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Over the last years, research on web spam �ltering has gained interest from both academia and industry. In this context, although
there are a good number of successful antispam techniques available (i.e., content-based, link-based, and hiding), an adequate
combination of di	erent algorithms supported by an advanced web spam �ltering platform would o	er more promising results. To
this end, we propose theWSF2 framework, a new platform particularly suitable for �ltering spam content on web pages. Currently,
our framework allows the easy combination of di	erent �ltering techniques including, but not limited to, regular expressions and
well-known classi�ers (i.e., Naı̈ve Bayes, Support Vector Machines, and C5.0). Applying our WSF2 framework over the publicly
available WEBSPAM-UK2007 corpus, we have been able to demonstrate that a simple combination of di	erent techniques is able
to improve the accuracy of single classi�ers on web spam detection. As a result, we conclude that the proposed �ltering platform is
a powerful tool for boosting applied research in this area.

1. Introduction

During the last years, the exploitation of communication
networks to indiscriminately distribute unsolicited bulk
information (known as spam) has introduced important
limitations that prevent taking full advantage of the latest
communication technologies for increasing personal produc-
tivity. In fact, some of the well-known obstacles introduced
by the spam activity in the web (i.e., web spam) are as follows:
(i) users spend their valuable timemanually viewingmultiple
searching results and discarding irrelevant entries, (ii) known
search engines lose their utility and large corporations such
as Google Inc. spoil one of their business areas, and (iii)
WWW (World Wide Web) would not be useful as a reliable
information source.

Furthermore, with the passage of time, di	erent forms of
spamming have also emerged (e.g., e-mail spam, forum spam,
spam chat bots, SMS spam, and/or web spam), generating
newer and more complicated situations. During June 2013,
the US Food and Drug Administration (FDA) detected 1677
illegal online drug stores trying to sell illicit medicines and
seized more than 41 million dollars of merchandise [1].
�is outcome was executed through the recent e	ort named

Operation Pangea (VI), which targeted websites supplying
fake and illicit medicines in 99 di	erent countries. Moreover,
recent studies [2, 3] showed inner business details and
revenue estimations that exceeded one million dollars per
month. �ese research works also clarify the bene�ts of
sending mass advertisements (spam) to e-mail users and
public forums, and the essentialness of using search engine
optimization (SEO) based spamming techniques to promote
these websites [4] and ensure revenue. �e increment in
both tax evasion and public health costs represents the main
risks of this illegal business mainly supported by spamming
activities.

Web spam (also known as spamdexing or black hat SEO)
comprises the usage of any kind ofmanipulative techniques to
fraudulently promote web sites, attaining false high ranking
scores in search engines. �us, when users search for a
speci�c subject matter, some results are completely unrelated
to their interests. Due to the major implications of web spam,
Google Inc. founded a web spam team led by Matt Cutts [5]
to �ght against spam page indexation.

At the same time, di	erent individual techniques were
introduced in a parallel e	ort with the goal of �ghting
web spam [6, 7]. Although most of the proposed �ltering
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methods are very e	ective under some scenarios, none of
them provide a completely successful approach. Speci�cally
related to the business of web indexing—in which Google
is a clear example—the cost of false negative (FN) errors
is particularly noteworthy because they entail the loss of
relevant entries in search results, while false positive (FP)
errors do not usually represent an important issue to end
users. Moreover, and apart from some recent works [8, 9],
most of the existing models are built in a static way, without
any consideration about the evolving dynamic nature of web
spam. Keeping this situation in mind, we believe that current
available techniques could be easily combined into a unique
�lter that could take advantage of the individual strengths of
each technique while partially overcoming their limitations.
�is idea has already been successfully applied in the e-mail
spam �ltering domain using products such as SpamAssassin
[10].

In this work, we introduce a novel Web Spam Filtering
Framework (WSF2) that can be successfully used to combine
machine learning (ML) techniques and other nonintelligent
approaches (e.g., regular expressions, black lists) to improve
the detection of spam web sites. �e design of this platform
has been widely in�uenced by SpamAssassin and other e	ec-
tive rule-based antispam �ltering systems [11], being easily
extended through the use of plug-ins. WSF2 was deliberately
conceived to accomplish two main objectives: (i) being able
to train/test the performance of di	erent techniques in a
scienti�c environment and (ii) working in an interconnected
way with a web crawling system to prevent the indexation
of spam websites. WSF2 is an open-project, licensed under
the terms of GNU LGPL (Lesser General Public License),
publicly available at http://sourceforge.net/projects/wsf2c/.

A�er establishing the motivation of the present work,
the rest of the paper is organized as follows: Section 2
presents an overview of previous related work on web spam
�ltering. Section 3 describes in detail the proposed WSF2
framework, covering its main design principles and the �lter
de�nition process. In order to demonstrate the suitability
of the developed platform, Section 4 compiles the output of
di	erent experimental benchmarks and discusses the main
results. Finally, Section 5 summarizes the main conclusions
and delineates new directions for further research.

2. Related Work on Web Spam Filtering

In this section, we present a brief overview about existing
techniques and initiatives especially devoted to the �ght
against web spam. As previously commented, the develop-
ment of new methods for web spam �ltering has gained
importance for the so�ware industry over the last several
years. Despite the fact that there are strong similarities with
spam e-mail, speci�c research in this domain has attracted
a good number of scientists leading to the development of
novel approaches for �ghting web spam.

Although several taxonomies of web spam �ltering
methods have been proposed in literature [7, 12–14],
these approaches can be roughly categorized into three
main groups: (i) content-based techniques, (ii) link-based

approaches, and (iii) hiding methods, of which content- and
link-based are the most common approaches for web spam
detection.

To begin, content-based web spam techniques analyse
content features inweb pages (e.g., popular terms, topics, key-
words, or anchor text) to identify illegitimate changes which
try to improve their ranking and increase their likelihood of
being returned as a “normal” result of a given user search.
Several techniques and di	erent works have focused on this
area. Among the earliest papers, Fetterly and colleagues [15,
16] statistically analysed content properties of spam pages,
while Ntoulas et al. [17] used machine learning methods to
detect spam content. More recently, Erdélyi and colleagues
[18] presented a comprehensive study about how various
content features andmachine learningmodels can contribute
to the quality of a web spam detection algorithm. As a result,
successful classi�ers were built using boosting, Bagging, and
oversampling techniques in addition to feature selection [19–
21].

Link spam is based on adding inappropriate and mis-
leading association between web pages. It incorporates extra-
neous pages or creates a network of pages that are densely
connected to each other in order to manipulate the built-in
search engine ranking algorithm. In this context, the work of
Davison [22] was the �rst to cope with the problem of link
spam. Since then, di	erent approaches have focused on link
spam, analysing several ways to detect it [7].

