
WTCluster: Utilizing Tags for Web Services

Clustering

Liang Chen1, Liukai Hu1, Zibin Zheng2, Jian Wu1, Jianwei Yin1,
Ying Li1, and Shuiguang Deng1

1 Zhejiang University, China
2 The Chinese University of Hong Kong, China

{cliang,huliukai,wujian2000,zjuyjw,cnliying,dengsg}@zju.edu.cn,
zbzheng@cse.cuhk.edu.hk

Abstract. Clustering web services would greatly boost the ability of
web service search engine to retrieve relevant ones. An important restric-
tion of traditional studies on web service clustering is that researchers
focused on utilizing web services’ WSDL (Web Service Description Lan-
guage) documents only. The singleness of data source limits the accuracy
of clustering. Recently, web service search engines such as Seekda! 1 al-
low users to manually annotate web services using so called tags, which
describe the function of the web service or provide additional contextual
and semantical information. In this paper, we propose a novel approach
called WTCluster, in which both WSDL documents and tags are utilized
for web service clustering. Furthermore, we present and evaluate two tag
recommendation strategies to improve the performance of WTCluster.
The comprehensive experiments based on a dataset consists of 15,968
real web services demonstrate the effectiveness of WTCluster and tag
recommendation strategies.

1 Introduction

A service-oriented computing (SOC) paradigm and its realization through stan-
dardized web service technologies provide a promising solution for the seam-
less integration of single-function applications to create new large-grained and
value-added services. SOC attracts industry’s attention and is applied in many
domains, e.g., workflow management, finances, e-Business, and e-Science. With
a growing number of web services, the problem of discovering user required web
services is becoming more and more important.

Web service discovery can be achieved by two main approaches: UDDI (Uni-
versal Description Discovery and Integration) and web service search engines.
Recently, the availability of web services in UDDI decreases rapidly as many web
service providers decided to publish their web services through their own website
instead of using public registries. Al-Masri et al. show that more than 53% of the
UDDI business registry registered services are invalid, while 92% of web services

1 http://webservices.seekda.com/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 204–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://webservices.seekda.com/

WTCluster: Utilizing Tags for Web Services Clustering 205

cached by web service search engines are valid and active [2]. Compared with
UDDI, using search engine to search and discover web services becomes more
common and effective.

Searching for web services using web service search engines is typically lim-
ited to keyword matching on names, locations, businesses, and buildings defined
in the web service description file [14]. If the query term does not contain at
least one exact word such as the service name, the service is not returned. It
is difficult for users to be aware of the concise and correct keywords to retrieve
the satisfied services. The keyword-based search mode suffers from low recall,
where results containing synonyms or concepts at a higher (or lower) level of
abstraction describing the same service are not returned. For example, a service
named ”Mobile Messaging Service” may not be returned from the query term
”SMS” submitted by the user, even these two keywords are obviously the same
at the conceptual level.

To handle the drawbacks of traditional web service search engines, some ap-
proaches are proposed. Lim et al. propose to make use of ontology to return
an expand set of results including subclass, superclass and sibling classes of the
concept entered by the user [16]. Elgazzar and Liu et al. proposed to handle
the drawbacks of traditional search engine by clustering web services based on
WSDL documents [6][12]. In their opinion, if web services with similar func-
tionality are placed into the same cluster, more relevant web services could be
included in the search result. In this paper, we propose to improve the perfor-
mance of web service clustering for the purpose of more accurate web service
discovery.

(a) (b)

Fig. 1. Example of web services’ tags

In recent years, tagging, the act of adding keywords (tags) to objects, has
become a popular mean to annotate various web resources, e.g., web page book-
marks, online documents, and multimedia objects. Tags provide meaningful
descriptions of objects, and allow users to organize and index their contents.
Tagging data was proved to be very useful in many domains such as multimedia,
information retrieval, data mining, and so on. Recently, a real-world web services
search engine Seekda! allows users to manually annotate web services using tags.
Figure 1 shows two examples of web services’ tags in Seekda!. MeteorologyWS 2

