
WSN Implementation of the Average Consensus

Algorithm

Jozef Kenyeres1.2, Martin Kenyeres2, Markus Rupp1, Peter Farkaš2

1) Vienna University of Technology, Institute of Telecommunications, Vienna, Austria

2) Slovak University of Technology, Department of Telecommunications, Bratislava, Slovakia

Email: kenyeres@ktl.elf.stuba.sk, mrupp@nt.tuwien.ac.at

Abstract—This paper is motivated by the lack of distributed
algorithm implementations on wireless sensor networks (WSN)
in hardware. We deal exemplary with the implementation of
the well-known average consensus algorithm. By formulating the
algorithm into nesC, a C derivative, it is possible to enrich the
knowledge of the algorithm with practical information, specific to
embedded devices such as nodes. We created a simple mechanism
of a time scheduled access to share the wireless channel among
the nodes and guarantee a collision free environment, in which
our implementation is tested. Our achieved results are consistent
with theory.

Index Terms—WSN; average consensus; distributed algo-
rithms; implementation

I. INTRODUCTION

Distributed algorithms on wireless sensor networks (WSN)

are currently an interesting research field in signal processing

[1-8]. The main concept of WSNs as defined in [1] is based

on the idea of distributed devices equipped with sensors for

cooperative monitoring of environmental quantities. While the

research in this field is mostly based on simple models of

WSNs including the wireless channels, an implementation

of a distributed algorithm needs to be suited for a given

hardware platform [9,10]. In order to obtain more realistic

scenarios for modelling we implemented a typical distributed

algorithm, the average consensus algorithm, on an available

platform. The paper is organized as follows: in Section II we

briefly explain the well-known average consensus algorithm

and we add simulation results to serve as a reference for our

measurements. Section III contains a brief hardware overview

and Section IV describes the actual implementation process.

In Section V we explain our experimental setup and in Section

VI we present simulation as well as experimental results for a

link error analysis. Section VII presents experimental results

and finally some conclusions in Section VIII close the paper.

II. AVERAGE CONSENSUS ALGORITHM

The average consensus is a relatively simple, well known

algorithm that is instrumental for many advanced schemes like

subspace tracking [5,6] or joint probabilistic approaches [7,8].

Because of its simplicity it was chosen as potentially useful for

an implementation on a real WSN hardware. A consensus is

This work has been funded by the NFN SISE project S10609 (National
Research Network ”Signal and Information Processing in Science and Engi-
neering”)

defined in [2] as reaching an agreement of participants (in case

of WSN nodes) in the question of a particular value of some

quantity, depending on the local values of all participants.

A consensus algorithm is a set of rules, defining shared

information between participants, eventually leading to reach

the agreement.

The average consensus algorithm was selected from [2] in

its straightforward fully synchronous form, stated in discrete

time as follows

xi(k + 1) = xi(k) + ε
∑

j∈Ni

aij(xj(k)− xi(k)). (1)

Here, xi(k) denotes the state of node i at time instant k,

Ni defines the neighbourhood, that is which nodes are being

received by node i and ε is the so-called mixing parameter.

The element aij of the adjacency matrix A is defining, if the

node i and the node j are neighbours. For neighbouring nodes

the value is equal to 1, in the opposite case it equals 0. All

elements on the main diagonal of the matrix A are equal to 1.

Before the experimental part was performed, some sim-

ulations were run to determine the basic behaviour of the

average consensus algorithm. As we expect in our network

that all nodes are included in their neighbourhoods (|Ni| = N
for every node in the network), we set the simulations to a

fully connected network (all elements of the matrix A equal

to 1) with a varying number of nodes N and a varying mixing

parameter ε. In Fig. 1 we show the connection between the

mixing parameter and the average number of iterations needed

for reaching the consensus. In the simulation, the consensus

is reached when all nodes converge to the same value of the

average. As Fig. 1 shows, the fastest convergence is obtained

for ε = 1/N , that is in a single step. We will call this specific

value the threshold value.