�e appropriate combination of link-based techniques
and content-based methods can also be successfully applied
to this problem. In fact, Geng and colleagues [23] introduced
the �rst proposal using both content- and link-based features
to detect web spam pages. In the same line, the work of
Becchetti and colleagues [24] combined link- and content-
based features using C4.5 to detect web spam. Complemen-
tarily, Silva and colleagues [25] also considered di	erent
methods of classi�cation involving decision tree, SVN, KNN,
LogitBoost, Bagging, and AdaBoost in their analyses. Other
related approaches were also introduced [26, 27].

Additionally, hiding techniques are based on concealing
the original high quality page from the user. Generally, this
method consists of cloaking [28–31] and redirection [32, 33].

Summarizing the state of the art previously introduced,
it can be concluded that research on web spam detection
has evolved from simple content-based methods to more
complex approaches using sophisticated linkmining and user
behaviour mining techniques.

Regarding the combination of di	erent �ltering spam
techniques for web classi�cation, only the use of large col-
lections of di	erent classi�ers has been successfully applied
[18], to the best of our knowledge. However, there is no
con�gurable framework able to integrate diverse sets of
existing techniques. Nowadays, there are providers of sophis-
ticated enterprise-level security solutions such as WebTitan
(http://www.webtitan.com/) or zVelo (http://zvelo.com/) that
through their services (WebTitan Cloud and zVeloDB +
zVeloCat, resp.) o	er professional web �ltering solutions
to the industry area. However, these implementations are
not suitable for research environments in which there is



Scienti�c Programming 3

a lack of an appropriate framework supporting advanced
functionalities.

3. WSF2: The Proposed Framework

As the central contribution of this work, we present our
WSF2 so�ware architecture and operational process in detail,
together with its integration into a web crawler environ-
ment. �e WSF2 design was straightforwardly inspired from
our previously developed Wirebrush4SPAM platform [11],
obtaining a novel framework able to provide �exible sup-
port for web page �ltering using new available antispam
techniques inside a completely readapted �ltering process.
Initially, Section 3.1 presents a comprehensive description of
the WSF2 �ltering process. �en, Section 3.2 describes the
architecture of WSF2 and introduces the concept of spam
�lters, exemplifying how to develop them using the WSF2
�ltering platform. Finally, Section 3.3 demonstrates the ease
with which WSF2 can be integrated into both a real-time
domain (e.g., business) and scienti�c environments.

3.1. Main Design Principles. WSF2 implements a framework
and middleware for the development and execution of user-
de�ned web spam �lters. To support this functionality, WSF2
works as a daemon (wsf2d) listening on a speci�c TCP port in
order to carry out a complete �ltering cycle for each received
web page. �e diagram in Figure 1 describes all the stages
involved in the �ltering process and their associations with
the classes implementing the main system architecture.

As we can observe in Figure 1(a), the main operation of
our WSF2 framework is divided into �ve di	erent stages: (i)
�ltering platform initialization, (ii) web domain analyser and
information retrieval, (iii) spam �ltering rules execution, (iv)
spam decision system, and (v) learning a�er report.

�e start-up phase (represented as stage 0 in Figure 1(a))
is instantly executed whenever the WSF2 framework is
invoked (described in the wsf2d class of Figure 1(b)), han-
dling the initialization of the �ltering platform. During this
process, all the rules comprising the WSF2 �lter are loaded
into the ruleset data structure represented in Figure 1(b) and
sorted by a rule-scheduling algorithm. �is rule planning
module is implemented into the prescheduler t data type
and, as outlined in Ruano-Ordás and colleagues [34], it
is responsible for elaborating an optional arrangement of
the execution of the �ltering rules in order to improve
WSF2 classi�cation throughput. Moreover, with the aim of
reducing the �ltering time, all available parsers, spam�ltering
techniques, and event-handlers are loaded into memory
within this stage. When this phase is completed, the WSF2
coremodule (wsf2d) is able to start receiving and �lteringweb
domains. Each time WSF2 receives new web domain, a four-
stage �ltering process is started (represented in Figure 1(a) by
a circular operation denoted by rounded arrows).

During next stage, wsf2d executes all the previously
loaded parsers over the web domain content for gathering
the data needed by the selected �ltering techniques. To
perform this task, each parser must be implemented using
the parser t data type. As it can be observed in Figure 1(b),

all the parsers provided by the �ltering platform (such as
web header, web body, or web features) are de�ned as inher-
itance relationship from the abstract class parser t. When
this stage is actually accomplished and all the information
is successfully extracted, the WSF2 platform automatically
evolves to the following phase.

Stage 2 is responsible for executing the antispam tech-
niques (implemented by a function t data type) belonging
to the �ltering rules over the information extracted by the
parsers. As it can be seen from Figure 1(b), in order to facil-
itate the development, implementation, and the automatic
deployment of the antispam techniques, function t module
is implemented as a generic template able to adapt to the
speci�cation of each �ltering function.

To accomplish the �ltering task, the WSF2 framework
implements a T SCORE attribute (see stage 2 on Figure 1(a))
used to compute the global score achieved by the platform
during the �ltering process. Whenever an executed rule
achieves a positive evaluation (i.e., its associated �ltering
technique matches the web content), the system automati-
cally adds the rule score to the T SCORE attribute.

With respect to the next stage, the �ltering platform is
in charge of generating a de�nite classi�cation (spam or
ham) depending on the �nal value of the T SCORE attribute.
To make the corresponding decision, the �ltering platform
compares the current value of T SCORE attribute with the
value de�ned by the required score parameter (denoted as
R SCORE in Figure 1(a)). As we can observe from this stage,
if the T SCORE value is less than R SCORE, the WSF2
platformautomatically classi�es theweb domain as legitimate
(ham); otherwise, it is classi�ed as spam.

Additionally, a learning phase (stage 4 in Figure 1(a)) can
be conditionally executed depending on the user preferences
(de�ned in the wsf2d con�g.ini �le). If the autolearning
module is activated, WSF2 will acquire new knowledge from
current classi�cation data. �e learning process of each spe-
ci�c spam �ltering technique should be implemented inside
an eventhandler t data type. As indicated in Figure 1(b),
WSF2 actually provides learning methods only for C5.0 and
SVM techniques. However, the �exibility provided by having
inheritance relationships through the eventhander t class
enables an easy way to implement new learning tasks for the
�ltering techniques.

If the learning module is activated, the WSF2 framework
traverses and executes (in separate threads) all the existing
event-handlers. �is operation mode (described in Pérez-
Dı́az and colleagues [11] as learning a�er report) allows
the execution of learning tasks in background, avoiding the
disruption of the �ltering process.

3.2. WSF2 Filter Development. As previously commented,
WSF2 acts as an antispam middleware and framework,
enabling the automatic classi�cation ofweb content guided by
the development and execution of user-de�ned spam�ltering
rules. In line withWirebrush4SPAMor SpamAssassin, a �lter
in WSF2 is composed by a set of scored rules together with a
global threshold called required score (denoted as R SCORE
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Table 1: Description of inheritance relationships and classes in the WSF2 framework.