2 http://www.premis.cz/PremisWS/MeteorologyWS.asmx?WSDL

http://www.premis.cz/PremisWS/MeteorologyWS.asmx?WSDL

206 L. Chen et al.

in Fig. 1(a) is a web service which provides the function of weather forecasting.
It has two tags, weather and waether. However, there is no word weather in its
service name or WSDL document. Therefore, if a user uses weather as his query
term, this service will not be retrieved without utilizing the tag information.
Besides, the tag waether is also useful as some users may make a mistake in the
typing process and use waether as his query term. Figure 1(b) shows another web
service providing car rental information, which is very important for tourists. If
we utilize the tag tourism in the search engine, this service will be included in
the search result about tourism. From these two examples, we can find that the
tagging data can help to retrieve more relevant web services.

In this paper, we don’t simply use tags to match query terms, but use these
tags to improve the performance of web service clustering for the purpose of more
accurate web service discovery. In traditional web service clustering, features
(e.g., service name, operation, port) are extracted from the WSDL document
to form a vector, and the similarity between two web services is computed by
comparing their corresponding vectors. As the words matching is still needed in
the process of similarity computation, the web service MeteorologyWS in Fig.
1(a) can hardly be placed into the same cluster with other weather report services
which have the word weather in their names or WSDL documents. As a service
provider, he may have different naming convention and prefers to use Meteorology
instead of weather. However, as a service user, he is likely to annotate the same
tag to the services with similar function. Therefore, if we use the tags as part of
the vectors to compute the similarities between web services, the performance of
web service clustering could be improved. In our proposed WTCluster approach,
we utilize both WSDL documents and tags, and cluster web services according to
a composite similarity generated by integrating tag-level similarity and feature-
level similarity between web services. Specifically, we extract 5 features from
WSDL document, i.e., Content, Type, Message, Port, Service Name. To the best
of our knowledge, this paper is the first paper to utilize the tagging data to
cluster web services.

To evaluate the performance of WTCluster, we crawl 15,968 real web ser-
vices from Seekda!. Through our observation, we find that the performance of
WTCluster is limited by the web services which have few tags. To handle this
problem, we propose two strategies to recommend some relevant tags to the
services with few tags. The experiment results in Section 5 show that our tag
recommendation strategies improve the performance of WTCluster.

In particular, the contribution of this paper can be summarized as follows:

1. We propose a novel web service clustering approach WTCluster, in which
both WSDL documents and tags are utilized.

2. We propose two tag recommendation strategies to improve the performance
of WTCluster.

3. We crawl 15,968 real web services to evaluate the performance of WTCluster
and two tag recommendation strategies.

The rest of this paper is organized as follows: Section 2 highlights the re-
lated work of web service discovery and clustering. The detailed calculation of

WTCluster: Utilizing Tags for Web Services Clustering 207

WTCluster is introduced in Section 3, while two tag recommendation strategies
are presented in Section 4. Section 5 shows the experimental results. Finally,
Section 6 concludes this paper.

2 Related Work

With the development of service computing and cloud computing, web service
discovery is becoming a hot research topic. A lot of work have been done to
handle this problem. The approaches for discovering semantic web services and
non-semantic web services are different. The semantic-based approaches adopt
the formalized description languages such as OWL-S and WSMO for services
and develop the reasoning-based similarity algorithms to retrieve the satisfied
web services [1][3][10]. High level match-making approaches are usually adopted
in the discovery of semantic web services. As non-semantic web services are
more popular and supported by the industry circle, we focus on the discovery of
non-semantic web services in this paper.

Some non-semantic approaches are proposed to handle the problem of web
service discovery in recent years. Xin Dong et al. propose to compute the simi-
larity between web services employing the structures of web services (including
name, text, operation descriptions, input/output description, etc) [5]. They also
propose a search engine called Woogle which supports similarity search for web
services. Nayak attempts to handle the service discovery problem by suggest-
ing the current user with other related search terms based on what other users
had used in similar queries by using clustering techniques [14]. Nayak proposes
to cluster web services based on search sessions instead of individual queries.
Songlin Hu et al. make use of the content-based publish/subcribe model to han-
dle service discovery problem [7]. Fangfang et al. try to reflect the underlying
semantics of web services by utilizing the terms within WSDL fully [11]. In
Fangfang’s work, some external knowledge are firstly employed to compute the
semantic distance of terms from two compared services, and then the similarity
between two services is measured upon these distances.

