

 1 of 18

WS-Naming: Location Migration, Replication, and Failure
Transparency Support for Web Services

Andrew Grimshaw

Mark Morgan

Karolina Sarnowska

University of Virginia, Department of Computer Science

Abstract:

Naming transparencies, i.e., abstracting the name and binding of the entity being used
from the endpoints that are actually doing the work, are used in distributed systems to
simplify application development by hiding the complexity of the environment. In this
paper we demonstrate how to apply traditional distributed systems naming and binding
techniques in the Web Services realm. Specifically, we show how the WS-Naming
profile on WS-Addressing Endpoint References can be used for identity, transparent
failover, replication, and migration. We begin with a discussion of the traditional
distributed systems transparencies. We then present four detailed use cases. Next, we
provide brief background on both WS-Addressing and WS-Naming. Finally, we show
how WS-Naming can be used to provide transparent implementations of our use cases.

1 Introduction
Most applications bring with them a number of “non-functional” characteristics that are
critical for success. For example, the time required to perform an operation, the strength
of the authentication mechanism used, availability, the integrity of the data, or the
application’s ability to continue to function in the presence of faults. These characteristics
are often referred to as Quality of Service (QoS), Quality of X (QoX), or Service Level
Agreement (SLA) properties. Users, whether they are end-users or an organization that
uses the application, want instantaneous response, fool-proof security, absolute data
integrity, and non-stop performance. Achieving the desired service level is often difficult
or impossible, and trade-offs usually need to be made.

One of the jobs of the systems architect is to provide mechanism with which to develop
application implementations that meet the non-functional requirements. Implementing the
service levels in single host environments is known to be challenging and responsible for
a rich literature [8, 10, 12], e.g., MAPE loops [24]. A distributed, service oriented
architecture such as a Web Services based Grid presents significant additional challenges.

The challenges arise out of the distributed nature of Grids: there may be thousands to
millions of Web Service containers, in many different mutually distrustful organizations,
scattered across the globe, running on hardware that may fail, running applications and
services written by thousands of different organizations. To paraphrase Butler Lampson,

 2 of 18

“a distributed system is a system in which a machine I’ve never heard of fails, and I can’t
get any work done.”

If Web Services based Grids are to be successful, standard mechanism must be developed
that provides the application developer the ability to cope with the complexity of the
underlying environment. Furthermore, these mechanisms should not be monolithic and
opaque. Instead, the mechanisms should be “stacked” in the sense that a range of
mechanism is available, and that the programmer can choose appropriate mechanism and
not “pay” for more than they want. These mechanisms should range from high-level
capabilities that take requirements specifications and attempt to enforce those
requirements (relieving the programmer from the burden of dealing with them), to simple
low-level mechanisms that can be used and combined in a variety of ways by the
application programmer [20]. Thus, the application developer has the flexibility to either
rely on high-level mechanism, or dive down the stack for a custom solution.

One of the often used mechanisms in distributed systems over the years to simplify
application development and deal with the complexity of the environment is the use of
multi-level naming schemes to provide naming transparency [5, 15, 17, 18, 22, 23].
Examples of multi-level naming schemes are numerous. For example, Unix path names
map to inodes. The top level name is a human readable string that often has semantic
meaning to the user, e.g., /bio/data/sequence1. The inode number, e.g., 1297, rarely does.
Similarly DNS names are mapped to IP addresses: mail.cs.virginia.edu is meaningful,
while 128.143.137.19 is not. In both of these two-level naming scheme examples a
human readable name maps to an address.

In three level naming schemes human names are first mapped to abstract names. Abstract
names are usually location independent and intentionally opaque to the client. Before a
client can communicate with a resource named via an abstract name the abstract name
must first be resolved, or bound to an address. The advantage of a three level naming
scheme is that the client can work with human names and have the infrastructure manage
the binding logic.

In this paper we demonstrate how traditional distributed system naming and binding
techniques can be applied to Web Services. Specifically we show how the WS-Naming
[7] profile on WS-Addressing [4, 9] Endpoint References (EPRs) can be used for
transparent failover, replication, and migration. WS-Naming, and naming transparencies
in general, provide a mechanism for realizing a variety of use cases.

The remainder of this paper is organized as follows. We begin with a background
discussion on distributed systems, the classic transparencies, and the definition of a
number of terms. In section 3 we present four use cases that motivate WS-Naming. These
use cases, along with the collective experiences of the WS-Naming working group of the
Open Grid Forum (OGF), drove the requirements developed in section 4. Section 5
presents the WS-Naming profile. Section 6 illustrates how WS-Naming can be used to
realize the use cases. In section 7 we examine WS-Naming with respect to the
requirements laid out in section 4. In section 8 we describe our implementation of WS-
Naming. We conclude with a summary and planned future work.

