND	ND	ND	ND	ND	ND
DDD	0.000042	0.000008	ND	ND	ND	ND	ND	ND	0.000011	ND
DDT	0.000003	0.000002	0.000010	0.000010	0.000014	0.000008	0.000025	0.000006	0.000018	0.000010
α CHLORDANE	0.000013	0.000006	ND	ND	ND ³	0.000018	0.000081	0.000014	0.000038	0.000100
γ CHLORDANE	0.000025	0.000004	ND	ND	ND ³	0.000010	0.000035	0.000006	0.000021	0.000050
PCP	0.003245	0.000730	0.002360	0.000910	0.000592	0.000672	0.001060	0.001590	0.000600	0.000300
PCB					0.0002204	0.0000404	ND	ND		
MIREX					ND	ND				"

NOTE: ND = nondetectable.

 ²⁴⁻hr composite sample.
 16-hr composite sample
 May have been present but undetected due to interfering peaks.
 4 Arochlor (Mansato compound polychlorinated biphenol) 1254 detected.

TABLE B-3. HEAVY METAL ANALYSES OF RAW SEWAGE AND UNCHLORINATED SECONDARY EFFLUENT, MILILANI STP

			SAMPLING	DATE		
HEAVY METAL	22-23 00 raw	CT 1971 ¹ eff1.	2 OCT raw mg/	effl.	l3 J raw	AN 1975 ² effl.
CADMIUM	0.004	0.005	ND	ND	ND	ND
LEAD	0.028	0.047	0.003	ND		
MERCURY	ND 3.	ND ³	ND ³	ND ³	ND	ND
COPPER			0.021	0.010	ND	0.00024
ZINC			0.025	0.027	ND	0.0037
NICKEL			0.015	0.015	ND	0.0065
IRON			0.432	0.164		
ALUMINUM			0.592	0.532		
CHROMIUM					ND	ND

NOTE: ND = nondetectable.

¹ 24-hr composite sample. ² 16-hr composite sample. ³ Nondetectable below 0.003 mg/l.

TABLE B-4. PERCOLATE ANALYSES FROM GRASS-SOD LYSIMETER WITH REPLACED SOIL, MILILANI STP

		COND. @	TOTAL					ROGEN a	s N											FORM
DATE	TDS mg/l	25 C µmhos/ cm	HARD-	ss 	BOD 5	тос	KJEL- DAHL	NO ₂ + NO ₃		PO ₄ -P		Na 	К	C1	50 ₄	SiO ₂	В	GREASE		TOTAL 100ml
(1972)																				
JAN 7						6.2	0	10.8	10.8		 	55	2.5	110	50	44	0.0			
JAN 10						4.2	0	10.5	10.5		 	55	2.5	84	50	44	0.0			
JAN 13 JAN 18						3.4	0	9.8	9.8		 	85 61	2.3	88	43 . 38	38 30	0.0			
JAN 20						3.3 3.3	0	5.9 6.1	5.9 6.1		 ,	61	2.3 2.1		34	25	0.0			
JAN 24						3.3	0	10.2	10.2		 	56	2.0		30	32	0.1	•		
JAN 25	512	<u></u>		9	1.8	2.9	. 0	11.1	11.1		 	- 53	2.7	141	31	30	0.0			
JAN 26						3.4	0	11.7	11.7		 	65	2.6		31	14	0.0			
JAN 27						6.0	0	12.2	12.2		 	60	2.8		32	32	0.0			
JAN 28						7:0	0	12.0	12.0		 	59	2.8		31	18	0.1			
FEB 1						11.0	0	11.3	11.3		 	60	2.8		31	20		02 11.2	0	0
FEB 3						11.0	0	11.3	11.3		 	61	3.0		34	22	0.0			
FEB 4						12.5	0	11.5	11.5		 	65	3.4		33	18	0.1	12 15.2		
FEB 7						8.0	0	11.7	11.7		 	60	2.9		30	19	0.0	o7		
FEB 10	475			6	1.7	10.0	0	11.3	11.3		 	61	3.0	175	30	18	0.0	5.1		
FEB 23						9.0	0	11.7	11.7		 	56	2.9		28	19	0.0	04 2.0		
FEB 24						6.5	0	11.1	11.1		 	58	2.6		36	18	0.0	07 2.0		
FEB 25					_	5.5	0	11.3	11.3		 	58	2.6		36	21	0.0	07 2.0		
FEB 28	690			14	1.0	6.5	0	11.3	11.3		 	53	3.0	185	30	18	0.0	0.8		
FEB 29											 								0	0
MAR 3						4.5	0	11.7	11.7		 	53	2.9		30	21	0.0	3.2		
MAR 7						3.0	0 -	11.7	11.7		 	56	2.0		32	20	0.0	5 3.8		
MAR 9	648			2	0.1	5.5	0.2	11.5	11.7	0.04	 	56	2.9	180	30	19	0.0	03 6.6		
MAR 14											 								0	0
MAR 16		 -				12.5	0	13.1	13.1		 	56	2.3		40	16	0.0	02		
MAR 23	720			2	0.2	7.5	0	10.5	10.5	0.03	 	25	3.0	175	42	23	0.3	12 0.5		

TABLE B-4--CONTINUED

DATE	TDS	COND. @ 25°C umhos/	TOTAL HARD- NESS	SS	BOD ₅	TOC	NITE KJEL - DAHL	NO ₂ +		PO ₄ -P	Ca	Mg×	Na	к	Cl	SO.,	SiO ₂	В	GREASE	COLI FECAL	FORM TOTAL
	mg/ℓ							-		m	g/l -									no./	100ml
MAR 29																				0	0
APR 3						7.5	0	8.1	8.1				51	2.9		38	34	0.07	0		
APR 6	620			6	0.9	6.4	0	6.6	6.6	0.04			58	3.1	170	46	25	0.04	2.2		
APR 13						9.0	0	6.6	6.6				33	2,5		42	26	0.01	0		
APR 14						4.2	0	6.7	6.7				53	2.1		42	20	0.04	0		
APR 15						5.6	0	6.6	6.6				49	1.6		42	12	0.09	0		
APR 17	390			2	0.4	2.9	0	3.2	3.2	0.02			54	2.2	113	57	19	0.05	4.9		
APR 18																				0,	0
APR 20	620		_	6	0.9	6.0	0.2	2.3	2.5	0.04			47	2.2	170	65	12	0.05	7.3		
APR 25						2.5	0	1.4	1.4				55	2.5		63	25	0.12	5.7		
APR 27						9.4	0.1	1.4	1.5				43	2.1		63	24	0.06	0.7		
APR 28						7.5	0	1.4	1.4			·	45	1.6	<u></u> -	65	17	0.09	0.7		
MAY 2																				0	0
MAY 4	390			4	0.2	4.0	0.1	1.2	1.3	0.02			44	2.8	82	63	32	0.09	9.6		
MAY 5						7.5	0	0.9	0.9				41	1.8		64	16	0.09	3.2		
MAY 11						10.0	0	1.0	1.0				45	2.4		62	19	0.09	1.7		
JUN 7		380	198			5.0	0.1	0.2	0.3		40	24	51	2.1	56	72	16	0.05	5.8		
JUN 9		320	137			9.0	0	0.2	0.2		30	15	46	2.0	56	58	19	0.05	7.5		
JUN 13		340	142			7.5	0.1	0.1	0.2		32	15	45	1.8	50	. 68	19	0.05	5.8		
JUN 15		345	167			5.5	0.1	0.1	0.2		31	22	46	2.0	50	80	21	0.02	3.3		
JUN 16	226	350	140	8	1.0	14.0	0.2	0.4	0.6	0.01	32	15	44	1.6	50	64	16	0.09	1.0		
JUN 22		330	138			2.5	0	1.0	1.0		30	16	45	2.0	42	78	20	0.05	0.6		
JUN 27																	<u>-</u>			0	0
JUN 30		450	148			2.0	0	0.2	0.2		32	17	46	1.2	40	75	20	0.10	0.2		
JUL 3		450	190			3.5	0.9	0.2	1.1		35	26	45	2.0	46	78	23				
JUL 13	431	390	190	13	1.7	3.5	0.1	0.1	0.2	0.02	40	32	52	1.8	41	66	14				
JUL 17		420	132			2.5	0.1	0.1	0.2		31	13	52	2.0	43	72	25				

NOTE: LEACHATE COLLECTED BY PUMPING FROM THE BOTTOM OF THE LYSIMETER.

^{*} CALCULATED BY THE EQUIVALENT WEIGHT DIFFERENCE BETWEEN TOTAL HARDNESS AND CALCIUM.

TABLE B-4--CONTINUED

			COND. @	TOTAL H A RD-				NIT KJEL-	ROGEN a												TOTAL	COLI	
DATE	рН	TDS mg/l̂	µmhos/	NESS	SS 	BOD 5		DAHL	NO ₃		PO ₄ -P		Mg /ℓ -	Na ———	К 	C1		SiO₂ 	В 	GREASE	C		TOTAL
(1972) JUL 21	6.8		380	160			2.5	0.05	0.01	0.06		34	18	53	2.2	42	62	24					
JUL 24	7.0		400	156			1.5	0.08		0.10		33	18	52	2.1	42	64	22					
JUL 27	7.3	359	420	138	19		2.0	0.10		0.11	0.02	30	15	52	2.0	42	63	23				⁰ (7/	0
JUL 31	6.6		430	164		>1	2.0		0.01			35	19	53	2.3	44	62	27					26)
AUG 2	6.6		480	154				0.05	0.01			32	18	44	2.0	43	76	25					
AUG 15	7.1		400	192				0.04	0.01	0.05		44	20	50	2.2		77	24					
AUG 16	7.1		390	178			1.5	0.02	0.01			36	21			40	80					0	0
AUG 17	7.1		400	184			1.5	0.01	0.01	0.02		37	22			41	80						
AUG 22	7.0		400	180				0.01	<0.01	0.02		38	21	55	2.0	42	84	28			21		
SEP 8	7.0		400	176			2.0	0.01	<0.01	0.02		35	22	53	2.0	43	84	29			20		
SEP 11	6.9		400	178			2.0	0.01	<0.01	0.02		35	22	53	2.3	41	84	30					
SEP 18	7.0		480	145			2.0	0.01	<0.01	0.02	·	31	19	52	2.0	42	84	29					
SEP 19	7.0		400	160				0.01	<0.01	0.02		30	21	52	2.2	42	85	28					
SEP 20	7.0		420	170				0.01	<0.01	0.02		31	22	53	2.0	42	80	27		·			·
SEP 21	7.2		400	175			3.0	0.01	<0.01	0.02		32	23	52	2.0	40	87	26		,			
SEP 22	7.1		380	175				0.01	<0.01	0.02		32	23	52	1.9	41	83	26					
SEP 25	7.1		480	180				0.01	<0.01	0.02		35	22	51	1.8	41	83	23					
SEP 28	7.1	330	390	178	3	>1		0.01	<0.01	0.02	0.04	33	23	52	1.7	41	85	22			18		
OCT 4	7.1		410	175				0.01	0.01	0.02		31	24	53	1.6	44	84	21				0	0
OCT 5	7.0		450	151				0.01	0.01	0.02		27	20	53	1.6	47	75	17					
ост 6	7.0		400	121				0.01	0.01	0.02		26	14	52	1.1	52	82	17					
OCT 12	6.9	349	480	84	1	>1		0.01	0.04	0.05	0.02	26	5	56	1.4	. 68	75	15			21		
OCT 16	6.9		380	113				0.01	0.03	0.04		29	10			70	78	18					
OCT 18	6.9		350					0.01	0.05	0.06		31		56	1.5		80	20					
OCT 24	7.0		450	108					0.12			31	7	56	1.5	76	68	20					
OCT 26	6.9		420	106			3.0	0.05	0.14	0.19		28	9	56	1.4	83	75	16			15		
OCT 29	7.0		450	106				0.05	0.02	0.07		28	9.	57	1.4	83	72	18					
OCT 30	7.0		500	103				0.07				28	8	60	1.3	87	68	15					
NOV 2	7.2		500	103				0.07	0.02	0.09		27	9	70	1.4	85	75	15					
NOV 6	7.4		520	106		- -		0.07	0.00	0.07		28	9	78	1.4	89	75	18					

TABLE B-4--CONTINUED

DATE	рН	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS	SS	BOD ₅		NITI KJEL- DAHL	ROGEN a NO ₂ + NO ₃		PO ₄ -P		Mg ∕‱	Na 	K	C1	50 ₄	S10 ₂	В	GREASE	TOTAL C	COLIFORM FECAL TOTAL no./100ml
NOV 8	7.7		540	108			1.0		0.00			28	9	77	1.5	86	75	15			20	
NOV 9	7.5		540	110			4.0	0.07	0.00	0.07		28	10	78	1.5	86	75	15			14	
NOV 13	7.4		520	108				0.00	0.01	0.01		27	10	80	1.7	85	72	18				
NOV 16	7.8	346	470	132	2	1	1.5	0.00	0.04	0.04	0.01	27	16	78	1.7	86	.71	16			10	0(11/14)0
NOV 20	7.4		470	137				0.00	0.01	0.01		28	16	78	1.7	74	73	17				_{€11/18} 9
NOV 22	6.8		500	135				0.00				28	16	77	1.6	75	73	17		+-		
NOV 27	6.8		520					0.00	0.01	0.01												
NOV 29	7.5		480	118				0.00	0.00	0.00		25	13	52	1.0	75	77	15			7-	
NOV 30	7.9		420	120				0.00	0.01	0.01		25	14	51	1.0	72	77	15				'
DEC 1	6.8		420				1.0	0.00	0.01	0.01				51	1.2	70					13	
DEC 4	7.2		450	120				0.00	0.00	0.00		25	14	50	1.0	70	80	15				
DEC 5	7.2		400	118				0.00	0.00	0.00		24	14	51	1.0	69	80	15				
DEC 13	7.4		400	120					0.00			24	15	51	1.0	67	77	18				⁰ (12/12) ⁰
DEC 18	7.1		420	115					0.01			22	15	47	1.0	61	80	12				
DEC 20			400	108					0.01			20	14	48	1.2	60	80	14				
DEC 21		329	400	108	1	<1	1.0		0.01		0.04	20	14	46	1.2	57	77	13			18	
DEC 26	7.1		420	110				0.00	0.01	0.01		21	14	47	1.0	57	75	13				
(1973) JAN 8	7.0		460	127				0.00	0.00	0.00		28	14	47	1.0	54	77	18				
JAN 11	7.0	311	470	113	3	<1	3.0	0.00	0.00	0.00	0.01	21	15	51	1.0	53	75	20			20	
JAN 15	6.8		500	106			2.0	0.01	>0.00			23	12	52	1.2	48	70	18			20	79
JAN 24	7.2		320	86			1.0	0.06	0.01	0.07		19	9	48	1.2	44	75	13			18	$\frac{79}{(1/16)^{79}}$
FEB 1	7.2	262	380	89	2	1.3	2.0	0.06	0.01	0.07	0.02	20	9	42	1.2	46	60	23			18	(1/30) ¹⁴
FEB 8	7.0		380	93				>0.01		>0.04		22	9	43	1.0	49	48	20				
FEB 13	7.1		360	95				>0.01		>0.02		22	10	45	1.0	51	48	22				0(2/13) ²³
FEB 21	7.1		380	98			2.0	0.01	0.01			21	11	42	0.8	43	53	20			20	$\frac{(2/13)}{(2/27)}^0$
MAR 1	7.0		400	79				0.01	0.01			20	7	48	1.0	45	68	24				(2/2/)
MAR 7	6.8	268	400	87	<1	0.6	<1.0	0.01	<0.01	<0.02	0.0	20	9	47	1.0	47	65	31			20	
MAR 13	6.8		420	75				0.01	0.01	0.02		20	6	47	1.0	46	70	33				
MAR 22	7.0		400	7 5			<1.0	<0.01	<0.01	<0.02		21	6	42	0.6		75	15			19	(3/27) ⁰
MAR 29	6.9		380	67				<0.01	<0.01	<0.02		22	3	43	0.6		72	10				(3/2/)

TABLE B-4--CONTINUED

			COND. @	TOTAL					ROGEN a	s N											TOTAL	COLIF)RM
DATE	pН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	SS 	BOD 5	TOC	KJEL- DAHL	NO ₃		PO ₄ -P		Mg /l _	Na 	K	Cl		SiO ₂	В	GREASE	TOTAL C	FECAL 1	
(1973)												-											
APR 5	6.9		380	67			<1.0	<0.01	<0.01	<0.02	_	22	3	42	0.8		70	12			20	⁰ (4/:	10) ²
APR 12	6.9		360	82			<1.0	<0.01	0.01	<0.02		24	2	45	1.2		72	13			18		_
APR 17	6.9		380	96				· 	1.63			34	3	45	1.3		58	14					_
APR 24	6.9		360	75					0.01			20	6	46	1.0		65	14					-
APR 26	7.0		370	80				<0.01	<0.01	<0.02		23	5	45	1.0		65	14					-
4AY 3	6.9		360	67			 .		<0.01			24	2	45	0.7	65	71	11					-
MAY 8	7.0		360	106				<0.01	<0.01	<0.02		24	11	45	0.8	63	72	12					-
MAY 16	6.9		320	116		,		<0.01	0.02	<0.01		24	14	41	0.8		70	13					-
MAY 23	7.0		350	106			1.0	0.00	0.01	0.02	 .	24	11	45	0.8	60	68	10			21		-
MAY 30	7.0		400	106				0.00	0.05	0.05		24	11	45	0.6	60		11					
JUN 6	6.9		400	106					0.01		0.15	19	14										
JUN 12	6.9		400	130				 '	0.01			21	19	45	0.5								
JUL 8	7.0	210	 .	76				ND	0.01	0.01	0.274	14	10	58	0.7		79	15					
JUL 15	7.1	274		32				0.01	0.03	0.04	0.075	14	0	54	0.7		80						
JUL 18									0.01									14					
JUL 22						-			0.00														
AUG 4	7.2								0.01														
AUG 6	7.1								0.01		· 												
AUG 7	6.5	540						0.50	0.02	0.52	0.04	14		46	8.7	81	49	20		-,-			
AUG 13	6.4	502	 .					1.08	0.02	1.10	0.04	8		41	5.0	56	58	20					
AUG 21	6.5	238	400	120				0.09	0.87	0.96		31.	10	48	1.0	83	75						
AUG 22∺									0.04		- -												
AUG 23∺									ND														
AUG 24									ND														
AUG 27	7.7			115					0.03	0.03	0.04	30	10				1	15					
SEP 6	6.9			130					0.03	0.03	0.04	29	14	49	1.0		79	20				⁰ (9/	د ۲
SEP 22	6.6			135					ND	ND	0.05	28	15	50	0.5		78	20					,,
SEP 26	6.5			125					ND	ND	0.04	27	14	50	0.6		53	17					
OCT 1	6.5	264	- -	130					ND	ND	0.03	28	15	49	0.4	70	79	18					
OCT 2	6.4	256		125					ND	ND	0.04	27	14	49	0.3	73	75	16					

TABLE B-4--CONTINUED

			COND. @	TOTAL					ROGEN a												TOTA:	COLI	FORM
DATE	pН	TDS	25°C µmhos/	HARD- NESS	33	BOD ₅		KJEL DAHL	NO ₂	TOTAL			_	Na	K	Cl		5102	В	GREASE	TOTAL C	FECAL	
		mg/l	СM									_ mg	/l -									no./	1 00m
(1973)																				•			
OCT 4	6.6	216	370	125					ND	ND	0.03	26	15	50	0.4	73	58	17					
OCT 9	6.7	264	400	135			***	0.14	0.01	0.15	0.01	19	21	54	0.4	73	79	20					
OCT 10×		260	360	125				0.21	0.01	0.22	0.04	19	19	51	ND	73	8,0	17					
OCT 10	6.2	284	360	128				0.26	0.01	0.27		19	20	54	ND -	73	59	18					
OCT 11	6.2	250	360	125				0.15	0.01	0.16	0.01	19	19	54	ND	73	74	15					
OCT 12	6.6	254	330	130				0.17	0.01	0.18	0.03	19	20	52	ND	75	74	14					
OCT 12	6.3	268	375	125				0.21	0.01	0.22	ND	19	19	54	0.4	73	77	15				·	
OCT 15	6.8	252	350	128				0.10	ND	0.10	0.02	19	20	52	0.4	75	71	17					
OCT 16	6.8	258		130	'			0.09	ND	0.09	0.01	19	20	52	0.7	75	78	15					
OCT 18	6.7	270	335	136				0.49	0.01	0.50	0.01					75	67	17		·			
OCT 19	6.7	814		128				0.22	0.01	0.23	0.01	19	20	51	0.7	75	68	15					
OCT 25	6.7	226	360	128				0.19	0.03	0.22	0.03	19	20	52	0.7	75	66	18					
VOV 2	6.6	240	385	124				0.45	ND	0.45	0.03	13	22	48	0.6	75	71	18					
1 0V 5	6.6	239	390	132				0.46	ND	0.46	0.02	13	24	52	0.8	78	72	19					
10V 6	6.7	224	370	120				0.47	ND	0.47	0.02	12	22	48	0.8	78	68	17					
40V 7	7.0	450	380	124				0.37	ND	0.37	0.02	16	21	51	1.1	75	72	15					
VOV 9	6.9	400	355	132				ND	0.01	0.01	0.02	15	23	48	0.8	75	66	16					
VOV 12	6.9	390	370	116				ND	0.01	0.01	0.02	12	21	52	0.8	75	69	14					
VOV 14	7.0	260	420	116				ND	0.01	0.01	1.00	16	19	47	0.6		69	15					
VOV 16	7.1	280	400	127				ND	ND	ND	0.02	15	22	48	0.8	53	66	17					
VOV 20	6.8	290	400	128				ND	ND	ND	0.16	12	24	48	0.5	55	54	14					
NOV 21	7.1	280	335	100				ND	ND	ND	0.13	12	17	48	0.9	73	72	12					
NOV 23	6.8		360	128				ND	0.01	0.01	0.23	16	22	48	0.6	75	70	15					
NOV 26	6.9	360	395	112				ND	ND	ND	0.05	12	20	48	0.5	70	73		. 				
VOV 28	7.1	316	400	112				ND	0.01	0.01	0.04	13	19	47	0.5	48	62						
10V 29	6.8	320	400	102				ND	ND	ND	ND	17	15	46	0.6	45	72						
DEC 3	6.9	294	370	87				ND	ND	ND	ND.	16	11	31	0.4	53	68	14					
DEC 5	6.6	280	360	82				ND	ND	ND	ND	9	15	22	0.2	50	70	13					
DEC 6	7.2	300	340	87				ND	ND	ND	0.03	10	15	30	0.4	50	69	11					
DEC 7	7.0	274	315	82 .				ND	ND	ND	ND	9	15	17	0.2	45	67	11		·			