For the number of iterations needed to reach the consensus

the following statement is of importance: when the mixing

parameter is set to the threshold value (ε = 1/N ),for N also

being the number of iterations to achieve a certain quality,

the achieved consensus value quality would be the same no

matter what size N the network has. It means, that the number

of required iterations is the same in the case of five nodes as

well as in the case of ten nodes, when the mixing parameter

is set to ε = 1/5 for five nodes and ε = 1/10 for ten

European Wireless 2011, April 27-29, 2011, Vienna, Austria ISBN 978-3-8007-3343-9 © VDE VERLAG GMBH

Paper 1569378297 139



nodes. An equivalent behaviour is obtained also for multiples

of the threshold value, e.g. 0, 5/N . Assuming a fully connected

network (all aij = 1) in (1), the first iteration is computed as

xi(1) = xi(0) +
1

N

∑

j∈Ni

(xj(0)− xi(0)). (2)

In the first iteration an average of differences is computed,

so that every node directly obtains this average value. This

property is used for the comparison of the results in Section

VII.

Fig. 1. Simulation results

For mixing parameters different from the threshold value,

the number of iterations is increasing with an increased dif-

ference from the threshold value. The width of the converging

range varies due to the number of participants: for two partic-

ipants, an upper convergence bound for the mixing parameter

is 1, for five participants it is 0,4 and for ten participants

it is 0,2. In general, the upper convergence bound for the

mixing parameter is ε = 2/N . The lower convergence bound

of the mixing parameter is 0 independent of N. Thus, for the

fully connected network consisting of N nodes, the network

converges to the consensus if ε fulfills the condition

0 < ε <
2

N
(3)

For two participants, the threshold value is 0,5, the upper

convergence bound is 1. In this case for a mixing parameter

set to ε = 0, 9 the algorithm needed 78 iterations to reach

the consensus, for ε = 0, 99 it needed 857 iterations, and for

ε = 0, 999 it needed 8624 iterations. The lower bound is 0, for

ε = 0, 001 the algorithm needed 8640 iterations for reaching

the consensus.

III. WSN HARDWARE PLATFORM

The average consensus algorithm was implemented on a

WSN hardware platform from the company Memsic. It is

called Classroom kit and it is intended for academic programs

and testbed setups. The set consists of 30 wireless modules, 20

sensor and data acquisition boards, as well as 10 gateway and

programming boards. Besides hardware, the set is equipped

with software to form and operate a network, including tools

for visualisation and real-time analysis. Fig. 2 displays a part

of this kit.

Fig. 2. Memsic’s classroom kit.

A. Communication platform

A hardware module called IRIS is responsible for handling

the communication between the nodes as well as data pro-

cessing. The IRIS RF part is a 2.4 GHz IEE 802.15.4 module

tailored for WSNs. Its main properties from [11] are listed in

Table 1.

TABLE I
IRIS PLATFORM PROPERTIES

Program Flash Memory 128 KB

Measurement Flash 512 KB

RAM 8 KB

Configuration EEPROM 4 KB

Serial Communications UART

Analog/Digital Converter 10 bit ADC

Frequency band 2405 MHz to 2480 MHz

Transmit data rate 250 kbit/s

RF power -17 dBm to 3 dBm

Receive Sensitivity -101 dBm

IV. ALGORITHM IMPLEMENTATION

The average consensus algorithm was implemented in the

programming language nesC, an extension of the well-known

C language, suitable for embedded systems such as nodes.

NesC is running under TinyOS, an event-driven operating

system, specifically developed for wireless sensor networks.

Considering unusual communication properties of WSNs in

comparison to traditional networks like TCP/IP or others, the

programming language has to support special needs. The most

important properties supported by nesC are an event-driven

execution, a flexible concurrency model, and a component-

oriented application design [12].

