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Wireless Sensor Networks (WSN) have become increasingly one of the hottest research areas in computer science due to their wide
range of applications including critical military and civilian applications. Such applications have created various security threats,
especially in unattended environments. To ensure the security and dependability of WSN services, an Intrusion Detection System
(IDS) should be in place.�is IDS has to be compatible with the characteristics ofWSNs and capable of detecting the largest possible
number of security threats. In this paper a specialized dataset for WSN is developed to help better detect and classify four types of
Denial of Service (DoS) attacks: Blackhole, Grayhole, Flooding, and Scheduling attacks. �is paper considers the use of LEACH
protocol which is one of the most popular hierarchical routing protocols in WSNs. A scheme has been de	ned to collect data
from Network Simulator 2 (NS-2) and then processed to produce 23 features. �e collected dataset is called WSN-DS. Arti	cial
Neural Network (ANN) has been trained on the dataset to detect and classify di�erent DoS attacks. �e results show that WSN-
DS improved the ability of IDS to achieve higher classi	cation accuracy rate. WEKA toolbox was used with holdout and 10-Fold
Cross Validation methods. �e best results were achieved with 10-Fold Cross Validation with one hidden layer. �e classi	cation
accuracies of attacks were 92.8%, 99.4%, 92.2%, 75.6%, and 99.8% for Blackhole, Flooding, Scheduling, and Grayhole attacks, in
addition to the normal case (without attacks), respectively.

1. Introduction

Wireless Sensor Networks (WSN) have become increasingly
an important 	eld of research due to their wide range of
real-time applications like critical military surveillance, bat-
tle	elds, building securitymonitoring, forest 	remonitoring,
and healthcare [1]. A WSN consists of large number of
autonomous sensor nodes, which are distributed in di�erent
areas of interest to gather important data and cooperatively
transmit the collected datawirelessly to amore powerful node
called sink node or Base Station (BS) [2, 3].�edata transmit-
ted across the network depend on specializedWSNprotocols.
�erefore, protecting WSN from di�erent security threats
is essential. Unfortunately, achieving this objective becomes
a major challenge because of the constrained resources of

WSNs including battery energy, memory, and processing
capabilities [4]. Such limiting characteristicsmake traditional
security measures like cryptography not always su�cient for
such networks.

WSNs are highly vulnerable to attacks, due to their open
and distributed nature and limited resources of the sensor
nodes. Moreover, in WSNs packets broadcasting has to be
done frequently, sensor nodes can be deployed randomly
in an environment so an attacker adversary can be easily
injected to a WSN [5].

An attacker can compromise a sensor node, eavesdrop
messages, inject fake messages, alter the integrity of the data,
and waste network resources. Denial of Service (DoS) attack
is considered one of the most general and dangerous attacks
that threaten WSN security. �is attack has several forms
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and its main objective is to interrupt or suspend the services
provided by WSNs [6, 7].

Because the process of avoiding or preventing security
threats cannot be always successful, an Intrusion Detection
System (IDS) is needed to detect known andunknown attacks
and alert sensor nodes about them [3, 4]. IDS allows detecting
suspicious or abnormal activities and triggers an alarm when
an intrusion occurs. �e implementation of IDSs for WSNs
are more di�cult than other systems because sensor nodes
are usually designed to be tiny and cheap, and they do not
have enough hardware resources. Additionally, there is no
specialized dataset that contains normal pro	les and attacks
in WSN that can be used to detect an attacker signature
[3]. Considering the above challenges, there are mainly two
conditionswhile designing IDS forWSNs:�e IDSmust be of
high degree of accuracy in detecting an intruder that includes
unknown attacks, and it also must be lightweight to ensure
minimum overhead on the infrastructure of WSNs [8].

In this paper a specialized WSN dataset is constructed
to characterize four types of DoS attacks in addition to the
normal behavior when no attacks exist.WSNs’ characteristics
and challenges were considered when Low Energy Aware
Cluster Hierarchy (LEACH) [9] routing protocol was used
in this study. �is choice was made since LEACH is one
of the most popular hierarchical routing protocols in WSNs
that consumes limited energy and is characterized by its
simplicity. �e constructed dataset is called WSN-DS.

�e rest of paper is organized as follows. Section 2
provides an overview of LEACH protocol, IDSs, and reviews
related work. Section 3 analyzes LEACH protocol math-
ematically; Section 4 describes the extracted features of
the constructed dataset. Section 5 models di�erent attacks.
Section 6 presents the experimental results obtained from
IDS and discusses the importance of the achieved results.
Conclusions and avenues for future work are presented in
Section 7.

2. Background and Related Works

�is section presents an overview of LEACH protocol,
LEACH-based protocols, DoS, and IDS in WSNs.

2.1. LEACH Protocol Overview. LEACH is a hierarchical
routing protocol used in WSNs to increase the network’s
lifetime [9–11]. LEACH is a clustering, adaptive, and self-
organizing protocol. LEACH assumes that BS is 	xed and
located far from sensor nodes. Additionally, all sensor nodes
are homogeneous and have limited energy and memory.
Sensors can communicate among each other and they can
communicate directly with the BS. �e main idea of LEACH
protocol is to organize nodes into clusters to distribute the
energy among all nodes in the network. Also, in each cluster
there is a node called Cluster Head (CH) which aggregates
the data received from sensors within its cluster and forward
them to the BS. Figure 1 shows the structure of nodes in
LEACH routing protocol. Each round in LEACH protocol
consists mainly of two phases: setup phase and steady-state
phase. In the setup phase, clusters are formed, whereas in the
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Figure 1: Nodes structure in LEACH routing protocol.

steady-state phase, sensed data will be transferred to the sink
node [12].

At the beginning of the setup phase, every node generates
a random number between 0 and 1, and it then computes
a threshold formula �(�), as shown in (1). If the selected
random number is less than the threshold value, the node
becomes a CH:

� (�) = {{{
01 − � × (	 mod �−1) , ∀� ∈ 

0, otherwise, (1)

where � is the CH probability (usually in LEACH a node
becomes CHwith a probability of 0.05),: is the set of nodes
that have not been a CH, in the last 1/� rounds, and 	 is the
current round.