Parent class Inherited class Method signature Method description

parser t

web header
get params():
header t

Gathers relevant information from the response header of the
retrieved web site (e.g., status of the HTTP response or
web-content encoding).

web body
get content(): const
char∗

Extracts the content of the body of each web page (ignoring the
HTML tags).

web body stemmed
get stem words():
stem t

Reduces the words to their root form, returning a list of stem terms
together with their occurrence count inside a web page.

web ext domains
get domains():
domain t

Returns information related to those domains linked from a given
web site.

web features
get features():
features t

Builds a vector that contains a set of features extracted from the
header and the content of the retrieved web site.

corpus features
get features():
features t

Retrieves all the preprocessed features of a corpus to an internal
format use by our framework.

function t

c5.0
check tree(cont: const
char∗): int

Performs C4.5 tree over the content of the web domain.

regex
eval(cont: const
char∗): int

Veri�es if a speci�c regular expression matches the web content.

svm
check svm(vector:
features t): int

Executes SVM algorithm over the features extracted from the web
domain.

eventhandler t
c5.0 autolearn

c5.0 learn(cont:
features t)

Executes the learning tasks for C5.0 tree.

svm autolearn
svm learn(cont:
features t)

Performs the learning method for SVM algorithm.

(00) parser t RULENAME call to: function t
(01) describe RULENAME rule description
(02) score RULENAME rule score

Algorithm 1: Example de�nition of a common rule in the WSF2
framework.

in Figure 1(a)). In this regard, Algorithm 1 shows the typical
structure of a rule in our WSF2 framework.

As it can be seen in Algorithm 1, each rule is de�ned
by four keywords: (i) parser t denotes the type of the web
parser needed by the �ltering plug-in, (ii) call to: function t
represents the rule triggering condition (usually a call to
a Boolean function that implements an antispam �ltering
technique), (iii) describe is optionally being used to introduce
a brief description about the behaviour of the rule, and (iv)
score determines the value to be added to the total score
attribute (T SCORE) if the �ltering technique associatedwith
the rule matches the target web domain.

It is important to outline that the interconnection
between the rule de�nition shown in Algorithm 1 and the
WSF2 main architecture described in Figure 1(b) provides
a great versatility in the development and deployment of
new �ltering techniques due to the inheritance relationships
between classes that allow the modelling of each function-
ality o	ered by WSF2 (i.e., parsers, �ltering functions, and
event-handlers) as separate plug-ins, making it possible to
dynamically interact andmanage each plug-in as an indepen-
dent entity. To accomplish this goal, parser t and function t

implement a method able to associate the parser (using the
parse() function implemented inside parser t class) and the
�ltering technique (using execute func() method allocated
inside function t class) speci�ed in the de�nition of the rule.

Moreover, in our WSF2 framework, learning algorithms
are related to antispam �ltering techniques (instead of the
rules). To this end, whenever a rule is loaded, WSF2 auto-
matically checks if its associated �ltering technique provides
a learningmethod. In this case,WSF2 performs the following
operations: (i) associating the eventhandler t class with the
learning method by a function pointer between the learn()
function (implemented in eventhandler t class) and the �lter-
ing technique and (ii) loading in memory the eventhandler t
data structure for subsequent execution.

In order to facilitate the understanding of the inheritance
relationships between those classes shown in Figure 1(b) and
Algorithm 1, Table 1 presents a summary highlighting the
most relevant aspects of each one, together with a brief
description of their methods.

Taking into account (i) all the data types and classes
involved in the WSF2 rule execution system shown in
Algorithm 1, (ii) the purpose of the keywords previously
presented in Figure 1, and (iii) the summary of classes
presented in Table 1, we can conclude that the WSF2 �ltering
rule behaviour is straightforward.

In order to clarify the association between �ltering rules
and the inherited classes included in our platform, we present
in Algorithm 2 an example of a dummy �lter coded for the
WSF2 framework.

As we can see from Algorithm 2, the example �lter is
composed of �ve di	erent rules together with the unique
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(00) web features SVM check svm();
(01) describe SVM Classi�es a web page as spam using Support Vector Machine classi�er
(02) score SVM 3
(03)
(04) web features TREE 95 check tree(0.95, 0.99);
(05) describe TREE 99 C5.0 between 0.99 and 1.00
(06) score TREE 99 1.5
(07)
(08) web features TREE 99 check tree(0.99, 1.00);
(09) describe TREE 99 C5.0 between 0.99 and 1.00
(10) score TREE 99 3
(11)
(12) web body HAS VIAGRA ON WEB BODY eval("[vV][iI?1!][aA][gG][rR][aA]")
(13) describe HAS VIAGRA ON WEB BODY Check if the web page contains references to viagra on body
(14) score HAS VIAGRA ON WEB BODY 2
(15)
(16) meta HAS HIGH SPAM RATE (SVM & (TREE 95 || TREE 99))
(17) describe HAS HIGH SPAM RATE Has high probability of being spam
(18) score HAS HIGH SPAM RATE +
(19)
(20) required score 5

Algorithm 2: Dummy �lter de�nition for the WSF2 platform.

required score �eld. �e �rst rule (SVM) is applied to the
most relevant features extracted from the web content by
using the web features parser. �en, there are de�ned two
additional rules that cope with the execution of the C5.0
algorithm over the same features used by the SVM classi�er.
EachC5.0 rule is in charge of verifying if the execution ofC5.0
algorithm is contained inside a speci�c probability interval
(de�ned by the user as function parameters in lines (04)
and (08)). Following that, the de�nition of the fourth rule
(HAS VIAGRA ON WEB BODY) involves the execution of
regular expressions applied to the web page content. As we
can observe from line (12), this rule is triggered every time
the web page contains the word “viagra.” Finally, in line (16),
a special type of rule (META) is introduced. �is kind of
rule is used to properly combine the results of other types of
rules using Boolean expressions andmathematical operators.
In the example, the rule HAS HIGH SPAM RATE (lines
(16) to (18)) incorporates a Boolean expression integrating
previously commented SVM, TREE 95, and TREE 99 rules.
Following the proposed scheme, if the Boolean expression is
true, the score associated with the META rule is added to the
total score of the web page.

Additionally, an important aspect to keep in mind when
de�ning a �lter is that the WSF2 platform allows the charac-
terization of rules with both numerical and de�nitive scores.
A de�nitive score is used to abort the execution of the
�ltering process at any time, carrying out the classi�cation
of the web page depending on the symbol associated with
the score value (i.e., “+” for spam and “–” for ham). In the
example shown in Algorithm 2, and taking into account the
use of de�nitive scores (line (18)), we can conclude that if
the HASH HIGH SPAM RATE rule is triggered, the whole
�ltering process will be automatically aborted, classifying the
web page as spam.