Recently, web service clustering is presented as a novel solution to the prob-
lem of service discovery. Liu et al. propose to extract 4 features, i.e., content,
context, host name, and service name, from the WSDL document to cluster web
services [12]. They take the process of clustering as the preprocessor to discovery,
hoping to help in building a search engine to crawl and cluster non-semantic web
services. Khalid et al. also propose to extract features from WSDL documents
to cluster web services [6]. Different from Liu’s work, Khalid extracts content,
types, messages, ports, and service name from WSDL documents.

Although these techniques are relevant, the performances of these approaches
are limited by the singleness of source information as they utilize the information
in WSDL documents only. In this paper, we propose to utilize both tagging data
and WSDL documents to improve the performance of web service clustering.
Moreover, we propose two tag recommendation strategies to handle another
performance limitation caused by the web services with few tags.

208 L. Chen et al.

3 WTCluster

In this section, we first describe our proposed framework for web service discovery
in Section 3.1, and then introduce feature extraction, similarity computation and
integration of WTCluster in Section 3.2 and Section 3.3, respectively.

3.1 Framework for Web Service Discovery

Figure 2 shows our proposed framework for web service discovery. This frame-
work consists of two parts: 1) Data Preprocess; 2) Service Discovery. In the first
part, WSDL documents and tags of web services are crawled from the Internet
and used for clustering. Similar to Khalid’s work[6], we extract five important
features from WSDL documents, i.e., Content, Type, Message, Port, and Service
Name. After obtaining these five features and tags of web services, we employ our
proposed WTCluster approach to cluster web services. Since the data preprocess
and clustering process is done offline, the efficiency is not a big concern, whereas
the accuracy is more important. In the process of service discovery, the user first
sends a query term to the web service search engine, and then the search engine
returns an expanded search result by retrieving the clustered results.

Internet

Crawl

WSDL

Tag

Extraction Feature

Content

Port

Type

Name

Message

Tag

 WTClus
Clustered Results

Web Services Search
Engine

Data Preprocess Services Discovery

Response
Query

Fig. 2. Framework for web service discovery

3.2 Feature Extraction and Similarity Computation

As discussed above, we extract five features (i.e., Content, Type, Message, Port,
and Service Name) from web service’s WSDL document, and use these five
features and tags to cluster web services. In this section, we describe the detailed
process of feature extraction, feature-level similarity computation, and tag-level
similarity computation.

WTCluster: Utilizing Tags for Web Services Clustering 209

Content. WSDL document, which describes the function of web service, is
actually a XML style document. Therefore, we can use some IR approaches to
extract a vector of meaningful content words which can be used as a feature for
similarity computation. Our approach for building the content vector consists of
four steps:

1. Building original vector. In this step, we split the WSDL content accord-
ing to the white space to produce the original content vector.

2. Suffix Stripping. Words with a common stem will usually have the same
meaning, for example, connect, connected, connecting, connection, and con-
nections all have the same stem connect [12]. For the purpose of convenient
statistics, we strip the suffix of all these words that have the same stem by
using a Porter stemmer [15]. Therefore, after the step of suffix stripping,
a new content vector is produced, in which words such as connected and
connecting are replaced with the stem connect.

3. Pruning. In this step, we propose to remove two kinds of words from the
content vector. The first kind of word to be removed is XML tag. For exam-
ple, the words s:element, s:complexType, and wsdl:operation are XML tags
which are not meaningful for the comparison of content vector. As the XML
tags used in a WSDL document are predefined, it is easy to remove them
from the content vector. Content words are typically nouns, verbs or adjec-
tives, and are often contrasted with function words which have little or no
contribution to the meanings of texts. Therefore, the second kind of word to
be removed is function word. Church et al. stated that the function words
can be distinguished from contents words using a Poisson distribution to
model word occurrence in documents [9]. Typically, a way to decide whether
a word w in the content vector is a function word is computing the degree
of overestimation of the observed document frequency of the word w, de-
noted by nw using Poisson distribution. The overestimation factor can be
calculated as follows.