CH in the 	rst round cannot be CH again in the next1/� rounds. A�er 1/� − 1 rounds, the threshold value
becomes 1 for any sensor node that has not been CH
yet, and a�er 1/� rounds, all nodes are eligible again to
become CHs. Once CHs are assigned for all clusters, each
CH will broadcast an advertisement message (ADV CH) to
the rest of nodes using Carrier Sense Multiple Access-Media
Access Control (CSMA-MAC) protocol [9]. A�er receiving
ADV CH message, each node decides to which cluster it
belongs by selecting a CH based on the Received Signal
Strength Indication (RSSI) of the advertisement message, the
node then sends a (JOIN REQ) message to the selected CH
with the highest RSSI. Each node uses CSMA-MAC protocol
to transmit its selection [9, 10]. During the setup phase,
all CHs keep their receivers ON. A�er clusters formation,
each CH creates a Time Division Multiple Access (TDMA)
schedule according to the number of nodes in its cluster called
Cluster Members (CM) and broadcasts it to them.

During steady-state phase, each sensor node collects data
and transmits them to its CH during its allocated time slot
according to the TDMA schedule. CHs receive all the data
and aggregate them before sending them to the BS. A�er
a predetermined time, the network starts another round by
going back to the setup and steady-state phases again [9].

2.2. LEACH-Based Protocols. LEACHwas and still is studied
in enormous number of research articles. �e authors in [13]
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provided a review of 27 clustering and routing techniques
based on LEACH protocol for WSNs that includes a com-
prehensive discussion and comparisons among them. �e
authors in [14, 15] highlighted LEACHprotocol andpresented
	�een LEACH improved versions introduced in the liter-
ature. �e papers have compared some features of several
variants of LEACH protocol not empirically but based on
their descriptions. In [16] the author proposed and evaluated
two new clustering-based protocols for heterogeneousWSNs
that were built based on LEACH protocol by considering
three types of nodes with di�erent battery energies, which
was the source of heterogeneity in the author’s protocols.

LEACH-ICE (LEACH Inner Cluster Election) algorithm
based on LEACH algorithm was introduced in [17]. �e
threshold function of the node selected as CH is adjusted.
Also, direct communication with the BS occurs when a node
is closer to the BS. To improve the clustering mechanism,
LEACH-ICE elects a new CH inside the cluster when the
resident energy of the current CH is lower than a prede	ned
threshold.

In [18] the authors proposed an energy e�cient secondary
CH selection algorithm forWSN. By controlling the distances
among the CHs, a uniform distribution of CHs is satis	ed.
Two-level hierarchy mode was applied to transmit data to the
BS. LEACH is compared with the improved LEACH-TLCH
method. Simulation results show that the improved method
can reduce the network consumption of energy and lengthen
the network’s lifetime.

In [19], a distributive Energy Neutral Clustering (ENC)
protocol was proposed to group the network into several
clusters, with the goal of providing perpetual network oper-
ation. ENC employs a novel Cluster Head Group (CHG)
mechanism that allows a cluster to use multiple CHs to share
heavy tra�c load and to reduce the frequency of cluster
reformation. An extension to ENC based on convex opti-
mization techniques of the number of clusters was proposed
to group the network into equal-sized clusters to maximize
network information gathering. According to the authors’
experiments, the proposed protocol can successfully prevent
sensors from shutting down due to excessive usage of energy.

2.3. DoS and IDS in WSN. As mentioned earlier, DoS is a
common attack that could have a severe impact on WSN’s
functionalities and services [20]. Many di�erent types of DoS
attacks have been identi	ed so far, for example, Blackhole
attack, Grayhole attack, Flooding attack, andWormhole. �e
seriousness of DoS attack stems from the fact that mostWSN
applications require the deployment of a sensor node in harsh
environments where they are far away and di�cult to be
controlled [20, 21]. Recently, many researches are going on
in an attempt to 	nd solutions for DoS attacks, but mainly
they have tackled one or two forms of these attacks but not
the majority [2, 22–24]. Moreover, they o�er partial solutions
and they cannot be applied concurrently because they will
consume high energy, which is not practical in WSNs [2, 25].
�erefore, a mechanism should be found to identify di�erent
behaviors of DoS attacks and classify them to take e�ective
countermeasures.

Cryptography is a security mechanism that is used for
protecting WSN against external attacks. It ensures many
security services including integrity and authentication by
checking the data packet source and its contents using
several techniques such as symmetric encryption, public key
cryptography, and hash functions [25]. �ese techniques
cannot be used to detect internal attacks when security keys
are exposed to the attacker which uses them to perform
encryption and decryption of messages’ contents. Conse-
quently, such techniques serve as 	rst line of defense [5].
Attackers always attempt to launch new and unknown attacks
in more than one way; therefore, it is necessary to create an
e�cient IDS, which acts as a second line of defense to detect
known and unknown attacks and alert sensor nodes about
them. IDS allows detecting suspicious or abnormal activities
and triggers alarms when intrusions are detected [26].

�e National Institute of Standards and Technology
(NIST) [27] categorized intrusion detection into two main
approaches: anomaly detection and misuse detection. In
anomaly detection the system depends on prior knowledge of
normal behavior of the network which will be then compared
with its current activities. In misuse detection, the system
depends on prior knowledge of attack signatures. It compares
the signature with the current activities in the network.

IDS has become an important security component of
WSNs; however, the implementation of IDS in WSNs intro-
duces number of challenges that can have negative impact
on WSN performance [28]. It is ine�cient to use IDS in
every sensor node due to the resource-constrained nature of
such nodes. IDS components should be installed in places
where sensor nodes can be followed to be able to defend
against certain threats to the network. IDS is also used in
WSNs where huge amount of tra�c is transmitted; therefore,
there is a possibility an intrusion could be missed as sensor
nodes generally have restrictions in handling huge data in the
network.