3.3. Integrating the WSF2 Framework into a Standard Web
Crawler Architecture. Our WSF2 platform has been entirely
coded in ANSI/C language which guarantees an adequate
�ltering speed and a satisfactory throughput. Moreover,
with the aim of providing a versatile platform able to be
easily adapted to both academic (research) and enterprise
environments, WSF2 implements two di	erent interfaces:
a storage communication interface (SCI) and a crawler
communication interface (CCI). SCI is designed to enable
the possibility of loading web contents from a previously
compiled corpus, avoiding the need of executingWSF2 inside
a crawler. CCI complementarily allows a straightforward
management of the communication between the crawler and
our WSF2 system for a real-time web �ltering operation.

In this context, Figure 2 introduces a detailed class dia-
gram showing the interconnection of both interfaces and
their role inside ourWSF2platform.As Figure 2 shows,WSF2
also implements theWCM (WSF2CommunicationManager)
module that is in charge of correctly handling the connection
between CCI and SCI interfaces. In particular, this module
is responsible for translating the information provided by
SCI and CCI interfaces into an input stream ready to be
processed by the �ltering platform. To perform this task, the
WCM module implements two methods: get from crawler
that obtains and parses the information provided by CCI and
get from storage that accesses web contents from a de�ned
corpus.

Additionally, as we can observe from Figure 2, the CCI
interface provides two methods: receive web content, which
is responsible for obtaining all the entries from the crawler,
and send web content, which is in charge of giving legitimate
web content back to the crawler for normal operation. SCI
implements three complementary methods to enable the
o�ine operation of the WSF2 platform: load stored �les,
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Uses

Uses

rule

eventhandler_t

function_t

parser_t

preschedule_t

WS2F Communication Manager

Uses

web_body

web_header

web_body_stemmed

web_external_domains

web_features

corpus_features

+ get_from_storage(�les: �leset∗):input_data

+ input_data: const char∗

+ free_loaded_�les(�les:�leset∗):void
+ save_�les_to(�les:�leset∗ ,dir:char∗):void
+ load_stored_�les(directory:char∗):�leset∗

+ send_web_content(web_content: char∗):void

+ receive_web_content(crawler_output: crawler_wrapper):const char∗
+ crawler_wrapper: void∗

Figure 2: Class diagram showing the implementation of CCI and SCI interfaces and their role inside WSF2 platform.

which retrieves and allocates all the web contents from a
user-de�ned corpus path into a �leset structure; save �les to,
which stores the content of the �leset structure into a WARC
(http://www.iso.org/iso/catalogue detail.htm?csnumber=
44717) (WebARChive) �le; and free loaded �les, which cleans
all the allocated resources from memory.

In order to complement operational details concerning
our WSF2 platform, Figure 3 shows how the platform can
be integrated into both research (o�ine �ltering mode) and
enterprise (real-time �ltering) environments.

In case of a real-time web �ltering deployment, the CCI
interface enables WSF2 to be smoothly integrated inside the
internal work�ow of any web crawler. As pointed out in some
works [35–37], crawler systems (also called web spiders or
web robots) systematically browse theWWWwith the goal of
indexing existing web pages. Usually, web searches make use
of web robots to both update their own content and perform
the indexation of third-party web documents. Additionally,
web crawlers can make a copy of visited pages with the goal
of delaying their processing by a search engine. Regarding
this situation, crawlers are usually composed of di	erent
modules [37] (i.e., downloader, DNS resolvers, and crawler
application) allowing components being instantiated more
than once (operating in parallel). �erefore, making local

copies of visited pages is amandatory feature and enables web
crawlers to operate faster.

As we can see at the top of Figure 3, the web crawling pro-
cess starts from a set of initial URLs pending to be processed
(also called seeds). For each URL (i.e., web page), the crawler
parser uses the extractors to perform (i) the identi�cation
and storage of text and metadata and (ii) the URL retrieval.
A�er the content of each URL is collected, the crawler checks
whether this location was previously processed in order to
prevent adding multiple instances of the same hyperlink
to the queue of pending URLs (frontier in Figure 3). �e
frontier should allow the prioritization of certain URLs (e.g.,
those referring to continually updated web sites) because the
large amount of URLs available through Internet impedes the
crawler from indexing the whole content within a given time
period. �erefore, each new prioritized URL added to the
frontier will wait its turn to be downloaded and inspected
recursively by the crawler operational process.

Moreover, as we can observe from Figure 3, the CCI
component runs autonomously from the web crawler, there-
fore circumventing the redesign of its architecture. �is fact
has the added advantage of both avoiding a negative impact
on the system performance and preventing modi�cations in
the execution scheme of the web crawler. To accomplish its
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Figure 3: General web crawler architecture and WSF2 runtime representation.

purpose, the CCI component is embedded between the �rst
and second stages of the web crawler work�ow. Hence, the
CCI component transforms the output obtained from the
crawler downloader (see stage 1 in Figure 3) to a ready-to-be-
processed WSF2 input data (also called forward translation).
When the �ltering process �nishes with the location �nally
classi�ed as ham (legitimate), the CCI component transfers
the WSF2 output to a data structure of the web crawler
(reverse translation).

Finally, as shown in Figure 3, the SCI component enables
the execution of the WSF2 platform under a research (more
academic) domain. In this context, the SCI component is
responsible for establishing a connection between a web
corpus (usually stored using a special structure calledWARC)
and the WSF2 data input. �e operational process of a SCI
component is similar to the behaviour of CCI. Under this

scenario, SCI accomplishes a special preparsing operation
responsible for traversing each �le structure in order to
identify and retrieve (i) �le metadata values and (ii) all the
web content information necessary by the �ltering platform
to carry out the classi�cation process.

4. Case Study

With the goal of demonstrating the suitability of the pro-
posed framework for �ltering web spam content, we have
designed and executed a set of experiments involving a
publicly available corpus and di	erent classi�cation tech-
niques. Considering the web spam domain from a machine
learning perspective, we analysed the behaviour of two well-
known state-of-the-art algorithms forweb spamclassi�cation
(i.e., SVM and C5.0) comparing their performance �rst
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as individual classi�ers and then as hybridized classi�ers
(using regular expressions) in our WSF2 framework. �ese
classi�ers were selected because of their e	ectiveness and
relative e�ciency as evidenced in previous research works
[17, 23, 38, 39]. Although regular expressions used as an
individual technique achieve poor results in spam �lter-
ing, their proper combination with other machine learning
approaches improves the accuracy of de�nitive antispam
classi�cation. �is occurrence, combined with the fact that
regular expressions are commonly used in the business
environment, makes our WSF2 platform a resource of great
value for both academia and industry.