TABLE B-4--CONTINUED

DATE	рΗ	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS	BOD ₅	TOC	KJEL- DAHL	GEN as NO₂+ NO₃	TOTAL	PO ₄ -P			Na	K	C1		SiO ₂		TOTAL C	FECAL no./1	TOTAL
DEC 10	7.4	280	360	87	 		ND	ND	ND	ND		15	17	0.2	45	73	12	 			
DEC 11	6.9	250	350	82	 		ND	ND	ND	ND		13	19	0.2	48	68	13	 			
DEC 12	6.8	260	240	87	 		ND	ND	ND	ND	13	13	31	0.2	45	67	13	 			
DEC 19	6.6	270	255	87	 		ND	6.97	6.97	ND	11	15	49	0.4	44	. 73	12	 			
DEC 20	6.9	228	375	82	 		ND	ND	ND	ND	16	10	20	0.5	43	59	11	 			
DEC 22	6.7	270	350	82	 		ND	0.28	0.28	0.03	9	15	28	0.4	44	66	13	 			
DEC 24	7.1	250	305	76	 		ND	1.89	1.89	0.05	10	12	49	0.4	46	73	13	 			
DEC 28	6.8	140	380	82	 		0.15	ND	0.15	0.05	16	10	49	0.5	46	62	14	 			
DEC 31	6.8	190	370	76	 		0.08	ND	0.08	0.08	14	10	49	0.7	44	72	14	 			
(1974)																	,				
JAN 2	6.8	150		82	 		ND	ND	ND	0.06	16	10	24	0.5	46	80	12	 			
IAN 3	6.5	274	300	87	 		ND	0.21	0.21	0.05				~-	45	80	10	 			-
JAN 4	7.2	262		82	 		ND	0.01	0.01	0.05	11	13	24	0.5	48	75	9	 			_
IAN 7	7.4	262		87	 		ND __	0.04	0.04	0.15	9	16	48	0.4	48	75	11	 			-
JAN 14	7.2	234	385	76	 		ND	ND .	ND	ND	14	10	52	0.5	48	64	12	 			-
IAN 16	7.1	160	380	71	 		0.04	ND	0.04	ND	14	9	50	0.4	52	65	13	 			-
AN 18	6.6	244	390	66	 		0.12	ND	0.12	ND	15	7	49	0.5	50	66	12	 			-
JAN 21	6.9	256	390	76	 		ND	ND	ND	ND	11	12	59	0.5	50	69	. 12	 			-
IAN 22	6.9	220	370	76	 		ND	ND	ND	ND	14	10	49	0.4	50	60	11	 			-
JAN 23	6.9	202	375	61	 		ND	ND	ND	ND	14	6	49	0.7	52	63	11	 			
JAN 24	6.9	266	395	66	 		ND	ND	ND	ND	15	7	50	0.5	50	59	12	 			-
AN 28	6.8	250	400	66	 		ND	ND	ND	ND	12	9	52	0.5	50	64	12	 			-
IAN 31	6.8	244	385	71	 		ND	ND	ND	ND	12	10	49	0.5	48	62	13	 			_
FEB 1	6.8	250	375	71	 		ND	0.01	0.01	ND	13	9	48	0.5	48	63	10	 	**-		_
EB 4	6.7	248	365	71	 		ND	0.01		ND	9	12	50	0.7	46	61	11	 	~~		-
EB 5	7.0	240	370	66	 		ND	0.01	0.01	ND	13	8	48	0.4	42	62	10	 			-
EB 11	6.7	88	365	76	 		0.05	0.01	0.06	ND	15	9	49	0.7	42	60					_
EB 12	6.9	132		68	 		ND	0.01	0.01	ND	16	7	50	0.7		60		 			-
EB 13	7.0	90		68	 		ND	0.01	0.01	ND	15	7	49	0.7		59		 			_
EB 14	6.9	56		70	 		ND	0.01	0.01	NĐ	14	9	48	0.5		65		 			-
EB 15	6.9	138	340	64	 		0.42	ND	0.42	ND	14	7	48	0.5		64		 			

TABLE B-4--CONTINUED

DATE	pН	TDS	COND.@ 25°C µmhos/ cm	TOTAL HARD- NESS	BOD ₅		KJEL- DAHL	NO ₂ + NO ₃	TOTAL	РО4-Р		-	Na	ĸ	C1		S 0	В	GREASE	TOTAL C	FECAL	FORM TOTAL 100ml
(1974)					 		····			 										·	· · · · · · · · · · · · · · · · · · ·	
FEB 19	6.8	206	340	68	 		ND	0.01	0.01	ND	16	7	46	0.4	32	76	12					
FEB 20	7.0		315	61	 		ND	NĐ	ND	NĐ	14	6	45	0.5	26	82	12					
FEB 22	6.9		335	66	 		ND	ND	ND	ND	13	8	45	0.5	26	76	11					
FEB 25	7.3		320	76	 	- -	ND	0.01	0.01	ND	12	11	43	0.5	22	80	12					
FEB 27	6.7		325	51	 		ND	0.01	0.01	ND	10	6	43	0.5	20	80	11					
MAR 8	7.0	224	325	76	 		ND	0.01	0.01	ND	14	10	45	0.4	22	76	14					
MAR 11	6.9		325	76	 		ND	0.01	0.01	ND	13	11	41	0.4	20	73	13					
MAR 13	6.6		310	68	 		ND	ND	ND	ND	13	9	41	0.4	22	74	12					
MAR 14	7.2		305	68	 		ND	ND	ND	ND	13	9	41	0.4	20	88	11					
MAR 19	7.5	200	325	72	 		0.06	ND	0.06	ND	13	10	43	0.4		75						
MAR 20	7.3	204	315	68	 		1.11	ND	1.11	0.03	13	9	43	0.4		78		<u></u> -				
MAR 21	7.2	206	300	68	 		0.49	0.01	0.50	0.02	13	9	43	0.4		78						
MAR 22		200	315	72	 		0.58	0.03	0.61	ND	13	10	41	0.4		66	10					
MAR 25	7.2	200	320	72	 		0.55	ND	0.55	0.01	14	9	43	0.5		74	12					
MAR 29	7.6	204	305	60	 		ND	0.01	0.01	0.01	14	6	48	0.4	22		13					
APR 1	7.2	224	310	72	 		0.42	ND.	0.42	0.01	13	10	41	0.4		82						
APR 2	7.0	184	315	72	 		ND	ND	ND	0.01	13	10	45	0.5	24	80						
APR 5	7.0	214	320	72	 		NĐ	ND	ND	0.01	13	10	45	0.5	20	85	13					
APR 8	6.9	212	330	64	 		ND	0.01	0.01	0.01	14	7	46	0.5	20	88	13					
APR 11	7.1	194	330	60	 		ND	0.01	0.01	0.01	14	6	46	0.5	22	75	13					
APR 12	7.3	190	325	60	 		ND	0.01	0.01	0.01	13	7	46	0.5	22	81	12		· 			
APR 15	6.9	202	340	64	 		0.08	ND	0.08	0.01	14	7	46	0.5	36	86	14					
APR 17	7.5	214	335	65	 		0.03	0.20	0.23	0.01	13	7	48	0.5	24	80	13					
APR 22		220	335	66	 		ND	ND	ND	0.01	14	7	48	0.4	24	75	14					
APR 25		200	345	68	 		0.06	0.01	0.61	0.01	15	8	48	0.4	22	77						
APR 29		200	355	64	 		0.03	0.01	0.04	0.01	15	7	50	0.6	34	78						
MAY 1		220	370 🗼	72	 					0.01	15	8	50	0.5		86						
MAY 2	6.7	190	355	68	 		0.07	ND	0.07	0.02	13	9	47	0.6	36	81	12					
MAY 3		200	355	68	 		0.16	ND	0.16	0.02	15	9	48	0.9		82		7.7			 '	
MAY 6		200	370	68	 			ND		0.01	15	7	50	0.5		86						

TABLE B-4--CONTINUED

DATE	pН	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS		BOD 5	тос	KJEL- DAHL	NO ₂ + NO ₃	TOTAL	PO ₄ -P			Na 	К			SiO₂	GREASE	TOTAL C	FECAL no./1	TOTAL
MAY 8		218	370	72			- <u>-</u>		0.01		0.01	15	8	51	0.5		73		 			
MAY 13		204	380	76					0.01		0.01	16	9	53			83		 			
MAY 17	6.9	214	380	84				0.04	0.01	0.05	0.01	14	12	54	0.6	40	79	15	 			
MAY 29	6.9	248	380	84				0.03	0.02	0.05	0.01	15	11	60	0.6	42	78	16	 			
JUN 3	7.0	202	400	80				0.04	0.00	0.04	0.01	14	11	52	0.6	42	88	16	 			
JUN 7	6.8	256	395	80				0.08	0.00	0.08	0.01	15	10	52	0.6		75	15	 			
JUN 12	6.8	236	400	84				0.13	0.02	0.15	0.01	15	11	54	0.6		65	15	 			
JUN 13	6.9	214	380	76				0.14	0.01	0.15	0.02	14	10	52	0.6		66	14	 			- ~
JUN 14	6.8	216	388	80				0.04	0.00	0.04	0.01	14	11	52	0.9		71	14	 			
JUN 15	6.7	204	380	80				0.07	0.00	0.07	0.01	12	12.	50	0.6		78	13	 			
JUN 20	6.8	224	400	84				0.02	0.00	0.02	0.02	15	11	52	0.6		71	16	 			
JUN 24	6.4	230	370	76				0.06	0.00	0.06	0.02	15	9	52	0.8		42	17	 			
JUN 26	6.6	234	350	76				ND			0.02	14	10	50	0.6		74		 			
JUN 28	6.4	220	360	72				0.01	0.02	0.03	0.03	14	9	54	0.5		76	15	 			
JUL 1	6.3	210	370	76				0.07	0.01	0.08	0.03	15	9	52	0.7		83	16	 			
JUL 2	6.5	210	360	72				0.04	0.01	0.05	0.03	14	9	52	0.7		77	16	 			
JUN 5	6.6	200	360	72				0.02	0.02	0.04	0.03	14	9	54	0.7		79	15	 			
JUN 10	6.6	310	365	72				0.03	0.03	0.06	0.02	14	9	52	0.7		74	14	 			
JUN 11	6.7	196	360	72				0.04	0.01	0.05	0.01	13	11	52	0.7		69	13	 			
AUG 7				80				ND	0.01	0.01	0.01	29	2	45	0.6	44		16	 			
AUG 14				94				ND	ND	ND	0.01	29	5	43	0.6	48		18	 			
AUG 15				88				0.32	ND	0.32	0.01	24	7	46	0.6	43		15	 			
AUG 16				88				ND	ND	ND	0.01	27	5	45	0.6	46		15	 			
AUG 18	-								0.01								 -	15	 			
AUG 21				90	·			0.11	ND	0.11	0.01	28	5	57	1.0	48		17	 			
AUG 22				86				ND	0.01	0.01	0.02	28	4	43	0.6	45		17	 			
AUG 26				90				0.12	0.01	0.01	0.02	29	4	56	0.8	46		18	 			
AUG 29				82				0.04	0.01	0.05	0.01	26	4	57	1.0	47		16	 			
SEP 3				80				0.13	0.01	0.14	0.01	28	2	58	1.0	49		17	 			
SEP 9				90				ND	0.01	0.01	0.02	30	4	50	0.8	52		17	 			-~
SEP 10				104				ND	0.06	0.06	0.01	30	7	53	0.4	49		14	 			

TABLE B-4--CONTINUED

			COND. @	TOTAL					OGEN a	5 N						_		-				COLI	FORM
DATE	pН	TDS	25°C μmhos/	HARD- NESS	SS	BOD ₅	TOC	KJEL- DAHL	NO ₂ +	TOTAL	PO4-P	Ca	Mg	Na	Κ	C1	SO 4	SiO ₂	В	GREASE	TOTAL C		TOTAL
		mg/l	cm									m	3/l _									no./1	100ml
(1974)																							
SEP 13				78				ND	0.01	0.01	0.04	26	3	48	0.8	53		15					
SEP 18				84				ND	0.01	0.01	0.01	31	2	54	0.6	54		15					
SEP 19	- - '		-	76				ND	ND	ND	0.01	29	1	52	0.7	53		14					
SEP 20				92				ND	0.01	0.01	0.01	26	7	48	0.7	54		14					
SEP 23				82			'	ND	0.01	0.01	0.01	34		53	0.5	57		14					
OCT 5				88				ND	ND	NED	0.01	30	3	56	1.0	61		17					
OCT 16				06				ND	0.01	0.01	0.02	32	4	60	1.1	61		18					
OCT 17				84					0.02		0.01	30	2	60	1.1	63		16					·
OCT 20				86					0.05		0.02	30	3	45	0.5	64		16					
OCT 28				92					0.01		ND	30	4	45	1.0	67		17					
NOV 7				108				ND	0.01	0.01	0.01	30	6	52	0.1	74		19					
NOV 18				104				ND	0.01	0.01	0.01	24	11	57	0.7	70		19					
NOV 22				98				ND	0.05	0.05		24	9	61	0.7	67		17					
NOV 27				98				ND	0.02	0.02		24	9	58	0.5	73		37					
DEC 6				102					0.04			25	10	59	0.6	71		18					
(1975)													_			•							
JAN 13				108								30	8	58	0.9	64							
JAN 14				90								27	6	60	1.0	63							
JAN 15			'	90								24	7	52	0.5	61							
JAN 16				86								26	5	52	0.6	60							
JAN 20				94					ND			24	8	60	0.6	61							
FEB 5				80					0.07			28	2	66	0.4	56							
FEB 7				78					0.01			24	4	54	0.5	51							

NOTE: LEACHATE COLLECTED BY PUMPING FROM THE BOTTOM OF THE LYSIMETER.

TABLE B-5. GRASS-SOD LYSIMETER WATER BALANCE

	RAIN- FALL ¹	APPLIED IRRIG. WATER ²		POTRANS- LATION ³	PERCO- LATE ⁴	TENSION centi-	PAN EVAPO- RATION ⁵
DATE		in.	in.	in./day*	in.	bar*	in./day*
							
1972			4.0		- 0-		
July	0.92	7.50	6.85	0.221	3.89	16	0.257
Aug .	1.00	2.40	5.05	0.168	1.60	16	0.255
Sept.	3.03	6.48	4.74	0.158	4.73	11	0.222
Oct.	3.56	15.51	3.94	0.127	12.21	6. 8	0.206
Nov.	2.42	9.47	3.59	0.120	2.65	14	0.141
Dec.	3.70	9.46	4.83	0.156	7.74	14	0.142
1973							
Jan.	1.01	15.82	6.51	0.210	4.55	5 7	0.185
Feb.	0.69	16.80	9.01	0.322	6.30		0.215
Mar.	1.84	19.12	8.22	0.265	10.15	11	0.238
Apr.	1-23	14.97	6.80	0.227	6.23	11	0.236
May	1.74	16.94	8.84	0.285	10.29	18	0.274
June	0.63	6.62	6.85	0.228	2.86	19	0.259
July	1.01	8.51	5.55	0.179	0.00	11	0.274
Aug.	0.97	17.45	5.78	0.186	10.57	10	0.264
Sept.	1.08	10.29	5.58	0.186	6.38	11	0.248
Oct. Nov.	2.74 3.42	7.65 12.43	5.23	0.169 0.152	7.29 10.89	9 7	0.234 0.146
Dec.	6.52	8.88	4.55 4.45	0.152	12.25	17	0.146
	0.52	0.00	4.45	0.144	12.25	17	0.166
<u> 1974</u>							
Jan.	9.47	5.55	2.68	0.086	14.56	8	0.172
Feb.	4.73	11.10	4.91	0.175	11.55	11	0.183
Mar.	6.31	4.99	4.33	0.140	8.26	14	
Apr.	4.61	9.07	5.68	0.189	7.40	25	
May	3.10	5.99	4.92	0.159	4.18	17	0.206
June	1.06	9.99	6.43	0.214	4.55	30	0.247
July	2.69	6.12	5.96	0.192	6.33	21	0.228
Aug.	0.34	11.39	5.90	0.190	4.06	21	0.231
Sept.	9.57	4.16	4.57	0.152	8.61	15	0.230
Oct.	3.06	5.80	4.69	0.151	5.46	24	0.183
Nov.	4.70	0.00	1.95	0.065	3.94	11	0.138
Dec.	1.31	1.40	2.58	0.083	1.16	17	0.156
1975	_						
Jan.	8.36	0.00	2.60	0.084	4.83	15	0.130
Feb.	6.43	0.00	3.13	0.112	3.15	7	0.161

NOTE: in. \times 2.54 = cm. ¹Absolute rainfall values measured at Mililani STP = 1.09 \times 8 in. (Std. 8-in. gage).

²Metered.

³Measured by a pressure gage attached to the lysimeter. ⁴Volume of water pumped from the bottom of the lysimeter.

⁵Standard U.S. Weather Bureau pan located in OSC Field No. 245. *Average.

TABLE B-6. COMPOSITE LEACHATE FROM CERAMIC POINT SAMPLERS IN OSC FIELD NO. 240 TEST PLOT IRRIGATION WITH SECONDARY SEWAGE EFFLUENT

DATE	POINT DEPTH in.	SAMPLER LOCA- TION	<u>P</u> H	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS	тос	NITI KJEL- DAHL	ROGEN a NO2+ NO3	TOTAL	P04- P	Ca	Mg [≭] mg/l	Na	K	СІ	5O ₄	SiO ₂	В	GREASE	as CaCO ₃	TOTAL COLI- FORM no./100ml
(1972)									<u> </u>													
JUNE 29	9 21 21 33	F† F _† R† R	7.0 7.0 7.2 7.0	 	380 460 440	225 223 264	4.5 3.5 4.0 3.5	 	5.0 4.0 0.2 2.2	 	 	48 47 	26 26 35	23 22 18 18	2.3 3.5 4.8 3.0	34 32 28 33	55 31 43 21	21 23 27 18	0.01 0.01 0.02 0.01		 	7-
JUNE 30	9 21 21 33	F F R R	6.9 6.9 7.0 7.1	 	320 350 360 400	 	4.0 3.5 4.5 4.0		2.3 1.3 0.3 0.4	 	 	48 48	 	18 22 18 17	4.0 2.0 5.6 2.3	28 26 25 28	38 17 50 31	30 23 29 24	0.02 0.01 0.02 0.02		 	
JULY 6	9 21 21 33	F R R	8.0 8.0 7.9 8.0	 	260 190 370 320	160 165 2 94 27 4	4.0 3.0 3.5 3.5	 	3.3 3.3 2.0 1.7	 		54 60 100 100	6 4 11 6	18 18 17 15	5.5 4.9 3.0 1.8	28 28 32 30	18 20 28 25	12 16 16 14	0.04 0.04 0.05 0.04		 	
JULY 7	9 21 9 21 33	F F R R	8.2 8.2 8.2 7.5 7.6		260 260 	180 186 245 270	4.0 4.0 3.0 4.5 3.5	 	2.3 1.6 4.5 0.2 0.6		 	60 74 80 80 100	7 1 11 5	13 17 13 18 14	6.1 5.8 11.8 3.5 1.8	26 24 58	20 22 23 23 8	15 18 15 13 8	0.02 0.03 0.03 0.03	 	 	
JULY 13	9 21 21 33	F F R	8.2 7.9 8.1 7.9	 	360 460 — 420	210 208 275 300	4.5 4.0 3.5 4.0	0.25 0	2.8 3.0 0.6 2.2	3.25 2.2		72 95 100 100	7 0 6 12	54 31 20 16	3.4 3.5 2.0 1.5	40 36 32	25 20 49 48	18 20 23 12		 	 	
JULY 14	9 21 21 33	F F R R	8.1 7.9 8.1 8.0	 	410 380 380	257 275 275 318	3.0 4.0 4.0 4.0		1.1 0.9 0.3 0.6	 	 	80 88 80 88	14 18 25 7	25 21 18 24	5.1 4.7 3.3 2.9	45 41 36 44	22 26 33 50	18 18 20 15	 	 		
JULY 20	9 21 21 33	F F R R	8.0 7.9 7.9 7.9	636 613 696 976	360 400 460 500	224 244 256 300	5.0 5.0 5.0 3.0	0.02 0.02 0.01 0.02	2.42 2.21 0.23 1.60	2.44 2.23 0.24 1.62		84 82 108 110	9 5 5 7	38 36 25 23	1.6 2.5 1.5 1.5	36 39 32 37	8 7 3 4	31 22 19 17	 	 	 	
JULY 21	9 21 21 33	F F R R	8.0 8.0 7.9 7.8	 	 	172 140 	4.0 5.0 4.0 4.0	 	1.28 0.72 0.18 0.38	 	 	54 40 	9 10 	37 34 22 20	1.8 1.5 1.7 0.7	35 40 30 35	 	26 18 21 13	 	 	 	
JULY 27	9 21 33	F F R	7.7 7.7 7.9	353 372	400 470 500	208 268 164	4.0 4.0 3.0	 	3.18 2.28 1.26		0.35 0.11 		5 7 1	39 17 36	2.0 1.0 2.0	42 42 36	21 20 	20 22 14		·		
JULY 28	9 21 21 33	F F R	8.0 7.9 8.0 7.8	 	500 520 500	204 244 275 300	4.0 4.0 3.0 3.0		1.47 1.06 0.25 0.29		 	64 88 92 95	11 6 11 15	32 28 20 17	1.3 1.7 1.0 1.1	38 38 27 38	21 31 	12 10 19 7	 	 	 	