�ere are two main components of IDS, features extrac-
tion and modeling algorithm. Features extraction de	nes
measured attributes that are linked to the IDS functionalities.
Modeling algorithm is the main component; the accuracy
and the e�ciency of detecting and responding to intrusions
depend on the modeling algorithm. IDS may have compo-
nents that depend on the network characteristics and possible
intrusions [29]. Most of IDSs have six common components
as shown in Figure 2:

(1) Monitoring component: which is used for local activ-
ity monitoring or for monitoring neighbor sensor
nodes. �is component mostly monitors internal
activities, tra�c patterns, and resource utilization.

(2) Analysis component: which contains all records of
normal and abnormal behaviors for all nodes in the
network [30].

(3) Detection component: which is the main component
that is built based on the modeling algorithm. It
works a�er analyzing network behaviors. Decisions
aremade to declare such behaviors asmalicious or not
[31].
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Figure 2: IDS components.

�eother three components of IDS consist of actions that
can be taken, either one, two, or all of them [32]:

(4) Logging: storing each packet in a log 	le so that secu-
rity administrator can use it for later analysis.

(5) Alarming: a responding generating component in
case of detection of an intrusion. �e response
may trigger an alarm to announce the misbehaving
node(s).

(6) Prevention: an advanced step that can be added to IDS
to enable it to take an action to prevent dealingwith an
attack once detected. �is can be done, for example,
by excluding harmful nodes from the network [30].

Designing a specialized dataset forWSN to achieve better
detection and classi	cation of DoS attacks is the main aim of
this paper. �e authors in [30] presented current IDSs and a
comparison among them. �e authors revised mechanisms,
attacks, and evaluation metrics but without mentioning the
use of specialized datasets. �e comparison depended on the
type of IDSs, whether it is anomaly-based, signature-based,
hybrid, or cross layer.

Knowledge Discovery and Data Mining Tools Competi-
tion (KDD) dataset [33] was constructed for Local Area Net-
work (LAN). KDD is not specialized for wireless in general
and WSN in particular, even though many researchers have
used it to deal with fraud and intrusion detection [34].

Anomaly, signature, and hybrid-based IDSs have been
reviewed in [35].Mainly KDDCup-99was used in these IDSs.
For example, in the eight studied hybrid-based IDSs, four of
them have used KDDCup-99 and the rest have used real data
samples.

Other researches which also considered KDD in their
analysis and classi	cations can be found in [36–38].

It can be concluded that there is no specialized dataset
forWSN that has been reported in the literature for detecting
and classifying as many DoS as possible. �erefore, there is
an urgent need to de	ne a labelled, specialized dataset that
successfully characterizes WSN to help in studying normal
and anomaly behaviors. �e construction and testing of such
dataset are proposed in this paper.

3. LEACH Mathematical Analysis

To ensure the correctness of the constructed dataset called
WSN-DS, a mathematical analysis has been conducted to all
LEACH phases and then has been compared to the results of
simulation in case of normal situation when there is no DoS
attack. �e terms used in LEACH’s mathematical model are
listed as follows:

LEACHMathematical Model Terms

: number of sensor nodes in WSN

S�: senor node �
NC: number of CHs

CM: number of members within a cluster

ADV-CH-SENT: number of advertisement messages
sent by CH

ADV-CH-RCVD: number of advertisementmessages
received by sensor nodes

JOIN-REQ-SENT: number of join request messages
sent by sensor nodes

JOIN-REQ-RCVD: number of join request messages
received by CHs

TDMA-SENT: number of TDMA schedules sent by
CHs

TDMA-RCVD: number of TDMA schedules received
by sensor nodes

NO-DATA-PKT: number of data packets received by
a CH

3.1. Advertisement Phase. �eorem 1 calculates the number
of advertisement messages that are sent by CHs and received
by CMs in a speci	c round as follows.

�eorem 1. In the advertisement phase of LEACH, maximum
ADV-CH-SENT in a speci�c round is � and the maximum
ADV-CH-RCVD is ( − 1) ∗ �.
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Table 1: Comparison between the mathematical model and simulation results.

Round Number of clusters
ADV-CH-Sent ADV-CH-Rcvd Join-Req-Sent Join-Req-Rcvd BS receives

Math Sim. Math Sim. Math Sim. Math Sim. Math Sim.

1 4 4 4 396 396 96 96 96 96 238 238

2 2 2 2 198 198 98 98 98 98 53 53

3 3 3 3 297 297 97 97 97 97 126 126

4 2 2 2 198 198 98 98 98 98 59 59

5 7 7 7 693 693 93 93 93 93 563 563

6 6 6 6 594 594 94 94 94 94 516 516

7 4 4 4 396 396 96 96 96 96 268 268

8 4 4 4 396 396 96 96 96 96 291 291

9 5 5 5 495 495 95 95 95 95 447 447

10 7 7 7 693 693 93 93 93 93 695 695

11 6 6 6 594 594 94 94 94 94 456 456

12 6 6 6 594 594 94 94 94 94 363 363

13 1 1 1 99 99 99 99 99 99 13 13

14 7 7 7 693 693 93 93 93 93 629 629

Table 2: Applying�eorem 3 equation to round 1 of simulation round.

Cluster number Number of nodes within CH Number of packets received(No-DATA-PKT) Number of packets sent to BS

Cluster 1 25 1200 48

Cluster 2 30 1230 41

Cluster 3 8 880 111

Cluster 4 33 1254 38

Applying�eorem 3 equation ∑NC

�=1(NO-DATA-PKT/CM of CH�) Total: 238

Proof. According to LEACH, each CH in each round is
supposed to broadcast an advertisement message to the rest
of nodes. �erefore, in case of having NC cluster heads,
then ADV-CH-SENT equals NC. On the other hand, these
advertisement messages (NC) will be received by all sensor
nodes () except the CH node itself which equals ( − 1) ∗
NC.

3.2. Cluster Setup Phase. �eorem 2 calculates the number of
join request messages sent by sensor nodes and received by
CHs in order to associate with them.

�eorem 2. In clusters setup phase of LEACH, the maximum
JOIN-REQ-SENT equals JOIN-REQ-RCVD which is−�.
Proof. According to LEACH, once each sensor node has
decided to which cluster it will belong, then it informs its
CH by sending a (JOIN REQ) message. �erefore, all sensor
nodes () except CHs (NC) will send (JOIN REQ) messages
( − NC) and these messages will also be received by
CHs.