Λw =
n̂w

nw
, (1)

where n̂w is the estimated document frequency of the word w. Specifically,
the word with higher value of Λw has higher possibility to be a content word.
In this paper, we set a threshold ΛT for Λw ,and take the words which have
Λw higher than threshold as content words. The value of threshold ΛT is as
follows.

ΛT =

{
avg[Λ] if(avg[Λ] > 1);
1 otherwise

(2)

where avg[Λ] is the average value of the observed document frequency of all
words considered. After the process of pruning, we can obtain a new content
vector, in which both XML tags and function words are removed.

4. Refining. Words with very high occurrence frequency are likely to be too
general to discriminate between web services. After the step of pruning, we
implement a step of refining, in which words with too general meanings are

210 L. Chen et al.

removed. Clustering based approaches were adopted to handle this problem
in some related work [12][6]. In this paper, we choose a simple approach by
computing the frequencies of words in all WSDL documents and setting a
threshold to decide whether a word has to be removed.

After the above 4 steps, we can obtain the final content vector. In this paper,
we use NGD (Normalized Google Distance) [4] to compute the content-level
similarity between two web services. Given web services s1, s2, and their content
vector contents1 , contents2 , the detailed equation for content-level similarity
computation is as follows.

Simcontent(s1, s2) =

∑
wi∈contents1

∑
wj∈contents2

sim(wi, wj)

|contents1 ||contents2| , (3)

where |contents1 | means the cardinality of contents1 , the equation for computing
the similarity between two words is as follows.

sim(wi, wj) = 1 − NGD(w1, w2) (4)

In (4), we compute the similarity between two words using NGD based on the
word co-existence in web pages. Due to space limitation, we don’t introduce
the detailed computation of NGD. As the number of words left in the content
vector is limited after above 4 steps, the time cost for content-level similarity
computation can be accepted.

Type. In a WSDL document, each input and output parameter contains a
name attribute and a type attribute. Sometimes, parameters may be organized
in a hierarchy by using complex types. Due to different naming conventions, the
name of parameter is not always a useful feature, whereas the type attribute
which can partially reflect the service function is a good candidate feature.

As Fig. 3 shows, the type of element ProcessForm (we name it type1) is a com-
plextype which has 5 parameters: FormData (string), FormID (int), GroupID
(int), szPageName (string), and nAWSAccountPageID (int). If another service
s2 has a complextype type2 which also contains 2 string type parameters and
3 int type parameters, we say type1 and type2 are matched. Specifically, in the
process of type matching, the order of parameters in the complextype is not con-
sidered. We therefore extract the defined types, count the number of different
types in the complextype, and compute the type-level similarity between two
services using following equation.

Simtype(s1, s2) =
2 × Match(Types1, T ypes2)

|Types1| + |Types2|
, (5)

where Types1 means the set of defined types in s′1s WSDL document, Match
(Types1 , T ypes2) means the number of matched types between these two ser-
vices, and |Types1 | means the cardinality of Types1.

WTCluster: Utilizing Tags for Web Services Clustering 211

Type

Message

Port

Service Name

Type

Message

Port

Service Name

Fig. 3. Types, Message, Port, Service Name in WSDL document

Message. Message is used to deliver parameters between different operations.
One message contains one or more parameters, and one parameter is associated
with one type as we discussed above. Message definition is typically considered
as an abstract definition of the message content, as the name and type of the
parameter contained in the message are presented in the message definition.
Fig. 3 shows two simple message definitions. In the first definition, the message
named as RequestPagePasswordHttpPostIn contains one parameter FormData
which is a string type. In the second definition, the message RequestPagePass-
wordPostOut contains one parameter Body whose type is a complextype named
as tns:boolean. Similar to (5), we match the messages’ structures to compute the
message-level similarity between web services.

Port. The portType element combines multiple message elements to form a
complete one-way or round-trip operation. Figure 3 shows an example of port-
Type SendCustomFormHttpGet which contains some operations (due to space
limitation, we only list one operation in this portType). As the portType con-
sists of some messages, we can get the match result of portType according to the
match result of messages. Similar to the computation of type-level and message-
level similarity, we also use (5) to compute the port-level similarity.