TABLE B-6--CONTINUED

DATE	POINT DEPTH in.	SAMPLEF LOCA- TION	₹ pH	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS	тос	NITI KJEL- DAHL	NO ₂ +	TOTAL	P04- P	Ca	Mg∺ mg/l-		K	C1	50 ₄	SiO ₂	В	GREASE	ALK. as CaCO ₃	TOTAL COLI- FORM no./100ml
AUG 3	9 21 21 33	F R R	8.2 8.2 8.2 7.8	 	 	168 184 160 135	 	0.05 0.02 0.00 0.00	5.45 3.48 1.04 2.78	5.50 3.50 1.04 2.78	0.49 0.22 0.18 0.05	60 63 58 45	4 4 4 6	44 37 18 16	1.7 1.6 0.5 0.5	50 46 44 44	32 20 12 8	22 21 19 13	 	 	200 220 255 215	
AUG 4	9 21 21 33	F F R R	8.3 8.2 8.2 8.1	 	 			0.00 0.00 0.00 0.00	4.37 3.93 0.25 0.95	4.37 3.93 0.25 0.95	 		 	37 36 17 15	1.2 1.4 0.8 0.4	46 44 34 44	 14 7	22 21 18 16	 	 	197 212 150 320	
AUG 10	9 21 21 33	F F R R	8.1 7.9 8.1 8.1	 	440 400 400 420	136 184 120 108	 	0.07 0.01 0.01 0.00	5.60 4.87 1.40 2.84	5.67 4.88 1.41 2.84	0.93 0.31 0.03	50 64 45 37	3 6 2 4	43 40 18 16	2.2 1.7 0.6 0.5	50 47 48 48	28 19 12 8	28 22 21 14	 	 	180 212 160 190	, , ,
AUG 11	9 21 21 33	F F R R	8.2 8.2 8.2 8.3	 	 	 		0.01 0.00 0.00 0.00	4.40 4.52 0.53 1.97	4.41 4.52 0.53 1.97	0.05 		 		1.2 1.3 1.2 0.4	40 42 38 42	 	24 20 20 15	<u>-</u>	 	212 252 240 246	
AUG 17	9 21 21 33	F R R	7.9 7.9 8.1 8.1	 	400 370 480 500	162 184 168 308	12 9 8 9	0.22 0.03 0.01 0.00	4.68 4.15 2.84 4.03	4.90 4.18 2.85 4.03	0.18 0.15 0.02 0.04	59 62 60 110	4 7 4 8	45 41 18 18	2.0 1.5 0.6 0.8	48 50 53 52	26 21 18 14	24 20 15 12	 		190 206 280 260	101 113 117 144
AUG 24	9 21 21 33	F F R R	7.8 8.1 7.9 8.0	 	 	192 220 232 254	 	0.16 0.00 0.02 0.00	4.26 4.30 2.66 3.95	4.42 4.30 2.68 3.95	 	70 80 72 82	4 5 13 10	50 45 20 20	0.9 1.3 0.3 0.5	46 46 52 48	27 34 12 12	19 18 12 12		 	206 230 262 278	
AUG 25	9 21 21 33	F F R R	7.7 8.2 7.8 8.1	 	 		 	0.21 0.10 0.07 0.01	3.60 3.30 1.22 3.95	3.81 3.40 1.29 3.96	 	 	 	49 45 20 19	1.1 1.0 0.8 0.6	46 42 48 43	20 17 12 10	20 19 18 17	 	 	225 246 205 249	
SEPT 8	9 21 21 33	F F R R	8.0 7.9 7.8 8.0	358 397 446 456	380 420 420 460	220 150 250 345	12 12 10 6	0.45 0.03 0.01 0.00	3.75 4.25 2.75 5.45	4.20 4.28 2.76 5.45	 	70 48 74 114	11 7 16 15	47 47 26 21	2.9 1.2 0.8 0.5	40 38 51 54	23 20 14 15	29 16 13 10	<u></u>		 	84 112 153 140
SEPT 14	9 21 21 33	F F R R	7.5 7.9 8.0 7.9	388 415 404 459	430 440 550 600	170 200 335 335	10 9 7 6	0.59 0.19 0.01 0.00	3.78 3.45 2.02 5.52	 	 	56 70 110 113	7 6 15 13	52 48 23 21	2.5 1.4 0.6 0.5	45 45 50 54	28 23 18 18	24 19 12 11	 	 	 	106 108 143 145
SEPT 21	9 21 21 33	F F R	7.8 7.7 7.8 7.9	384 309 367	460 520 500 620	155 210 270 360	10 7 7 6	0.82 0.12 0.03 0.00	6.10 6.10 2.14 8.00	6.92 6.22 2.17 8.00	 	54 75 86 122	5 6 13 14	57 54 33 26	2.2 1.2 0.5 0.7	48 47 49 55	24 22 15 15	25 14 13 11	 			70 80 55 85
SEPT 28	9 21 21 33	F F R R	7.7 7.8 7.8 7.9	353 392 473	480 500 600 680	145 200 335 350	10 10 7 6	0.45 0.21 0.02 0.00	4.97 5.22 3.45 6.05	5.42 5.43 3.47 6.85	<u></u> <u></u>	50 68 110 118	5 7 15 13	54 57 29 30	2.3 1.5 0.5 0.5	48 50 53 56	26 24 20 22	30 20 13 10	 	 	 	

TABLE B-6--CONTINUED

DATE	POINT DEPTH in.	SAMPLER LOCA- TION	<u>p</u> H	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS	тос	NIT KJEL- DAHL	ROGEN a NO ₂ + NO ₃	TOTAL	PO ₄ -	Са	Mg∺ .mg/l_		к	-		SiO ₂	В	GREASE	ALK. as CaCO ₃	TOTAL COLI- FORM no./100ml
OCT 5	9 21 21 33	F F R	8.0 8.0 7.9 8.0	414 397 500	520 580 630	199 208 174 324	10 9 6 5	0.31 0.05 0.02 0.00	5.87 6.06 1.83 6.35	6.18 6.10 1.85 6.35	 	68 69 60 114	7 8 6 10	56 53 31 28	1.9 1.0 0.5 0.5	40 42 54 50	21 17 16 14	22 23 17 14		 	 	
OCT 12	9 21 21 33	F F R R	7.8 7.9 7.9 8.0	391 514 359	500 · 550 520	189 213 175 216	12 8 5 5	0.44 0.16 0.01 0.00	4.50 6.63 3.74 6.60	4.94 6.79 3.75 6.60	 	60 70 71	10 9 10	56 56 33 30	1.9 0.9 0.5 0.5	44 44 52 52	32 30 18 18	26 22 14 11	 	 	 	
OCT 19	9 21 21 33	F F R R	7.8 8.1 7.9 8.0	417 	500 540 550	182 206 180 208	11 8 5 4	0.19 0.08 0.01 0.00	800 8.10 4.17 6.15	8.19 8.18 4.18 6.15	 	64 68 61 78	6 9 7 3	57 56 38 35	1.7 1.0 0.5 0.5	48 48 58 54	27 21 17 14	23 22 13 11	 		 	
OCT 26	9 21 21 33	F F R R	7.8 7.7 7.8 7.9	 441	550 600 630 780	177 189 177 206	, , 	0.31 0.10 0.00 0.00	6.90 6.70 10.80 5.90	7.21 6.80 10.80 5.90	 	64 70 68	4 3 9	56 54 36 33	1.5 0.9 0.4 0.6	46 48 56 52	22 31 14 12	24 22 17 12		 	 	
NOV 2	9 21 21 33	F F R R	7.9 7.9 7.8 7.9	404 441 512	500 520 560 600	173 208 244 336	15 9 5 6	0.34 0.19 0.05 0.07	3.42 7.50 2.11 3.90	3.76 7.69 2.16 3.97		56 64 70 111	8 11 17 15	54 56 37 38	2.0 1.2 0.5 0.5	42 44 48 52	25 24 17 16	26 22 20 11	 	 	 	66 78 84 90
NOV 16	9 21 21 33	F F R R	7.8 7.7 7.8 7.9	401 431 497	500 500 550 600	184 203 226 328	5 5 3 3	1.40 0.48 0.05 0.00	5.30 9.30 10.40 9.70	6.70 9.78 10.45 9.70	 	58 68 72 91	10 8 11 13	72 75 58 53	2.7 1.0 0.5 0.7	40 44 48 52	28 25 18 18	25 18 15 11	 	 	 	52 55 70 79
NOV 30	9 21 21 33	F R R	8.0 8.0 8.1 8.0	423 399 600	480 490 550 600	190 199 304	12 8 5 5	0.05	11.20 14.90 14.50 12.10	12.00 15.05 14.55 12.11	 	57 62 100	12 11 13	55 58 40 41	2.3 0.9 0.8 0.8	48 64 59 57	30 28 20 17	77 49 38	 	 	 	55 58 71 78
DEC 27	9 21 21 33	F F R R	8.1 8.1 8.0 8.1	549 562 630	550 620 700	168 211 275	9 8 5	1.10 0.42 0.07 0.02	4.62 13.70 6.30 7.85	5.72 14.12 6.37 7.87	 	58 74 94	6 6 7	90 79 80	1.9 0.8 	100 85 117	31 28 18	28 18 14	 			
(1973)																						
JAN 11	9 21 21 33	F F R R	7.6 7.7 7.9 7.9		530 580 600 750	168 187 320 256	12 10 7 5	0.90 0.21 0.05 0.00	7.75 7.30 13.50 9.90	8.65 7.51 13.55 9.90		55 68 	8 4 	54 56 36 49	3.0 1.2 0.4 1.4	67 60 58 68	27 24 21 38	35 28 27 27	 	 	 	65 72 75 80
JAN 26	9 21 21 33	F F R R	7.7 7.8 8.0 8.1	376 350 	460 600 — 600	170 204 290	10 10 5 5	0.61 0.10 0.10 0.00	13.00 14.40 9.50 10.10	13.61 14.50 9.60 10.10	 	58 74 90	6 5 16	52 59 39 49	3.2 1.2 0.8 2.0	52 52 64	22 21 20	33 23 30 26	 	 	 	50 55 55 60

TABLE B-6--CONTINUED

DATE	POINT DEPTH in.	SAMPLER LOCA- TION	рН	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS	тос	NIT KJEL- DAHL	ROGEN a NO₂+ NO₃	TOTAL	PO4-	Ca	Mg∺ ∎g/l.		K	C1	SO ₄	SiO ₂	B 	GREASE	ALK. as CaCO ₃	TOTAL COLI- FORM no./100ml
FEB 15	9	F	7.7	400	500	180	11	0.21	10.10	10.31		59	8.1	48	3.5	50	30	34				
	21	F	7.8	386	480	192	8	0.10	9.72	9.82		69	4.6	53	1.0	52	21	30				
	21	R	7.8		520			0.05	4.30	4.35				41	1.0			34				
	33	R	8.0		600	204	4	0.01	5.30	5.31		68	8.3	35	2.0	54	17	39				
MAR 1	9	F	7.8	435	450	178	12	2.10	13.00	15.10		64	3.9	60	2.5	54	41	43				75
	21	F	7.7	471	500	202	11	1.10	14.60	15.70		76	2.9	72	0.5	58	15	23				70
	21	R	7.7			260	5	0.60	4.35	4.95		90	8.5	56	0.5	65		21				78
	33	R	7.8	485	620	250	6	0.05	8.65	8.70		96	2.4	57	1.5	60	38	13				85
APR 5	9	F	7.6	422	480	154	12	4.80	11.40	16.20		58	2.2	58	3.6	58	39	35				68
	21	F	7.6	466	520	192	7	1.10	10.80	11.90		72	2.9	70	1.5	62	40	21				70
APR 26	9	F	7.8		500	160	10	2.8				61		56	2.6	68	51	30				
	21	F	7.8		550	210	7	1.0				78		65	0.6	75	30	20				
MAY 10	9	F	7.3	420	450	190	10	1.50	6.20	7.70		66		59	2.2	70	31	35				85
	21	F	7.4	475	500	210	10	0.25	5.80	6.05	 -	81		67	0.8	68	20	25				80
JUNE 8	9	F	7.3						4.29			42		59	2.0	43						
	21	F	7.2						5.02			56		68	0.6	52						
	33	R	7.5																			

NOTE: DUE TO THE VARYING QUANTITY OF SAMPLE FOR EACH LOCATION, SAMPLES WERE GENERALLY COMPOSITED BY USING THE AVAILABLE INDIVIDUAL SAMPLE QUANTITY RATHER THAN FOLLOWING UNIFORM ALIQUOT ADDITIONS AT EACH SAMPLE DEPTH. (in. x 2.54 = cm.)

CALCULATED BY THE EQUIVALENT WEIGHT DIFFERENCE BETWEEN TOTAL HARDNESS AND CALCIUM.

LOCATED IN THE FURROW OF THE SUGARCANE FIELD.

LOCATED IN THE RIDGE OF THE SUGARCANE FIELD.

TABLE B-7. QUALITY CONSTITUENTS OF BARE SOIL LYSIMETER PERCOLATE

			COND. @	TOTAL	NIT	ROGEN a	s N		•						
DATE	pН	TDS	25°C µmhos/	HARD- NESS	NH3-N	NO2+ NO3	TOTAL	PO ₄ -P	Ca	Mg	Na	K	Cl	SO 4	5 i 0 ₂
		mg∕l	cm					mg	/l						
(1973)															
AUG 6	7.1	514	380	65	0.11	15.20	15.31	0.07	11	9	91	1.1	86	27	14
AUG 7	6.7	336	310	70	0.75	16.40	17.15	0.04	7	13	37	1.5	61	23	6
AUG 8	6.8	408	350	45	0.78	5.88	6.66	0.04	6	7	55	1.5	76	25	12
AUG 13	7.1	302	350	40	2.13	11.59	13.72	0.05	4	7	48	0.2	98	25	16
AUG 23	7.4	232	360	60	0.56	7.04	7.60		13	7	72	1.0	103	40	23
NOV 7	7.1		305		ND	0.46	.46	0.05	5		48	2.2	55		25
NOV 9	6.5	286	320	92	ND	9.78	9.78	0.05	5	19	57	1.9	58		24
NOV 12	6.6	314	300	88	ND	9.88	9.88	0.04	5	18	42	0.8	48	32	22
NOV 14	6.3	284	360	96	ND	9.05	9.05	0.03					50	32	20
NOV 16	6.3	308	300	92	ND	10.23	10.23	0.03					40	31	21
NOV 19	7.2	260	335	88	ND	7.92	7.92	0.15	6	18	39	1.2	43	33	22
NOV 20	7.0	296	315		ND	9.03	9.03	0.04	4	~	36	0.9	43	49	20
NOV 21	7.3		320	96	ND	11.47	11.47	0.14	11	17	30	0.9	53	35	20
NOV 23	6.8	374	310	120	ND	12.10	12.10	0.14	7	25	30	1.1	53	34	18
NOV 26	7.0	258	330	108	ND	12.36	12.36	0.03	9	21	30	0.9	50	34	21
NOV 28	7.1	320	320	104	ND	15.40	15.40	0.02	10	19	27	1.1	50	33	20
DEC 3	7.0	170	340	108	ND	15.40	15.40	0.05	13	18	27	0.9	43	36	16
DEC 5	6.4	244	345	100	ND	18.03	18.03	0.05	14	16	29	0.9	45	35	15
DEC 6	7.4	248	350	108	ND	18.04	18.04	0.05	14	18	32	1.1	45	28	15
DEC 7	7.1	290	345	100	ND	14.02	14.02	0.06	9	19	14	0.5	48	36	15
DEC 10	7.5	240	355	116	ND	19.38	19.38	0.14	17	18	32	1.1	43	35	16
DEC 11	6.7	280	340	100	0.03	14.01	14.04	0.05	18	13	56	2.2	48	28	16
DEC 12	6.9	220	345	100	ND	12.74	12.74	ND	14	16	33	1.1	45	28	16
DEC 17	7.1	284	360	128	ND ND	25.91	25.91	ND	14	23	28	1.1	42	47	
							20.34								15
DEC 18 DEC 19	7.2	372	350	120	0.06	20.28		ND ND	15	20	25	0.9	42	37 	14
	7.2	390	400	128	0.04	29.73	29.77	ND	16	21	22	0.9	40	33	14
DEC 20	6.7	424	460	158	0.06	27.34	27.40	ND ND	24	24	32	0.9	40	34	12
DEC 22	7.2	270	380	132	0.04	26.34	26.38	ND	23	18	31	1.5	42	35	14
DEC 24	7.2	270	380	170	0.06	13.55	13.61	ND	19	30	23	1.1	44	33	13
DEC 28	7.7	320	370	170	ND	23.84	23.84	ND	25	26	30	1.1	46	34	14
DEC 31	6.4	296	390	128	0.05	23.30	23.35	ND	25	16	30	1.1	46	50	12
(1974) JAN 2	6.5	412	380	132	0.10	26.21	26.31	ND	26	16	28	0.9	44	27	11
JAN 3	7.1	254	395	136	0.28	22.33	22.61	ND	27	17	29	1.3	45	33	10
JAN 4	7.3	284	380	124	0.13	21.82	21.95	ND	25	15	28	1.1	45		
JAN 7	7.5	256	360	124	0.10	20.10	20.20		24	16				35 35	11
JAN 11	7.5	244	345	132	0.10	22.22		0.10			30 20	1.3	45 1.6	35 76	12
							22.34	ND	25	17	28	1.1	46	36	12
JAN 14	7.3	296	430	132	ND 0. CO	23.99	23.99	ND	27	16	29	1.1	48	23	12
JAN 16	7.3	354	450	132	0.60	35.27	35.87	ND	27	16	28	1.1	48	24	13
JAN 18	6.5	254	450	120	0.35	22.53	22.88	ND 	27	13	29	1.1	48	26	13
JAN 21	6.7	326	445	120	ND	21.00	21.00	ND	25	14	28	1.1	50	26	14
APR 19		256	325	96	ND	11.74	11.75	0.039	16	14	20	1.3	32	15	7
APR 22		186	255	80	0.04	10.63	10.67	ND	13	12	14	1.3	24	19	9
APR 22				80	0.04	11.18	11.22		18	9	17	1.2	26		9
APR 25		150	240	84	0.06	12.71	12.77	0.062	12	13	14	1.3	20	18	
APR 29		194	250	76	0.07	14.14	14.21	ND	12	11	15	1.1	18	17	7
APR 30	6.3			80		13.99	,		9	8	21	12			
1AY 1	6.7	186	240	72	0.25	12.56	12.81	.0.042	11	15	13	0.9	20	14	13
4AY 2	6.8	186	245	76	ND	12.60	12.60	ND	14	10	13	13	26	15	8
MAY 3		210	245	80	ND	10.41	10.41	ND	13	12	13	13	24	17	8

TABLE B-7--CONTINUED

			COND. @	TOTAL	NIT	ROGEN a	s N								
DATE	рН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	NH3 –N	NO ₂ + NO ₃	TOTAL	PO4-P	Ca mg/l	Mg	Na	K	Cl	SO ₄	Sio
MAY (· ·			76	0.02	10.50	10.54	ND			17		04. 0	0.7	
MAY 6 MAY 9	6.7 6.7	214	240 360	76 88	ND	12.52 12.43	12.54 12.43	ND ND	12 15	11 12	13 28	1.1	24.0	23	8
MAY 10	6.9		300	80	0.03	9.92	9.95	ND	14	11		1.3	40.0	12	7
JUL 25	0.9				0.43	22.50	22.93	ND			19	1.3	40.0	13	- 8
JUL 30			330	110	ND	22.00	22.00	0.011	33 34		20	1.2	44.2		9.
JUL 31			310	112	ND	22.50	22.50	0.010	36	5	21	1.2	44.7		9
AUG 2		-	310	114	ND	23.00	23.00	0.033	36	6	24	1.2	46.4		9
AUG 5			310	106	ND	20.50	20.50	0.005	32	6	22	1.2	44.2		9
AUG 6			260	102	ND	17.00	17.00	0.010	30	7	19	1.2	38.4		8
AUG 7				108	ND	22.00	22.00	0.010	35	5	25	1.4			8
AUG 12			330 280										49.8		
				110	ND	18.50	18.50	0.005	31	8	21	1.2	42.4		9
AUG 15			320	104	ND 0 F0	21.50	21.50	0.006	31	6	26	1.4	48.5		
AUG 16			340	98	0.50	18.00	18.50	0.007	26	8	28	1.2	51.6		9
AUG 21			310	96	0.09	16.50	16.59	0.005	28	6	26	1.2	47.2		9
AUG 22			250	90	ND	15.00	15.00	0.008	30	4	17	1.2	38:3		9
AUG 23						20.50	20.50								8
AUG 26			300	97	0.02	17.50	17.52	0.006	28	7	25	1.2	47 2		9
AUG 29			310	97	0.02	18.00	18.02	0.003	27	7	26	1.2	47.2		9
SEP 3			310	93	0.06	17.50	17.56	0.003	28	6	27	1.2	47.7		9
SEP 9			430	132	NĐ	29.00	29.00	0.009	42	7	37	1.8	56.9		8
SEP 10			350	110	ND	19.50	19.50	0.007	30	9	29	1.3	42.5		9
SEP 13			400	120	ND	26.50	26.50	0.012	35	8	35	1.6	54.0		8
SEP 18			370	106	ND	23.00	23.00	0.006	47		34	1.4	48.2		. 8
SEP 19			420	116	ND	27.00	27.00	0.003	43	2	36	1.5	49.7		9
SEP 20			540	142	ND	35.00	35.00	0.007	42	9	40	2.2	50.6		8
SEP 23			540	130	ND	38.50	38.50	0.036	43	6	48	2.7	54.5		8
OCT 5			460	130	ND	31.00	31.00	0.007	36	10	46	2.3	54.0		8
OCT 9			430	118	0.22	27.00	27.22	0.003	35	7	38	2.2	47.9		8
OCT 10			460	132	0.28	32.50	32.88	0.003	36	10	40	2.2	50.7		2
OCT 14			440	140	ND	35.50	35.50	0.007	38	11	48	2.4	54.6		8
OCT 16			450	124	ND	30.00	30.00	0.004	38	7	47	2.2	51.7		9
OCT 17			450	114		30.00	30.00	0.005	38	5	49	2.3	51.7		9
OCT 21			450	114		27.50	27.50					0.9	47.9		9
OCT 28			470	116	ND	27.50	27.50	ND	30	10	35	1.7	50.7		9
NOV 4			400	92	ND	24.50	24.50	0.022	30	4	48	2.2	50.2		9
NOV 7			410	114	ND	24.00	24.00	0.008	31	9	39	1.0	48.3		9
NOV 18			370	106	ND	25.00	25.00	0.008			34	1.3	48.4		9
NOV 22			500	114	ND	27.50	27.50		27	11	45	1.3	51.3		7
NOV 26			400	118	ND	29.00	29.00	0.013	27	12	38	1.2	48.3		8
DEC 6			440	116		29.00			29	11	40	1.4	50.2		7
(1975)												•			
JAN 13				106					27	10	35	1.8	42.4		
JAN 13				74					17	8	26	2.1	30.2		
JAN 14				84					22	7	27	2.1	31.1		
JAN 15				106					29	8	36	2.1	38.7		
JAN 16				102					26	9	38	1.7	41.5		
JAN 20				104				ND	29	7	35	1.4	47.1		
EB 1				86				ND	28	4	32	1.4	33.0		
EB 3				84				ND	28	3	34	1.6	29.2		
EB 7				88				ND	26	6	30	1.4	33.0		