 3 of 18

2 Background and Related Work
There is an extensive body of related work from distributed systems and WS-Naming
does not claim to be innovative with respect to implementing a two level naming and
binding scheme that supports location, migration, failure, and other transparencies; nor
are the use cases particularly novel. Migration transparency has been around for some
time in systems such as Chorus [19], Amoeba [22], AFS/Coda [21], Sprite [15], the V
System [5], Plan 9 [17], Emerald [11], and many others. Similarly, replication for both
performance [6] and availability has been used over the years.

WS-Naming takes the lessons learned in the 80’s and 90’s about distributed systems and
applies them in a standards-based context – Web Services. By extending the basic Web
Services addressing model with identities and a re-binding mechanism, WS-Naming
provides Web Services developers with a powerful set of tools. The mechanism is based
on over twenty years of distributed systems work and experience by the community.

Distributed systems research has a rich literature [11-34] in which virtualization of
resources and objects figures prominently. This virtualization results in a “transparency”.
Nine of these show up repeatedly and have been called the “nine golden transparencies”.
The transparencies are: access, location, failure, heterogeneity, migration, replication,
concurrency, scaling, and behavioral. Typically, these transparencies come into play in
while accessing remote services or objects. The goal is to hide details from the
programmer unless those details are of particular interest for a given application domain.

Four of these, location, failure, migration, and replication transparency are of particular
interest here. They are defined as follows.

Location. The caller need not know where the resource is located -- California or Virginia,
it makes no difference.

Failure. If the resource fails, the caller is unaware. Even with failure, the requested
service or function is performed, the resource restarted, etc.

Migration. The caller need not know whether a resource has moved since they last
communicated with it.

Replication. Is there one resource or many resources behind the name? The caller need
not know.

Naming as a means for providing transparency has been used extensively both in the
earlier cited projects, and in standards efforts over the years. The best known is the
Domain Name Service (DNS) that maps strings to IP addresses. DNS is clearly a
successful standard. Its has some significant limitations. Most importantly it was not
designed to support a highly dynamic binding environment where the mappings could
change rapidly. More recent naming schemes include Life Science IDentifiers (LSIDs)
[3]from OMG and Handle.net from CNRI [2]. LSIDs share many of the same goals and

 4 of 18

objectives as WS-Naming2, but were designed do not fit well in the context of the
existing Web Services infrastructures. LSIDs must always be resolved, requiring the
clients to be LSID aware. The same applies to Handle.net handles, as well as a licensing
model that made their adoption difficult for many commercial enterprises.

Before we move on we’d like to define a few terms for the purposes of the paper.

Resource – A resource is a namable entity that accepts a set of method calls specified in
an IDL such as WSDL. A resource may be an instance of some class or template (itself a
resource) – but this is not required. How resources come into existence is not an issue for
the purposes of naming. Resources may have metadata or attributes associated with them.
The distinction between stateful and stateless services is irrelevant in for us.

Abstract resource name: an abstract name should not rely on any location, type,
implementation, or cardinality information being embedded in the name. This ensures
that the abstract name can persist across resource migration, container restart, etc.

Sameness. Two abstract names refer to the “same” resource if it is not possible to
distinguish between the two resources given arbitrary and equivalent message histories.
Alternatively if the semantics of the service define “sameness” differently the service
semantics set the standard for that service. If two abstract names are “aliases” if the
abstract names are different yet they refer to the “same” resource. In other words, from
the outside it is not possible to tell them apart. Similarly, two different resource addresses
may refer to the “same” resource.

Human names. The two most frequently used examples of human names are paths such
as /home/smith/datafile, and properties (a.k.a. attributes and metadata), e.g., “invoice
where modification date=9-15-03 and value<$45.00”.

Binding: The mechanism that “binds” abstract names to resource addresses, i.e., given an
abstract name the binding scheme returns a resource address that can be used to
communicate with the resource.

Bind time: The point at which an abstract name is bound to a resource address. Note that
this can happen at many different times, e.g., at compile time, at program load time, at
first use in a program, on failure of an old binding, and/or on every use. For all but the
last case, on every use, we assume that the binding may be cached somehow in the callers
context. In some schemes, binding can be an expensive operation, thus there is a trade-off
in bind time decisions between performance and dynamics.

3 Driving Use Cases
While existing Web Services best practices support heterogeneity, concurrency and
behavioral transparency, the use of abstract naming mechanisms can provide a

2 LSID had its beginnings in the Global Grid forum as the SGNP – Secure Grid Naming Protocol, but was
moved to the I3C and renamed and re-engineered as LSID. It moved to the OMG when the I3C was
dissolved.
4 How the state of the failed instance is kept synchronized with the replica is not the issue here. There are
many well-known techniques including, periodic checkpoints, message logging, etc. The important fact is
that naming facilitates this process.