�e selected corpus, together with the data preprocessing
carried out, is introduced in Section 4.1. Section 4.2 describes
core aspects related to the experimental protocol followed
during the tests. Section 4.3 presents and discusses the results
obtained from the experiments. Finally, Section 4.4 describes
in detail current limitations of our WSF2 framework.

4.1. Corpus Selection and Data Preprocessing. �e experience
gained over the years by the web spam community put in
evidence the need for a reference collection that could both
guarantee the reproducibility of results and assure the correct
comparison of novel approaches. A reference collection
speci�cally designed for web spam research (WEBSPAM-
UK2006) was �rst introduced in Castillo and colleagues
[40]. Later, an enhanced version was labelled by a group
of volunteers, building the publicly available WEBSPAM-
UK2007 version of the corpus. Finally, during 2011, Wahsheh
and colleagues [41] compiled an updated version of theWebb
Spam Corpus 2006 by only taking into consideration active
links.

In early 2010, the ECML/PKDD Discovery Challenge
on Web Quality also created the DC2010 dataset [8]. Addi-
tionally, in Webb and colleagues [42], a novel method for
automatically obtaining web content pages was presented,
resulting in the generation of the Webb Spam Corpus 2006,
the �rst public dataset of this kind. Additionally, during 2011,
this corpus was updated by deleting all unavailable web pages
[43]. Table 2 summarizes the main characteristics of these
accessible datasets.

As we can observe from Table 2, the main drawback of
Webb Spam Corpus 2006 and 2011 lies in the lack of a col-
lection of ham domains needed to perform the experimental
protocol explained in next subsection. Additionally, the high
unbalanced ratio between ham and spam characterizing the
DC2010 corpus (with only 3.2% spam pages) could provide
unreal statistical outcomes a�er performing the experiments.
�erefore, the set of WebSPAM-UK corpora are the best
standard alternatives to use in our work.

In detail, although at �rst sight it might appear that
WebSPAM-UK2011 is the best option for being the most up-
to-date dataset, the lack of a signi�cant number of web pages
(only 3,766) turns it into an unfeasible alternative. �erefore,
we �nally selected theWebSPAM-UK2007 corpusmainly due
to its extensive use by the scienti�c community in most of
the web spam research works [9, 18, 27, 38, 40] together with
its completeness in terms of (i) the number of web pages

compiled (up to 114,529 hosts, of which 6,479 are labelled
using three di	erent categories: spam, ham, and undecided)
and (ii) the inclusion of raw HTML for web pages, which
allows for preserving their original format. Additionally,
these HTML pages are stored in WARC format, so a given
domain is composed of several WARC �les. Coinciding with
the Web Spam Challenge 2008 [44], existing labels were
separated into two complementary groups (i.e., train and
test). Table 3 presents a description of this corpus.

It is important to keep in mind that those instances
belonging to the undecided category cannot be used in our
biclass (i.e., spam or ham) classi�cation system. Another
aspect to consider is the existence of domains containing
pages with empty or meaningless content, such as redirec-
tions to error pages. �erefore, it is mandatory to preprocess
the whole corpus in order to remove those useless domains.
Table 4 shows the �nal distribution of each group used in the
experiments carried out in the present work.

As we can observe from Table 4, the resulting corpus is
unbalanced, containing 5,797 valid domains asymmetrically
distributed (i.e., 321 spam and 5,476 legitimate) with an
imbalance rate of 1 : 17. �is result represents a common
problem in many practical applications of machine learning,
as it is also present in web spam �ltering. In our problem
domain, the troublesome situation is mainly characterized
by the existence of a large amount of irrelevant pages with
respect to those sites holding valuable contents.

4.2. Experimental Protocol. In order to demonstrate the
utility of our WSF2 platform, the experiments carried out
were focused on validating the framework by combining
di	erent well-known classi�ers and regular expressions, with
the goal of improving the accuracy of single techniques on
web spam detection. In an e	ort to facilitate the understand-
ing of the whole process, we separated the experimental
protocol into two di	erent stages: (i) the application of a
web content resampling strategy to alleviate the e	ects of the
class imbalance problem and (ii) the execution of di	erent
antispam techniques, either individual or combined, to test
their accuracy of web content classi�cation.

As commented above, we �rst applied a resampling
strategy in order to reduce the skewed distribution of the
selected corpus (described in Table 4). For this purpose,
we used the random undersampling method proposed by
Castillo and colleagues [44] given both its ease of use and
good performance. In general, this method is based on
randomly eliminating some instances from the majority class
in order to achieve the desired ratio between classes.With the
aimof reproducing di	erent balancing scenarios in a straight-
forward manner, we executed the experiments of the second
phase using �ve di	erent con�gurations (i.e., 1 : 17, 1 : 8, 1 : 4,
1 : 2, and 1 : 1). Complementarily, with the goal of obtaining
sound conclusions, all the experimentswere repeated 10 times
using random undersampling, guaranteeing that the training
set is di	erent in each round. �e results presented in this
work correspond to the average values obtained in the 10
independent iterations.
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Table 3: Description of the Web Spam Challenge 2008 dataset.

Spam Ham Undecided

Training set 222 3,776 277 4,275

Test set 122 1,933 149 2,204

344 5,709 426 6,479

Table 4: Preprocessed dataset used in the experiments of ourWSF2
platform.

Spam domains Ham domains

Training set 208 3,641 3,849

Test set 113 1,835 1,948

321 5,476 5,797

In the second stage of our experimental protocol, di	erent
combinations of the selected classi�ers (i.e., SVM and C5.0)
together with regular expressions were tested in order to
analyse their accuracy and global performance. In particular,
the input of the SVM and C5.0 classi�ers was a vector com-
prising 96 content features already included in the selected
corpus [45], while the input used for regular expressions
was the raw content of all pages belonging to each domain.
As discussed in [45], the content-based feature vector used
is formed by aggregating the 24-dimensional content-based
attribute vector of each page taking into consideration (i) the
home page, (ii) the page with the largest PageRank, and both
(iii) the average and (iv) variance of all pages (i.e., 24×4 = 96
content features). In detail, the 24 attributes belonging to
each page are the following: number of words in the page,
number of words in the title, average word length, fraction
of anchor text, fraction of visible text, compression rate, �-
corpus precision and �-corpus recall (� = 100, 200, 500, and
1000), �-query precision and �-query recall (� = 100, 200,
500, and 1000), independent trigram likelihood, and entropy
of trigrams. Both SVM and C5.0 classi�ers were con�gured
by default. Each classi�er was separately executed in order to
evaluate its individual performance.�eobtained valueswere
subsequently used as a basis for the comparison with their
integration in the WSF2 platform, both with and without the
use of regular expressions.