Service Name. As the service name (sname) can partially reflect the ser-
vice function, it is an important feature in WSDL document. Before computing
the sname-level similarity, we first implement a word segmentation process to
service name. For example, the service name SendCustomForm in Fig. 3 can
be separated into three words Send, Custom, and Form. A simple version of
word segmentation is splitting the service name according to the capital letters.

212 L. Chen et al.

However, the performance of this simple version is not satisfied due to different
naming conventions. In this paper, we first use this simple version to split the
service name, and then manually adjust the final result. After the process of
word segmentation, s′1s name SNames1 can be presented as a set of words. And
then we can use (3) and (4) to compute the sname-level similarity between web
services.

Tag. The tagging data of web services describes the function of web services
or provide additional contextual and semantical information. In this paper, we
propose to improve the performance of traditional WSDL-based web service
clustering by utilizing the tagging data. Given a web service si contains three
tags t1, t2, t3, we name the tag set of si as Ti = {t1, t2, t3}. According to the
Jaccard coefficient [8] method, we can calculate the tag-level similarity between
two web services si and sj as follows:

Simtag(si, sj) =
|Ti ∩ Tj |
|Ti ∪ Tj | , (6)

where |Ti ∩ Tj | means the number of tags that are both annotated to si and sj ,
and |Ti ∪ Tj| means the number of unique tags in set Ti and Tj, i.e., |Ti ∪ Tj| =
|Ti| + |Tj| − |Ti ∩ Tj |.

3.3 Similarity Integration

In WTCluster, we use K-Means [13] clustering approach to cluster web services.
K-Means is a widely adopted clustering algorithm which is simple and fast. The
drawback of this algorithm is that the number of clusters has to be predefined
manually before clustering. According to the six similarities calculated above, the
composite similarity CSim(si, sj) between web services si and sj is as follows:

CSim(si, sj) = (1 − λ)Simwsdl(si, sj) + λSimtag(si, sj), (7)

where λ is the weight of the tag-level similarity, and the Simwsdl(si, sj) is the
WSDL-level similarity which consists of five feature-level similarities between
two services. The range of the value of λ is [0,1]. When λ ∈ (0, 1), CSim(si, sj)
is equal to 1 if the WSDL documents and tags of these two services are identical,
and CSim(si, sj) is equal to 0 if both the WSDL documents and the tags of these
two services are completely different. Specifically, WTCluster is equal to WSDL-
based web service clustering approach when λ = 0, while WTCluster clusters
web services only according to the tag-level similarity when λ = 1. We measure
the WSDL-level similarity between web services si and sj as follows:

Simwsdl(si, sj) = w1Simcontent(si, sj) + w2Simtype(si, sj) + w3Simmessage(si, sj)

+ w4Simport(si, sj) + w5Simsname(si, sj),

(8)
where w1, w2, w3, w4, and w5 are the user-defined weights of Content, Type,
Message, Port, and Service Name, respectively. In particular, w1 + w2 + w3 +
w4 + w5 = 1.

WTCluster: Utilizing Tags for Web Services Clustering 213

4 Tag Recommendation

After examining the tagging data crawled from the Internet, we find the dis-
tribution of tags is not uniform. Some web services have more than 10 tags,
while some ones have only 1 or 2 tags. As we compute the tag-level similarity
by matching the common tags between two services, the web services with few
tags lowers down the value of tag-level similarity. In this section, we propose to
handle this problem by recommending a set of relevant tags to the web services
with few tags.

Tourism Car Rental

User Defined Tags

Tag

Co-occurrence

Candidate Tags

Car Rental:

Tourism:

car, automobile,
company, business

hotel, company, flight,
booking

Tag

Rank

Recommended Tags

business,
company,
booking,
car

Fig. 4. Overview of Tag Recommendation Process

Figure 4 show the overview of tag recommendation process. From this fig-
ure, we can find that the process of tag recommendation can be divided into
two steps. Specifically, we collect all annotated tags before the process of tag
recommendation. In the first step, we first compute the co-occurrence between
the user defined tags and any other tags, and then select the top-k co-occurrent
tags of each user defined tag as the candidate tags. In Fig. 4, the number of k is
set as 4, and the top-4 co-occurrent tags of Tourism are hotel, company, flight,
and booking. There are some approaches to compute the co-occurrence, and we
propose to use Jaccard coefficient method[8] in this paper. The detailed equation
is as follows.