In Fig. 3 we exhibit a flow-diagram of the implemented

average consensus algorithm. The functionality of the algo-

rithm is placed into tasks. A task is a building block of nesC

implementations and contains source code, performing some

executable function, e.g. computing xi(k).Tasks are handled

140



by the TinyOS scheduler, obey run-to-competition rules and

they are performed synchronously. This is very important,

because it allows the creation of the synchronous application.

The source code of the synchronous application is more

resistant to errors, for example data races. One of the basic

rules, how to write a source code in nesC, is keeping it

synchronous as much as possible [13]. These tasks, performing

the algorithmic functionality, are called from inside of events.

In contrast to a task, an event is signalled asynchronously.

Due to the properties previously mentioned in this section,

the nesC code has to be able to interact with the environment-

in this case neighbouring nodes, participating in the average

consensus computation. When the node receives a message

from the neighbouring node, TinyOS signals the message

received event. The event is responsible for proper writing

received data to memory, performed by tasks called within

the message receive event. Another type of event is called the

timer fired event. When a timer reaches zero, then its timer

fired event is called. This event triggers tasks to perform some

action, e.g. computing some value or a sending a message.

Fig. 3. Average consensus implementation.

The algorithm implementation is performed on the node

with limited resources. Thus, the source code needs to be

as much effective as possible: in the memory only actually

needed data is stored, messages are kept very short and sent

as broadcast to reduce their number. The algorithm works

without human interaction and is able to deal with a node

failure, because all needed information for the computation is

gained in every algorithm’s iteration. Thus when a node fails,

the algorithm remains consistent.

The implementation is divided into four parts: initialisation,

assign local value, first iteration and other iterations.

A. Initialisation phase

This phase begins after turning the node on- the node’s on-

board memory is cleared and the node waits until a message

with initial values is received. Initial values are received in

a special message sent by the initializing node. It is divided

from regular messages with a different AM (Active Message

number- included in a TinyOS header of every message).

B. Assign local value

After receiving the initial message, tasks are called for

writing these values to the memory and selecting the initial

value for each node, as the initializing message is broadcast

with values for all nodes. Also the timer labelled BEGIN starts

the average consensus computing.

C. First iteration

When the timer BEGIN is fired, every node broadcasts

its value xi(0). There are two other timers started, called

COUNT and ALG. Before they are fired, every node receives

all xj(k). The timer COUNT is fired first and counts the

local average estimation in the first step xi(1). When ALG

is fired, computations are finished and nodes broadcast xi(1).
The timer ALG is a periodically repeating timer. After firing

it is started again.

D. Other iterations

Other iterations are slightly different from the first one,

because COUNT is called from ALG. After sending xi(1), all

xj(1) are received and when COUNT is fired, they are stored

in the memory. COUNT computes xi(2) until ALG is fired.

In all iterations except the first COUNT, the node performs

a consensus test in A, that is, it compares the actual value

xi(k) with xi(k−1).If the difference is smaller than a defined

accuracy parameter (Accuracy), the counter l is increased.

When l is 3, the computed value is changing in a smaller

interval than the accuracy parameter or it is even completely

the same for three times in a row. Then the computations are

stopped and the consensus is reached.

V. EXPERIMENTAL SETUP

A. Communication parameters and Topology

During our experiments nodes were placed in a room of ap-

prox. 4x10m. The nodes communicated at 2405MHz and were

set to the minimal transmitting power (-17dBm). In a room

with such dimensions every node is in the communication

range of every other node, creating a fully-connected topology.

This corresponds to aij = 1 for i = 1...N, j = 1...N , in (1),

as proposed in Section II.

141



B. Messaging

Every message was sent as broadcast to reduce the number

of messages to a minimum. There are two types of messages

sent in the implementation: initializing messages, consisting

of 10 numbers in an 8bit integer format, and regular mes-

sages. From these values every node chooses an initial value,

depending on the node’s ID. The format of a regular message

that is sent between nodes is shown in Fig. 4.

In the payload of the message the address of the transmitting

node is placed, as well as the number of iterations, the value

xi(k) in integer as well as in a floating point format. The float-

ing point format is used for computations, the corresponding

integer value is only informal to show results in readable form.