3.3. Data Transmission Phase. �eorem 3 calculates the
amount of sensed data packets that are delivered to the BS
at the end of each round.

�eorem 3. In the data transmission phase of LEACH, at

the end of each round, BS receives ∑���=1 (�-����-���/�� �� ���) packets.

Proof. According to LEACH, when the CH receives the
sensed data from the sensors nodes (CMs) according to their
time slots assigned by TDMA schedule, it aggregates them
into one packet and sends it to the BS. �roughout the
round, the number of packets sent to the CH from CMs is(NO-DATA-PKT) but due to the aggregation process only
(NO-DATA-PKT/CMs of CH�) packets will be sent to the
BS. Having NC of CHs, then the overall data packets received

by BS are ∑NC

�=1(NO-DATA-PKT/CM of CH�).

3.4. Comparison betweenMathematicalModel and Simulation
Results. To con	rm the correctness of the simulation which
is used to collect data to construct the dataset, a comparison
is performed between the mathematical analysis and simula-
tion results. �e comparison will be based on sample of the
simulation results representing the 	rst 14 rounds as a�er this
round nodes start to die. In the 	rst 14 rounds, the number
of alive nodes is 100. Table 1 shows this comparison. �e
mathematical results were obtained by applying the equations
in �eorems 1–3, while the simulation results were obtained
from Network Simulator 2 (NS-2) simulator.

For more clari	cation, Table 2 presents how the mathe-
matical formula of �eorem 3 is applied to a sample round
(Round 1) in one of the simulation scenarios to calculate the
number of received data packets by BS.

Table 1 shows 100% match between the mathemati-
cal model and the simulation results. �is is due to the
behavior of LEACH protocol which implements dynamic
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Table 3: Observations for 	ve di�erent simulation scenarios (A–E) when determining the number of nodes monitored by each node.

Number of
neighbors to
watch

Max number of monitors for a
speci	c node

Min number of monitors for a
speci	c node

Number of overall monitored
nodes

A B C D E A B C D E A B C D E

3 6 7 7 6 7 0 0 0 1 0 97 99 99 100 97

4 7 9 8 8 9 0 0 0 1 0 99 99 99 100 99

5 10 9 10 10 10 1 1 1 1 2 100 100 100 100 100

6 11 12 11 10 13 1 1 1 2 2 100 100 100 100 100

TDMA Scheduling technique at the data transmission level.
Additionally, it uses both Code Division Multiple Access
(CDMA) andCSMA codes to avoid and reduce collisions and
interferences that may exist in the network.

4. WSN-DS Dataset Description and Creation

In order to build the dataset and collect the required data
from the sent and received packets withinWSN, amonitoring
service is needed with minimum cost. On the other hand, we
need to guarantee that necessary data related to the network
which help in detecting, classifying, and then preventing
di�erent possible attacks are collected. In this research, to
distribute the load among sensor nodes, each sensor will take
part in the monitoring process and should be able to monitor
set of its neighbors.�e challenge was how to 	nd the suitable
number of nodes to be watched by a sensor node in order
to monitor all network sensors. Many experiments have been
conducted to decide on this number and the summary of the
results is shown in Table 3.

When each sensor node has watched 3 nodes of its
neighbors, it has been noticed that the largest number of
sensor nodes which could be monitored by a single node was
seven. In other words, the BS has received seven di�erent
reports about the same node from seven di�erent watching
nodes. Tomake sure that the received information are correct,
these reports could be checked for consistency. In some
scenarios, some sensor nodes were not monitored by any
sensor. �is indicates that monitoring 3 neighboring nodes
is not enough to get information about all network sensor
nodes.

Additionally, an improvement has occurred when 4
neighbors are being watched. But only when the number
is 5, all sensor nodes are being watched in all 5 scenarios.
Similar results have been obtained when a sensor node was
watching 6 of its neighbors. Consequently, it has been found
that monitoring 5 neighbors is enough to get information
about all nodes in the network and there is no need to increase
the computational complexity by going further.

Choosing 5 neighbors to be monitored is done at the
beginning of the simulation. All nodes broadcast a Hello
message. Accordingly, each node selects the 	rst 5 nodes
it heard from. �en it monitors them over the simulation
period, so that each node sends a report to its CH at the
end of each round. �en the CH sends the received reports
to the BS. For security purposes and in case of suspecting
the CH and having one monitor for this node (one report),

these reports could be sent directly to the BS at the expense
of consuming more energy if this node is further from the BS
than theCH.A�er deep study of LEACHrouting protocol, we
have succeeded to extract 23 attributes to help in identifying
the status of each node in the network, �ese attributes are
listed as follows.

WSN-DS Dataset Attributes

Node ID: a unique ID to distinguish the sensor node
in any round and at any stage. For example, node
number 25 in the third round and in the 	rst stage
is to be symbolized as 001 003 025.

Time: the current simulation time of the node.

Is CH? A �ag to distinguish whether the node is CH
with value 1 or normal node with value 0.

Who CH?�e ID of the CH in the current round.

RSSI: Received Signal Strength Indication between
the node and its CH in the current round.

Distance to CH: the distance between the node and its
CH in the current round.

Max distance to CH: the maximum distance between
the CH and the nodes within the cluster.

Average distance to CH: the average distance between
nodes in the cluster to their CH.

Current energy: the current energy for the node in the
current round.

Energy consumption: the amount of energy con-
sumed in the previous round.

ADV CH send: the number of advertise CH’s broad-
cast messages sent to the nodes.

ADV CH receives: the number of advertise CH mes-
sages received from CHs

Join REQ send: the number of join request messages
sent by the nodes to the CH.

Join REQ receive: the number of join request mes-
sages received by the CH from the nodes.

ADV SCH send: the number of advertise TDMA
schedule broadcast messages sent to the nodes.

ADV SCH receives: the number of TDMA schedule
messages received from CHs.