TABLE B-8. QUALITY CONSTITUENTS OF LYSIMETER D PERCOLATE

			COND. @	TOTAL	NIT	ROGEN a	s N	,							
DATE	pН	TDS	25°C µmhos∕	HARD- NESS	NH ₃ -N	NO ₂ +	TOTAL	PO4-P	Ca	Mg	Na	Κ	C1	SO ₄	SiOz
		mg∕l	cm						mg∕l						
(1973)						, ,									
JUN 15	7.5		340	62	0.10	17.92	18.02				34	2.3	84		
JLY 2			450	101		6.56		0.041			33	1.7	98	6	13
JLY 10	7.6	406	480	226		9.30		0.048	21	42	24	2.0	86		18
JLY 12	7.3	387	420	206		5.22		0.026	15	41	24	2.3	98	10	15
JLY 24	7.7	394	50 0	187	0.53	7.63	8.16	0.051	29	28	31	1.8	98	21	13
SEP 5	7.1	808	510	390	0.26	37.09	37.35	0.13	54	62	34	3.0	110	26	15
SEP 19	7.2			500	0.32	56.35	56.67	0.10	110	54	38	2.7	130	27	21
OCT 4	7.1	966	655	480	1.20	48.96	50.16	0.05			43	3.4	115	24	
OCT 11	7.3	1046	700	528	ND	44.49	44.49	0.02	60	92	47	3.6	123	19	5
OCT 15	7.2	1060	940	640	0.95	59.71	60.66	0.08	97	97	50	4.4	143	23	55
OCT 17	6.8	958	800	610	ND	57.06	57.06	0.05	102	86	44	2.4	135	13	9
OCT 18	7.1	316	740	568	ND	36.58	36.58	0.03	60	102	41	2.3	138	12	25
OCT 19	7.5	862	580	490	0.56	31.91	32.47	0.05	70	77	35	1.4	123	11	ND
OCT 25	7.8	754	640	420	ND	9.19	9.19	0.01	54	69	35	1.0	113	12	1
NOV 7	7.3	714	580	392	ND	19.89	19.89	0.02	60	59	21	0.9	100	10	1
NOV 9	7.4	696	565	388	ND	17.84	17.84	0.03	60	58	27	0.9	113	10	9
NOV 12	7.6	550	640	380	ND	11.03	11.03	0.18	52	61	27	1.8	113	12	10
NOV 14	7.7	606	645	356	ND	8.64	8.64	0.13	76	41			108	11	10
NOV 16	7.7	552	620	336	ND	7.46	7.46	0.13	55	48	27	0.9	105	15	4
NOV 19	8.0	576		276	ND	5.00	5.00	0.20					108	13	5
DEC 3	7.4	428	490	308	ND	1.37	1.37	0.16	79	27	36	1.3	95	11	1
DEC 6	7.6	410	480	288	ND	0.68	0.68	0.14	84	19	33	1.0	98	10	6
DEC 21	7.4	348	410	292	ND	1.56	1.56	0.12	84	20	28	1.0		12	1
DEC 24	7.5	414	420	292	ND	0.56	0.56	0.10	73	27	30	1.0		9	1
DEC 28	7.6	70	385	288	0.99	0.11	1.10	ND	85	18	32	0.7	82	8	ND
DEC 31	7.8	342	440	296	0.99	0.12	1.11	ND	75	26	27	1.1	76	7	ND
(1974)															
JAN 2	7.7	330	410	288	0.87	0.24	1.11	ND	78	23	24	0.5	66	7	8
JAN 3	7.4	394	495	288	0.83	0.09	0.92	ND	79	22	24	0.5	68	17	9
JAN 4	7.5	250	480	280	0.83	0.04	0.87	ND	80	20	23	0.5	62	6	17
JAN 7	7.4	360	630	272	0.75	0.03	0.78	0.33	72	22	24	0.5	68	6	17
JAN 11	7.6	280	630	288	0.71	0.02	0.73	0.15	73	26	24	0.5	68	7	2
JAN 14	7.4	314	630	260	0.81	0.02	0.83	ND	75	18	24	0.5	60	6	2
JAN 16	7.3	318	580	248	0.64	0.01	0.65	ND	79	12	22	0.4	50	6	1
JAN 21	7.2	224	590	248	0.62	0.01	0.63	ND	83	10	23	0.4	56	7	1
JAN 22	7.6	282	560	240	0.47	0.02	0.49	ND	69	16	22	0.4	46	7	1
JAN 31	7.9	250	550	244	0.46	0.04	0.50	ND	73	15	23	0.5	50	8	ND
EB 4	7.1		535	236	0.40	0.02	0.42	ND	56	23	19	0.5	38	6	ND
EB 11	7.5		520	240	0.23	0.02	0.25	ND	58	23	23	0.5	40	8	ND
EB 27	7.4		550	260	0.59	0.02	0.61		70	21	21	0.7	38	9	ND
1AR 8	7.8		530	244	ND	0.02	0.02	ND	68	18	20	0.4	38	8	ND
14 AR 14	7.6		540	240	ND	0.01	0.01	ND	69	16	20	0.4	34	7	52
1AR 20	7.7	336	480	240	0.40	0.01	0.41	ND	70	16	21	0.4		9	6
MAR 21	7.7	312	500	240	0.32	0.01	0.33	ND	70	16	18	.0.4		7	ND
APR 5	7.2	324	540	256	0.14	0.60	0.74	0.01	71	19	15	0.5	34	8	1

TABLE B-8--CONTINUED

			COND. @	TOTAL	NITI	ROGEN as	N								
DATE	pН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	NH ₃ -N	NO ₂ + NO ₃	TOTAL	P04-P	Ca mg/l	Mg	Na 	к	C1	SO4	SiO ₂
(1974)															
APR 11	7.4	322	550	256	ND	0.03	0.03	0.01	74	17	15	0.5	34	7	1
APR 22	8.1	314	520	252	ND	0.02	0.02	ND	70	19	18	0.6	28	8	1
APR 25	7.9	312	500	244	ND	0.02	0.02	ND	64	20	18	0.6		·	2
MAY 9	6.9	176	290	120		0.01		0.023	27	13	12	2.7			2
MAY 10	7.3	230	315	176	0.15	ND	0.15	0.016	40	19	13	1.5	26	10	3
MAY 20	7.2	266	432	200	0.06	ND	0.06	0.016	46	10	18	1.3	26	10	1
MAY 25	7.4	230	440	. 208	0.16	0.02	0.18	0.016	46	11	18	1.3	24		2
JUN 3	7.7	308	530	256	0.02	0.03	0.05	0.016	60	26	19	0.9	32	9	1
JUN 20	7.6	310	540	248	0.18	0.07	0.25	0.016	60	24	19	0.9		10	1
JUN 26	6.8	312	530	264	ND	ND	ND	0.016	62	27	19	0.9			3
JLY 2	6.6	370	550	272	0.14	0.03	0.17	0.023	60	30	19	0.8		11	2
JLY 10	6.7	360	520	268	0.16	0.04	0.20	0.020	58	30	17	1.1		11	3
JLY 18						0.03							:	11	
AUG 2	7.8		460	258	0.11	0.06	0.17	0.019	98	3.2	18	1.0	26	10	
AUG 14			440	234	ND	0.02	0.02	0.012	90	2.2	17	1.0	25	10	
AUG 15			440	244	ND	0.02	0.02	0.007	86	7.0	17	1.0	21	10	
AUG 16			450	240	ND	0.01	0.01	0.010	90	3.6	16	1.0	24	10	
AUG 30			490	268	1.30	0.06	1.36	0.027	98	5.6	20	1.0	24	10	
SEP 4			540	272	0.08	0.05	0.13	0.106	100	5.3	20	2.1	25	10	
SEP 9			540	270	0.05	0.14	0.19	0.058	97	6.7	20	1.8	24	9	
SEP 10			520	268	ND	0.15	0.15	0.008	100	4.4	21	0.7	23	10	
SEP 20			560	270	ND	0.02	0.02	0.014	100	4.9	19	0.9	28	9	
SEP 23			520	244	ND	0.01	0.01	0.007	96	1.0	20	0.6	28	7	
OCT 4			550	264	0.16	0.26	0.42	0.001	96	5.9	16	1.3	27	8	
OCT 29			500	266	0.16	0.10	0.26	ND	98	5.1	17	2.5	24	10	
NOV 11			600	268	ND	0.04	0.04	0.022	80	16.5	17	0.8	25	10	
NOV 27			510	256	ND	0.02	0.02		78	14.8	22	1.0	24	9	
(1975)			710	2,0	10	0.02	. 0.02		70	14.0	2.2	1.0	27	,	
JAN 14				210					62	13.4	17	1.8	35		
JAN 14				220					64	14.6	18	1.8	34		
JAN 15				230					66	15.8	17	1.3	33		
FEB 7				120					48		12	4.7	30		
FEB 11				188					67	5.0	15	2.0	30		

TABLE B-9. QUALITY CONSTITUENTS OF LYSIMETER E PERCOLATE

			COND. @	TOTAL	NI NI	TROGEN a	s N								
DATE	ρН	TDS	25°C µmhos/	HARD- NESS	NH ₃ -N	NO ₂ + NO ₃	TOTAL	PO4-P	Ca	Mg	Na	κ	C1	SO ₄	SiO ₂
		mg∕l	cm						mg∕l						
(1973)															
JUN 14	7.4		350	158	0.25	21.00	21.25				41	8.0	70		
JLY 2		374	440	187		6.59		0.033			33	1.7	86	14	14
JLY 10	7.2		470	254		12.04	12.04	0.048	20	50	31	2.0	83	10	17
JLY 12	7.4	453	420	259		4.22		0.024	33	43	29	2.0	91	10	
JLY 24	7.4	538	580	269	1.39	7.31	8.70	0.047	44	39	34	1.5	83	14	11
JLY 25	7.1			326	0.12	9.56	9.68	0.08	72	36	32	1.8	93	12	16
JLY 26	7.4	722		302	0.09	8.46	8.55	0.05	61	36	31	1.5	122	8	15
JLY 31	7.3	650	460	300	0.04	7.16	7.20	0.06	42	48	46	3.8	112	11	15
AUG 3	7.1	730	510	275	0.09	15.56	15.65	0.03	72	23	30	1.5	112	9	13
AUG 6	7.1	610	500	315	0.09	14.80	14.89		68	35	30	1.5	130	9	14
AUG 7	7.6	642	490	245		7.72		0.04	33	40	29	2.2	120	8	14
AUG 8	7.1	802	530	345	0.17	7.92	8.09	0.05	79	36	29	1.5	139	8	14
AUG 13	7.0	630		275	0.41	10.72	11.13	0.09	42	41	26	2.2		8	14
AUG 14		726	412	330	0.63			0.04		·			132	8	11
AUG 22	7.3	716	550	320	0.12	21.48	21.60		54	45	26	2.0	155		16
AUG 23	7.3	762	540	315	0.12	8.83	8.95		50	46	26	2.0	155		17
SEP 5	7.6	746	580	385	0.53	21.20	21.73	0.05	60	57	37	2.0	118	13	17
SEP 12	7.2	652	620	380	0.33	18.58	18.91	0.03	84	41	34	1.2	100	14	12
OCT 4	7.6	806	545	430	0.75	25.18	25.93	0.03	92	49		1.4	95	13	6
OCT 11	6.8	610	740	384	ND	20.99	20.99	0.03	55	60	36	1.8	103	13	9
OCT 15	7.6	522	580	380	0.30	26.29	26.59	0.05	54	60	44	1.4	95	13	9
OCT 17	6.8	598	600	378	0.55	27.81	28.36	0.03	54	59	44	2.1	85	11	6
OCT 18	7.7	680		328	ND	19.07	19.07	0.01	55	47	35	1.5	115	12	8
OCT 19	7.5	748	560	380	0.35	20.71	21.06	0.03	54	60	36	2.1	110	12	2
OCT 25	7.7	760	560	350	ND	21.31	21.31	0.01	53	53	38	2.1	95	12	8
NOV 7	6.8	558	555	320	ND ND	18.41	18.41	0.02	60	42	47	1.5	75	10	12
	7.1	578	640	348	ND ND	26.25	26.25	0.02	51	54	57	2.3	98	13	14
				344		17.84	17.84	0.13	60	47	34		108	12	13
VOV 12	7.3	676	640		ND ND							1.5	100	12	13
NOV 14	7.2	654	720	356	ND	26.25	26.25	0.08	50	56	39 76				9
NOV 16	7.2	590	580	364	ND	19.99	19.99	0.11	55	55	36	1.5	108	11	
NOV 19	7.6	666	600	364	ND	13.50	13.50	0.03	55	55	39	1.8	103	12	13
DEC 3	7.4				ND	18.90	18.90	0.26	~-	~			150	14	77
DEC 6	7.4	666	660	328	ND	14.99	14.99	0.12	76	34	40	2.0	113	13	18
DEC 21	7.3	580	620	312	ΝĐ	23.48	23.48	0.13	68	35	56	1.3	74	10	16
DEC 24	7.2	614	640	312	ND	7.82	7.82	0.13	76	30	48	1.5	92	12	11
DEC 28	7.9	550	610	312	0.90	20.38	21.28	ND	75	30	44	1.5	98	11	9
DEC 31	7.8	520	660	332	1.06	21.00	22.06	ND	75	35	47	1.3	92	10	7
(1974) JAN 2	7.5	560	660	352	0.89	23.10	23.99	ND	80	37	45	1.1	78	9	16
JAN 3	7.6	534	650	336	1.26	21.27	22.53	ND	78	34	44	1.3	86	10	14
					1.22		19.45	ND ND	89	27	43	1.3	94	8	14
JAN 4	7.4	530	680 800	332 304		18.23		ND ND	86	22	40	1.3	88	9	16
JAN 7	7.5		800	304 320	1.30	16.56	17.86	ND ND		24	44 44		82	9	7
JAN 11	7.6	500	840	320 304	1.26	21.11	22.37		88			1.3		8	
JAN 14	7.4	450	820	304	0.76	13.68	14.44	ND ND	84	23	45	1.1	76		9
JAN 16	7.3	330	800	296	0.79	10.88	11.67	ND ND	79	24	41	1.1	74 76	9	8
JAN 21	7.6	392	780	312	0.86	7.98	8.84	ND	91	21	41	1.1	76	9	11
JAN 22	7.7	436	750	300	0.77	10.26	11.03	ND 	85	21	44	1.5	74	10	4
JAN 31	7.7	450	710	280	0.08	8.26	8.34	ND	63	30	44	1.1	58	11	9
FEB 4	7.2	402	720	256	0.27	7.85	8.12	ND	48	33	48	0.5	58	9	7

TABLE B-9--CONTINUED

			COND. @	TOTAL	NI.	TROGEN a	s N								
DATE	рΗ	TDS mg/l	25°C µmhos/ cm	HARD- NESS	NH3-N	NO ₂ + NO ₃	TOTAL	PO ₄ -P	Ca mg/l	Mg	Na	К	C1	SO ₄	S i O ₂
		ilig/ x							ilig/ X						
(1974) FEB 11	7.7		680 -	256	0.11	3.91	4.02	ND	60	26	47	1.1	60	10	6
FEB 27	7.2		630	244	0.52	1.14	1.66	ND	69	17	45	0.9	44	9	11
MAR 8	7.7		700	264	ND	0.99	0.99	ND	74	19	39	0.9	70	9	7
MAR 14	7.6		680	252	ND	0.50	0.50	ND	74	16	42	0.8	56	8	9
MAR 20	7.5	410	690	260	0.55	0.51	1.06	ND	74	18	41	0.9	58	9	13
MAR 21	7.6	428	670	264	0.79	0.57	1.36	ND	76	18	38	1.6	64	9	13
APR 5	7.0	380	680	272	0.64	0.13	0.77	0.01	76	20	46	0.9	40	9	10
APR 11	7.4	394	670	280	ND	0.46	0.46	ND	78	21	46	1.0	52	9	9
APR 22	7.4	426	710	280	ND	0.25	0.25	0.01	79	20	47	1.0	42	10	7
APR 25	7.6	400	650	284	ND	0.37	0.37	ND	79	21	44	1.0			9
MAY 9	7.3	360	580	224		0.77		0.004	63	16	43	1.0			
MAY 10	7.5	400	680	280	0.24	0.29	0.53	0.016	72	24	50	1.3	38	12	13
MAY 20	7.2	416	700	288	0.12	0.35	0.47	0.010	67	29	47	1.3	44	12	13
JUN 3	7.2	380	670	272	0.11	1.92	2.03	ND	62	28	48	1.3	40	11	11
JUN 15	6.9					1.56								42	
JUN 20	7.4	388	690	240	0.05	1.45	1.50	ND	62	21	52	1.3		11	15
JUN 26	7.1	354	600	236	ND		ND	·ND	26	42	52	1.3		·	9
JLY 2	5.7	446	660	248	0.10	2.64	2.74	0.023	62	23	56	1.1		10	13
JLY 15	6.9	384		272	0.17	1.52	1.69	0.026	62	28	56	1.1			14
JLY 18						0.72								12	
AUG 4			580	240	ND	0.93	0.93	0.003	94	1.2	47	1.2	16	13	
AUG 14				260	0.31	0.98	1.29	0.002	86	10.9	54	1.2		12	
AUG 15			580	260	ND	0.44	0.44	0.003	82	13.4	55	1.2	53	13	
AUG 16			680	290	ND	0.24	0.24	0.002	98	10.9	49	1.2	6	13	
AUG 30			650	282	0.33	0.45	0.78	0.006	98	9.0	58	1.2	16	12	
SEP 9			690	244	0.07	0.24	0.31	0.036	90	4.6	50 [~]	1.3	55	12	
SEP 10		 ·	680	256	ND	0.90	0.90	0.007	90	7.5	56	1.3	60	10	
SEP 20			600	260	NED	1.00	1.00	0.006	91	7.9	39	2.2	58	10	
SEP 23			650	254	ND	0.14	0.14	0.019	92	5.8	55	1.1	59	10	
OCT 4	·		680	248	0.07	0.63	0.70	ND	92	4.4	60	1.5	84	9	
OCT 29			660	254	0.16	0.56	0.72	ND	92	5.9	48	1.7	51	10	
NOV 11			660	204		4.40		0.040	60	13.1	56	1.3		10	
NOV 27			620	236	ND	1.00	1.00		74	12.6	55	1.0	70	10	
(1975) JAN 14				182					60	7.8	63	1.4	65		
JAN 14				180					59	7.9	63	2.8	67		
JAN 15				170					50	10.9	54	1.0	70		
FEB 5				128				0.010	43	5.0	38	0.9	31		
FEB 7				180				ND	67	3.0	50	0.9	52		
FEB 11				164				ND	62	2.2	51	0.9	61		

TABLE B-10. WAIAHOLE DITCH IRRIGATION WATER QUALITY

			COND. @	TOTAL				NITE	OGEN a	s N											TOTAL
DATE	pН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	SS		тос	KJEL- DAHL		TOTAL			Mg∺ mg/l_		K	C1	•	SiO ₂	В	GREASE	COLI- FORMS no./100m/
1972)																					
IUN 7	8.3		84				1.5	0.10	0.03	0.13				9.5	0.6	13	3	23	0.02		
IUL 6	8.6		91	28			3.0	0.80	0.30	1.10		5	4	7.5	0.5	48	5	22	0.10	12.6	
UL 27	8.3	86	116	30	84	1.1	3.5	0.09	0.02	0.11	0.06	7	3	10.0	0.7	14	10	25			
UG 17	6.9		100	30			3.5	0.38	0.02	0.40	0.08	5	4	9.5	0.6	15	6	25			
UG 17	8.5		90	31			3.0	0.10	0.09	0.19		5	4	7.0	0.6	14	6	25			
EP 21	8.3		98	36			1.0	0.06	0.04	0.10		6	5	8.0	0.6	12	3	23			
CT 12	8.0	102	100	29	12	1.4	2.0	0.01	0.01	0.02	0.10	5	4	9.0	0.5	12	6	18			
IOV 16	8.2		95	31			1.5	0.01	0.12	0.13		6	4	10.0	0.5	12	5	26			
EC 7	8.1		90	30			2.0	0.02	0.02	0.04		5	4	7.0	0.5	14	2	29			
1973) IAN 26	8.3		90	22			1.0	0.11	0.09	0.20		5	2.3	8.0	0.8	12	2	28			
IAR 1	8.2		100	36			1.0	0.10	0.14	0.24		6	5.1	9.0	0.6	12	3	27			
PR 5	8.6	242	100	48	200	<1.0	1.0	0.08	0.01	0.09	0.10	8	6.8	7.0	0.4	12	4	24			
AY 10	8.8		100					0.05	0.003	0.05				6.5	0.8						
							ARE	A ADJACE	OT TO	osc suc	ARCANE	FIE	_D NO.	246							
1973) EB 15	8.0		105	45			1.0	0.10	0.03	0.13		7	6.7	10.0	0.5	12	4	23			
EB 27	7.7		100	48			1.0	0.10	0.14	0.24		7	7.4	9.0	0.7	12	4	24			
IAR 14	7.6		100	45			2.0	0.12	0.12	0.24		7	6.7	10.0	0.7	11	3	23			
PR 4	6.7	242	95	48	200	<1.0	2.0	0.12	0.03	0.15	0.10	8	6.8	7.0	0.6	12	4	24			-,-
AY 2	8.7		95	20				0.006	0.10	0.11		3	3.1	6.0	1.1	15	3	25			
AY 3	8.7	75	100	21	15	1.1			0.05		0.04	4	2.7	5.5	0.8	15	5	25			
AY 16	8.4		105	29				0.05	0.003	0.05		3	5.2	6.5	0.7	15	5	21			
AY 17	8.8		100	29					0.002			3	5.2	6.0	0.6	15	4	20			
AY 31	9.0	142	100	38	44	1.7					0.07	6		6.5	0.6	15	5	22			