Every message includes a TinyOS header, needed for sending

and receiving messages in TinyOS, containing the destination

address, length, AM group and the message type. At the end

of each message a CRC is included for data verification. A

message thus consists of 14 bytes.

Fig. 4. Regular message.

C. Collision free setup- TDM

To avoid collisions on shared wireless channels, nodes are

often equipped with a CSMA-CA protocol. This ”best effort”

solution is far from being perfect [14], especially when nodes

are close to each other and transmit almost at same time.

On five nodes with different mixing parameters ε we tested

how much collisions can affect the result of the algorithm.

The nodes were placed close to each other and performed the

algorithm. In Fig. 5 we show the relative error of the average

consensus after ten algorithm’s executions (in a row). In Fig.

5 the relative error of the computed result after every single

execution is shown for different mixing parameters.

The graph in Fig. 5 shows the dependence between the rel-

ative error and the mixing parameter. The number of iterations

is bound to the mixing parameter value. Thus, the graph also

suggests the dependence between the number of iterations and

the relative error. When the value of the mixing parameter

results in a smaller number of iterations (for ε = 0, 2 it was

from 3 to 7 iterations, for ε = 0, 1 from 10 to 16, for ε = 0, 05
from 19 to 31), the computed relative error was higher than in

cases where the mixing parameter results in more iterations.

Especially in the case with less iterations (when the mixing

parameter is set to ε = 0, 2 ), the relative error ranges from

30% to almost 50%. As a result, the effect of collisions was

Fig. 5. Relative computation error over ten algorithm executions.

much more evident for the algorithm’s performances with a

smaller number of iterations.

To circumvent this problem we propose a different solution.

Because of the close distances between nodes, our implemen-

tation provides the solution of the collision problem by access-

ing the shared channel in a well defined order. In all iterations,

every node has its own time slot to send its message without

interfering with other nodes. Our implemented collision free

TDMA setup scheme is illustrated in Fig. 6.

Fig. 6. Collision free setup message timing.

The selection of the time slot is based on the node’s ID, a

unique identifier of the node. Nodes are synchronised at the

moment of receiving their initial message, but the transmission

of messages is delayed for every node by adding 100*Node ID

[ms] to the BEGIN timer. Other timers are keeping the syn-

chronisation until reaching the consensus. Due to this simple

mechanism nodes are able to coexist in a collision free setup.

D. Initial values

Initial values were sent from an initialising node in the

initialising message as mentioned before. The initialising node

was not participating in the average consensus computation.

This node sent the initialising message after being switched

on and was switched off right after. Initial values were integer

values with different standard deviation to investigate the

effect of different values on the consensus algorithm. In a

WSN without such initializing node, the nodes first need to

find a solution of this slot assignment problem in their own

neighbourhood.

142



E. Computation accuracy analysis

Due to their limited storage and transmission quality WSNs

may suffer accuracy. On the other hand offering too high

precision may cause a large and undesired communication

overhead. It is thus of importance to find the best word

length. Alternative formulations of the consensus algorithm

to overcome accuracy effects have been proposed [15] and

analysed [4] recently. As first, we limited our computation

precision to integer numbers (the uint 8t format). Thus, the

value of xi(k + 1) was calculated from the set of received

xj(k), which were transmitted in the integer format. Though

the value of xi(k + 1) was on the node i stored as the real

number in floating point format (the float format), we lost

too much precision in every algorithm’s iteration. The final

result was greatly affected by such an inaccuracy. Then we

tested versions of the algorithm with rounded real numbers

in the float format, trimming the values to only two decimal

positions before transmitting. Although our results were better

now, the loss of parts of the information led to a limit-cycle

behaviour. We had the nodes continuing with counting towards

infinity (the maximal tested time was one hour, the expected

time for reaching the consensus was three minutes). In a final

version of the algorithm we developed a different point of

view on computation accuracy. We used real numbers also

for transmitting and in the stopping criteria we included the

parameter Accuracy. In every iteration we count the absolute

value of the difference between xi(k) and xi(k + 1) If this

difference is smaller than the defined Accuracy for three times

in a row, then the nodes reach a consensus. Although the

results on individual nodes may not be completely the same,

the maximal possible difference is guaranteed be the parameter

Accuracy.