 5 of 18

framework for realizing several additional important transparencies – in particular
migration, location, replication, and failure transparency. In this section we describe five
real world use cases that highlight the importance of supporting these additional
transparencies.

Caching of results. It is often said that the three most important words in distributed
systems are cache, cache, and cache. This is particularly true for wide-area systems where
network latencies can easily exceed 50 milli-seconds. While it is not appropriate to cache
the results of some services, for others, such as directory or file services, caching can
provide significant performance benefits. In order to maintain a cache it is necessary to
have some sort of cache key that can be used to uniquely identify each cache entry. A
challenge in Web Services is that WS-Addressing EPRs by themselves cannot be
compared, and, thus cannot be used as a cache key. Another means is required to
determine if a new invocation on a resource using some EPR is directed at the same
resource as a previous call using another EPR.

Migrate closer to active users. Suppose that a client application is making intense use of
a resource that is physically located far away – for example an application in California
that reads and modifies a shared file resource currently residing in New York. In this
configuration, the application may be unnecessarily suffering from poor performance due
to high network latency. One would like to be able to migrate the file resource from New
York to California without any service interruption to other users that need access to the
shared file. Thus, migration provides a mechanism for meeting performance SLTs.

Migrate away from failing or overloaded systems. Consider a service or resource
executing on a host that is heavily loaded in some way – for example, the host CPU is
overloaded or the network into the host is flooded. One would like to migrate the service
to another host without interrupting the service and without disrupting on-going
interactions with this and other services and resources. Similarly, it may be known that a
host is going to “go down” soon, perhaps because of maintenance, or maybe problems
with the physical environment (power shortage, air conditioning failure, etc.). Once
again, we want to migrate the service to another location without interrupting on-going
interactions. Thus, migration can be used to meet performance, availability and reliability
SLTs.

Recovery from a failed resource. Consider a stateful resource that has failed (due to a
hardware failure, a software failure, etc.) and needs to be restarted – possibly on a
different physical resource. One wants to be able to “migrate” the resource instance to a
different location or machine while minimizing interruptions for accessing the resource .4
Thus, migration can support failure masking and be used to meet reliability SLTs.

Replica management and usage. A resource may have multiple “back-end” endpoints that
can each perform its services and one would like to dynamically select which replica to
use. For example, one replica may be closer to the end-user than another (in network
terms) or one replica may offer better QoS in some dimension (e.g., performance).
Replication can be used to meet performance, reliability, and availability SLTs.

 6 of 18

4 WS-Naming Requirements
After almost a year of discussion of the use cases and requirements in both face-to-face
meetings and teleconferences, the OGSA-Naming Working Group in the OGF (then
called the Global Grid Forum) developed the following set of required and desired
properties for a Web Services naming scheme. There was not complete agreement on
some of the requirements. In particular the desirability of aliases was hotly debated.
Below we list of requirements with a brief description of each.

Free. The Grid community expects open software license with no license fee.

Compatible – The scheme must work with existing WS tooling that uses EPRs.

Unique – If two names are the “same”, they refer to the “same” resource. Further, names
must be unique in space and time, and, therefore, names cannot be reused.

Comparable – Given two different names, it is possible to determine equality, without
having to contact either the resource or some other third party.

Persistent – The name for a resource is valid as long as the resource exists.

Location portable – An abstract name can be used anywhere and will refer to the same
resource from any context. This does not necessarily mean messages will be routable to
the resource from any location.

Support the usual transparencies – Location, migration, failure, and replication.

Extensible – To accommodate future requirements the naming scheme must be extensible.

High-performance – Low performance naming schemes prevent scalability and usability.
If the scheme is too slow, it will not be used, thus defeating the purpose.

Dynamic binding – Binding an abstract name to an address is not static, i.e., it can change.
The speed at which re-binding takes place is critical – if it takes hours to rebind, then
resource mobility is highly constrained.

Scalable binding – We expect the scale of future distributed systems to be very large. The
binding scheme must scale with the system. Often this can be achieved with caching.
However, caching must be balanced against the need to have dynamic bindings.

Language neutral. Some naming schemes were developed specifically to support
particular programming languages.

Concurrent name generation. This is an aspect of scalability. It must be possible to
partition the name space and generate names concurrently.

Large name-space. Running out of names is not acceptable.

In addition to the required characteristics, there are several desirable characteristics.

Authentication – Mutual authentication between two named resources without requiring a
trusted third party has advantages, particularly with respect to scalability.

Widely adopted – The usefulness of a naming scheme increases when it is widely used.

Not require trust – Schemes that do not require a trusted third party are, all else being
equal, preferred over those that do require a trusted third party.

 7 of 18

Human readable and printable. Often it will be necessary to print a name.

Finally, there was a debate over whether aliases would be permitted. In other words, can
a resource have two different names? No consensus was reached to prohibit aliases,
therefore, aliases were allowed.

We will examine how well WS-Naming meets the goals in section 6.