TABLE B-10--CONTINUED

		-	COND. @	TOTAL				NITI	ROGEN a	s N											TOTAL
DATE	pН	TDS mg/l	25°C μmhos/ cm	HARD- NESS	SS	BOD ₅	TOC	KJEL- DAHL	NO ₂ + NO ₃	TOTAL	PO ₄ - P	Ca mg.	Mg* /l		K 	C1	SO ₄	S10 ₂	В 	GREASE	COLI- FORMS no./100ml
(1973)						-,-															
JUN 12	8.6		96	34			1.0		0.05			4	5.8	7	1.2	12		27			10
JUN 26	8.9	115	100	34			1.0		0.02			12				22	8	26			
JUL 9	7.9	100	80	34					0.02		0.02	10		7	12.2	25	7.4	19			
JUL 23	7.7	116	104	19					0.09		0.21	6		9	0.7	17	7.2	13		·	
JUL 24	8.5	104	92	10					0.04		0.15	4		8	0.7	17	6.8	12			
AUG 6	7.1		192	5				2.74	0.13	2.87	0.22	6		9	0.7	20	11.9	22			
AUG 7	7.5	16	80	10				0.17	ND	0.17	0.08	6		7	0.6	15	6.9	25			
AUG 8	8.0	158	80	5				0.22	ND	0.22	0.05	6		8	2.0	17	6.9	23			
AUG 20	7.6		96	25		·		0.17	0.13	0.30	0.14	9		9	ND	15	1.5	28			
AUG 21	8.3		92	15				0.22	0.02	0.24		9		10	ND	15	4.0	27			
SEP 4	7.9		104	30				0.10	0.17	0.27	0.11	9		- 10	1.0	10	4.6	28			
SEP 4			96	35				0.10	0.10	0.20		8		10	ND	10	3.9	28			
SEP 17	7.7		96	40				0.06	0.20	0.26	0.20	13	1.8	6	0.4	13	14.5	28			
SEP 18	8.1		100	38				0.06	0.15	0.21	0.16	13	1.2	6	0.2	10	12.5	28			
OCT 3	8.2		88	33				0.06	0.01	0.07	0.11	12	0.6	6	0.5	13	11.3	26			
OCT 16	7.5			35				0.17	0.21	0.38	0.13	8	3.6	6	1.9	13	·	24			
NOV 6	7.3		96	28					0.19		0.15	2	5.6	10	1.4	13		30			
DEC 19	6.8		102					0.19	0.03	0.22	0.25	8		15	2.7	12	20.5	21			
(1974)																					
FEB 21	7.1							0.06	0.01	0.07		5		9	0.9	8		22			
FEB 22	7.4								0.01			6				12		22			
FEB 25	7.6							0.06	ND	0.06				9	0.9	12		24			
APR 3																12	13.0				
APR 4	7.6			24				0.11	ND	0.11		5	1.0	7	1.1	12	23.7	17			
MAY 6	7.5		100	32				0.22	0.02	0.24		6	4.1	10	0.9						
1 AY 7	8.2		106	30				0.28	0.01	0.29		5	4.3	10	0.9						
8 YAM	8.3		104	30				ND	0.01	0.01		5		10	1.1						

TABLE B-10--CONTINUED

DATE	рН	TDS mg/l	COND. @ 25°C µmhos/ cm	TOTAL HARD- NESS	SS 	BOD ₅	тос	NITI KJEL- DAHL	ROGEN a NO ₂ + NO ₃	TOTAL	PO ₄ - P	Ca mg	Mg∺ ∕l	Na	K	C1	SO ₄	SiO ₂	В	GREASE	TOTAL COLI- FORMS no./100ml
(1974) MAY 21	7.4		98	28				ND	0.01	0.01			3.8	8	0.9			24			
MAY 22	8.4		94	26				ND	0.02	0.02		5	3.8	10	0.9			22			
JUN 12	8.2	50	97	28				0.17	ND	0.17	0.038	4	4.4	8	0.9		13.0	23			
JUN 13	8.0	90	102	30				0.06	ND	0.06	0.056	5	4.3	8	0.9		15.8	25			
JUN 25	7.9	72		28				1.40	0.19	1.59	0.070	4		, 8	4.0		9.0				
JUN 26	8.2	70	,	20				1.12	0.05	1.17	0.061	3		8	2.7		15.0				
JUL 9	8.0	110		28				ND	0.07	0.07		4		8	1.1		16.8				
JUL 30	7.8								0.02												
JUL 31	7.9							- -	0.02										· 		
AUG 13			116	32				0.13	0.34	0.47	0.086			10	0.8	14.5		27			
AUG 27				33				0.11	0.03	0.14	0.055	- -		9	1.0			. 27			
SEP 17			102	34				0.04	0.01	0.05	0.019			16	1.3	14.5		27			
NOV 6			100	34				0.18	0.01	0.19	0.014	5	5.2	3	0.4	13.4		25			
NOV 7			96	36				0.80	0.15	0.95	0.208	5	5.7	3	1.0	14.4	·	25			<u></u>

[&]quot; ND = NONDETECTABLE.

TABLE B-11. QUALITY CONSTITUENTS FROM CERAMIC POINT SAMPLERS OF OSC FIELD NO. 246 TEST PLOTS

				COND.@	TOTAL		TROGEN a									
DATE	SAMPLE	pН	TDS	25°C µmhos/	HARD- NESS	NH3- N	NO ₂ +	TOTAL	PO ₄ -P	Ca	Mg	Na	K	C1	504	5102
			mg/ℓ	cm						mg/l						
(1973)																
JULY 10	10B-2	6.7		500	144	0.80	36.80	37.60	0.024	44	8.3	80	0.4	127.2	11	9.0
	10B-4	6.6		600	298	0.45	82.50	82.95	0.024	100	11.7	64	0.9	102.7	10	13.2
	108-6	6.6		800	379	0.55	114.60	115.15	0.023	100	31.3	93	0.7	112.5	8	13.0
	10B-8	6.8		600	230	0.10	41.60	41.70	0.019	100		85	2.6	161.4	14	12.2
	10B-10	7.0		540	245	0.00	53.40	53.40	0.029	71	16.4	64	0.7	110.1	15	8.0
	11C-2	6.6	414	380	91	0.05	34.70	34.75	0.026	26	6.3	52	1.5	73.4	18	12.6
	11C-4	6.8	316	280	70	1.00	21.10	22.10	0.045	28		49	0.4	63.6	13	5.2
	11C-6	6.8		280	53	1.00	13.90	14.90	1.052	15	3.8	45	0.0	53.8	29	11.3
	11C-8	7.2		500	156	0.25	29.70	29.95	0.997	39	14.2	72	0.4	85.6	22	10.8
	11C-10	7.1		460	125	0.25	29.50	29.75	0.039	46	2.4	72	0.4	100.3		9.4
JULY 24	10B-2	6.8	632	480	120	0.10	42.10	42.20	0.041	38	6.1	75	1.1		14	12.0
	10B-4	6.7		680	259	0.10	83.30	83.40	0.026	81	13.7	72	0.7		11	11.0
	10B-6	6.7		800	312	0.05	84.50	84.55	0.039	93	19.3	86	1.5		11	16.2
	10B-8	7.1		660	230	0.05	49.10	49.15	0.031	78	8.5	86	1.5		13	11.1
	10B-10	7.3		580	182	0.25	52.30	52.55	0.024	60	7.8	56	0.9	105.2	15	8.8
	11C-2	7.0		350	91	0.10	20.30	20.40	0.036	21	9.4	47	1.5	73.4		13.8
	11C-4	6.0		290	43	0.35	11.70	12.05	0.026	14	1.9	39	0.7	55.0	19	9.1
	11C-6	7.3	274	305	34	0.80	5.78	6.58	1.093	8	3.4	43	1.3	52.6	15	20.7
	11C-8	7.6		515	130	0.05	25.70	25.75	0.450	32	12.2	69	0.7	90.5		12.7
	11C-10	7.5		440	96	0.10	16.20	16.30	0.052	23	9.4	65	0.7	93.0	25	10.2
	20C-1	7.4		390	72	0.15	16.90	17.05	0.065	18	6.6	59	1.3	75.8	20	11.8
	20C-2	7.1		315	43	0.25	9.26	9.51	0.031	19		42	2.0	66.0	23	9.1
	20C-3	7.4		360	58	0.10	3.36	3.46	0.036	16	4.4	6.0	0.7	88.1	20	12.8
	20C-4	7.3		330	58	0.15	5.27	5.42	0.039	15	5.0	42	1.1	73.4	22	13.8
	20C-5	7.5		520	77	0.20	11.70	11.90	0.183	31		83	0.7	122.3	19	10.1
	20C-6	7.1	300	355	48	0.07	10.50	10.57	0.034	17	1.3	46	1.1	80.7	22	11.7
	20C-7	7.3		285	38	1.00	7.78	8.78	0.045	11	2.6	53	1.3	66.0	19	16.1
	20C-8	7.2		305	48	1.00	10.60	11.60	0.038	14	3.2	43	0.7	63.6	22	14.8
	20C-9	7.3		435	38	0.10	9.07	9.17	0.082	22		65	0.7	100.3	25	10.7
	20C-10	6.9	340	335	43	0.25	15.10	15.35	0.040	14	1.9	53	0.9	61.2	22	16.2
	218-1	7.3		415	106	0.15	7.36	7.51	0.984	24	11.1	60	0.9	100.3	23	16.6
	21B-2	7.0	630	540	197	0.07	43.40	43.47	0.042	61	10.8	67	0.7	127.2	14	9.9
	21B-3	7.2	228	310	58	0.10	8.88	8.98	0.081	15	5.0	42	0.7	63.6	23	11.2
	21B-4	7.1	295		48	0.05	19.20	19.25	0.028	17	1.3	46	0.0	63.6	22	10.0
	21B-6	7.0	552		130	0.05	54.10	54.15	0.026	41	6.7	60	0.0	66.0	14	7.1
	21B-7	7.1	391	440	110	1.00	19.50	20.50	0.036	30	8.5	53	0.7	107.6	16	9.1
	21B-8	7.0	444		115	1.15	27.30	28.80	0.033	33	7.9	50	0.3	93.0	15	12.0
	218-9	7.1	306	360	58	1.05	14.50	15.55	1.287	16	4.4	53	1.6	66.0	23	25.4
	21B-10	7.3		400	82	3.50	37.10	40.60	0.065	26	4.1	50	0.0	88.1	19	10.1
	F45	7.3	292	290	101	0.15	15.40	15.55	0.312	24	10.0	15	0.1	36.7	14	7.8
	F46	7.1	564	325	250	0.05	65.10	65.15	0.053	66	20.7	19	0.0	32.0	12	7.7
	F47	7.2	242	275	105	2.50	2.99	5.49	3.312		12.2		0.0	56.3	22	11.6
	F48	7.1	144	175	39	4.25	9.51	13.76	1.216	22		17		29.4		
	F49	7.1	94	135	34	3.10	2.25			12	2.2	14	0.0		19	11.8
	F50	7.0	186			5.10		5.35 14.25	0.530	9	2.8	9	0.0	17.1	17	10.0
	F51	7.0	298	210 400	58 52	0.55	9.15	14.25	0.073	19	2.6	14	0.0	26.9	24	5.3
					53		8.13	8.68	0.057	18	1.9	38	1.8	58.7	26	11.1
	F52	6.7	400	420	67	0.40	29.57	29.97	0.416	34		47	0.0	68.5	28	7.7
	F53	7.2	332	390	106	0.20	17.35	17.55	0.775	29	8.1	42	0.3	70.9	37	12.6
	F54	6.9	192	360	77	0.10	17.43	12.53		17	8.4	48	2.2	56.3	28	26.1

TABLE B-11--CONTINUED

			C	OND.@	TOTAL		TROGEN a	s N						,		
DATE	SAMPLE	рΗ	TDS u	25°C mhos/	HARD- NESS	NH ₃ -	NO ₂ + NO ₃	TOTAL	PO ₄ -P	Ca	Mg	Na	K	C1	SO ₄	S10 ₂
			mg/ℓ 「	cm						mg/l						
(1973)																
JULY 24	19A-1	6.8	146	210	48	0.95	3.74	4.69	0.532	10	5.6	22	0.9	42	37	9
	19A-2	6.9	120	170	43	1.00	2.99	3.99	0.098	12	3.2	14	0.0	47	12	10
	19A-3	6.9	215	245	72	2.50	11.30	13.80	0.044	22	4.1	13	0.0	47	10	8
	19A-4	6.9	114	155	29	2.10	5.83	7.93	0.033	13		11	0.0	32	12	7
	19A-5	6.9	50	155	19	0.05	3.33	3.38	0.101	10		14	0.0	33	10	7
	19A-6	6.7	212	170	29	0.05	2.53	2.58	0.042	13		12	1.1	34	10	6
	19 A -7	6.8	126	170	19	0.10	4.92	5.02	0.036	11		16.	0.0	44	8	8
	19A-8	6.6	241	410	163.	0.10	33.44	33.54	0.034	53	7.4	19	2.5	78	8	7
	19A-9	7.1	294	300	91	0.15	6.36	6.51	0.072			20	0.0	86	8	6
	19A-10	5.3	896	660	1022	0.15	56.58	56.73	0.031	100	188.0	18	27.2	166	6	7
AUG 6	20C-1	7.2		380		0.33	19.60	19.93		8		53	0.7	68	17	17
	20C-2	6.9		300	45	0.24	20.70	20.94	0.020	6	7.3	46	0.2	63	19	16
	20C-3	7.3		330		0.16	3.27	3.43		6		60	0.2	78	18	15
	20C-4	7.1		330		0.26	7.85	8.11	0.020	6		49	0.9	65	21	17
	20C-5	7.6		420		1.01	9.12	10.13		12		76	0.2	110		10
	20C-6	7.0	340	340	60	0.12	14.40	14.52	0.020	8	9.7	51.	0.2	.83	19	11
	20C-7	7.1		280		0.67	9.12	9.79	~-	5		53	0.9	60	18	18
	20C-8	6.9		290	40	0.15	12.40	12.55	0.020	5	6.7	46	0.7	55	22	19
	20C-9	7.1		350		0.12	19.70	19.82		8		93	0.2	83	23	17
	20C-10	6.8	266	310	40	0.15	15.70	15.85	0.420	7	5.5	51	0.9	58	24	25
	21B-1	7.0		380	75	0.16	5.46	5.62	1.010	8	13.4	54	0.7	85	22	25
	21B-2	6.7	388	460	135	0.03	30.80	30.83	0.030	19	21.3	55	0.2	98	15	13
	21B-3	6.8		260	35	0.31	7.90	8.21	0.020	5	5.5	41	0.7	55	21	19
	21B-4	6.7	213	280	30	0.26	15.90	16.16	0.030	6	3.6	46	0.7	58	21	12
	21B-6	6.6	436	360	100	0.13	41.60	41.73	0.020	14	15.8	55	0.7	65	19	9
	21B-7	6.6	279	530	55	0.18	24.50	24.68	0.020	9	7.9	45	1.3	80	17	14
	21B-8	6.6	218	400	105	0.09	28.70	28.79	0.020	15	16.4	54	1.1	93	14	14
	21B-9	6.8	147	350	55	0.59	15.40	15.99	1.040	6	9.7	50	2.0	63	22	32
	21B-10	6.7	352	350	65	0.05	21.70	21.75	0.040	9	10.3	46	0.9	55	22	16
	19A-1	6.8	9	115	15	0.31	6.35	6.66	0.040	3	1.8	10	0.9	23	9	8
	19A-2	6.9	37	145	25	0.25	6.26	6.51	0.020	5	3.0	12	0.7	38	8	7
	19A-3	7.0	72	150	40	0.19	13.10	13.29	0.020	6	6.1	9	0.7	38	8	8
	19A-4	6.8	9	110	25	0.18	12.40	12.58	0.010	4	3.6	8	0.7	24	11	8
	19A-5	6.4	69	160	25	0.11	9.60	9.71	0.060	6	2.4	14	0.9	30	8	7
	19A-6	6.5	44	130	25	0.08	7.52	7.60	0.020	5	3.0	11	1.5	28	9	8
	19A-7	6.6	108	115	5	0.08	4.70	4.78	0.020	4		12	0.9	33	8	7
	19A-8	6.8	189	215	65	0.17	1.41	1.58	0.010	10	9.7	14	1.1	28	8	7
	19A-9	5.9	177	205	55	0.09	9.85	9.94	0.020	8	8.5	14	0.9	48	8	10
	19A-10	7.0	341	280	110	0.25	21.80	22.05	0.010	17	16.4	10	5.2	38	6	10
	11C-2	7.0		400	70	0.02	18.10	18.12		10	10.9	75	1.3	70	19	17
	11C-4	7.1		280	30	0.06	13.00	13.06		6	3.6	46	0.9	58	18	13
	11C-6	7.2		270	80		5.84			4	17.0	49	2.2	55	29	24
	11C-8	7.4		360	105	0.15	14.90	15.05	·	12	18.2	63	2.0	73	24	19
	11C-10	7.5		380	_	0.30	13.80	14.10		8		63	1.1	75	23	14
	10B-2	6.9	482	400	95	0.29	33.80	34.09	0.020	14	14.5	62	1.3	83	16	18
	10B-2 10B-4	6.9	- -	500	205	0.21	69.25	69.46	0.010	31	31.0	71	0.9	78	14	14
	10B-4 10B-6	6.8		540	245	0.23	56.70		0.010	39	35.8	80	1.3	90	15	23
	10B-8	7.0		460	170	0.24	40.10	56.93	0.020	23	27.3	70	2.2	123	15	18
	10B-8 10B-10	7.4		440	160	0.04	34.90	40.34			27.3	57	1.3	90	17	13
	F45			210	65	0.69		34.94	0.020	19	10.3	13	0.9	30	18	12
	「サラ	6.5		210	05	0.09	15.40	16.09	0.020	9	10.5	1)	0.3	50		

TABLE B-11--CONTINUED

				COND.@	TOTAL		ITROGEN	as N								
DATE	SAMPLE	рΗ	TDS	25°C µmhos/	HARD- NESS	NH ₃ ·	- NO ₂ + NO ₃	TOTAL	PO4-P	Ca	Mg	Na	K	Cl	SO ₄	Sio
			mg/l	cm				 _		mg/ℓ.						
(1973)														-		
AUG 6	F46	6.8	200	185	75	0.54	23.50	24.04	0.02	10	12.2	10	0.9	23	17	13
	F47	6.7	204	190	70	0.89	18.22	19.11	1.28	9	11.5	12	1.3	30	18	14
	F48	6.7	128	220	30	1.26	16.53	17.79	1.07	3	5.5	12	1.7	25	20	14
	F49	6.4	88	95	20	0.03	2.74	2.77	0.72	3	3.0	8	0.9	15	15	15
	F50	6.6	96	140	35	1.50	3.12	4.62	0.03	5	5.5	11	0.9	18	25	8
	F51	6.5		260	40	0.47	6.03	6.50	0.02	8	4.9	38	0.9	63	27	15
	F52	6.3		360		0.19	29.60	29.79		12		45	1.3	53		18
	F53	6.6		320	70	1.15	18.10	19.25	0.07	10	10.9	40	0.9	58	27	20
AUG 21	F45 、	6.6					33.25	_								
	F46	6.9					45.04									
	F47	7.1					4.57									
	F48	7.0					31.71									
	F49	6.6			****		31.83			- -						
	F50	6.5					34.48									
							7.16									
	F51	6.3					9.92									
	19A-1	7.0														
	19A-2	6.7					29.05									
	19A-3	6.6					25.21									
	19A-4	7.0					13.41									
	19A-5	7.1					8.69									
	19A-6	6.3					26.19									
	19A-7	6.9					14.80									
	19A-8	6.7					17.59									
	19A-9	6.8					30.44									
	19A-10	5.5					69.43									
	19A*		306	210	135	0.36				18	21.9	18	1.0	68	5	9
	19A [†]		590	280	225					25	39.5	20	14.0	143	2	10
	F45-50‡			440	225					26	38.9	20	2.0	118	12	
AUG 22	21B-1	7.2					7.68									<u>.</u>
	21B-2	7.0					28.99									
	21B-3	7.1					3.50							·		
	21B-4	6.9					8.68									
	218-6	7.1					27.42							-		
	218-7	6.9					10.80									
	218-8	7.0					16.51									
	21B-9	7.1					9.33									
	21B-10	7.0					15.51									
	20C-1	7.6					11.81									
	20C-2	7.3		- -			14.12									
	20C-3	7.5					4.34									
							10.10									
	20C-4	7.2														
	20C-5	7.6					8.48									
	200-6	7.1					8.29									
	20C-7	7.3					4.43				_					
	20C-8	7.1					8.75									
	20C-9	7.3		_			6.01									 ·
	200-10	7.0	'				12.25									
	10B-2	6.7					24.89									
	10B-4	6.8					53.79	- -								

^{*}ODD COMPOSITE.

[†]EVEN COMPOSITE.