Rank: the order of this node within the TDMA
schedule.
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N →Network Size
SN→ Sensor Node
MN→Malicious Node
CH→ Cluster Head
BS→ Base Station
CM→ Cluster Member
NC→ Cluster Heads list
x → Integer value between 0 and − 1∀ SN�, 0 < � ≤ , compute�(SN�) and random 	

SN�
IF (	

SN� < �(SN�)) THEN

SN� = CH
ELSE

SN� = CM
ENDIF∀CH�, � ∈ NC{
CH� broadcasts the advertisement message (ADV CH)
x CMs will join CH�
CH� creates TDMA schedule
x CMs send data to CH� in the corresponding TDMA time slot}

IF CH� = MN THEN
Performs the attack by dropping all packets

ELSE
Sends aggregated data to BS

ENDIF

Algorithm 1: Model of Blackhole attack.

Data sent: the number of data packets sent from a
sensor to its CH.

Data received: the number of data packets received
from CH.

Data sent to BS: the number of data packets sent to
the BS.

Distance CH to BS: the distance between the CH and
the BS.

Send Code: the cluster sending code.

Attack Type: type of the node. It is a class of 	ve pos-
sible values, namely, Blackhole, Grayhole, Flooding,
and Scheduling, in addition to normal, if the node is
not an attacker.

5. Attack Models

Four types of DoS attacks in LEACH protocol are imple-
mented in the constructed dataset; Blackhole, Grayhole,
Flooding, and Scheduling attacks. �is section models each
one of these attacks. To ensure proper distribution of the
attacker nodes, the network terrain has been divided into 10
regions.�en the attackers’ ratios according to the simulation
scenario were distributed randomly within these regions.

5.1. Blackhole Attack. Blackhole attack is a type of DoS attack
where the attacker a�ects LEACH protocol by advertising
itself as a CH at the beginning of the round. �us, any node
that has joined this CH during this round will send the data

packets to it in order to be forwarded to the BS.�e Blackhole
attacker assumes the role of CH and it will keep dropping
these data packets and not forwarding them to the BS [39–
41]. Algorithm 1 shows the algorithm of Blackhole attack.

To implement this attack in the simulation environment,
several attackers’ intensities (10%, 30%, and 50%) have been
injected randomly to perform Blackhole attack.�ese attack-
ers which act as CHs will drop all the packets relayed through
them in their way to the BS.

5.2. Grayhole Attack. Grayhole attack is a type of DoS attack
where the attacker a�ects LEACH protocol by advertising
itself as a CH for other nodes.�erefore, when the forged CH
receives data packets from other nodes, it drops some packets
(randomly or selectively) and prevents them from reaching
the BS [40–42]. Algorithm 2 shows the algorithm of Grayhole
attack.

Similar to Blackhole attack, 10%, 30%, and 50% of
the sensor nodes are injected randomly to implement the
Grayhole attack. �e decision whether to forward a speci	c
packet or not is also devised randomly. But the decision can
be done selectively based on the sensitivity of the sensed data
carried by the packet.

5.3. Flooding Attack. Flooding attack is a type of DoS attack
where the attacker a�ects LEACH protocol in more than
one way. �is research studies the impact of Flooding
attack by sending large number of advertising CH massages
(ADV CH) with high transmission power. Consequently,
when sensors receive large number of ADV CH messages,
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N → Network Size
SN→ Sensor Node
MN→Malicious Node
CH→ Cluster Head
BS→ Base Station
CM→ Cluster Member
NC→ Cluster Heads list
x → Integer value between 0 and − 1∀ SN�, 0 < � ≤ , compute�(SN�) and random 	

SN�
IF (	

SN� < �(SN�)) THEN

SN� = CH
ELSE

SN� = CM
ENDIF∀CH�, � ∈ NC{
CH� broadcasts the advertisement message (ADV CH)
x CMs will join CH�
CH� creates TDMA schedule
x CMs send data to CH� in the corresponding TDMA time slot}
IF CH = MN THEN

Performs the attack by dropping some packets (randomly or selectively)
ELSE

Sends aggregated data to BS
ENDIF

Algorithm 2: Model of Grayhole attack.

this will consume sensors’ energy and waste more time to
determine which CH to join. Moreover, the attacker attempts
to cheat victims to choose it as a CH, especially those nodes
that are located on a far distance from it in order to consume
their energy [40, 43]. Algorithm 3 shows the algorithm of
Flooding attack.

Flooding attack has been implemented in several ways
in the simulation environment. In some experiments 10
ADV CHmessages were sent by the attacker; other scenarios
consider 50 ADV CH messages to be sent or a random
number between 10 and 50.�e idea is when more ADV CH
messages are sent, more messages will be received and
more energy will be consumed. We have already studied in
[44] the impact of Flooding attack on WSN lifetime. �e
energy consumption was shown in each round using several
attackers’ ratios.

5.4. Scheduling Attack. Scheduling attack was introduced in a
previous study of the authors [44]. Scheduling attack occurs
during the setup phase of LEACH protocol, when CHs set
up TDMA schedules for the data transmission time slots.�e
attackerwhich acts as aCHwill assign all nodes the same time
slot to send data. �is is done by changing the behavior from
broadcast to unicast TDMA schedule. Such change will cause
packets collision which leads to data loss. Algorithm 4 shows
the algorithm of Scheduling attack.

�e implementation of Scheduling attack is performed
by setting the same time for all Cluster Members to send
their data packets. Other scenarios assign every two nodes
the same time or every 	ve nodes the same time.

In [44] it has been shown that the risk of DoS attackers on
LEACH protocol services could be signi	cant. �e attackers
can in�uence the network in more than one way, through
wasting the nodes’ energy or dropping their data packets.
�is badly a�ects the services provided by WSN. �erefore,
a methodology to detect such attacks and protect di�erent
services provided by WSN is urgently required.

Section 6 illustrates the importance of studying normal
and anomaly (under attack) behaviors of WSN protocols
and presenting them through a specialized dataset (WSN-
DS). WSN-DS allows several intelligent and data mining
approaches to be applied for the aim of better detection
and classi	cation of DoS attacks. As a result, sensor nodes
will be more experienced with the normal behaviors and
attackers’ signatures andwill be able tomake proper decisions
at the right time. In this research ANN is applied to test the
constructed dataset andmeasure its accuracy in detecting and
classifying four types of DoS attacks.