5 WS-Naming – A Profile on WS-Addressing
WS-Addressing [4] is a specification from the W3C which describes, among other things,
a schema type called an EndpointReferenceType (EPR). Clients and services use these
EPRs to identify target Web Wervice resources by embedding addressing information
contained in the EPR into SOAP message headers. This EPR schema includes fields for
identifying the target address (URI) of the desired service, opaque referencing
information which services may use to further identify session data, and metadata
information which can be used by clients as hints describing various aspects of the target
Web Service or Web Service resource. EPRs are the most widely used mechanism for
referring to Web Service endpoints.

WS-Naming was developed to address two short-comings of WS-Addressing. First, EPRs
cannot be compared against each other in any canonical way to determine if they refer to
the “same” endpoint. Indeed, the specification explicitly states that EPRs cannot be
compared.

Second, given the way many WS-Addressing implementations work, an endpoint cannot
migrate. To understand why, we need to look at the wsa:Address field of the EPR. The
wsa:Address field is a URI. Technically, this URI could have a location transparent
abstract string – in practice however it does not. Every WS-Addressing implementation
we have encountered uses a URL with either an IP address or a DNS hostname. Thus, the
endpoint is pinned to a particular location at the time it is minted7.

The authors of WS-Naming wanted a profile on WS-Addressing that would address these
two concerns, the requirements presented earlier, and be 100% compatible with existing
practice regarding the use of WS-Addressing endpoints. This is critical; EPRs that are

7 There are tricks you can play with DNS to move endpoints around, particularly in a machine room.
However, these do not work well across domains and break the advantages of the cache.

<wsa:EndpointReference
 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 <wsa:Address>http://tempuri.org/example_application</wsa:Address>
</wsa:EndpointReference>

Figure 1. A very simple EPR with an Address element.

 8 of 18

WS-Names MUST be consumable by clients that are completely unaware of WS-Naming,
and that assume the wsa:Address field is a URL.

WS-Naming describes two extensibility profiles on the standard WS-Addressing
specification whereby target service endpoints add additional information to their WS-
Addressing EndpointReferenceType’s metadata element; namely an endpoint identifier
element (EPI) that serves as a globally unique (both in space and time) abstract name for
that resource, and a list of zero or more resolver EPRs.

5.1 End Point Identifiers (EPIs)
The endpoint identifier element gives clients a way of identifying and comparing
addressing endpoints without requiring them to communicate with those endpoints. EPIs
are IRIs [RFC 3987] that are contained as elements in the metadata section of an EPR.
From the specification, EPIs must satisfy three requirements:

• An EndpointIdentifier MUST uniquely identify the same endpoint in both space
and time.

• An EndpointIdentifier MUST conform to IRI syntax [RFC 3987].
• For two equal EndpointIdentifiers (as defined by RFC 3987), a client MAY

assume that the two EndpointIdentifiers refer to the same endpoint.

The Endpoint Identifiers are “abstract” in that the client should not infer any property
(e.g., type, location) from inspection of the EPI. Clients should treat EPIs as opaque.

The global uniqueness in both space and time requirement can be achieved by a number
of means. Implementers are free to choose any name generation scheme that they wish to
use provided the scheme generates unique names. Some options include various
combinations and hashes of public keys, MAC addresses, generated IP address (not
current Web Service endpoint address which may change), timestamp, random number,
etc. In particular, the authors of this document recommend that name generators refer to
RFC 4122 [RFC4122], which gives a motivation for and description of UUIDs or
Universally Unique IDs. One may also choose to acquire a name from an existing
naming authority.

Symmetry in endpoint identifier equality is not required. If two EPIs are not bit-wise
equal, no conclusions can be drawn as to whether or not they refer to different endpoints.

Figure 2 gives an example of an EndpointIdentifier in an Endpoint Reference.

<wsa:EndpointReference
 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:naming=”http://schemas.ogf.org/naming/2006/08/naming”>
 <wsa:Address>http://tempuri.org/example</wsa:Address>
 <wsa:Metadata>

<naming:EndpointIdentifier>
urn:guid:B94C4186-0923-4dbb-AD9C-39DFB8B54388

</name:EndpointIdentifier>
 </wsa:Metadata>

 9 of 18

Figure 2. EndpointIdentifier in EPR

5.2 Resolvers
EPRs that follow the WS-Naming extensions may contain one or more “resolver
elements” within the wsa:Metadata element. Each “resolver element” identifies a
resolver service as well as information that that resolver service needs to uniquely
identify the target resource. Even though we typically refer to resolution in WS-Naming
generically as a single operation, resolvers actually come in two flavors: the
EndpointIdentifierResolver porttype resolves from an EPI while the ReferenceResolver
porttype resolves from an existing EPR. Therefore, depending on the resolver porttype
the “resolver element” is really either a naming:ReferenceResolver element or a
naming:EndpointIdentifierResolver. The pseudo-interfaces (from the specification) are
shown in below.