With the goal of directly comparing the results obtained
from the experiments carried out, we use di	erent receiver
operating characteristic (ROC) analyses including the area
under curve (AUC), sensibility, and speci�city. �is type of
validation has beenwidely used by the spam�ltering research
community [18, 26, 44] because it underscores the theoretical
capacity of a given classi�er (in terms of sensitivity and
1−speci�city) regardless of the cut-o	 point. In the same line,
speci�c measures more focused on accuracy (e.g., precision,
recall, and �-score) are not suitable when dealing with
unbalanced data, since they do not consider the proportion of
examples belonging to each class and therefore do not provide
information about the real cost of the misclassi�ed instances.
Moreover, they are also sensitive to a chosen threshold, and
thus they do not guarantee a reliable comparison concerning
the global behaviour of the analysed models.

(a) Filter de�nition for C5.0 classi�er
(00) web features TREE check tree(0.50, 1.00)
(01) describe TREE Classi�es a web using C5.0 classi�er
(02) score TREE 5
(03)
(04) required score 5

(b) Filter de�nition for SVM classi�er
(00) web features SVM check svm()
(01) describe SVM Classi�es a web using SVM classi�er
(02) score SVM 5
(03)
(04) required score 5

Algorithm 3: WSF2 �lter de�nition for C5.0 and SVM classi�ers.

Table 5: AUC results for C5.0 and SVM classi�ers under di	erent
balancing conditions.

Class-imbalance ratio

1 : 17 1 : 8 1 : 4 1 : 2 1 : 1

C5.0 0.562 0.649 0.651 0.648 0.573

SVM 0.534 0.590 0.602 0.604 0.624

4.3. Results and Discussion. As previously stated, in order to
directly compare the outcomes generated from the di	erent
con�gurations, our benchmarking protocol was structured
into three di	erent scenarios consisting of (i) individually
running each ML technique, (ii) combining these techniques
using our WSF2 platform, and (iii) augmenting the second
scenario with the incorporation of regular expressions to the
WSF2 platform.

Under the �rst scenario, each algorithm (i.e., SVM
and C5.0 classi�ers) was executed separately in our WSF2
platform by de�ning the two elementary �lters shown in
Algorithm 3.

As we can observe from Algorithm 3, both �lters are
characterized by the same structure with the only exception
being the rule de�nition (see line (00)). Algorithm 3(a)
speci�es a �lter for triggering the C5.0 classi�er, while
Algorithm 3(b) introduces a �lter involving the execution
of the SVM algorithm. It is important to notice that the
individual scores assigned to both rules (introduced in line
(02)) are the same as the global required score of the �lter.
�is con�guration guarantees that the execution of the �l-
tering process is automatically aborted when the underlying
algorithmmatches the web content. AUC results obtained by
each classi�er under di	erent balancing conditions are shown
in Table 5.

As we can see in Table 5, the C5.0 classi�er attains the
highest score for AUC (0.651) when using an undersampling
ratio of 1 : 4. Nevertheless, the SVM best score for AUC
(0.624) is provided when the amounts of ham and spam
documents are the same. From these results, we can conclude
that C5.0 classi�er is less sensitive than the SVM algorithm
when dealing with unbalanced data. Figure 4 shows the best
ROC curve achieved by both classi�ers.
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Figure 4: ROC curves for C5.0 and SVM classi�ers individually executed. (a) ROC curve for C5.0 classi�er (AUC = 0.651). (b) ROC curve
for SVM classi�er (AUC = 0.624).

(00) web features SVM check svm()
(01) describe SVM Classi�es a web page as spam using Support Vector Machine classi�er
(02) score SVM 5
(03)
(04) web features TREE 00 check tree(0.0, 0.25)
(05) describe TREE 00 Classi�es a web page as spam if C5.0 probability is between 0.0 and 0.25
(06) score TREE 00 −1
(07)
(08) web features TREE 25 check tree(0.25, 0.50)
(09) describe TREE 25 Classi�es a web page as spam if C5.0 probability between 0.25 and 0.50
(10) score TREE 25 3
(11)
(12) web features TREE 50 check tree(0.50, 0.75)
(13) describe TREE 50 Classi�es a web page as spam if C5.0 probability between 0.50 and 0.75
(14) score TREE 50 4
(15)
(16) web features TREE 75 check tree(0.75, 1.00)
(17) describe TREE 75 Classi�es a web page as spam if C5.0 probability between 0.75 and 1
(18) score TREE 75 5
(19)
(20) required score 5

Algorithm 4: WSF2 �lter de�nition for C5.0 and SVM algorithms working as a unique classi�er.

Taking into consideration the AUC values displayed in
Table 5 and the ROC curves for both classi�ers shown in
Figure 4, we can state that the C5.0 algorithm exhibits a better
performance than the SVM.However, neither is good enough
to be used as a single algorithm for detecting and �ltering
spam web content.

Given the fact that there is room for improvement,
and taking advantage of the potential to combine di	er-
ent antispam techniques provided by our WSF2 platform,

the second scenario investigates the suitability of hybridizing
C5.0 and SVM classi�ers into a unique �lter. Algorithm 4
shows the de�nition of theWSF2 �lter used to jointly execute
both classi�ers.

As shown in Algorithm 4 (lines (04) to (18)), the C5.0
classi�er has been divided into four intervals (one per rule) in
order to cover all the possible ranges of probabilities. More-
over, each interval is associated with a di	erent score value,
which varies depending on whether there is spam. According
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Table 6: AUC results for C5.0 and SVM classi�ers working as a
unique classi�er.

Class-imbalance ratio

1 : 17 1 : 8 1 : 4 1 : 2 1 : 1

C5.0 0.562 0.649 0.651 0.648 0.573

SVM 0.534 0.590 0.602 0.604 0.624

C5.0 + SVM 0.579 0.658 0.713 0.684 0.646
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Figure 5: ROC curve for C5.0 and SVM classi�ers combined in a
unique classi�er (AUC = 0.713).

to this circumstance, those C5.0 rules with intervals of low
probability of spam have been assigned lower scores.

Table 6 presents the AUC results obtained by jointly
executing both C5.0 and SVM classi�ers (using the �lter
introduced in Algorithm 4) in addition to the results shown
in Table 5 in order to easily compare the performance of each
scenario.

As we can observe from Table 6, the simple combination
of both classi�ers achieves a better result than their individual
counterparts in all the balancing conditions. In this regard, it
is important to notice that although the individual execution
of the SVM algorithm attained its best result with a 1 : 1
ratio, the combination of both classi�ers exhibits a better
performance under a 1 : 4 ratio. Figure 5 shows the best ROC
curve achieved by the combination of classi�ers.

Finally, in the last scenario, we measured the global
performance achieved by the combination of both classi�ers
together with the use of regular expressions. To accom-
plish this task, and starting from the �lter introduced in
Algorithm 4, we de�ned the �lter presented in Algorithm 5.

As we can observe from Algorithm 5, the �lter contains
14 new rules (lines (00) to (56)) associated with the use of
regular expressions. Additionally, it is important to notice
that the �rst 7 rules are assigned to nonnumeric values (lines
(00) to line (26)). As previously commented, these types of

Table 7: AUC results for C5.0 and SVM classi�ers working together
with regular expressions.