6. Experiments and Results

In this paper, WSN-DS, a specialized dataset for WSN to
detect DoS attacks, was constructed. LEACH protocol was
used to collect the dataset because it is one of the most
common and widely used routing protocols in WSNs. WSN-
DS contains 374661 records that represent four types of
DoS attacks: Blackhole, Grayhole, Flooding, and Schedul-
ing attack, in addition to the normal behavior (no-attack)
records. Table 4 shows sample fromWSN-DS dataset to help
in detecting and classifying DoS attacks.
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N → Network Size
SN→ Sensor Node
MN→Malicious Node
CH→ Cluster Head
BS→ Base Station
CM→ Cluster Member
NC→ Cluster Heads list
x→ Integer value between 0 and − 1∀ SN�, 0 < � ≤ , compute�(SN�) and random 	

SN�
IF (	

SN� < �(SN�)) THEN

SN� = CH
ELSE

SN� = CM
ENDIF∀CH�, � ∈ NC{
IF CH� = MN THEN

CH� broadcasts a lot of advertisement messages (ADV CH) with
high transmitting power.

ELSE
CH� broadcasts normal advertisement message (ADV CH)

ENDIF
x CMs will join CH�
CH� creates TDMA schedule
x CMs send data to CH� in the corresponding TDMA time slot}

Algorithm 3: Model of Flooding attack.

N→ Network Size
SN→ Sensor Node
MN→Malicious Node
CH→ Cluster Head
BS→ Base Station
CM→ Cluster Member
NC→ Cluster Heads list
x→ Integer value between 0 and − 1∀ SN�, 0 < � ≤ , compute�(SN�) and random 	

SN�
IF (	

SN� < �(SN�)) THEN

SN� = CH
ELSE

SN� = CM
ENDIF∀CH�, � ∈ NC{
CH� broadcasts the advertisement message (ADV CH)
x CMs will join CH�
IF CH� = MN THEN

CH� performs the attack by creating the TDMA schedule and give all nodes
same time slot to send data

ELSE
CH� creates normal TDMA schedule

ENDIF
x CMs send data to CH� in the corresponding TDMA time slot
CH� sends aggregated data to BS}

Algorithm 4: Model of Scheduling attack.
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Table 5: Ns-2 simulation parameters.

Parameter Value

Number of nodes 100 nodes

Number of clusters 5

Network area 100m × 100m
Base station location (50, 175)

Size of data packet 500 bytes

Size of packet header 25 bytes

Maximum transmission range 200m

Routing protocol LEACH

MAC protocol CSMA/TDMA

Simulation time 3600 s

Initial energy (in joule) 5, 50

Attackers’ intensities 10%, 30%, 50%

In order to gather the required data, NS-2 was used [45].
Simulation parameters are summarized in Table 5.

�is section shows the results obtained from the dataset
collected as described in Section 4. Waikato Environment
for Knowledge Analysis (WEKA) Toolbox was used in the
simulation experiments to evaluate the proposed dataset.
WEKA is an open source data mining so�ware suite built
using Java programming language and developed at the Uni-
versity of Waikato in New Zealand. Data mining algorithms
in WEKA could be applied to datasets and be called using
eitherWEKA’s interface or user customized Java code.WEKA
contains a lot of algorithms for data preprocessing, clustering,
classi	cation, association rules, regression, and visualization
[46, 47].

Experiments were conducted on an Intel� Core� i5-
4210U CPU @ 1.70GHz 2.40GHz, 8.00GB RAM with Win-
dows 8.1 64-bit Operating System.

Because di�erent performance metrics are appropriate in
di�erent settings, in this paper seven performancemetrics are
used: True Positive Rate (TPR), True Negative Rate (TNR),
False Positive Rate (FPR), False Negative Rate (FNR), Overall
Accuracy (�), Precision (�), and Root Mean Square Error
(RMSE).

TPR represents the rate of attack cases identi	ed correctly,
TNR represents the rate of normal (no-attack) cases iden-
ti	ed correctly, FPR represents the rate of no-attack cases
identi	ed as attacks by the system, and FNR represents the
rate of attack cases identi	ed as normal ones.� is the total rate
of correct decisions whether identifying an attack correctly
or deciding there is no attack when really there is no attack.� represents the predicted positive cases that were correctly
classi	ed; RMSE provides information on the e�ciency that
indicates the di�erence between the outputs and the targets.
Lower values of RMSE indicates more accurate evaluation.
Zero means no error:

TPR = TP

TP + FN
, (2)

TNR = TN

FN + TP
, (3)

FPR = FP

FP + TN
, (4)

Table 6: Dataset separated 60% training set and 40 testing sets using
holdout method.

�e attack type Training set (60%) Testing set (40%)

Blackhole 6029 4020

Grayhole 8758 5838

Flooding 1988 1324

Scheduling 3982 2656

Normal 204039 136027

Sum 224796 149865

FNR = FN

FN + TP
, (5)

� = TP + TN

TP + TN + FP + FN
, (6)

� = TP

TP + FP
, (7)

RMSE = √∑��=1 (�� − ��)2� , (8)

where TP is the number of attack cases classi	ed correctly
as attacks. TN is the number of normal (no-attack) cases
classi	ed correctly as normal (no-attack). FP is the number
of normal (no-attack) cases classi	ed incorrectly as attacks.
FN is the number of attack cases classi	ed incorrectly as
normal (no-attack).�� and�� are the output and target values,
respectively, and � is the total number of data points.

�e classi	cation results of this dataset were obtained
through a number of test cases applied using Arti	cial Neural
Networks (ANNs), which can be built in several ways. ANN
is used as a classi	er were the 23 attributes extracted from
the simulation experiments are used as inputs and the type
of attack, including the normal case, is used as output. ANN
training algorithm includes a built-in procedure to help
minimizing the error between the neural network output and
the desired output. Its iterative training procedure terminates
when that error reaches a value below a predetermined
threshold. A�er the training phase, the trained neural net-
work is used on the test dataset to check its generalization
accuracy.