Figure 3. Pseudo-interfaces for the resolution porttypes.

Clients may use the embedded resolver information within a target EPR to call a resolver
and obtain a new binding (another EPR) for the target resource. For example, clients
attempting to communicate with stale or invalid endpoint references can use a resolver to
obtain new, up-to-date, bindings. Note, however, that clients are free to choose how they
obtain endpoint references – they are not required to use the resolvers provided in the
EPR. Any means for resolving EPIs or stale EPRs may be tried at the discretion of the
client.

 10 of 18

<wsa:EndpointReference
 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:naming=”http://schemas.ogf.org/naming/2006/08/naming”>
 <wsa:Address>http://tempuri.org/example_application</wsa:Address>
 <wsa:Metadata>
 <naming:EndpointIdentifier>

urn:guid:B94C4186-0923-4dbb-AD9C-39DFB8B54388
</naming:EndpointIdentifier>

 <naming:ReferenceResolver>
 <wsa:Address>http://tempuri.org/resolver1</wsa:Address>
 </naming:ReferenceResolver>
 <naming:EndpointIdentifierResolver>
 <wsa:Address>http://tempuri.org/resolver1</wsa:Address>
 </naming:EndpointIdentifierResolver>
 <naming:ReferenceResolver>
 <wsa:Address>http://tempuri.org/resolver2</wsa:Address>
 </naming:ReferenceResolver>
 </wsa:Metadata>
</wsa:EndpointReference>

Figure 4. The EPR contains both an EndpointIdentifier that uniquely identifies the
endpoint, and multiple ReferenceResolvers that can be used to rebind to the identified
endpoint if communication fails.

 11 of 18

6 Goals Redux
The WS-Naming specification team set out to meet eighteen goals presented in section 4.
Below we indicate how well WS-Naming meets those goals.

Goal WS-Naming Goal WS-Naming

Free Yes. Scalable Yes.

Unique Yes. Language neutral Yes.

High Performance Same performance Concurrent name Yes.

<wsa:EndpointReference
xmlns:wsa=”http://www.w3.org/2005/08/addressing”
xmlns:naming=”http://schemas.ogf.org/naming/2006/08/naming”>
<wsa:Address>http://tempuri.org/example_applocation</wsa:Address>
<wsa:Metadata>

<naming:ReferenceResolver>
<wsa:Address> http://tempuri.org/resolver1 </wsa:Address>
<wsa:ReferenceParameters>

<naming:EndpointIdentifier>
urn:guid:8733111B-84FA-4da8-89FE-

417932B3B92C
</naming:EndpointIdentifier>

</wsa:ReferenceParameters>
<wsa:Metadata>

<naming:EndpointIdentifier>
urn:guid:55AD06F6-2F35-409a-9DCE-

E5F304E557AA
</naming:EndpointIdentifier>
<naming:ReferenceResolver>

<wsa:Address>
http://tempuri.org/resolver_resolver1

</wsa:Address>
</naming:ReferenceResolver>

</wsa:Metadata>
</naming:ReferenceResolver>

</wsa:Metadata>
<naming:EndpointIdentifier>

urn:guid:B94C4186-0923-4dbb-AD9C-39DFB8B54388
</naming:EndpointIdentifier>

</wsa:EndpointReference>

Figure 5. Reference Resolvers are WS-Addressing EPRs themselves and as such can
be fully compliant WS-Naming endpoints including both EndpointIdentifiers and their
own Reference Resolvers.

 12 of 18

as Web Services.. generation

Comparable Yes. Authentication. No. Yes, when used
with WS-Secure
Addressing.

Persistent Yes. Widely adopted. Not yet.

Location portable Yes. No required trust Yes.

Extensible Yes Human readable Barely.

Compatible Yes. Aliases Yes.

Dynamic binding Yes.

7 Examples
We next demonstrate how WS-Naming, in conjunction with a Resolver service, is used to
support migration and failure transparency. In both cases we will assume that the service
in question is an OGSA-ByteIO [1] service “instance”. OGSA-ByteIO includes porttypes
that support libc-like file operations, e.g., read, write, append, etc. While we assume
ByteIO here – the techniques apply to a wide variety of services.

We will assume a file F with a unique identity F-EPI. Thus, when we say “write to F”
what we mean is to send a SOAP message to the EPR that we have for F. Also, to
simplify the discussion (and avoid endlessly tedious XML), we will use a pseudo-schema
for the WS-Naming EPRs to eliminate unnecessary detail.