This method was tested in hardware experiments with five

nodes. The value of Accuracy was set to 0, 0,1, 0,01, 0,001

and 0,0001. In the case when the value of Accuracy equals to

0, the consensus was reached when the difference between

xi(k) and xi(k + 1) was zero for three times in a row.

Results are shown in Fig. 7. In the case with Accuracy set

to 0 we used the maximal possible precision of the float

number, labelled as Float in the graph. Due to the Accuracy

parameter, a smaller number of iterations was required to

reach the consensus in comparison with our previous versions

without this parameter. With the accuracy set to 0,1 we saved

more than 50% of the iterations in comparison to the accuracy

set to 0,0001. As a consequence this means also saving half

of the energy required for reaching the consensus with only

a small effect on the average accuracy. For such devices

as nodes with strictly limited energy sources, this should

greatly increase the lifetime of nodes (see also [16] for energy

consumption). Using integers for initializing the algorithm

shows an equivalent behaviour to using float numbers with

the Accuracy set to 0,00001. Another benefit of defining the

accuracy is the achieved resistance to limit cycle behaviour in

steady-state. While the algorithm showed such behaviour in

sporadic cases, it was never experienced once the accuracy was

predefined. As a conclusion, defining computation accuracy

seems to be very useful for algorithmic implementations in

WSNs.

Fig. 7. Computation accuracy analysis as a function of the mixing parameter.

F. Synchronisation

Keeping temporal synchronisation is very important, be-

cause nodes coexist without collisions only as long as they

remain synchronised. Due to the limited computing abilities

of nodes it is important to know how long they remain

synchronised. In other words, how many cycles can the algo-

rithms perform without loosing the collision free environment.

Experimental results are shown in Fig. 8.

Fig. 8. Timer’s precision analysis.

The deviation in Fig.8 is the difference between the mea-

sured time and an ideal value, computed as NxTimer length.

The node started the periodically repeated timer and the ac-

cumulated time of the execution of all proposed timer repeats

was taken as the measured time. The blue line represents the

deviation of timers of various lengths repeated 10 times, the

red is for 100 times and green for 1000 times. From the

graphs it is evident that the timer accuracy decreases with

an increasing number of repetitions and timer length. With

respect to these results, the time between two transmissions is

set to 100ms. That is a much higher value than it is required

143



for avoiding a collision. Recall that we selected a time slot

interval of 100ms as illustrated in Fig. 6. The increase of

the time between transmissions results in increasing distances

between messages sent in the sequence. If the timer would be

very precise, only a very small difference between individual

messages is needed to avoid collisions. Due to the timer

limitations, the length of the sequence is selected larger as

in a larger sequence every node has more time available for

the collision free transmission. In other words, the width of the

node’s time slot was increased. The wider time slot provides

more tolerance to the node’s timer inaccuracy. When the time

between transmissions is set to 100ms, a collision occurs only

when the timer counts 200ms instead of 100ms, what is highly

unlikely.

VI. LINK ERROR ANALYSIS

The analysis of a wireless link between nodes is a very

important part of research in the area of WSNs. The reliability

of the link between nodes greatly affects the performance of

WSNs, requiring realistic models [17]. Sophisticated models

are beyond the scope of this paper, but due to the importance of

the link reliability we included a simple model and analysed it.

Instead of using the matrix A from (1) as proposed in Section

II, which is describing a fully connected network with perfect

links, we randomly generate the entries of matrix A in every

iteration resulting in ARand(k). The matrix ARand(k) for N

nodes is stated as follows:

ARand(k) =











1 a12(k) . . . a1N (k)
a21(k) 1 . . . a2N (k)

... . . .
. . .