Class-imbalance ratio

1 : 17 1 : 8 1 : 4 1 : 2 1 : 1

C5.0 0.562 0.649 0.651 0.648 0.573

SVM 0.534 0.590 0.602 0.604 0.624

C5.0 + SVM 0.579 0.658 0.713 0.684 0.646

C5.0 + SVM + REGEX 0.673 0.768 0.798 0.759 0.736

rules are de�ned as de�nitive rules and are used in order to
take advantage of the Smart Filter Evaluation (SFE) feature
of WSF2. �is functionality is inherited from our previous
Wirebrush4SPAM platform [11] and enables the possibility
of interrupting the execution of the �ltering process when a
de�nitive rule matches the content. Every time the �ltering
execution is aborted, the incoming item is classi�ed as spam
(+) or ham (−) depending on the value of the de�nitive score.

Table 7 presents the results of this �nal scenario in
addition to the results shown in Table 6 for purposes of
comparison.

As we can observe from Table 7, the reinforcement of the
�lter by using regular expressions allows us to obtain the best
results regardless of the balancing conditions. Moreover, the
1 : 4 ratio achieves the best AUC value showing a theoretical
improvement of the �ltering capability by 0.085 when com-
pared to the second scenario (C5.0 + SVM). Figure 6 shows
the best ROC curve achieved by the combination of both
classi�ers plus the use of regular expressions in a single �lter.

As we can realize from Figure 6, the true combination
of di	erent antispam techniques achieved by our WSF2
platform signi�cantly improves the performance of the �nal
classi�er.

From another complementary perspective, �lter speci-
�city provides an assessment of the ability to correctly classify
negative instances (i.e., avoiding FN errors). Taking into
account our target problem and the importance of FN errors
in this domain, this evaluation metric is particularly suitable
for checking the potential usability of any �lter.Moreover, the
measurement of speci�city and its comparison to sensitivity
(i.e., the ability to detect positive instances) for the best
cut-o	 con�guration are especially interesting for a precise
assessment of the �lter performance. �erefore, in order to
complement the global study previously presented, Table 8
combines both sensitivity and speci�city for the best cut-o	
threshold together with the AUC value for each individual
test carried out.

�e results shown in Table 8 indicate that a better balance
is achieved between sensibility and speci�city as much as
individual techniques/classi�ers are aggregated into a single
�lter. We also detect a similar behaviour when analysing the
corresponding AUC values.

4.4. Current Limitations. Although obtained results (dis-
cussed in detail in the previous section) have demonstrated
the suitability of our novel approach to adequately combine
di	erent techniques for identifying web spam contents, there
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(00) web body HAS GRATIS ON BODY eval("[gG][rR][aA][tT][iI][sS]")
(01) describe HAS GRATIS ON BODY Finds if web page contains references to “Gratis” on content.
(02) score HAS GRATIS ON BODY +
(03)
(04) web body HAS GORGEOUS ON BODY eval("[gG][oO][rR][gG][eE][oO][uU][sS]")
(05) describe HAS GORGEOUS ON BODY Finds if web page contains references to “Gorgeous” on content.
(06) score HAS GORGEOUS ON BODY +
(07)
(08) web body HAS FOXHOLE ON BODY eval("[fF][oO][xX][hH][oO][lL][eE]")
(09) describe HAS FOXHOLE ON BODY Finds if web page contains references to “Foxhole” on content.
(10) score HAS FOXHOLE ON BODY +
(11)
(12) web body HAS TRANSEXUAL ON BODY eval("[tT][rR][aA][nN][sS][eE][xX][uU][aA][lL]")
(13) describe HAS TRANSEXUAL ON BODY Finds if web page contains references to “Transexual” on content.
(14) score HAS TRANSEXUAL ON BODY +
(15)
(16) web body HAS GODDAM ON BODY eval("[gG][oO][dD][dD][aA][mM]")
(17) describe HAS GODDAM ON BODY Finds if web page contains references to “Goddam” on content.
(18) score HAS GODDAM ON BODY +
(19)
(20) web body HAS SLUTTY ON BODY eval("[sS][lL][uU][tT]{1,2}[yY]")
(21) describe HAS SLUTTY ON BODY Finds if web page contains references to “Slutty” on content.
(22) score HAS SLUTTY ON BODY +
(23)
(24) web body HAS UNSECUR ON BODY eval("[uU][nN][sS][eE][cC][uU][rR]")
(25) score HAS UNSECUR ON BODY +
(26)
(27) web body HAS BUSINESSOPPORTUNITY ON BODY eval("[bB][uU][sS][iI][nN][eE][sS]{1,2}[
(28) ][oO][pP]{1,2}[oO][rR][tT][uU][nN][iI][tT][yY]")
(29) describe HAS BUSINESSOPPORTUNITY ON BODY Finds if web page contains references to “Business Opportunity”

on content.
(30) score HAS BUSINESSOPPORTUNITY ON BODY 5
(31)
(32) web body HAS GAY ON BODY eval("[gG][aA][yY]")
(33) describe HAS GAY ON BODY Finds if web page contains references to “Gay” on content.
(34) score HAS GAY ON BODY 5
(35)
(36) web body HAS CHEAP ON BODY eval("[cC][hH][eE][aA][pP]")
(37) describe HAS CHEAP ON BODY Finds if web page contains references to “Cheap” on content.
(38) score HAS CHEAP ON BODY 5
(39)
(40) web body HAS BLONDE ON BODY eval("[bB][lL][oO][nN][dD][eE]")
(41) describe HAS BLONDE ON BODY Finds if web page contains references to “Blonde” on content.
(42) score HAS BLONDE ON BODY 5
(43)
(44) web body HAS BARGAIN ON BODY eval("[bB][aA][rR][gG][aA][iI][nN]")
(45) describe HAS BARGAIN ON BODY Finds if web page contains references to “Bargain” on content.
(46) score HAS BARGAIN ON BODY 5
(47)
(48) web body HAS RESORT ON BODY eval("[rR][eE][sS][oO][rR][tT]")
(49) describe HAS RESORT ON BODY Finds if web page contains references to “Resort” on content.
(50) score HAS RESORT ON BODY 5
(51)
(52) web body HAS VENDOR ON BODY eval("[vV][eE][nN][dD][oO][rR]")
(53) describe HAS VENDOR ON BODY Finds if web page contains references to “Vendor” on content.
(54) score HAS VENDOR ON BODY 5
(55)
(56) web features SVM check svm()
(57) describe SVM Classi�es a web page as spam using Support Vector Machine classi�er
(58) score SVM 5
(59)