7.1 Migration
The first example is migration. Suppose that F is initially contained in a hosting
environment H1 on physical host hadrian.cs.virginia.edu at port 1660, and a client C is
using F. Further assume a resolution service with an EPR S. It is assumed that S always
knows where F is located. How S knows this is out of scope, though one can easily
imagine (and implement) migration services that update S whenever F is migrated.
Finally suppose that F is moved from H1 to H2 on physical host cache.sdsc.edu in
California at port 2222.
At the beginning, the EPR for F is

<wsa:EndpointReference

 <wsa:Address> http://hadrian.cs.virginia.edu:1660 </wsa:Address>

 <EndpointIdentifier> F-EPI </EndpointIdentifier>

 <ReferenceResolver> S </ ReferenceResolver>

</wsa:EndpointReference>

Before F migrates, C reads and writes F using the hadrian address. At some point
afterwards, the migration occurs.

How the migration is accomplished is again, out of scope. However, in the case of
ByteIO files, it is very straightforward. A mechanism such as scp or gridFTP can be used

 13 of 18

to migrate the physical bits of F, and H2 can be set to know where F is located in the
local file system.

Once the migration starts, H1 no longer accepts messages for F. Instead it returns a bad
address fault to C when C reads or writes F. C will also receive a bad address fault if
hadrian has died or becomes partitioned from the network.

In either case, on receipt of the bad address fault, C examines the EPR of F to determine
if it contains a ReferenceResolver EPR (RR-EPR). If it does not, then no further actions
can be taken, and the Web Services client stub returns a fault to the application. If there is
an RR-EPR S, C calls the Resolve method on S to acquire a new binding for F. S returns
C the new EPR for F shown below.

<wsa:EndpointReference

 <wsa:Address> http://cache.sdsc.edu:2222 </wsa:Address>

 <EndpointIdentifier> F-EPI </EndpointIdentifier>

 <ReferenceResolver> S </ ReferenceResolver>

</wsa:EndpointReference>

C then calls F using the new EPR and the application resumes. The application layer is
unaware of the migration that took place.

An important idea to keep in mind is that how the migration is accomplished, why F is
migrated, when F is migrated, where S is located, or how S knows about the migration is
completely out of scope in the specification, and is transparent to the client. This permits
a wide variety of different implementations without exposing these details to the client.

7.2 Highly-Available ByteIO Service
Our second example is a highly available ByteIO service implemented via a primary
copy mechanism. The details of the replica interactions are out of scope, as are the
semantics of write operations with respect to failure (e.g., if the client receives a reply
from a write is it guaranteed that the write will survive all possible subsequent failures?).
These are obviously important questions, and there are a number of different choices and
implementation options available. What we are interested in is the client experience – not
the semantics.

Once again assume a ByteIO F, a client C, two hosting environments H1 and H2, and a
resolution service S. In this case, however, there are two ByteIO endpoints, Fp and Fs, the
primary and secondary copies of F respectively. Further assume that Fp is on H1 and that
Fs is on H2. Thus the EPR of Fp is

<wsa:EndpointReference

 <wsa:Address> http://hadrian.cs.virginia.edu:1660 </wsa:Address>

 <EndpointIdentifier> F-EPI </EndpointIdentifier>

 <ReferenceResolver> S </ ReferenceResolver>

</wsa:EndpointReference>

 14 of 18

And the EPR of Fs is

<wsa:EndpointReference

 <wsa:Address> http://cache.sdsc.edu:2222 </wsa:Address>

 <EndpointIdentifier> F-EPI </EndpointIdentifier>

 <ReferenceResolver> S </ ReferenceResolver>

</wsa:EndpointReference>

Initially C has the primary copy EPR of F, Fp. File operations proceed normally against
Fp until Fp fails, either because the host H1 it is on fails, H1 refuses access (perhaps due
to overload) or H1 and C become disconnected. Reguardless of the cause, C will receive
a bad address fault. At this point the flow is exactly the same as in the migration case.
The client stub code in C checks for a ReferenceResolver EPR in Fp. If there is an RR-
EPR S, C contacts S for a new EPR. S returns Fs, and the application continues operation,
thus, the failure of Fp is masked from the client.

7.3 Replica Selection for Performance
Our final example illustrates WS-Naming as a means of selecting the “best” replica of a
file at runtime based on the location of the client. By “best” we mean the “closest” in
terms of bandwidth and latency. We will assume an existing mechanism that given a pair
of network IP addresses returns the predicted latency and bandwidth between those two
points. An example of such a service is the Network Weather Service (NWS)[25]. We
will also assume a function “quality” that given the results from the NWS returns a
positive integer – the higher the number, the “better” the connection.

There are several ways for this to work. The most simple is if the EPR for F initially
contains a wsa:Address field that will cause an immediate bad address fault or can be
identified by the client stub code, e.g., “NONE:”. When the fault occurs, the client stub in
C checks for a RR-EPR S. Assuming there is an RR-EPR S, the client calls S and asks for
a new EPR for F.