Co(ti, tj) =
|ti

⋂
tj |

|ti
⋃

tj | , (9)

where |ti
⋂

tj | means the number of web services that have both ti and tj , and
|ti

⋃
tj | means the number of web services that have ti or tj . After the first step,

for each user defined tag u ∈ U (U is the set of user defined tags), we can get a
list of candidate tags Cu.

In the second step, we rank the candidate tags and select the top-k tags as the
recommended tags. In this paper, we propose two strategies to rank candidate
tags.

Vote. In the Vote strategy, we use the idea of voting to compute a score for
each candidate tag c ∈ C (C is the set of all candidate tags). Given a candidate

214 L. Chen et al.

tag c, we first use (10) to compute the value of vote(u, c) between tag c and each
user defined tag u ∈ U .

vote(u, c) =

{
1 if c ∈ Cu

0 otherwise
(10)

After obtaining the voting result from each user defined tag, we count the voting
results to get the final score by using (11).

score(c) =
∑
u∈U

vote(u, c) (11)

After obtaining all final scores, we rank the candidate tags to get the top-k
recommended tags.

Sum. In the Sum strategy, we compute the score of the candidate tag c by
summing the value of co-occurrence between c and each user defined tag u. The
detailed equation is as follows.

score(c) =
∑
u∈U

Co(u, c), (12)

where the value of Co(u, c) can be computed by using (9).

5 Experiment

In this section, we first compare the performances of different web service clus-
tering approaches and then study the performances of two tag recommendation
strategies .

5.1 Experiment Setup

To evaluate the performance of web service clustering approaches and tag rec-
ommendation strategies, we crawl 15,968 real web services form the web service
search engine Seekda!. For each web service, we get the data of service name,
WSDL document, tags, availability, and the name of service provider.

All experiments are implemented with JDK 1.6.0-21, Eclipse 3.6.0. They are
conducted on a Dell Inspire R13 machine with an 2.27 GHZ Intel Core I5 CPU
and 2GB RAM, running Windows7 OS.

5.2 Performance of Web Service Clustering

As the manual creation of ground truth costs a lot of work, we randomly select
200 web services from the dataset we crawled to evaluate the performance of web
service clustering. We perform a manual classification of these 200 web services

WTCluster: Utilizing Tags for Web Services Clustering 215

to serve as the ground truth for the clustering approaches. Specifically, we distin-
guish the following categories: ”HR”, ”On Sale”, ”Tourism”, and ”University”.
There are 31 web services in ”HR” category, 26 web services in ”On Sale” cate-
gory, 32 web services in ”Tourist” category, and 27 web services in ”University”
category. Due to the space limitation, we don’t shows the detailed information
of these web services. To evaluate the performance of web service clustering, we
introduce two metrics (Precision and Recall) which are widely adopted in the
Information Retrieval domain.

Precisionci =
succ(ci)

succ(ci) + mispl(ci)
, Recallci =

succ(ci)
succ(ci) + missed(ci)

, (13)

where succ(ci) is the number of services successfully placed into cluster ci,
mispl(ci) is the number of services that are incorrectly placed into cluster ci,
and missed(ci) is the number of services that should be placed into ci but are
placed into another cluster.

In this section, we compare the performances of three web service clustering
approaches:

1. WCluster. In this approach, web services are clustered only according to
the WSDL-level similarity between web services (calculated in (8)). This
approach was adopted in some related work [6][12].

2. WTCluster1. In this approach, we utilize both the WSDL documents and
the tagging data, and cluster the web services according to the composite
similarity calculated in (7).

3. WTCluster2. In this approach, we first implement the tag recommenda-
tion process and then cluster web services using WTCluster1 approach. In
addition, we use the Vote strategy in this experiment.