...

aN1(k) . . . aNN−1(k) 1











The elements aij(k) are randomly generated in the k-th

iteration with respect to the probabilistic values p(aij(k)).
Since aij(k) ∈ 0, 1, we have p(aij(k) | 1) = 1−p(aij(k) | 0).
If the probability P = 0, 9 that a link is 1 then the probability

of receiving the message equals 90%. Or in other words, the

node misses 10% of messages. Such assumption of link errors

is very simplified in comparison with real life wireless links

and their time-varying characteristics [18]. But as mentioned

before our main focus is not determining the link characteris-

tics. Our main focus is only illustrating the relation between

the algorithm performance and the quality of the links in the

network.

A. Simulation results

According to the model presented in the previous paragraph,

we tested the algorithm performance in relation to different

values of P. The results presented in Fig. 9 are achieved in a

network consisting of 10 nodes. Results shown on Fig. 9 are

illustrating the algorithm performance forP ∈ ⟨0, 1; 1⟩. The

case with P = 1 is the ideal case, when all messages are

received and it is illustrated for comparison. For P ∈ ⟨0, 4; 1⟩
it is possible to obtain, that for ε ≤ 1/N the number of

iterations needed for reaching the consensus is increasing with

an increasing number of missed messages. This result is quite

intuitive - due to missing messages the number of required

iterations increases because in every iteration less messages are

received than in the ideal case and with an increasing number

of missing messages, the number of iterations is increasing as

well. For ε ≥ 1/N the situation is different. The shape of the

curves is different than in the ideal case and the number of

iterations is decreasing instead of the expected increase.

Fig. 9. Link error analysis.

The results from Fig. 9 achieved for P ∈ ⟨0, 1; 4) are

different from results gained for P ∈ ⟨0, 4; 1⟩. It is clear that

for P < 0, 4 the shape of the curves is different. Due to the

increasing number of missing packets, the network is not able

to work properly. When the node misses three messages in a

row, it simply reaches the consensus while its value of xi(k)
remains the same for three iterations (due to our test). With

increasing number of missing packets, such situation occurs

with an increased probability.

While the algorithm leads to reaching the consensus even

in the case with a high number of lost packets, our results

need to be analysed also from a qualitative point of view. To

quantify the quality of the gained result, we compared the

gained results with the expected result. The expected result is

the average of the initial values labeled as yexp and stated as

follows:

yexp =
1

N

N
∑

i=0

xi(0). (4)

Thus, for the determination of the computational precision

the comparison between computed average of every single

node and the average of the initial values is used. To quantize

the computation error of the single node n(i) we use the

following formula to describe a relative error error:

eri =
|yexp − yi|

yexp
∗ 100[%]. (5)

144



The value yi is the gained result of the node ni. To quantize

the computation error of the whole network, the average value

of computation errors of single nodes is aggregated as follows:

E =
1

N

N
∑

i=0

eri[%]. (6)

The relation between E and P is shown in Fig. 11.

Fig. 10. Relation between E and P.

The dependence between E and ε is greatly affected by the

value of P. For P > 0, 3, E is increasing with an increased

value of ε. For larger ε, it is obvious that lost messages affected

the result more than in the case with smaller ε. From (1) it

is clear, that for the larger ε the value of xi(k + 1) depends

more on the received values than in the case with the smaller

ε. For P < 0, 3 the relation between E and ε is reversed. For

smaller ε is the value of E very high. For very small P, only

small parts of messages are received. For small ε the value of

yi is closely related to the value of xi(0), while receiving the

message changes the value xi(k) only very slightly. For larger

ε the change caused by the received message is more evident,

as also the value of yi is closer to yexp.

VII. RESULTS

Eventually the implementation was tested in an experimen-

tal scenario. The average consensus was implemented on real

nodes, as described in Section III. Following the description

from the previous sections, nodes were deployed in a small

room and created a fully connected network. The scenario

was focused on imitating ideal conditions. Nodes were close to

each other without obstacles affecting the link quality and they

were able to receive all messages without the need for retrans-

missions. None of the nodes failed during the experiments.