TABLE B-11--CONTINUED

				COND.	TOTAL	NIT	ROGEN a									
ATE	SAMPLE	ρН	TDS	25°C µmhos/	HARD- NESS	NH ₃ -	NO ₂ + NO ₃	TOTAL	PO4P	Ca	Mg	Na	Κ	Cl	SO ₄	Si
			mg/l	cm						mg/l.						
1973)							á-									
UG 22	10B-6	6.8					47.83									-
	10B - 8	6.8					30.96									-
	108-10	7.2				~-	26.49									-
	11C-2	7.0			-		11.59									-
	11C-4	6.9					13.42		'							-
	11C-6	7.0					3.88									-
÷	11C-8	7.3					13.13									
	11C-10	7.2					6.30									
	F51	6.8				0.17	4.49	4 .6 6		18		32	ND	38		
	F52	6.7					17.04									
	F53	6.9					16.33									
	218*		268	380	65					12	8.5	57	ND	90	21	
	21B [†]		310	386	85	0.24				14	12.2	53	1.0	78	19	
	20C*			400	75	0.13				14	9.7	59	1.0	95	22	
	20C [†]		256	344	50	0.15				11	5.5	49	ND	70	25	
	F52-53‡		227	364	70					14	8.5	41	ND	53	26	
	10B [‡]		430	454	135	0.22				22	19.4	60	1.0	83	16	
	11C‡		250	320	50	0.33				11	5.5	46	ND	60	23	
PT 4	F45	6.7					72.10									
	F46	6.3					83.85									
	F47	6.5					119.10									
		6.5					82.70	·								
	F48	6.6					84.13									
	F49	6.7					86.33									
	F50			. —												
	F51	6.8					8.56									
	10B-2	6.9					18.31									
	10B-4	6.9					52.85									
	10B-6	6.9					44.47									
	108-8	7.0					18.30									
	10B-10	7.2					18.66									
	11C-2	7.2					10.39									
	11C-4	7.3					8.21									
	11C-6	7.3					1.59									
	11C-8	7.3					9.51									
	11C-10	7.3					4.27									
	19A-1	7.2		_			5.01									
	19A-2	6.7					56.57									
	19A-3	6.9					49.23									
	19A~4	6.9					36.64									
	19A-5	7.0					10.65									
	19A~6	6.4					8.20									
	19A7	6.8					6.97								- -	
	19A-8	6.7					37.72									
	19A-9	7.0					14.27								1	
	19A-10	5.3		740	345		72.73			30	65.6	19	48.0			
	20C-1	7.0		*			13.01									
	20C-2	7.0					5.73									
	20C-3	7.5					5.56									
	20C-4	7.3					5.88									
	20C-5	7.6					2.75									

TABLE B-11--CONTINUED

				COND.@	TOTAL	NITE	OGEN as									
DATE	SAMPLE	рΗ	TDS	25 C µmhos/	HARD- NESS	NH3- N	NO2+ NO3	TOTAL	P04-P	Ca	Mg	Na	K	C1	SO4	SiO
			mg/l	cm						mg/l						
(1973)																
SEPT 4	20C-6	7.3					2.47									
	20C-7	7.4					0.93									
	20C-8						6.35									
	20C-9						3.84									
	20C-10						6.64									
	218-1						3.94									
	21B-2						15.65									
	21B-3						3.97					_				
	21B -4	_					4.57									
	21B - 6						19.45									
	21B-7						8.74									
	21B-8						12.40									
	21B-9						15.88		_			-	-			
	21B-10						16.47									
	F45-51‡		672	590	325	0.37			0.051	27	62.6	20	1.0		9	. 11
	10B‡		422	460	110	0.94			0.048	19	15.2	53	1.0		17	22
	11C‡		210	320	55	0.61			0.256	9	7.9	43	1.0		20	26
	19A*		414	224	90	0.39			0.025	15	12.8	15	1.0		4	7
	19A [†]		708	640	300	0.39			0.022	26	57.1	18	13.0		3	8
	20C36		244	390	85	0.47			0.118	6	17.0	53	1.0		20	16
	20C [†]	-	180	330	60	0.68			0.042	10	8.5	44	ND		22	22
	21B*		220	390	70	1.31			0.272	10	10.9	51	ND		19	19
	21B [†]		314	308	75	0.54			0.480	11	11.5	51	ND	70	21	16
SEPT 17	F45	6.3					32.87									
	F46	6.5					48.89									
	F47	6.4					44.42									
	F48	6.4					35.07									,
	F49	3.2	322	600	115		22.45		0.454		7.9		0.7	35	75	14
	F50	6.2	,				66.36		U.454	<i></i>	7.9				/ 5 	14
		6.7					4.87									
			226													
	19A ²⁶			200	75	0.31			0.064		4.9	11	0.5	30	2	9
			238	366	175	0.28			0.070	40	18.2	14	4.4	48	1	9
	19A-10								0.022			13	28.6	68		10
	F45-51‡		494	410	160	0.40			0.086	5 5	5.5	17	0.2	30	10	12
SEPT 18	20C-1	7.8					14.04									
	20C-2	7.6					8.24									
	20C-3	7.8					4.42									
	20C-4	7.1					7.83									
	20C-5	7.5					1.05									
	20C-6	7.6					4.28									
	20C-7	7.7				-	2.81									
	20C-8	7.5					9.05									
	20C-9	7.6					7.49									
	20C-10	7.3					6.91									
	218-1	7.4					1.35									
	21B-2	7.1					17.10									
	21B-3	6.8														
	21B-4	6.8					1.95									
	21B-6	6.7					17.74									

TABLE B-11--CONTINUED

				COND.@	TOTAL		ROGEN a									
DATE	SAMPLE	pΗ	TDS	25°C µmhos/	HARD- NESS	NH3- N	NO ₂ +	TOTAL	PO4-P		Mg	Na	K	Cl	504	sio
			mg/l	cm						mg/£						
(1973)																
SEPT 18	21B-8	6.7					9.08									
	21B-9	6.7					4.15									
	21B-10	6.8					11.47		'							
	19A-1	7.0					0.91									
	19A-2	6.8					20.60									
	19A-3	6.7					16.98									
	19A-4	6.7					24.84									
	19A-5	6.6					3.62									
	19A - 6	6.1					46.59									
	19A-7	6.3					1.62									
	19A-8	6.2					32.33						·			
	19A-9	6.5					12.62									
	19A-10	5.6					33.37	 -								
	20C∺					0.29			- -			63	0.7			18
	20C [†]				68	0.36						56	0.5	40		23
	21B#					1.20				21		56	0.4	93		21
	21B [†]		280	332	60	0.35			0.51	22	1.2	50	0.4	78	26	16
SEPT 20	10B-2	7.0					24.83									
	10B-4	6.9				<u> </u>	48.11									
	10B-6	6.9					44.05									
	10B-8	7.1					10.87									
	108-10	7.2					5.13									
	11C-2	7.3			<u>.</u> _		4.67		-							
	11C-4	6.9					10.00									
	110-6	6.8					6.89									
	11C-8	6.8					27.60									
							23.46									
	11C-10	7.1														
CT 1	10B-2	6.9					11.37									
	10B-4	7.0					28.69									
	10B-6	6.7					28.44									
	108-8	7.1					16.72									
	10B-10	7.2					14.24									
	11C-2	7.5					14.80									
	11C-4	7.4					12.43									
	11C-6	7.4					3.04									
	11C-8	7.5					16.36									
	11C-10	6.4					3.73									-
	20C-1	7.2				_	15.32									-
	20C-2	7.1					7.96									-
	20C-3	7.4					9.70									
	20C-4	6.9					8.19									-
	20C-5	7.5					1.12									-
	20C-6	7.3					4.57									-
	20C-7	7.3					5.25									_
	20C-8	6.8					13.23									-
	20C-9	7.2					8.19									-
	20C-10	6.8					9.34					·				_
	21B-1	7.1					7.04									_
	21B-2	6.9					18.57									

TABLE B-11--CONTINUED

				COND.@	TOTAL		TROGEN	as N								
DATE	SAMPLE	pН	TDS	25 C μmhos/	HARD- NESS	NH ₃ -	NO ₂ + NO ₃	TOTAL	PO4~P	Ca	Mg	Na	Κ	C1	SO ₄	510
			mg∕l	cm			1403			mg/l−						
(1973)			-					···								
OCT 1	21B-4	6.9					8.10									
	21B-6	6.9					9.54									
	218-7	6.9					8.73		'							
	21B-8	7.0					9.95									
	21B-9	6.9					5.57									
	21B-10	6.9					13.37									
	10B‡			140	110	1.30			0.038	30	8.5	60	0.5	63	33	24
	11c‡		336	282	85	0.65			0.272	23	6.7	54	0.3	65	38	19
	20C36		390	363	95	0.95			0.118	25	7.9	59	0.3	65	31	17
	20C [†]		358	330	80	0.75			0.064			54	0.5	58	34	25
	21B ³⁶		330	351	83	1.20			0.166	23	6.1	58	0.3	70	43	23
	21B [†]		384	344	83	0.45			0.048	23	6.1	58	0.4	68	35	22
OCT 3	F45	7.0					14.13									
	F46	6.3					23.27									
	F47	6.9					27.71									
	F48	6.8					16.32									
	F49	6.5					5.14									
	F50	6.8					34.15	***								
	F51	3.3		356	60	0.55	4.93	5.48		20	2.4	38	0.1	40	87	
	19A-1	7.0					0.56									
	19A-2	6.7	_				8.19									
	19A-2 19A-3	7.3					6.53			_~						
	19A-5 19A-4	6.7					12.04									
	19A-4 19A-5	6.8					2.20									
	19A-5 19A-6	6.3					20.24									
		6.6					0.37									
	19A-7	2.9					10.92									
	19A-8	6.5			_		6.37			٠		-				
	19A-9				145	0.60	22.37	22.97		31	16 1	0	11.2		2	
	19A-10	5.7							0.278		16.4	9		30	6	15
	F45-50‡		436	220	135	0.90			0.086	36	10.9	11	0.4			
	19A%			126	50	1.10				18	1.2	9	0.1	23	7	11
	19A [†]		312	268	100	0.70			0,061	25 	9.1	10	2.9	38	26 	10
OCT 15	10B-2	6.7					11.72									
	10B -4	3.3			130	0.95	38.32	39.27				72	0.3			
	10B-6	7.0					28.86		~~							
	108-8	3.1		-	100	0.95	19.73	20.68		27	7.9	64	1.2			
	10B-10	7.2					16.26									
	11C-2	7.5					12.05									
	11C-4	7.1					10.49									
	11C - 6	7.3					5.07									
	11C-8	7.1					8.45	_								
	11C-10	3.6			65	1.20	4.02	5.22				62	0.7			
	20C-1	7.2					20.31		_							
	20C-2	7.1					12.34									
	20C-3	7.5					9.45								- -	
	20C-4	7.3					10.82									
	20C-5	7.6					5.19									
	20C-6	3.1			83	1.70	6.17	7.87		24	5.6	66	0.7			
	20C-7	7.3					10.18									
	20C-8	7.1					14.59									

TABLE B-11--CONTINUED

				COND.@	TOTAL H AR D~	NH ₃ -	TROGEN a									
DATE	SAMPLE	pН	TDS	μmhos/	NESS	N N	NO ₃	TOTAL		Ca	Mg	Na	K	Cl	SO4	510
			mg/ℓ	Сщ						mg/l_						
(1973)																
OCT 15	20C-9	7.1					8.34									
	20C-10	6.7					11.90									
	21B-1	7.1					10.79									
	21B-2	7.0					18.17									
	21B-3	7.0					11.46									
	21B-4	7.0			,		10.10									
	21B-6	7.0					13.59									
	21B-7	7.0					7.63							-		
	21B-8	7.1			-		20.51									
	21B-9	7.0					12.05									
	21B-10	6.9					15.69									
	10B-2,6,10		360	302	100	1.40			0.051	26	8.5	63	0.9	60	17	23
	11C-2,4,6,8	‡	530		83	0.95			0.316	22	6.8	61	0.7	28	30	23
	20C*		316	123	105	1.05			0.054	29	7.9	68	0.3	63	15	14
	20C [†]		292	260	73	1.35			0.045	22	4.4	59	0.7	58	16	23
	21B*		276	300	75	2.20			0.086	22	4.9	63	0.5	63	12	20
	21B [†]		392	300	85	1.05			0.032	23	6.7	62	0.5	58	11	21
OCT 16	F45	7.0					10.43									
	F46	6.9					11.10									
	F48	6.8					10.41									
	F49	6.7				•	8.45			****						
	F50	7.1	~~~				9.75									
	F51	7.3					5.58									
	19A-1	7.2					0.33							28		
							3.04		<u>-</u> -					28		
	19A-2	7.3	******											20		
	19A-3	7.3					3.90			-						
	19A-4	6.9					7.52							20		
	19A-5	7.1					1.23							13		
	19 A- 6	7.1					7.91							28		
	19A-7	7.2					0.10							18		
	19A-8	7.1					6.44							28		
	19A-9	7.1					5.15							23		
	19A-10	6.0	256		85	0.85	12.81	13.66				8	7.5	36	ND	11
	F45-51‡		186	144	85	1.03			0.198	24	6.1	12	0.1	23	15	14
	19A**		102	104	40	1.25			0.064	16	ND	10	ND	23	1	11
	19A [†]		140		15	0.70			0.131	18	2.4	9	0.7	23	ND	12
1 0V 5	10B-2	6.5					12.18					~-			~~	
	10B-4	6.1					26.56							~		
	10B-6	3.2		486	76	2.20	11.65	13.85	0.050	10	12.4	60	1.1	58	96	28
	10B-8	6.3					12.29							_~		
	10B-10	2.7		1400		2.35	6.86	9.21	0.070	10		57	2.9	68	282	19
	1 1 C-2	6.8					10.87									
	11C-4	6.9					14.99									
	11C-6	6.7					2.81									
	11C-8	5.7				2.20	17.28	19.48							52	19
	11C-10	6.9					4.90									
	20C- 1	6.9					20.44									
							13.92						_			
	20C-2	6.8					13.4/									

"ODD COMPOSITE." TEVEN COMPOSITE.

‡composite.

TABLE B-11--CONTINUED

				COND.@ 25°C	TOTAL HARD-	NH3-	TROGEN a NO2+									
DATE	SAMPLE	pН	TDS mg/l	µmhos/	NESS	NH3-	NO3	TOTAL	P04-P	Ca mg/l	Mg	Na	K	C1	SO ₄	Sio
(1077)																
(1973) NOV 5	20C-4	7.0					10.38									٠
	200-5	7.4					5.40									
	20C-6	7.0					4.55									
	20C-7	3.7				2.20	10.20	12.40	0.06	8		60	1.4	53	59	24
	20C-8	6.4					14.67									
	200-9	6.7					9.83									
	20C-10	6.6					12.61									
	21B-1	6.7					4.67									
	21B-2	6.7					11.68	,								
	21B-3	6.7					12.99									
	21B-4	6.6					9.19									
	21B-6	6.6					12.35									
	21B-7	6.6					7.02									
	21B-8	6.4					16.38									
	21B-9	6.5					10.64									
	218-10	6.6					10.35									
	10B-2,4,8 [‡]		154	396	92	1.85			0.02	15	13.3	57	1.0	60	20	21
	11C-2,4,6,10	_	68	320	68	2.00			0.02	8	12.0	57 57	2.0	55	17	21
	200-1,3,5,9		146	472	104	2.45	·		0.06	25	10.1	75	1.1	70	25	17
	20C-1,3,3,91		94	330	80	2.65			0.05	13	11.6	64	1.1	63	22	26
	21B**		120	360 .	72	2.95			0.08	14	9.3	62	1.1	58	21	25
	21B [†]									14						
10V 6	F45		270 	334 	72 	4.10			0.02		9.3	60	1.3	55	25	26
4UV 6		6.4					2.05									
	F46 F48	6.4					3.59									
		6.5					5.88									
	F49	6.7					3.50									
	F50	6.8					3.62									
	F51	6.7					3.74									
	19A-1	6.8					0.37									
	19A-2	6.8					1.62									
	19A-3	6.7					3.39									
	19A-4	6.6					4.64									
	19A-5	6.7					1.87									
	19A-6	6.5					6.52									
	19A-7	6.7					0.26									
	19A-8	6.8					2.81									
	19A-9	6.7					2.87		~-							
	19A-10	5.7					9.07							33	ND	12
	19A*		24	124	48	2.95			0.11	11	5.0	12	0.5	18	5	11
	19A [†]		ND	142	40	1.90			0.15	6	6.1	10	1.1	23	ND	13
	F45-51‡		. 6	160	44	3.55			0.26	13	2.8	9	0.8	18	ND	17
EC 17	10B-2	6.7					8.64									
	10B-4	6.8					6.78						'			
	10B-6	6.8					10.33									
	10B-8	6.9					4.61									
	10B-10	6.9	_				5.22									
	20C-1	7.4					16.43									
	20C-2	7.8		 .			29.13									
	20C-3	7.6					15.24									

TABLE B-11--CONTINUED

				COND.@	TOTAL		TROGEN a	IS N								
DATE	SAMPLE	pН	TDS	25°C umhos/	HARD- NESS	NH3- N	NO2+ NO3	TOTAL	P04-P	Ca	Mg	Na	K	C1	504	SiO:
			mg∕l	cm					-	mg/l →						
(1973)							9.82									
DEC 17	20C-5	7.4					2.20									
	20C-6	7.6					8.32									
	20C-7	7.4														
	20C-8	7.2					13.91 4.62									
	29C-9	7.5														
	20C-10	7.1					11.75									
	21B-1	7.0					9.34 2.59									
	21B-2	7.1														
	21B-3	7.1					15.96									
	21B-4	7.1					29.19									
	21B~6	7.0					10.80		'							
	21B-7	7.0					4.10									
	21B-8	7.0					3.63									
	21B-9	7.3					6.59									
	21B-10 +	6.9					6.00									
	10В‡		244	260	60	2.96			0.37	21	1.8	52	0.7	48	21	21
	20C*		388	520	108	5.90			2.80	33	6.2	98	3.5	135	37	19
	200+		308	330	80	2.59			0.28	29	1.8	72	1.0	54	21	19
	21B**		272	236	68	4.73			0.23	26	0.7	59	0.7	54	. 17	20
	21B [†]		396	424	80	5.02			1.60	22	6.1	85	2.3	92	30	21
DEC 18	11C-2	7.1					3.46									
•	11C-4	7.2		***			11.76									
	11C-6	6.8					1.65									
	11C-8	6.8					7.99									
	11C-10	7.1					1.59									
	11C [†]		252	296	64	5.94			3.32	17	5.2	63	15	60	25	21
DEC 19	19A*		160	188	76	3.06			0.25	16	8.9	16	0.4	38	4	8
	19A†		140	114	44	2.20			0.31	19		11	1.8	26	ND	10
(1071)	F45-51‡		218	120	52	2.20			0.75	20	0.5	15	0.4	18	15	13
(1974) FEB 2	11C-2	6.9					2.04							~-		
	11C-4	6.9			·		1.61									
	11C-6	7.0					0.82									
	11C-8	7.0					1.72				***					
	11C-10	7.2					0.97									
	20C-1	6.9					4.03									
	20C-2	7.0					1.96									
	20C-3	7.1				·	4.01									
	20C-4	7.1			-		3.41									
	20C-5	7.1					1.08									
	20C-6	7.1					1.06									
	20C-7	7.1					2.52									
	20C-8	6.9					2.43									
	20C-9	7.2					1.07									
	20C-10	7.1					2.20			-						
	11C [‡]				36	0.81			0.003		2.1	36	0.4	32	12	20
	20C*				60	0.63			0.005		3.1	40	0.7	36	22	20
	20C* 20C†				48	1.26			ND	14	3.2	37	0.9	38	18	26
ER 21	10B-2	6.9					0.16									
EB 21		6.8	-				1.36									
	10B-4															
	10B-6	6.9					0.22									

TABLE B-11--CONTINUED

				COND.@	TOTAL		TROGEN a	s N								
DATE	SAMPLE	pН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	NH3- N	NO2+ NO3	TOTAL	PO4-P	Ca mg/l-	Mg	Na 	к 	C1	SO ₄	S10
(1974)															•	
FEB 21	10B-8	7.0					0.16									
	10B-10	6.9		_			0.16									
	21B-1	7.1					0.78									-
	21B-2	7.2					0.20				-					-
	21B-3	7.1					1.29									-
	21B-4	7.0					1.53									-
	21 8 -6	7.2					0.26									-
	21B-7	7.1					1.21									-
	21B-8	7.1					0.47									-
	21B-9	7.1					0.33									-
	21B-10	7.2					0.59									-
	19A-1	6.9					0.45									-
	19A-2	6.9				~~	0.23									-
	19A-3	6.8					1.76									-
	19A-4	6.9					1.21									-
	19A-5	7.0					0.55									-
	19A-6	6.8					0.48									-
	19A-7	6.8					0.07									-
	19A-8	6.8					0.16									-
	19A-9	6.7					0.70									-
	19A-10	6.4					1.63									-
	108‡				36	0.16			0.098	6	5.1	19	0.5	12	28	1
	19A ²⁰				32	0.71			ND	8	2.9	8	0.6	12	5	1
	19A [†]				24	ND				7	1.6	8	0.6	12	6	1
	21B ³⁶					1.54			ND	5		23	0.5	16	12	1
	21B [†]				24	0.15			0.012	7	1.6	19	0.7	14	13	2
PR 2	11C-2	7.4					0.44									_
	110-4	7.2					0.68									_
	11C-6	7.1					0.09									_
	11C-8	6.9					0.67									_
	11C-10	7.2				***	0.25									_
	20C-1	6.9					0.88									_
	20C-2	7.3					1.47									_
	20C-3	7.1					2.23									_
	20C-4	7.2					2.25									_
	20C-5	7.0					0.46									_
	20C-6	7.2		~~			0.65									_
	20C-7	7.0					1.20									_
	20C-7 20C-8															_
	20C-9	7.0					1.08									
		7.0					0.38									-
	20C-10	6.8				 0 h7	1.35			10		77	0.7	70	15	-
	11C‡				48	2.47			0.074	12	4.4	33	0.7	32	15	2
	20C*	_			64	0.93			0.081	18	4.6	33	0.7	36 	19	1
	20C [†]				60	1.34			0.140	14	6.1	33	0.7	36	15	2
PR 3	10B-2	7.4					0.23									_
	10B-4	7.3					0.89									_
	10B-6	7.2	- -				ND									-
	10B-8	7.1					0.22									-
	108-10	7.2					ND									-
	19A-1	7.3					0.17									-