This is where it gets interesting. On receiving the resolution request from C, S computes
all pair-wise performance metrics between C and each of the replicas of F, F[1..N]. S
selects the replica k that has the highest “quality” connection between C and F[k]. S then
returns the EPR of F[k] to C, and processing continues as in the two earlier examples.

The three above examples are not exhaustive of all of the ways that WS-Naming can be
used to support supporting SLAs. One can easily think of all kinds of ways to support
high-availability or better performance via migration or replication. The point is that the
mechanism is sufficient and simple.

8 Implementation
Specifications without implementations are always suspect. Is there some hidden flaw? Is
the specification implementable with reasonable complexity and effort? How is the
performance? Because these questions need to be answered the OGF requires two
separate implementations of a proposed specification or profile before promoting the
specification to full recommendation.

 15 of 18

The Genesis II [14] team at the University of Virginia has implemented WS-Naming.
Genesis II is an open source Grid middleware that is being used as a testbed or a number
of specifications. Genesis II is implemented in Java and implements both aspects of WS-
Naming, EPIs and resolvers. All Genesis II EPRs contain an EPI. Our replicated ByteIO
[13] service embeds resolver EPRs into ByteIO resource endpoint EPRs.

Genesis II clients are WS-Naming aware and use the techniques described earlier to re-
bind stale and invalidated WS-Addressing endpoints. Genesis II clients also use EPIs as
cache handles for storing the results of cacheable invocations. In Genesis II a client-side
Java proxy object is used to communicate with remote Web Service endpoints. This
proxy object acts as a central manager for much of the grid client/server interaction
details such as SOAP header manipulation (for WS-Addressing, security, etc.) and SOAP
attachment management. It also provides a single point where WS-Naming rebinding
takes place. Inside this stub, code around the remote invocation watches for failures that
would indicate a communication problem (wrong address, wrong security information,
etc.).

Any fault condition that it interprets as resulting from stale binding information causes
this code to enact the re-resolution process describe in the preceding paragraphs.

High performance and Web Services are not often associated with one another. There is
extensive protocol processing going up and down the Web Services stack that results in
significant RPC times even for simple calls. When you add in SSL, authorization
checking, and state management via a database, the overhead adds up.

That said, we implemented a simple test to determine the overhead of rebinding in our
environment. The equipment is a 1.8 GHZ dual-core Intel running Windows Vista. We
instantiated a ByteIO service in one container and replicated it another. A resolver
service was located in the same container as the second copy. We then “warmed up” the
Java environment – causing the JIT to compile and load classes etc. Next, we called the
“ping” operation on the ByteIO endpoint and measured the round-trip time to the primary
copy.

We then destroyed the primary copy container, and timed the “ping” operation again.
This “re-bind” time below includes the time to detect that the primary no longer exists,
invoke the resolver to get a new binding, and call the secondary.

Operation Time with security Time without security

Call primary 249 34 mS

Re-bind (call/fail primary, resolve,
call secondary)

1572 1123 mS

Note that the full security stack was in place with both transport and message level
encryption, strong mutual authentication, and full access control checks (including
verifying X.509 certificates).

9 Summary and Future Work
Migration, replication, and failover are techniques that have been used for decades to
realize service level terms such as performance, availability, reliability, and cost.

 16 of 18

Similarly, endpoint abstraction, and in particular endpoint transparency via multi-level
naming schemes, has been used in the distributed systems community for decades. The
benefit to application developers is that they can focus on the application logic, and leave
implementation of SLTs to lower layer software.

Web Services are becoming the standard means of service interaction in large scale
distributed systems, service oriented architectures, and Grids. WS-Addressing EPRs are
the standard mechanism to address Web Service endpoints. WS-Naming extends WS-
Addressing by profiling the use of WS-Addressing extensibility points to include both
unique Endpoint Identifiers and the ability to re-bind EPRs using a Resolver porttype.

The ability to rebind EPRs is a powerful tool. In this paper, we demonstrate how WS-
Naming can be used in the implementation of four use cases: migration closer to a heavy
user to meet performance SLTs, migration away from a failing or overloaded resource to
meet performance, availability and reliability SLTs, recovery from a failed resource to
meet reliability and availability SLTs, and replica management to meet performance
SLTs. These examples are just the beginning and all sorts of algorithms and semantics
can be implemented.

To “test out the specification” we have implemented WS-Naming in the Genesis II
project. In that context we implemented service failover for replicated read-only ByteIO
services. We are in the process of implementing a complete endpoint migration service,
and primary copy replication service that will be used initially for ByteIO and RNS8 [16]
services. When WS-Naming rebinding is combined with smart stubs as in our Java
implementation, applications are completely insulated from the rebinding process and the
redirection of communication that ensues.

Acknowledgements: Marvin Theimer (Microsoft), Dave Snelling (Fujitsu), Frank
Siebenlist (ANL), Hiro Kishimoto (Fujitsu), Andreas Savva (Fujitsu), Bill Horn (IBM),
Mike Behrens (R2AD LLC), Alan Luniewski (IBM), and Jay Unger (IBM).