We also deployed a so called sniffing node, responsible for the

monitoring of messages sent between nodes. The sniffing node

provides a connection with a PC and displays the messages

on the screen in the application XSniffer.

Experiments were focused on the comparison to theoreti-

cal knowledge of the average consensus learning. The main

interest was testing the algorithm with a mixing parameter

set of typical values for which convergence would occur in

a small number of iterations, maximal 160 iterations. The

algorithm was implemented on 5, 7 and 10 nodes and results

are shown in Fig. 12. The achieved results are close to

the theoretical results obtained from simulations. Compare to

Figure 1. The most evident difference is in the threshold value

point, where simulation results show only one iteration while

results gained from the experiment show three iterations for

every tested node’s number. This is a consequence from the

stopping condition mentioned in Section IV and is shown on

Fig. 3 in the formula A: nodes reach the consensus, when the

difference between xi(k) and xi(k+1) is three times in a row

smaller than the Accuracy parameter. Although the average

was computed correctly in the first iteration, two additional

iterations were needed to satisfy our consensus condition. In

other operating points, the gained results match very well the

theoretical knowledge.

The implementation also handles an increased number N of

participating nodes without affecting the results. On the graphs

in Fig. 12 we highlighted a few ”points of interest” bound to

multiples of the threshold value of (ε = 1/N ). In these points

it is clear that the number of iterations remains almost the same

for all three tested node numbers.From the gained results we

are also able to conclude, that in our experimental setup are

thanks to TDM collision free scheme not present errors on the

link.

Fig. 11. Experimental scenario.

In previous results, shown on Fig. 7 and 12, an average

number of iterations is used. The previously mentioned ex-

periments were repeated many times, so that the average

was counted from a large number of results. However, the

number of iterations in an algorithm cycle (a single execution

of the average consensus algorithm- from the initialization to

reaching the consensus) is not constant, but it varies due to the

145



different initial values. If the standard deviation of the initial

values was smaller, the number of iterations needed to reach

a consensus was also smaller. This property was tested in the

experimental scenario. Five nodes with the Accuracy set to

0,1 were initialized with different sets of initializing values.

In some of these sets the initialized values were closely related

and the difference between them was small, in others the

initialized values were more different. The observed difference

between the smallest and the highest number of iterations as

well as the average number is shown in Fig. 13.

Fig. 12. Algorithm cycle analysis for N=5.

Experimental results in Fig. 13 show an increase of the

difference between the minimal and maximal number of itera-

tions with the number of iterations. For the mixing parameter

set to the threshold value there is no difference, but with

different mixing parameters the difference starts to increase

due to the increased number of iterations needed for reaching

the consensus.

VIII. CONCLUSION

The average consensus algorithm was successfully imple-

mented and tested on the WSN hardware. After modifying the

protocol to make it collision free, the gained results are very

consistent with theoretical predictions. The implementation is

also a very good starting point for the implementation of

a variety of distributed algorithms. Experimental knowledge

allows to implement more sophisticated distributed algorithms

and the results may serve as a reference base for future

implementations. Also the average consensus implementation

offers many topics for future work, e.g. creating a multi-hop

version for covering larger distances, creating a low-power

optimized version or using the average consensus as a part of

a larger project, for example [7,8]. In particular the collision

aspect has not received sufficient attention. Rather than forcing

a synchronous update, an asynchronous update is much more

feasible [19] and needs more research.

REFERENCES

[1] I.F.Akyildiz, W.Su, Y.Sankarasubramaniam and E.Cayirci,”Wireless sen-
sor networks: a survey, ” in Computer Networks, Vol.38(4), pp. 393-422,
15 March 2002.

[2] R.Olfati-Saber, J.A.Fax, and R.M.Murray, ” Consensus and Cooperation
in Networked Multi-Agent Systems , ” Proceedings of the IEEE, Vol.
95, No. 1, pp. 215-233, Jan. 2007.