TABLE B-11--CONTINUED

				COND.@ 25°C	TOTAL	NI.	TROGEN a									
DATE	SAMPLE	pН	TDS	umbos/	HARD- NESS	NH3- N	NO2+ NO3	TOTAL	P04-P	Ca	Mg	Na	K	C1	504	SiO ₂
			mg∕l	cm						mg/l_						
(1974) APR 3	19A-2	6.8					NĎ									
ALL S	19A-2 19A-3	7.1					1.63									
	19A-4	6.5					0.52									
	19A-4 19A-5															
		7.0					1.07									
	19A-6	6.5					1.30									
	19A-7	6.9					0.15									
	19A-8	6.6					0.15									
	19A-9	6.8					0.40									
	19A-10	5.9					0.67									
	218-1	7.1					0.17									
	21B-2	7.1					0.07						~-			
	21B-4	6.9					0.63									
	218-6	7.0					0.19									
	21B-7	7.1					0.15									
	218-8	6.9					ND									
	21B-9	7.0					0.13									
	21B-10 +	6.9					0.07									
	10В‡				44	0.69			0.032	6	7.0	11	0.2	12	9	15
	19A ^{3€}				48	0.80			0.033	8	6.8	6	0.7	14	4	12
	19A [†]				28	0.15			0.085	7	2.6	6	1.8	14	3	14
	21B×				40	1.05			0.055	7	5.5	17	0.3	14	10	15
	21B [†]				36	0.40			0.054	6	5.1	13	0.3	12	7	14
MAY 6	108-2	6.8			'		0.35									
	10B-4	6.9					0.72									
	10B-6	7.0					0.45									
	10B-8	7.1					0.34									
	108-10	7.3					0.35									
	19A-1	6.8					0.24									
	19A-2	6.8					0.30									
	19A-3	7.0					0.53									
	19A-4	6.7					0.72									
	19A-5	3.4			28		0.86									
	19A-6	6.2					0.92									
	19A-7	6.7					0.24									
	19A-8	7.0	·				0.15									
	19A-9	7.0					0.67									
	19A-10	6.6					0.27									
	21B-1	7.0					0.23									
	218-2	7.0					0.18								~~	
	21B-3	7.4					0.37									
	218-4	7.2					0.27									
	21B-6	7.1					0.14									
	21B-7	7.0					0.07									
	21B-8	7.0					0.14									
	218-9	7.0					0.12							<u></u>		
	21B-10	7.1			16		0.30									
	10B‡	, • · ·		·	12											
	19A-1,3,7,9				28											
	19A ⁺				24											
	21B~1,3,7,9				20											
	21B-2,4,6,8				24									~-		

TABLE B-11--CONTINUED

				COND.	TOTAL	NI NI	TROGEN	as N								
DATE	SAMPLE	рΗ	TDS	25°C μmhos/	HARD- NESS	NH3- N	NO2+ NO3	TOTAL		Ca	Mg	Na	K	CI	504	\$10?
			mg/l	cm						mg/l_						
(1974)																
MAY 9	11C-2	6.9					0.95									
	11C-4	6.9					0.28									
	11C-6	6.9					0.27									
	11C-8	7.0					0.75									
	11C-10	7.1					0.47									
	20C-1	3.0					2.44									
	20C-2	6.5					2.72									
	20C-3	6.8					2.48									
	20C-4	7.1					4.24									
	20C-5	6.8					0.54									
	20C-6	2.7			40		0.71									
	20C-7	3.5					1.22									
	20C-8	6.4					1.56			·						
	20C-9	7.1					0.50									
	20C-10	6.9					1.90									
	11C‡				36											
	20C-1,7 [‡]				60											
	20C-3,5,9 [‡]				64											
	20C-2,4,8,10	n‡			52											
MAY 22	10B-2	7.0					0.12							_		
MAI 22	10B-2 10B-4	7.1					0.40									
	10B-4 10B-6	7.0					0.08									
		7.3					0.12									
	10B-8	7.1					0.11									
	10B-10	6.9					0.11									
	19A-1															
	19A-2	6.9					0.06									
	19A-3	7.3					0.26									
	19A-4	7.2					0.46									
	19A-5	6.9					0.19									
	19A6	7.2					0.44									
	19 A- 7	7.1					0.10									
	19A-8	7.3					0.11									
	19A-9	6.8					0.42									
	19A-10	6.8					0.42									
	21B-1	7.1					0.19									
	21B-2	7.2					0.13									
	21B-3	7.1					0.13									
	21B-4	7.0					0.25									
	21B-6	7.3					0.10									
	21B-7	7.1					0.11									
	21B-8	6.9					0.16									
	21B-9	7.0					0.04									
	21B-10	7.0					0.20									
	10B‡		40	108	16				0.038	4	1.5	14	0.5	12	4	17
	19A ³⁴		54	98	28				0.038	6	3.2	8	1.2	16	1	13
	19A [†]		64	100	24				0.121	5	2.8	8	2.7	16	1	16
	21B*		80	142	24				0.121	5	2.8	18	0.7	12	9	17
	21B [†]		80	150	24				0.023	4	3.4	13	0.8	14	11	19
	210			150	27	-	_		0.023	7	J• T	4.7	0.0	17	11	17

*ODD COMPOSITE.

[†]EVEN COMPOSITE.

‡composite.

TABLE B-11--CONTINUED

				COND.@	TOTAL		TROGEN	as N								
DATE	SAMPLE	рН	TDS	25°C µmhos/	HARD- NESS	NH3- N	NO2+ NO3	TOTAL	P04-P	Ca	Mg	Na	Κ	CI	SO4	S10 ₂
			mg/l	cm						ng/l						
(1974) MAY 23	11C-2	7.1					5.10									
MAI 25	11C-4	7.2					1.90									
	11C-6	7.2					0.72									
	11C-8	7.3					6.60									
	11C-10	7.4					2.00									
	20C-1	6.9					16.00							~-		
	20C-2	7.1					10.00									
	20C-3	7.1					6.70			~						
	20C-4	7.0					7.40									
	20C-5	7.1					3.40									
	20C-6	7.1					11.36									
	20C-7	7.2					8.80									
	20C-8	7.2					10.72									
	20C-9	7.1					6.40									
	20C-10	7.3					11.68									
	11c [‡]		160	246	44				0.242	8	5.8	34	1.1	48	10	24
	20C*		174	340	68				0.053	14	8.0	39	0.9	44	17	23
	20C [†]		216	330	60				0.075	13	6.7	38	1.3	42	17	28
JUNE 12	10B-2	7.2					0.58									
	10B-4	6.9				`	0.46	_								
	10B6	7.0					0.14									
	10B-8	7.1					0.15									
	10B-10	7.0					0.38									
	19A-1	6.7					0.76									
	19A-2	6.7					0.51	·								
	19A-3	6.7					1.80									
	19A-4	6.7					2.00									
	19A-5	6.8					1.00									
	19A-6	6.6					0.88									
	19A-7	6.8					0.41									
	19A-8	6.8					0.22									
	19A-9	6.7					1.00									
	19A-10	6.7					0.38									
	21B-1	6.9				~-	0.35									
	21B-2	6.9					0.38									
	21B-3	7.0					1.44									
	218-4	6.9					0.54									
	21B-6	7.0					0.42									
	21B-7	7.0					3.36									
	21B-8	6.8					0.77									
	21B-9	6.9					2.12									
	21B-10 +	7.0					0.71									
	10B [‡]		80	122	24				0.045	3	3.0	18	0.8		5	15
	19A*		94	103	28				0.045	5	3.8	8	1.2		3	12
	19A†		72	100	24				0.151	4	3.4	9	2.3		3	14
	21B**		70	148	28				0.177	6	3.2	19	1.1		15	. 19
	21B [†]	 7 0	96	120	24				0.035	5	2.8	13	0.8		8	19
JUNE 14	11C-2	7.0					0.58									
	11C~4	7.0					0.46									
	11C-6	6.8					0.14									

TABLE B-11--CONTINUED

				COND.@	TOTAL		ITROGEN	as N								
DATE	SAMPLE	pН	TDS	25°C µmhos/	HARD- NESS	NH3- N	NO ₂ + NO ₃		P04-P	Ca	Mg	Na	K	Cl	SO ₄	S10 ₂
	 		mg/ℓ	cm						mg/ℓ						
(1974) JUNE 14	11C-8	7.0					0.15									
	11C-10	7.3					0.38									
	20C-1	6.8					19.00									
	20C-2	6.9					15.50									
	20C-3	7.0					5.20									
	20C-4	7.0					10.60									
	20C-5	7.1					4.40									
	20C-6	7.0					3.36				_					
	20C-7	6.9					10.88									
	20C-8	6.8					11.52									
	20C-9	7.0					7.20									
	20C-10	6.8					17.28									
	11c‡		144	240	72				0.233	6	13.9	34	0.8		14	19
	20C×		200	324	60				0.045	13	6.7	40	0.8		14	18
	20C [†]		180	292	52				0.038	11	6.0	38	0.8		15	20
JUNE 25	10B-2	7.1					0.20									
	10B-4	6.9					0.25									
	10B-6	6.8					0.20									
	108-8	7.2					0.20									
	10B-10	7.1					0.33									
	19A-1	6.6					0.23									_
	19A-2	6.6					0.25									
	19A-3	6.5					0.72									
	19A-4	6.6					1.16									
	19A-5	6.7					0.40									
	19A-6	6.5					0.51									
	19A-7	6.6					0.20									
	19A-8	6.6					0.18									
	19A-9	6.5					0.36									
	19A-10	6.2					0.11									
	218-1	6.6					0.21									
	21B-2	6.7					0.26									
	21B-3	6.6					0.52									
	21B-4	6.5					0.57									
	21B-6	6.6					0.20									
	21B-7	6.7					0.60									
	21B-8	6.9					0.27									
	218-9	6.8					0.24	5.								
	21B-10	6.8					0.21									
	10в‡		80	114	24				0.042	4	3.4	13	0.8		5	
	19A%		76	116	32				0.039	6	4.1	8	1.2		3	
	19A [†]		54	98	24 .				0.151	5	3.4	8	2.3		5	
	21B%		80	146	28				0.041	6	3.2	16	0.9		13	
	21B [†]		70	128	28				0.083	5	3.8	13	0.9		13	
JUNE 27	11C-2	6.7					5.10							~-		
	11C-4	6.6		,			3.50									
	11C-6	6.6					3.00									
	11C-8	6.5					7.00									
	11C-10	7.0			'		3.10									
	20C-1	6.7					16.00									

TABLE B-11--CONTINUED

				COND.()	TOTAL	<u>N</u> H3-	ITROGEN a									
DATE	SAMPLE	ρН	TDS	25°C μmhos/	HARD- NESS	NH3-	NO2+ NO3	TOTAL		Ca	Mg	Na	K	C1	SO ₄	SiO2
			mg/ℓ	cm						mg/ℓ_						
(1974)																
JUNE 27	20C-2	6.6					16.00									
	20C-3	6.9					4.96									
	20C-4	6.7					4.96									
	20C-5	6.8					3.20									
	20C-6	6.9		:			3.68									
	20C-7	6.7					11.52									
	20C-8	6.6					9.28							~-		
	20C-9	6.8					5.12									
	20C-10	6.6					9.50									
	11 c ‡		160	260	36				0.094	7	4.5	34	0.7		15	
	20C#		470	350	64				0.065	14	7.0	42	0.9		30	
	20C [†]		102	334	56				0.100	12	6.3	42	1.2		27	
JULY 10	10B-2	8.0					0.03									
	10B-4	7.8					0.09									
	10B-6	7.6					0.02									
	10B-8	7.4					0.04									
	108-10	7.4					0.05									
	21B-1						0.08									
	218-1															
							0.10									
	21B-3						0.13	•••								
	21B-4						0.15									
	21B-6															
	21B-7															
	21B-8						0.15		0.000		 7 0	17	1.0			
	21B-9	7.3			52		0.21		0.280	8	7.8	13	1.8		8	
	218-10															
	19A-1	7.3			'		0.16									
	19A-2	7.2	~-				0.06									
	19A-3	7.0					0.09									
	19A-4	6.9					0.18									
	19A-5	7.0					0.19									
	19A-6	7.0					0.12						'			
	19A-7	7.0					0.10									
	19A-8	7.0					0.09									
	19A-9	7.1					0.25									
	19A-10	7.0					0.06		~~							
	10В‡				16				0.060	4	1.5	13	0.6		4	
	19A*				28				0.070	6	3.2	8	1.3		2	
	19A [†]				28				0.270	5	3.8	8	1.8		3	
	21B*								0.080	8		14	1.1			
	21B [†]								0.190	8		13	1.5			
JULY 11	11C-2	6.6					4.30						<u></u> -			
	11C-4	6.8					2.30									
	11C-6	6.7					1.80									
	11C-8	6.6					4.00									
	11C-8 11C-10	6.7			·		1.50									
	20C~1	6.7					14.50									
	20C-2	6.7					15.50									
	20C-2 20C-3	6.8					2.88				_					
													- -			
	20C-4	6.8					4.48									

TABLE B-11--CONTINUED

				COND.@	TOTAL	NI	TROGEN	as N								
DATE	SAMPLE	рН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	NH3- N	NO2+ NO3	TOTAL		Ca mg/ℓ_	Mg	Na	K	C1	SO ₄	Sio
			mg/ x	Cili						g/ ~						
(1974) JULY 11	20C-5	6.7					1.76									
JULI II	20C-6	6.6					1.60									
	20C-7	6.7					3.25									
	20C-8	6.7					5.00									
	20C-9	6.7					4.16									
	20C-10	6.6					5.44									
	1107				40				0.220	8	4.9	35	0.9		14	
	20C ^{3¢}				68				0.100	15	7.4	49	0.7		22	
	20C†				60				0.110	13	6.7	44	0.9		21	
JULY 31	10B-2	7.4					0.11									
OULT 31	10B-2 10B-4	7.3					0.13									
	10B-4 10B-6	7.2					0.10									
	10B-8	7.2		~-			0.05									
	108-10	7.3					0.04									
		7.5					0.22									
	19A-1	7.5					0.06									
	19A-2	7.2					0.17									
	19A-3	7.0	 ,				0.33									
	19A-4	7.0					0.20									
	19A-5						0.10									
	194-6	7.1					0.11									
	19A-7	7.1					0.09									
	19A-8	7.2														
	19A-9	7.1					0.39									
	19A-10	7.3					0.12									
	21B-1	7.1					0.08									
	21B-2	7.2					0.08									
	21B-3	7.2					0.07									
	21B-4	7.2			-		0.09									
	21B-6	7.1					0.11									
	21B-7	7.2					0.09									
	21B-8	7.2					0.12									
	21B-9 +	7.1					0.09									
	10B [‡]				24	ND			0.215				0.3	18		18
	19 A %				28	ND			0.103				0.5	16		15
	19A [†]				24	ND			0.488				1.6	20		18
	21B∺ +			***	28	1.02			0.143				0.5	20		18
	21B [†]				24	ND			0.118				0.5	20		19
AUG 1	11C-2	7.1					2.80									
	11C-4	7.0					6.80									
	11C-6	7.1					2.70									
	11C-8	6.9					2.70									
	11C-10	7.1					1.20									
	20C-1	7.0					12.50									
	20C-2	7.0					15.00									
	20C-3	7.1					1.76									
	20C-4	7.2					2.88									~
	20C-5	7.1					1.10									
	20C-6	7.0					0.80									
	20C-7	7.1					2.40									
	20C-8	7.1					4.32									
	20C-9	7.0					2.72									

TABLE B-11--CONTINUED

				COND.@	TOTAL HARD-	NH3-	TROGEN	as N								
DATE	SAMPLE	pН	TDS	umhos/	NESS	N N	NO2+ NO3	TOTAL	P04-P	Ca	Mg	Na	K	C1	SO ₄	S102
			mg/l	ст						mg/l						
(1974)																
AUG 1	20C-10	7.0					4.96									
	11c‡				36	0.10			0.383				0.5	44		27
	20C*				60	ND			0.223				1.0	52		27
	20C [†]				64	0.92			0.403				1.0	52		26
AUG 14	10B-2						0.14									
	10B-4						0.20									
	108-6						0.23									
	10B-8						0.24									
	108-10						0.24									
	19A-1						0.23									
	19A-2						0.14									
	19A-3						0.12									
	19A-4						0.20									
	19A-5						0.12									
	19A-6						0.17			-	- -					
	19A-7						0.18									
	19A-8						0.17									
	19A-9						0.51									
	19A-10						0.13									
	21B-1						0.14									
	21B-2						0.16									
	21B-3						0.16									
	21B-4						0.21									
	21B-6						0.17									
	21B-7						0.17									
	21B-7 21B-8						0.14									
	21B-9 10B [‡]						0.10									
					24	ND			0.078				1.0	19		19
	19A*				28	ND			0.100				1.6	17		17
	19A [†]		_		24	0.10			0.680				0.5	18		18
	21B**				24	ND			0.098				0.5	19		18
	21B [†]				28	ND			0.068				0.5	19		19
AUG 15	11C-2						2.10									
	11C-4	·					5.90									
	11C-6						1.60									
	11C-8						3.30									
	11C-10						1.60									
	20C-1						8.00									
	20C-2						9.00									
	20C-3						1.60								-	
	20C-4						3.00									
	20C-5						1.70									
	20C-6						0.90									
	20C-7						1.40									
	20C-8						2.60									
	20C-9						3.60									
	20C-10						5.90									
	11C [‡]				40	0.40			0.440				1.0	49		25
	20C#		<u></u>		60	ND			0.238				1.6	56		23
	20C**									_				58		25
	20C				56	ND			0.165				1.0	28		23

TABLE B-11--CONTINUED

			COND.@	TOTAL		TROGEN									
SAMPLE	ρН	TDS	μmhos/	NESS	N N	NO3			Ca	Mg	Na	K	C1	SO ₄	SiO:
		mg/ x	CIII						mg/x						
11C-2						4.80									

							·								
	<u></u>														
			280	35	0.36			0.163			47	1.0			21
										~-					21
															23
						0.20									
						0.03									
						0.02									
						0.21									
						0.02								•••	
						0.08								<u></u>	
19A-8						0.10									
19A-9						0.30									
19A-10						0.05									·
218-1						0.09									
21B-2						0.04									
218-3						0.17									
21B-4						0.03									
218-6						0.04									
21B-7						0.03									
218-8						0.03									
21B-9						0.04									
19A*			96	30	0.17			0.020			10	0.9	15		11
19A [†]			90	24	0.70			0.139			9	1.4	16		13
21B*			134	26	ND			0.023			20	0.5	15		14
21B [†]			114	22	0.12			0.026			14	0.5	15		14
11C-2						3.00									
11C-4						6.90									
11C-6						2.40			'						
11C-8						4.10					. ——				
11C-10						1.60									
20C-1						5.25									
20C-2						3.50			•						
20C-3						2.20	~								
	11C-2 11C-4 11C-6 11C-8 11C-10 20C-1 20C-2 20C-3 20C-4 20C-5 20C-6 20C-7 20C-8 20C-9 20C-10 11c [†] 20C [*] 29C [†] 19A-1 19A-2 19A-3 19A-4 19A-5 19A-6 19A-7 19A-8 19A-9 19A-10 21B-1 21B-2 21B-3 21B-4 21B-6 21B-7 21B-8 21B-9 19A [†] 21B [*] 21B-7 21B-8 21B-9 19A [†] 21B [*] 21B-1 21B-2 21B-3 21B-4 21B-6 21B-7 21B-8 21B-9 19A [†] 21B [*] 21B-1 21B-2 21B-3 21B-4 21B-6 21B-7 21B-8 21B-9 19A [†] 21B [*] 21B-1 21B-2 21B-3 21B-4 21B-6 21B-7 21B-8 21B-9 19A [†] 21B [*] 21B-1 21C-2 11C-4 11C-6 11C-8 11C-10 20C-1	11C-2 11C-4 11C-6 11C-8 11C-10 20C-1 20C-2 20C-3 20C-4 20C-5 20C-6 20C-7 20C-8 20C-9 20C-10 11C† 20C* 19A-1 19A-2 19A-3 19A-4 19A-5 19A-6 19A-7 19A-8 19A-9 19A-9 19A-10 21B-1 21B-1 21B-2 21B-3 21B-4 21B-6 21B-7 21B-8 21B-7 21B-8 21B-9 19A* 19A* 19A* 19A* 19A* 21B* 21B* 21B* 21B-1 21B* 21B-1 21B* 21B-1 21B-2 21B-3 21B-4 21B-6 21B-7 21B-8 21B-7 21B-8 21B-9 19A* 19A* 11C-6 11C-6 11C-8 11C-10 20C-1	mg/2 11C-2 11C-4 11C-6 11C-8 11C-10 20C-1 20C-2 20C-3 20C-5 20C-6 20C-7 20C-8 20C-9 20C-10 11C† 20C* 20C* 20C* 19A-1 19A-2 19A-3 19A-4 19A-5 19A-6 19A-7 19A-8 19A-9 19A-9 19A-10 21B-1 21B-2 21B-4 21B-6 21B-7 21B-8 21B-9 19A* 21B* 21B* 21B* 21C-4 11C-6 11C-8 11C-10 20C-1 20C-1	11C-2	11C-2	11C-2	11C-2	11C-2	11C-2	11C-2	11C-2	11C-2	11C-2	11C-2	116-2

TABLE B-11--CONTINUED

				COND.@	TOTAL		TROGEN	as N								
DATE	SAMPLE	pН	TDS mg/l	25°C µmhos/ cm	HARD- NESS	NH3~ N	NO ₂ + NO ₃		P04-P	Ca mg/l-	Mg	Na 	к 	C1	SO ₄	\$10;
	<u></u>			······												
(1974) SEPT 19	20C-3						2.20									
	20C-4						2.40									
	20C-5						1.50							·		
	20C-6						1.80									
	20C-7						3.00									
	20C-8						3.00									
	20C-9					·	1.50									
	20C-10						3.04									
	11C‡			280	38	0.05			0.142			43	0.5	50		21
,	20C#			340	60	ND			0.078			49	0.5	58		19
	20C [†]			310	46	ND			0.054			46	0.6	55		20
NOV 2	11C-2						4.10									
1404 2	11C-2 11C-4						6.70									
	11C-8			***			5.40									
	11C-8 11C-10						3.80									
	20C-1				~		3.80									
	20C-2						5.80									
	20C-2 20C-3						3.00									
	20C-3 20C-4						3.50									
							4.10									
	20C-5						3.70									
	20C-6						3.70									
	20C-7						5.10									
	20C-8						3.40									
	20C-9						5.10									
	20C-10 11C [‡]			280	 34											15
						0.32	, 		0.072			50	0.5			20
	20C*			320	48	1.60			0.292	****		57	1.7			
	20C [†]			264	48	0.44			0.132			52	1.2			20
NOV 6	21B-1						0.09				~~					
	21B-2						0.07									
	21B-3						0.33				6-c No.					
	21B-4						0.05									
	21B-6						0.03									
	21B-7						0.04				~		-			
	21B-8						0.08									
	218-9						0.11									
	21B*			120	28	0.82			0.056	5	3.8	17	1.3			10
	21B [†]			110	28	0.84			0.109	5	3.8	17	1.3			10

"ODD COMPOSITE.

[†]EVEN COMPOSITE.

‡composite.