Algorithm 5: Continued.
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(60) web features TREE 00 check tree(0.0, 0.25)
(61) describe TREE 00 Classi�es a web page as spam if C5.0 probability is between 0.0 and 0.25
(62) score TREE 00 −1
(63)
(64) web features TREE 25 check tree(0.25, 0.50)
(65) describe TREE 25 Classi�es a web page as spam if C5.0 probability between 0.25 and 0.50
(66) score TREE 25 3
(67)
(68) web features TREE 50 check tree(0.50, 0.75)
(69) describe TREE 50 Classi�es a web page as spam if C5.0 probability between 0.50 and 0.75
(70) score TREE 50 4
(71)
(72) web features TREE 75 check tree(0.75, 1.00)
(73) describe TREE 75 Classi�es a web page as spam if C5.0 probability between 0.75 and 1
(74) score TREE 75 5
(75)
(76) required score 5

Algorithm 5: WSF2 �lter de�nition combining C5.0 and SVM algorithms together with regular expressions.
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Figure 6: ROC curve for C5.0, SVM, and regular expressions
combined in a single classi�er (AUC = 0.798).

exist some practical limitations to deploy a fully functional
�ltering solution based on ourWSF2 framework. In this line,
during the development of this work, we have identi�ed three
di	erent weaknesses of WSF2: (i) the small number of ready-
to-use classi�cation and feature extraction techniques, (ii) the
lack of initial setup options to select those features that will
be later used by each classi�er, and (iii) the need of expert
knowledge to build a fully functional WSF2 �lter.

At this point, the most important WSF2 limitation is the
lack of a large number of classi�cation models. In fact, we
have found it necessary to include several complementary
ML classi�ers (e.g., Bagging approaches [46], Boosting tech-
niques [46, 47], Random Forest [48], or di	erent Näıve Bayes

Table 8: Sensitivity, speci�city, and AUC values obtained for each
classi�er executed in our WSF2 platform.

Ratio AUC Sensitivity Speci�city

C5.0

1 : 17 0.562 14.2 98.4

1 : 8 0.649 50.4 79.5

1 : 4 0.651 66.4 65.9

1 : 2 0.648 77.0 52.7

1 : 1 0.573 82.3 32.4

SVM

1 : 17 0.534 7.1 99.7

1 : 8 0.590 26.5 91.6

1 : 4 0.602 29.2 91.2

1 : 2 0.604 30.1 90.8

1 : 1 0.624 34.5 90.3

C5.0 + SVM

1 : 17 0.579 17.7 98.1

1 : 8 0.658 52.2 79.4

1 : 4 0.713 63.7 72.9

1 : 2 0.684 77.0 52.7

1 : 1 0.646 34.5 90.2

C5.0 + SVM + REGEX

1 : 17 0.673 44.2 87.7

1 : 8 0.768 78.8 69.8

1 : 4 0.798 75.3 71.8

1 : 2 0.759 54.9 85.7

1 : 1 0.736 62.8 82.3

algorithms [49]) as well as other domain speci�c techniques,
such as URI Blacklists.

Additionally, all the available ML classi�ers could be
tested using di	erent sets of features. In this context, as
some learners perform better when using a certain type of
features, the framework would allow users to indicate those
features to be used by the classi�ers (or automatically select
the best characteristics for each ML technique). In addiction,
the number of available features to train classi�cationmodels
could be also enlarged.
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Currently, the triggering condition and the score of all
the rules that compose a given �lter are manually con�gured.
�is complex task is routinely accomplished by an expert
having considerable experience in the domain. Although
there are currently some enterprises that could commer-
cialize services to provide accurate �lter con�gurations, in
the near future, our WSF2 framework should incorporate a
fully functional knowledge discovering module able to (i)
automatically de�ne the triggering condition of all the rules,
(ii) discover and delete outdated rules, and (iii) mechanically
adjust both the speci�c score of each rule and the global
�lter threshold, with the goal ofmaximizing performance and
safety.

5. Conclusions and Future Work

�is work presented WSF2, a novel platform for giving
speci�c support to �lter spam web contents. WSF2 provides
a reliable framework in which di	erent algorithms and tech-
niques can be easily combined to develop strong and adapt-
able web content �lters. In order to ensure its extensibility,
WSF2 supports the usage of plug-ins to develop and integrate
new �ltering approaches, introducing the concept of rule to
support their execution. Using our WSF2 �lter model, any
�lter can be easily implemented as a combination of di	erent
weighted rules (each one invoking separate classi�cation
algorithms) coupled with a global �ltering threshold. �e
current architecture design of WSF2 emerged from popular
e-mail �ltering infrastructures including SpamAssassin [10]
and Wirebrush4SPAM [11].

�rough the combination of di	erent but complementary
techniques, we will be able to develop novel classi�ers that
outperform the capabilities of the original algorithms. �us,
in order to demonstrate the real value of our WSF2 platform,
we have successfully integrated SVM, C5.0, and regular
expressions to build up an ensemble �lter able to outperform
the individual performance of those algorithms.

Regarding the so�ware engineering experience gained
through the development of this project, we can state that
the �exible architecture used to create the WSF2 platform
facilitates the integration of novel and/or existing techniques
while maximizing �ltering speed. Although some key aspects
concerning the WSF2 architecture design and source code
were borrowed from SpamAssassin and Wirebrush4SPAM
projects, respectively, the distinctive nature of the web spam
�ltering domain involved the redesign of di	erent data
interchange schemes to support the true interaction with
search engines and to provide a benchmark framework for
academic environments. In addition, the implementation of
speci�c algorithms and parsers to support the target domain
(web spam �ltering) was also required to achieve the full set
of features currently o	ered by the WSF2 platform.

In order to improve the functionality and performance of
our WSF2 framework, some new spam �ltering techniques
should receive further support. In this line, we highlight that
most common supervised ML classi�cation techniques can
be successfully imported in our WSF2 framework. To this
end, we will speci�cally evaluate some ML libraries such as

VFML [50] and other implementations of ML approaches
like AdaBoost [47]. Moreover, we also believe that our WSF2
framework can take advantage from URI Blacklists (URIBL),
commonly used in the e-mail �ltering domain. In addition
to the obvious technical development, we believe that the
use of di	erent �lter optimization heuristics (e.g., tuning
up rule scores, �nding and removing irrelevant features, or
detecting counterproductive rules)would be very appropriate
to complement the current state of the art [51–54]. Finally, the
lack of e	ective tools for web spam dataset management and
maintenance also suggests an interesting option for future
research activities.
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[11] N. Pérez-Dı́az, D. Ruano-Ordas, F. Fdez-Riverola, and J. R.
Méndez, “Wirebrush4SPAM: a novel framework for improving
e�ciency on spam �ltering services,” Soware: Practice and
Experience, vol. 43, no. 11, pp. 1299–1318, 2013.

[12] C. Castillo and B. D. Davison, “Adversarial web search,” Foun-
dations and Trends in Information Retrieval, vol. 4, no. 5, pp.
377–486, 2010.
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