We are extracting di�erent results with two ANNs test
options. �e 	rst one is by using holdout method where the
dataset is separated to 60% training data and 40% testing data.
Table 6 shows data separation using holdout method.

�e second option is by using 10-Fold Cross Validation
which separates the training dataset into 10 equal parts. �is
method trains ANN using nine of the 10 parts and evaluates
it with the remaining part. �e same process is repeated
for all 10 parts using a sliding window to determine the
test set and the remaining parts are used for training the
ANN. A�er the completion of the 10 iterations, the results are
compiled and averages are computed. �e main advantage of
the 10-Fold Cross Validation is using all records in the dataset
alternately for both training and testing. On the other hand,
it is computationally expensive.



12 Journal of Sensors

Table 7: Parameters for MLP neural network classi	er.

Parameter Explanation Used value

L
Learning rate: used for weight adjustment
on each iteration. (�e value should be
between 0 and 1.)

0.3

M

Momentum: used for weight adjustment
during backpropagation, in order to
speed up convergence and avoid local
minima. (�e value should be between 0
and 1.)

0.2

N
�e number of epochs or passes through
training data.

500

V
�e percentage of the validation set from
the training data.

20%

S

Seed for random number generator.
Random numbers are used for setting
initial weights for the connections
between nodes. (�e value should be ≥0.)

0

E

�reshold for consecutive errors allowed
during validation testing before the
neural network terminates. (�e value
should be >0.)

20

H

Number of nodes in the hidden layer
which is represented as follows:
number of hidden layers (number of
neurons in each layer).

1 (11)
2 (11, 5)
3 (11, 5, 2)

An important parameter of ANNs is the used transfer
function. In this study themost common activation (transfer)
functionwhich is the logistic sigmoid functionwas used.�is
function is also called log-sigmoid.�e function is de	ned as

 = 11 + !−� . (9)

�e logistic sigmoid function accepts any value and
returns a value between 0 and 1. Because of the nonlinear
characteristics of this function, it allows ANNs to model
complex data with possible built-in nonlinearities.

Table 7 shows the parameters and the values used in
this paper for WEKA toolbox Multilayer Perceptron (MLP)
ANN classi	er con	guration. MLP is the most popular ANN
variation that allows con	guration of multilayer ANN which
is able to model complex relations between the input and
output parameters.

Several ANN architectures were attempted in this paper,
an ANN with one hidden layer and 11 neurons is used.
Moreover, an ANNwith two hidden layers with 11 neurons in
the 	rst layer and 5 neurons in the second hidden layer was
used. Finally, ANN with three hidden layers with 11 neurons
in the 	rst layer, 5 neurons in the second hidden layer, and
two neurons in the third hidden layer was also attempted.

By using the holdout method to train the ANN with one
hidden layer, an overall classi	cation accuracy of 97.5431%
was achieved.�is corresponds to correctly classifying 146184
out of 149865 in the testing set as can be noticed fromTable 6.

Table 8 shows the Confusion matrix for this method.
For example, there are 2656 records in the testing set for
Scheduling attack as shown in Table 6. 2620 records were
classi	ed correctly as Scheduling attack, 23 records were

0

0.2
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0.6

0.8

1

1.2

Normal Flooding Scheduling Grayhole Blackhole

True positive rate

H1 (1 hidden layer)

H2 (2 hidden layers)

H3 (3 hidden layers)

CV1 (Cross Validation with 1 hidden layer)

CV2 (Cross Validation with 2 hidden layers)

CV3 (Cross Validation with 3 hidden layers)

Figure 3: True positive results.

classi	ed as no-attack, 3 records were classi	ed as Grayhole
attacks, and 10 records were classi	ed as Blackhole attack.
�is means that the percentage of positive classi	cation of
Scheduling attack is 98.6%. �e percentage of samples that
were incorrectly classi	ed as positive while they are normal
is 0.4%.

Table 9 shows the results of the remaining metrics for the
holdout method. RMSE as calculated in (8) is 0.073 which is
an acceptable value.

From Table 9, it can be concluded that the accuracy
of detecting Blackhole attack was (34.3%), which is a low
percentage. For that reason, an ANN architecture that has
two hidden layers was attempted. In this case, 98% (avg. of
TPR) of DoS cases were correctly classi	ed with an error of
0.0817. Table 10 shows summary of the metrics of using this
architecture. FromTable 10, it can be shown that the accuracy
rate decreased for Grayhole attack and signi	cantly increased
for Blackhole attacks.

When the ANN was trained on the dataset with three
hidden layers, 97.8% of DoS cases were correctly classi	ed
with an error of 0.0791. Table 11 shows summary of results
of using holdout method with three hidden layers.

More decrease in the accuracy rate of Grayhole attack can
be seen in Table 11.

An ANN was trained on the WSN-DS dataset using 10-
Fold Cross Validation method with one hidden layer. In this
case, 98.52% of DoS attacks were correctly classi	ed with an
error of 0.0636. Table 12 shows the summary results of using
this method with one hidden layer.

Table 12 shows an improvement in the results for all types
of attacks. We have trained the ANN using 10-Fold Cross
Validation with two hidden layers. Having two hidden layers,
98.53% of the DoS cases were classi	ed correctly with an
error of 0.0643. Table 13 summarizes the results of using this
method.

Using 10-Fold Cross Validation to train an ANN architec-
ture that has three hidden layers on WSN-DS dataset, 97.18%
of the cases were correctly classi	ed with an error of 0.0914.
Table 14 summarizes the results of using this method.

Figures 3, 4, and 5 summarize the previous results.
Figure 3 shows the True positive rate. On average the best



Journal of Sensors 13

Table 8: Confusion matrix of holdout method with one hidden layer.

Normal Flooding Scheduling Grayhole Blackhole

Normal 135483 350 32 152 10

Flooding 0 1325 0 0 0

Scheduling 23 0 2620 3 10

Grayhole 29 0 9 5379 421

Blackhole 0 0 3 2640 1377

Table 9: Summary results of holdoutmethodwith one hidden layer.