[3] O.Sluciak, T.Hilaire, and M.Rupp: ”A General Formalism for the
Analysis of Distributed Algorithms,” IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2010), Dallas (TX),
USA, March 2010, pp. 2890 - 2893.

[4] O.Sluciak and M.Rupp ”Steady-State Analysis of a Quantized Average
Consensus Algorithm Using State-Space Description,” Proc. of Eusipco,
Aalborg, Aug. 2010.

[5] C.Reyes, T.Hilaire, and C.Mecklenbruker, ”Distributed Projection Ap-
proximation Subspace Tracking based on Consensus Propagation,” IEEE
3rd International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP 2009), Aruba, Netherlands Antilles,
Dec. 2009.

[6] C.Reyes, T.Hilaire, S.Paul, and C.F.Mecklenbruker, ”Evaluation of the
Root Mean Square Error Performance of the PAST-Consensus Algo-
rithm,” Proceedings of workshop on smart antennas (WSA), Bremen,
Feb. 2010.

[7] O.Hlinka, O.Sluciak, F.Hlawatsch, P.M.Djuric, and M.Rupp, ”Likelihood
Consensus: Principles and Application to Distributed Particle Filtering,”
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove
(CA), USA, Nov. 2010.

[8] O.Hlinka, O.Sluciak, F.Hlawatsch, P.M.Djuric, and M.Rupp, ”Dis-
tributed Gaussian particle filtering using likelihood consensus,” Proc.
of ICASSP 2011, Czech Republic, May 2011.

[9] H.Park and M.B.Srivastava, J.Burke, ”Design and Implementation of a
Wireless Sensor Network for Intelligent Light Control,” Proc. IPSN 07,
Cambridge, MA, USA, 2007.

[10] S.N.Pakzad, G.L.Fenves, S.Kim, and D.E.Culler, ”Design and Imple-
mentation of Scalable Wireless Sensor Network for Structural Moni-
toring, ” Journal of infrastructure systems ASCE, pp. 89-101, March
2008.

[11] Memsic, ”IRIS wireless measurement system,”
http://www.memsic.com/products/wireless-sensor-networks/wireless-
modules.html

[12] D.Gay, P.Levis, R.von Behren, M.Welsh, E.Brewer, and D.Culler, ”The
nesC Language: A Holistic Approach to Networked Embedded Sys-
tems,” in Proceedings of Programming Language Design and Imple-
mentation (PLDI) 2003, June 2003

[13] P.Levis, ”TinyOS Programming,” csl.stanford.edu/pal/pubs/tinyos-
programming.pdf

[14] M.Bertocco, G.Gamba, and A.Sona, ”Is CSMA/CA really efficient
against interference in aWireless Control System? An experimental
answer”, in Emerging Technologies and Factory Automation, 2008.
ETFA 2008, ISBN 978-1-4244-1505-2

[15] A.Censi and R.M.Murray, ”Real-valued average consensus over noisy
quantized channels”. In Proceedings of the American Control Confer-
ence (ACC), 2009, pp. 4361-4366.

[16] S.L.Howard, C.Schlegel, and K.Iniewski ” Error Control Coding in
Low-PowerWireless Sensor Networks: When Is ECC Energy-Efficient?”
EURASIP Journal on Wireless Communications and Networking, vol.
2006 (2), pp. 29-29, April 2006.

[17] M.Zuniga and B.Krishnamachari, ”Analyzing the transitional region in
low power wireless links,” First Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks,
2004. , pp. 517- 526, 4-7 Oct. 2004

[18] S.Glisic and J.Vikstedt, ”Effect of wireless link characteristics on packet-
level QoS in CDMA/CSMA networks,” IEEE Journal on Selected Areas
in Communications, , vol.16, no.6, pp.875-889, Aug 1998

[19] O.Sluciak and M.Rupp, ”Reaching Consensus in Asynchronous WSNs:
Algebraic Approach,” Proc. of ICASSP 2011, Prague, Czech Republic,
May 2011.

146