Figure 5 shows the performance comparison of above 3 web service clus-
tering approaches. For simplicity, we set w1 = w2 = w3 = w4 = w5 = 0.2
and λ = 0.5. From Fig. 5, we can observe that our proposed WTCluster ap-
proaches (WTCluster1, WTCluster2) outperform the traditional WCluster ap-
proach both in the comparison of precision and recall. As we discussed above,

0
10
20
30
40
50
60
70
80
90

100

Pr
ec

is
io

n(
%

)

WClus

WTClus

WT*Clus

0
10
20
30
40
50
60
70
80
90

100

Re
ca

ll(
%

)

Fig. 5. Performance comparison of three web service clustering approaches

216 L. Chen et al.

the tags of web services contains a lot of information, such as service function,
location, and other semantical information. Utilizing these information improves
the performance of web service clustering. Moreover, it can be observed that the
approach WTCluster2 which contains the process of tag recommendation out-
performs the WTCluster1 approach. It demonstrates that adding relevant tags
to web services which have few tags can improve the performance of WTCluster
approach.

5.3 Evaluation of Tag Recommendation Strategies

Before evaluating the performance of tag recommendation, we select 1,800 web
services which contain 1254 unique tags as the dataset for evaluation. The ground
truth is manually created through a blind review pooling method, where for
each of the 1800 web services, the top 10 recommendations from each of the two
strategies were taken to construct the pool. The volunteers were then asked to
evaluate the descriptiveness of each of the recommended tags in context of the
web services. We provide the WSDL documents and web service descriptions to
volunteers to help them. The volunteers were asked to judge the descriptiveness
on a three-point scale: very good, good, not good. The distinction between very
good and good is defined to make the assesment task conceptually easier for the
user. Finally, we get 212 very good judgements (16.9%), 298 good judgements
(23.7%), and 744 not good judgements (59.4%).

To evaluate the performance of tag recommendation, we adopt two metrics
which capture the performance at different aspects:

– Success at rank K (S@K). The success at rank K is defined as the per-
centage of good or very good tags take in the top K recommended tags,
averaged over all judged web services.

– Precision at rank K (P@K). Precision at rank K is defined as the propor-
tion of retrieved tags that is relevant, averaged over all judged web services.

Table 1 shows the S@K comparison of our proposed two recommendation strate-
gies, where the Given Tag means the number of tags that the target web service
has. Take the Sum strategy as example, when Given Tag varies from 1 to 2,
the average value of S@K is over 0.7, which means that more than 70% rec-
ommended tags have good or very good descriptiveness. From Table 1, it can
be observed that when Given Tag vary from 1 to 2, the performance of Sum
strategy is better than the performance of Vote strategy in terms of S@K, while
the performance of Vote strategy is better when Given Tag is larger than 5.

Table 2 shows the comparison of two tag recommendation strategies in terms
of P@K. From Table 2, it can be observed that the value of P@K decreases when
Given Tag increases. This is because the number of relevant tags to one certain
web service is limited. When Given Tag increases, the number of left relevant
tags decreases, which leads to the decrease of P@K. In addition, P@K achieves
its largest value when K=1, and decreases when the value of K increases. It can
be found that the Vote strategy basically outperforms the Sum strategy in terms
of P@K.

WTCluster: Utilizing Tags for Web Services Clustering 217

Table 1. S@K comparison of two tag recommendation strategies

Given Tag Method K=1 K=2 K=3 K=4 K=5

1-2
Sum 0.8132 0.7081 0.6738 0.7087 0.7181
Vote 0.6392 0.5949 0.6737 0.7005 0.6972

3-5
Sum 0.7534 0.7143 0.7380 0.6852 0.6720
Vote 0.7867 0.6646 0.7042 0.7022 0.7103

>5
Sum 0.7632 0.7211 0.6944 0.6975 0.6647
Vote 0.8136 0.7769 0.7749 0.7262 0.6973

Table 2. P@K comparison of two tag recommendation strategies

Given Tag Method K=1 K=2 K=3 K=4 K=5

1-2
Sum 0.6933 0.5083 0.4277 0.3788 0.3562
Vote 0.7879 0.5495 0.4503 0.3947 0.3689

3-5
Sum 0.6512 0.4857 0.4171 0.3654 0.3345
Vote 0.7415 0.5414 0.4496 0.3925 0.3494

>5
Sum 0.5894 0.4656 0.4365 0.3451 0.3508
Vote 0.7148 0.5478 0.4105 0.4026 0.3658

6 Conclusion

In this paper, we propose to utilize the tagging data to improve the perfor-
mance of web service clustering for the purpose of more accurate web service
discovery. In our proposed WTCluster approach, we first extract five features
from the WSDL document and compute the WSDL-level similarity between web
services. Then, we use K-means algorithm to cluster web services according to
the composite similarity which is integrated by WSDL-level similarity and tag-
level similarity. To evaluate the performance of web service clustering, we crawl
15,968 real web services from the web service search engine Seekda!. The exper-
imental results show that WTCluster outperforms the traditional WSDL-based
approach.