This material is based upon work partially supported by the National Science Foundation
under Grant No. 0426972. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

8 RNS or Resource Namespace Service is a Web Services specification for naming web resources in a
hierarchical, human-readable way reminiscent of directories or folders in modern operating systems.

 17 of 18

 References

1. ByteIO Specification, Global Grid Forum. GFD-1.046, 20 Jun. 2005.

2. The Handle Technical Manual, CNRI, 2000.

3. Life Science Identifiers Specification v 1.0, Object Management Group, 2004.

4. Box, D., Christensen, E., Curbera, F., Ferguson, D., Frey, J., Hadley, M., Kaler,
C., Langworthy, D., Leymann, F., Lovering, B., Lucco, S., Millet, S., Mukhi, N.,
Nottingham, M., Orchard, D., Shewchuk, J., Sindambiwe, E., Storey, T.,
Weerawarana, S. and Winkler, S. Web Services Addressing (WS-Addressing),
W3C, 2004.

5. Cheriton, D. The V Distributed System. Communications of the ACM, 31 (3).
314-333.

6. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and Tuecke, S. The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of
Large Scientific Datasets. Journal of Network and Compute Applications, 23.
187-200.

7. GGF. WS-Naming Specification, Global Grid Forum, GFD-WS-Naming WG,
http://forge.gridforum.org/projects/ws-naming-wg, 10 August 2005.

8. Grimshaw, A.N.-T.a.A.S. Using Reflection for Incorporating Fault-Tolerance
Techniques into Distributed Applications. Parallel Processing Letters, 9 (2). 291-
301.

9. Gudgin, M., Hadley, M. and Rogers, T. Web Services Addressing 1.0 – Core,
World Wide Web Consortium, 2006.

10. Huang, Y., Kintala, C., Kolettis, N. and Fulton, N.D., Software Rejuvenation:
Analysis, Module and Applications. in 25th Symposium on Fault Tolerant
Computing, FTCS-25, (Pasadena, California, 1995), IEEE, 381–390.

11. Jul, E., Levy, H., Hutchinson, N. and Black, A. Fine-Grained Mobility in the
Emerald System. ACM Transactions on Computer Systems, 6 (1). 109-133.

12. Lee, I., Iyer, R.K. and Tang, D., Error/Failure Analysis Using Event Logs from
Fault Tolerant Systems. in Proceedings 21st Intl. Symposium on Fault-Tolerant
Computing, (1991), 10-17.

13. Morgan, M. ByteIO Specification 1.0, Global Grid Forum, 2005.

14. Morgan, M. and Grimshaw, A., Genesis II - Standards Based Grid Computing. in
Seventh IEEE International Symposium on Cluster Computing and the Grid, (Rio
de Janario, Brazil, 2007), IEEE Computer Society, 611-618.

15. Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M. and Welch, B. The Sprite
Network Operating System. IEEE Computer, 21 (2). 23-36.

16. Pereira, M., Tatebe, O., Luan, L., Anderson, T. and Xu, J. Resource Name Service
Specification.

 18 of 18

17. Pike, R., Presotto, D., Thompson, K. and H.Trickey, Plan 9 from Bell Labs. in
UKUUG Summer 1990 Conference, (1990).

18. Powell, M.L. and Miller, B.P., Process Migration in DEMOS/MP. in 9th ACM
Symposium on Operating System Prinicples, (1983), 110-119.

19. Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M.,
Herrmann, F., Kaiser, C., Langlois, S., Lonard, P. and Neuhauser, W., Overview
of the Chorus Distributed Operating System. in USENIX Workshop on Micro-
kernels and Other Kernel Architectures, (1992), USENIX, 39-70.

20. Saltzer, J., Reed, D. and Clark, D. End-to-end Arguments in System Design. ACM
Transactions on Computer Systems, 2 (4). 195-206.

21. Satyanarayanan, M. Scalable, Secure, and Highly Available Distributed File
Access. IEEE Computer, 23 (5). 9-21.

22. Tanenbaum, A.S., Renesse, R.v., Staveren, H.v., Sharp, G.J., Mullender, S.J., A.J.,
J. and Rossum, G.v. Experiences with the Amoeba Distributed Operating System.
Commuications of the ACM, 33 (12). 46-63.

23. Tannenbaum, A.S. and Steen, M.V. Distributed Systems: Principles and
Paradigms. Prentice Hall, Upper Saddle River, New Jersey, 2002.

24. Tewari, V. and Milenkovic, M. Standards for Autonomic Computing. Intel
Technology Journal, 10 (4).

25. Wolski, R. Dynamically forecasting network performance using the Network
Weather Service. Cluster Computing, 1 (1). 119-132.