TPR FPR FNR TNR P

Normal 0.996 0.004 0.004 0.996 1.000

Flooding 1.000 0.002 0 0.998 0.791

Scheduling 0.986 0.000 0.014 1 0.983

Grayhole 0.921 0.003 0.079 0.997 0.658

Blackhole 0.343 0.004 0.657 0.996 0.757

Avg. 0.975 0.021 0.025 0.979 0.978

Table 10: Summary results of holdout method with two hidden
layers.

TPR FPR FNR TNR �
Normal 0.996 0.008 0.004 0.992 0.999

Flooding 1 0.003 0 0.997 0.753

Scheduling 0.984 0 0.016 1 0.991

Grayhole 0.714 0.006 0.286 0.994 0.838

Blackhole 0.818 0.011 0.182 0.989 0.669

Avg. 0.98 0.008 0.02 0.992 0.982

Table 11: Summary results of holdout method with three hidden
layers.

TPR FPR FNR TNR �
Normal 0.995 0.016 0.005 0.984 0.998

Flooding 0.989 0.003 0.011 0.997 0.734

Scheduling 0.973 0.001 0.027 0.999 0.954

Grayhole 0.576 0.001 0.424 0.999 0.965

Blackhole 0.989 0.016 0.011 0.984 0.631

Avg. 0.978 0.015 0.022 0.985 0.984

Table 12: Summary results of 10-Fold Cross Validation with one
hidden layer.

TPR FPR FNR TNR �
Normal 0.998 0.018 0.002 0.982 0.998

Flooding 0.994 0.001 0.006 0.999 0.904

Scheduling 0.922 0 0.078 1 0.995

Grayhole 0.756 0.003 0.244 0.997 0.911

Blackhole 0.928 0.009 0.072 0.991 0.730

Avg. 0.985 0.017 0.015 0.983 0.987

method for classifying the attacks is Cross Validation with
one hidden layer (CV1). It was the best in classifying all
attacks except for Scheduling and Grayhole attack where it

Table 13: Summary results of 10-Fold Cross Validation with two
hidden layers.

TPR FPR FNR TNR �
Normal 0.998 0.02 0.002 0.98 0.998

Flooding 0.985 0.001 0.015 0.999 0.900

Scheduling 0.915 0 0.085 1 0.992

Grayhole 0.867 0.007 0.133 0.993 0.832

Blackhole 0.778 0.005 0.222 0.995 0.810

Avg. 0.985 0.019 0.015 0.981 0.985

Table 14: Summary results of 10-Fold Cross Validation with three
hidden layers.

TPR FPR FNR TNR �
Normal 0.994 0.045 0.006 0.955 0.995

Flooding 0.754 0.001 0.246 0.999 0.855

Scheduling 0.761 0.001 0.239 0.999 0.946

Grayhole 0.689 0.01 0.311 0.99 0.743

Blackhole 0.843 0.013 0.157 0.987 0.638

Avg. 0.972 0.041 0.028 0.959 0.974

was slightly more accurate to use holdout method with one
hidden layer (H1).

Figure 4 shows FPR. In FPR the smaller the rate, the better
the performance. On average H1 was the best method; it is
slightly better than CV1; however, CV1 was better than H1
in classifying Flooding, Scheduling, and Grayhole attacks.
H1 was better in classifying the normal behavior and the
Blackhole attack.

Figure 5 shows the error rate of all methods using Root
Mean Squared Error (RMSE).

Figure 5 shows that CV1 was the best in terms of RMSE.
From the results of TPR, FPR, and RMSE in Figures 3–5, it is
concluded that the use of CV1 architecture outperforms other
ANN architectures in classifying DoS attacks in WSN.

From the previous results obtained from applying ANN
to WSN-DS dataset, high accuracy was achieved in the task
of classifying four DoS attacks to determine whether the
protocol is in its normal mode or exposed to any type of
attack.

7. Conclusions and Future Work

�e aim of this paper is to design an intelligent intrusion
detection and prevention mechanism that could work e�-
ciently to limit DoS attacks with reasonable cost in terms
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Figure 5: Root Mean Squared Error (RMSE) in each method.

of processing and energy. To achieve this aim, a specialized
dataset for WSN was constructed to classify four types of
DoS attacks. �e considered attacks are Blackhole, Grayhole,
Flooding, and Scheduling attacks. �e data were collected
using NS-2. In addition to including normal behavior, it was
also able to collect 374661 records containing the signatures
of these four attacks. �e dataset containing normal and
malicious network tra�cwas used to obtain the experimental
results shown. In this paper, mathematical validation of the
created dataset has been provided to ensure its correctness.
�e constructed dataset is called WSN-DS.

ANN-MLPmodel usingWEKA toolboxwas built; attacks
were classi	ed using twomethods, holdout and 10-Fold Cross
Validation, with one, two, and three hidden layers used in
each case.We have found that, using 10-Fold Cross Validation
with one hidden layer, the percentages of classi	cation accu-
racies of attacks were 92.8%, 99.4%, 92.2%, 75.6%, and 99.8
in Blackhole, Flooding, Scheduling, and Grayhole attacks, in
addition to the normal case (without attacks), respectively.
From these results, it can be concluded that ANN trained
using WSN-DS dataset is very useful in classifying DoS
attacks as it was able to achieve high classi	cation accuracy
in the presence of more than one attack.

�is work, which compares a number of distinct DoS
attacking models, provides additional insights. Speci	cally,

it would draw conclusions in terms of selecting the best
protocol to be employed in a precisely prede	ned real-
time application in WSN. �is research reemphasizes the
importance of considering security early in the network
protocol development process. Without this, inherited vul-
nerabilities in these network protocols and other so�warewill
increasingly become targets for malicious attacks.

In future, this work can be extended to include other
types of DoS attacks in data link layer such as Wormhole or
Sybil. In addition, attacks on protocols other than LEACH
and in di�erent layers of WSN can be considered. It is also
possible to attempt the use of other classi	ers and datamining
approaches. �e current and future versions of WSN-DS will
be posted to the researchers.
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