TABLE B-12. HYDROLOGIC AND NITROGEN CONDITIONS IN TEST PLOT A, OSC FIELD NO. 246

				NPUT			OU ⁻	TPUT	
DATE	RAINFALL	N FERTILIZER		IRRIGAT	10N ²	EVAPO-		PERCOLATIO	Ие
DATE		APPLICATION1			TOTAL N	RATION ⁵			TAL N
	in./mo	lb/acre	in./mo	mg/ℓ7	lb/acre-mo	in./mo	in./mo ⁷	mg/l8	1b/acre-mo
1973									
FEB.	0.63	95 (02/27)	10	0.19	0.43	4.80	5.83	0.74 9	0.98
MAR.	1.69		5	0.24	0.27	5.88	0.81	16.14 ¹⁰	2.96
APR.	1.13		10	0.15	0.34	5.64	5.49	16.1410	20.08
MAY	1.60	100 (05/09)	10	0.08	0.18	6.77	4.83	32.28	35.34
JUNE	0.58	110 (06/20)	15	0.04	0.14	6.19	9.39	11.21	23.78
JULY	0.93		10	0.14 ⁴	0.32	6.77	4.16	20.95	19.75
AUG.	0.89	75 (08/08)	10	0.24	0.54	6.52	4.37	20.68	20.48
SEPT.	0.99		10	0.24	0.54	5.93	5.06	37.30	42.78
OCT.	2.51		10	0.21	0.48	5.78	6.73	11.85	18.08
NOV.	3.14	•	5 5	0.21^{4}	0.24	3.49	4.65	6.83	7.20
DEC.	5.98		5	0.22	0.25	4.11	6.87	4.80	7.47
1974	0. (0			0 1 1.11	2 22	. or	1. 1.1.	0. 771	0.70
JAN.	8.69		0 .	0.144	0.00	4.25	4.44	2.774	2.79
FEB.	4.34		5	0.06	0.07	4.08	5.26	0.74	0.88
MAR.	5.79		0	0.084	0.00	4.52	1.27	0.714	0.20
APR.	4.23		5	0.11	0.12	4.93	4.30	0.68	0.66
MAY	2.84		10	0.02	0.05	5.09	7.75	0.39	0.69
JUNE	0.97		5	0.67	0.76	5.91	0.06	0.62	0.01
JULY	2.47		10	0.07	0.16	4.92	7 - 55	0.12	0.20
AUG.	0.31		10	0.31	0.70	5.71	4.60	0.26	0.27
SEPT.	8.78		5	0.05	0.06	5.52	8.26	0.74	1.39
OCT.	2.81		0	0.304	0.00	4.30	-1.49	0.74^{11}	-0.25
NOV.	4.31		5	0.57	0.65	3.30	6.01	0.7411	1.01
TOTAL	65.61	380	155		6.30	114.41	106.20		206.75

¹N content of rainfall omitted as negligible (5 lb/acre). ²Ditch water only; no effluent applied.

³Median values.

⁴interpolated values.

⁵Assumed to be equal to the evaporation rate of Lysimeter E, Table 23; corrected to pan evaporation rates of Field 245, Table 22.

⁶Samples collected by 18- to 21-in. point samplers placed just below tillage pan.

⁷Calculated difference between rainfall, applied irrigation and evaporation.

⁸Mean values.

⁹Assume concentration to be equal to Feb. 1974 value.

 ¹⁰ Assume concentration to be equal to Sept. 1974 value.
 11 Assume concentration to be equal to May 1974 value.

TABLE B-13. HYDROLOGIC AND NITROGEN CONDITIONS IN TEST PLOT B OF OSC FIELD NO. 246

				NPUT			00	ITPUT	
DATE	RAINFALL	N FERTILIZER		IRRIGATI	ON2	EVAPO-		PERCOLATIO	N6
DATE	RAINFALL	APPLICATION1		T(OTAL N	RATION5			TAL N
	in./mo	lb/acre	in./mo	mg/23	lb/acre-mo	in./mo	in./mo ⁷	mg∕l8	lb/acre-mo
1973					·				· - · -
FEB.	0.63	95 (02/27)	10.00	0.19	0.43	4.80	5.83	0.67 ⁹	0.89
MAR.	1.69		5.00	0.24	0.27	5.88	0.81	19.40 ¹⁰	3.56
APR.	1.13		6/3.70	0.15/17.	4 14.79	5.64	5.19	19.40	22.82
MAY	1.60	80 (05/09)	7.40	23.2	38.91	6.77	2.23	49.17	24.85
JUNE	0.58	40 (06/20)	11.10	20.7	52.08	6.19	5.49	39.32	48.93
JULY	0.93		7.40	18.1	30.36	6.77	1,56	5 . 96	2.11
AUG.	0.89		8.14	20.3	37.45	6.52	2.51	32.92	18.73
SEPT.	0.99		8.88	19.6	39.45	5.93	3.94	21.18	18.92
OCT.	2.51		7.77	23.2	40.86	5.78	4.50	18.59	18.96
NOV.	3.14		3.70	22.2	18.62	3.49	3.35	16.00	12.15
DEC.	5.98		4.44	20.9	21.03	4.11	6.31	12.77	18.26
1974									
JAN.	8.69		0.00	24.7	0.00	4.25	4.44	6.72 ⁴	6.76
FEB.	4.34		4.44	0.06	0.06	4.08	4.70	0.67	0.71
MAR.	5.79		0.00	0.084	0.00	4.52	1.27	0.724	0.21
APR.	4.23		4.44	0.11	0.11	4.93	3.74	0.78	0.66
MAY	2.84		8.88	0.02	0.04	5.09	6.63	0.554	0.83
JUNE	0.97		4.44	0.67	0.67	5.91	-0.50	0.32 ⁴	-0.04
JULY	2.47	•	8.14	0.07	0.13	4.92	5.69	0.09	0.12
AUG.	0.31		7.40	0.31	0.52	5.71	2.00	0.19	0.09
SEPT.	8.78		3.70	0.05	0.04	5.52	6.96	0.16	0.25
OCT.	2.81		3.70	0.304	0.25	4.30	2.21	0.544	0.27
NOV.	4.31		0.00	0.57	0.00	3.30	1.01	0.90	0.21
TOTAL	65.61	215	128.67		296.07	114.41	79.87		200.25

¹N content of rainfall omitted as negligible (5 lb/acre).
²Ditch water only; no effluent applied.

³Median values.

⁴Interpolated values.

⁵Assumed to be equal to the evaporation rate of Lysimeter E, Table 23; corrected to pan evaporation rates of Field 245, Table 22.

⁶Samples collected by 18- to 21-in. point samplers placed just below tillage pan.

⁷Calculated difference between rainfall, applied irrigation and evaporation.

⁸Mean values.

⁹Assume concentration to be equal to Feb. 1974 value. ¹⁰Assume concentration to be equal to Sept. 1974 value. ¹¹Assume concentration to be equal to May 1974 value.

TABLE B-14. HYDROLOGIC AND NITROGEN CONDITIONS IN TEST PLOT C OF OSC FIELD NO. 246

			1	NPUT				ITPUT	
DATE	RAINFALL	N FERTILIZER		IRRIGATI		EVAPO-		PERCOLATIO	
DAIL		APPLICATION1			TAL N	RATION5			TAL N
	in./mo	lb/acre	in./mo	mg/l3	lb/acre-mo	in./mo	in./mo ⁷	mg/ℓ8	lb/acre-mo
1973									
FEB.	0.63	95 (02/27)	10.00	0.19	0.43	4.80	5.83	2.86 ⁹	3.78
MAR.	1.69		5.00	0.24	0.27	5.88	0.81	25.98 ¹⁰	4.77
APR.	1.13		6/3.70	0.15/17.	14.79	5.64	5.19	25.98	30.56
MAY	1.60	40 (05/09)	7.40	23.2	38.91	6.77	2.23	32.93	16.65
JUNE	0.58		11.10	20.7	52.08	6.19	5.49	27.14	33.77
JULY	0.93		7.40	18.1	30.36	6.77	1.56	17.67	6.25
AUG.	0.89		8.14	20.3	37.45	6.52	2.51	12.14	6.91
SEPT.	0.99		8.88	19.6	39.45	5.93	3.94	9.05	8.08
OCT.	2.51		7.77	23.2	40.86	5.78	4.50	10.40	10.61
NOV.	3.14		3.70	22.2	18.62	3.49	3.35	13.05	9.91
DEC.	5.98		4.44	20.9	21.03	4.11	6.31	13.74	19.65
1974									
JAN.	8.69		0.00	24.7	0.00	4.25	4.44	8.30 ⁴	8.35
FEB.	4.34		4.44	17.3	17.41	4.08	4.70	2.86	3.05
MAR.	5.79		0.00	20.1	0.00	4.52	1,27	2.834	0.81
APR.	4.23		4.44	24.6	24.76	4.93	3.74	2.80	2,37
MAY	2.84		8.88	26.7	53.74	5.09	6.63	4.25 ⁴	6.39
JUNE	0.97		4.44	19.3	19.42	5.91	-0.50	6.434	-0.73
JULY	2.47		8.14	16.8	31.00	4.92	5.69	4.59	5.92
AUG.	0.31		7.40	13.3	22.31	5.71	2.00	4.62	2.09
SEPT.	8.78		3.70	13.3	11.15	5.52	6.96	3.20	5.05
OCT.	2.81		3.70	16.1	13.50	4.30	2.21	4.20 ⁴	2.10
NOV.	4.31		0.00	17.8	0.00	3.30	1.01	5.20	1.19
TOTAL	65.61	135	128.67		487.54	114.41	79.87		187.53

¹N content of rainfall omitted as negligible (5 lb/acre).
²Ditch water only; no effluent applied.

³Median values.

⁴Interpolated values.

⁵Assumed to be equal to the evaporation rate of Lysimeter E, Table 23; corrected to pan evaporation rates of Field 245. Table 22.

⁶Samples collected by 18- to 21-in, point samplers placed just below tillage pan.

⁷Calculated difference between rainfall, applied irrigation and evaporation.

⁸Mean values.

⁹Assume concentration to be equal to Feb. 1974 value. ¹⁰Assume concentration to be equal to Sept. 1974 value.

¹¹ Assume concentration to be equal to May 1974 value.

APPENDIX C. METHODS OF SAMPLE CONCENTRATION FOR VIRAL ASSAY

Five different methods were adopted or modified for this project:

- 1. Polyelectrolyte 60 (PE-60). The batch (Wallis et al. 1971) and sandwich (Wallis and Melnick 1970) techniques of using the synthetic, insoluble PE-60 (Monsanto Co.) which selectively adsorbs viruses from the water medium was used. The PE-60 was subsequently recovered and the adsorbed viruses eluted with a small volume of borate buffer (pH 9.0).
- 2. Polymer Two-Phase. A modification of the polymer two-phase separation method of Shuval et al. (1969) was used. Briefly, sodium dextran sulfate 500, polyethylene glycol 6000 and NaCl were dissolved in the water sample and allowed to separate overnight. The enteroviruses migrate preferentially to the dextran sulfate phase which comprises only 1:150 of the total volume, resulting in the effective concentration of the viruses.
- 3. Aluminum Hydroxide [Al(OH)₃]. A modification of the Al(OH) methods as described by Wallis and Melnick (1967) was used. Briefly, the performed $Al(OH)_3$ is added to the water sample and selectively adsorbs viruses from the water medium. The Al(OH)₃ is subsequently recovered and the adsorbed viruses eluted with a small volume of borate buffer (pH 9.0).
- 4. Protamine Sulfate. A modification of the method of England (1972) was used. Briefly, protamine sulfate was added to the water sample to precipitate the viruses from the water medium. The precipitate was then recovered by filtering the entire sample through an AP-20 pad and the precipitate dissolved to recover the viruses by the addition of 1 M NaC1.
- 5. Cellulose Membrane. The method as described by Wallis et al. (1967) was used. Briefly, $MgCl_2$ was added to the water sample which had been adjusted to pH 5.0 to 5.5 and the entire sample filtered through a 0.45 μ cellulose membrane (Millipore Corp.). Under these conditions the cellulose membrane adsorbs viruses. The adsorbed viruses can then be eluted with a small volume of borate buffer (pH 9.0).

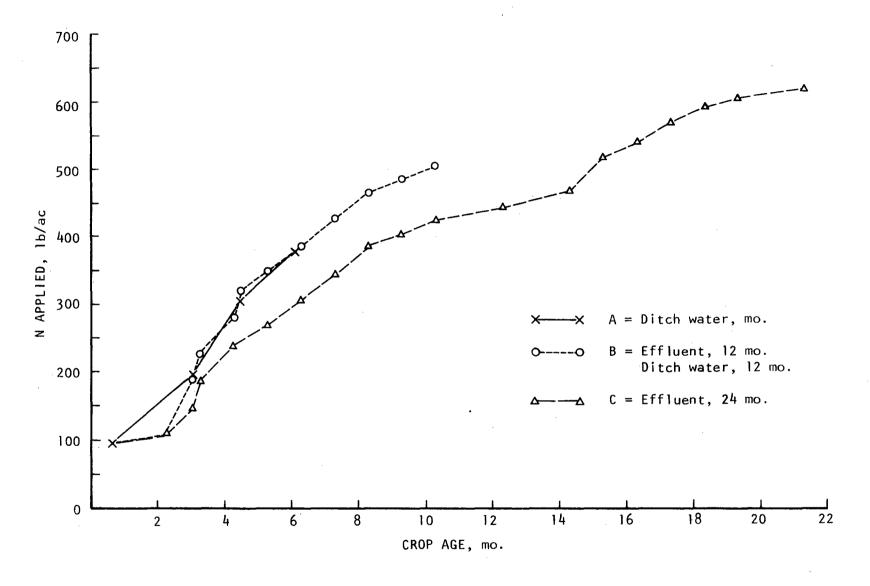


FIGURE D-1. AMOUNT AND TIMING OF N APPLICATION BY COMMERCIAL FERTILIZER AND/OR SEWAGE EFFLUENT FOR EACH TREATMENT IN OSC FIELD 246

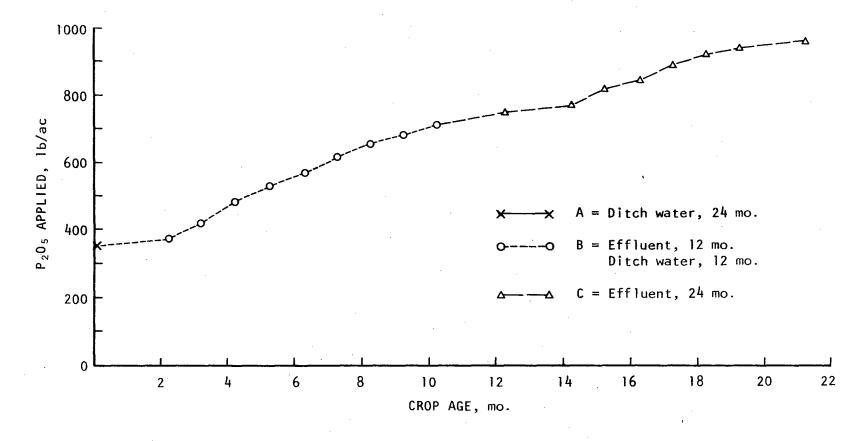


FIGURE D-2. AMOUNT AND TIMING OF P_2O_5 APPLICATION BY COMMERCIAL FERTILIZER AND/OR SEWAGE EFFLUENT FOR EACH TREATMENT IN OSC FIELD 246

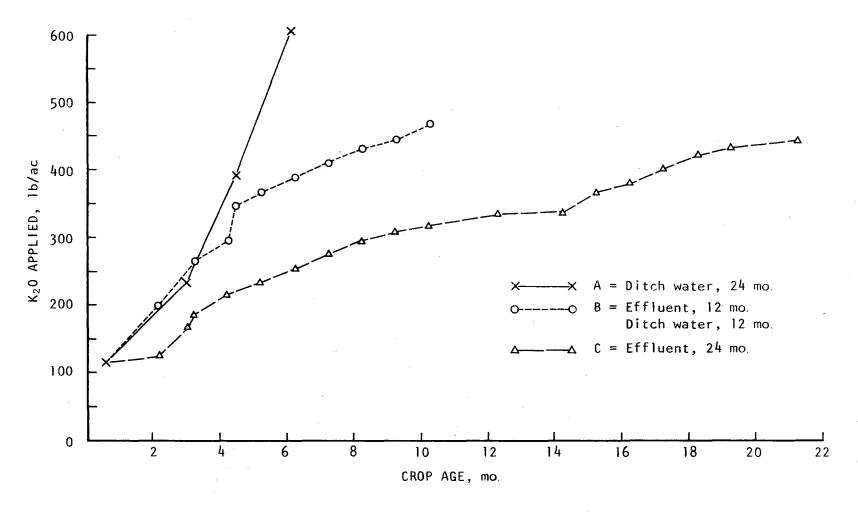


FIGURE D-3. AMOUNT AND TIMING OF K2O APPLICATION BY COMMERCIAL FERTILIZER AND/OR SEWAGE EFFLUENT FOR EACH TREATMENT IN OSC FIELD 246

APPENDIX E. PUBLICATIONS AND PRESENTATIONS

1971

Water Resources Research Center. 1971. Wastewater reclamation project launched at Mililani. Nuhou Kumu Wai 1(3), Water Resources Research Center, University of Hawaii.

1972

- KHET-Hawaii Public Television. 1972. "Water recycling from sewage by irrigation project." Production shown on Channel 11 (Educational TV), 9 April 1972, Honolulu, Hawaii.
- Lau, L.S. 1972. Testimony (A summary status report for the Mililani waste water reclamation project) in The technical session of the conference of pollution of the navigable waters of Pearl Harbor and its tributaries in the state of Hawaii, Proc. Environmental Protection Agency Conference, pp. 151-65, 5-6 June 1972, Honolulu, Hawaii.
- j Ekern, P.C.; Loh, P.C.S.; Young, R.H.F.; and Dugan, G.L. 1972. Water recycling of sewage effluent by irrigation: A field study on Oahu. Tech. Rep. No. 62, Water Resources Research Center, University of Hawaii.
- Young, R.H.F.; Ekern, P.C.; and Lau, L.S. 1972. Wastewater reclamation by irrigation. J. Water Poll. Control Fed. 44(9):1808-14.
- Water Resources Research Center. 1972. 1st results indicate nitrogen build-up. 1972. Nuhou Kumu Wai 2(4), Water Resources Research Center, University of Hawaii.

1973

Fujioka, R.S. 1973. "The virological characterization of Mililani Sewage." Seminar presentation, Water Resources Research Center Seminar Series, University of Hawaii.

1974

- Dugan, G.L.; Young, R.H.F.; Lau, L.S.; Ekern, P.C.; Loh, P.C.S. 1974. "Land disposal of sewage in Hawaii--A reality?" Paper presented to the 47th Ann. Conf. of the Water Pollution Control Federation, 6-11 October 1974, Denver, Colorado.
- Ekern, P.C. 1974. "Land disposal of sewage effluent: Mililani study." Seminar presentation, Water Resources Research Center Seminar Series, University of Hawaii.
- . 1974. Land disposal of sewage effluent: Mililani study. In Seventh Annual Hawaii Fertilizer Conference Proc., CES Misc. Pub. 116, Cooperative Extension Service, University of Hawaii, pp. 9-22.
- _____. 1974. Land disposal of sewage effluent: Mililani study. In Agronomy Abstracts, 1974 Annual Meeting, Amer. Soc. Agronomy, Crop Sci. Soc.

- of Amer., and Soil Sci. Soc. of Amer., 10-15 Nov. 1974, Chicago, Illinois, p. 27.
- Fujioka, R.S., and Loh, P.C.S. 1974. Recycling of sewage for irrigation: A virological assessment. In Abstract of the 1974 Annual Meeting, Amer. Soc. of Microbiology.
- Lau, L.S. 1974. Testimony presented to the Oahu Water Conference sponsored by the City and County, Board of Water Supply, 30 April 1974, Honolulu, Hawaii.
- . 1974. "Sewage irrigation of sugarcane in Hawaii." Seminar presented to the Iowa State Water Resources Research Institute Technical Seminar, 9 December 1974.
- ; Ekern, P.C.; Loh, P.C.S; Young, R.H.F.; Burbank, N.C., Jr.; and Dugan, G.L. 1974. Recycling of sewage effluent by irrigation: A field study on Oahu--Second Progress Report for July 1972 to July 1973. Tech. Rep. No. 79, Water Resources Research Center, University of Hawaii.
- . 1974. Water and nutrient recycling from sewage effluent by irrigation: A pilot field study on Oahu. In *Proc.*, *Fertilizer I.N.P.U.T.S. Project*, East-West Center, University of Hawaii, pp. 165-68.
- Water Resources Research Center. 1974. "Water recycling from sewage by irrigation: A field study on Oahu." 1975 Interim Prog. Rep., Water Resources Research Center, University of Hawaii.
- Young, R.H.F.; Lau, L.S.; Dugan, G.L.; Ekern, P.C.; and Loh, P.C.S. 1974. "Waste water reclamation by irrigation in Hawaii." Presented to the Amer. Soc. Civil Engr. Water Resources Conf., Los Angeles, California, 21-25 January 1974, 28 p.
- . 1974. What happens if water is recycled. *Proc.*, ECOPUSH Conf. on Water for Hawaii, University of Hawaii, pp. 31-34.

1975

- Buren, L.L., and Ekern, P.C. 1975. Response of sugarcane irrigated with municipal sewage effluent. In Agronomy Abstracts, 1975 Annual Meetings, Amer. Soc. Agronomy, Crop Sci. Soc. Amer., and Soil Sci. Soc. Amer., 24-30 August 1975, University of Tennessee, Knoxville, Tenn., p. 79.
- Dugan, G.L.; Young, R.H.F.; Lau, L.S.; Ekern, P.C.; and Loh, P.C.S. 1975. Land disposal of sewage in Hawaii--A reality? J. Water Poll. Control Fed. 47(8):2067-87.
- Lau, L.S. 1975. "Mililani sewage effluent for sugarcane irrigation." Seminar presentation, Water Resources Research Center, University of Hawaii, 1 May 1975.
 - Seminar presentation, County of Maui Special Seminar, Wailuku, Maui, Hawaii, 14 May 1975.
 - Talk presented to the Hawaii Water Pollution Control Association, Quarterly Mtg., Honolulu, Hawaii, 17 June 1975.