Moreover, we propose two tag recommendation strategies to attack the per-
formance limitation of WTCluster caused by the web services with few tags. The
experiments based on real web services demonstrates that the tag recommenda-
tion process improves the performance of WTCluster.

Acknowledgements. This research is was partially supported by the Na-
tional Technology Support Program under grant of 2011BAH15B05, the Na-
tional Natural Science Foundation of China under grant of 61173176, Science
and Technology Program of Zhejiang Province under grant of 2008C03007, Na-
tional High-Tech Research and Development Plan of China under Grant No.
2009AA110302, National Key Science and Technology Research Program of
China (2009ZX01043-003-003).

218 L. Chen et al.

References

1. Agarwal, S., Studer, R.: Automatic matchmaking of web services. In: International
Conference on Web Services, pp. 45–54 (2006)

2. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web.
In: International World Wide Web Conference, pp. 795–804 (2008)

3. Benatallah, B., Hacid, M., Leger, A., Rey, C., Toumani, F.: On automating web
services discovery. The VLDB Journal 14(1), 84–96 (2005)

4. Cilibrasi, R.L., Vitnyi, P.M.B.: The google similarity distance. IEEE Transactions
on Knowledge and Data Engineering 19(3), 370–383 (2007)

5. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: International Conference on Very Large Data Bases, pp. 372–383
(2004)

6. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering wsdl documents to bootstrap
the discovery of web services. In: International Conference on Web Services, pp.
147–154 (2009)

7. Hu, S., Muthusamy, V., Li, G., Jacobsen, H.A.: Distributed automatic service com-
position in large-scale systems. In: Proc. of Distributed Event-Based Systems Con-
ference, pp. 233–244 (2008)

8. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, New Jersey
(1988)

9. Church, K., Gale, W.: Inverse document frequency (idf): a measure of deviations
from poisson. In: Proceedings of the ACL 3rd workshop on Very Large Corpora,
pp. 121–130 (1995)

10. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
owls-mx. In: International Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 915–922 (2006)

11. Liu, F., Shi, Y., Yu, J., Wang, T., Wu, J.: Measuring similarity of web services
based on wsdl. In: International Conference on Web Services, pp. 155–162 (2010)

12. Liu, W., Wong, W.: Web service clustering using text mining techniques. Interna-
tional Journal of Agent-Oriented Software Engineering 3(1), 6–26 (2009)

13. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Proc. of the Fifth Symposium on Math, Statistics, and Probability,
pp. 281–297 (1967)

14. Nayak, R.: Data mining in web service discovery and monitoring. International
Journal of Web Services Research 5(1), 62–80 (2008)

15. Porter, M.F.: An algorithm for suffix stripping. Program. 14(3), 130–137 (1980)
16. Lim, S.-Y., Song, M.-H., Lee, S.-J.: The Construction of Domain Ontology and

its Application to Document Retrieval. In: Yakhno, T. (ed.) ADVIS 2004. LNCS,
vol. 3261, pp. 117–127. Springer, Heidelberg (2004)

17. Zhang, Y., Zheng, Z., Lyu, M.R.: Wsexpress: A qos-aware search engine for web
services. In: International Conference on Web Services, pp. 91–98 (2010)

	WTCluster: Utilizing Tags for Web Services Clustering
	Introduction
	Related Work
	WTCluster
	Framework for Web Service Discovery
	Feature Extraction and Similarity Computation
	Similarity Integration

	Tag Recommendation
	Experiment
	Experiment Setup
	Performance of Web Service Clustering
	Evaluation of Tag Recommendation Strategies

	Conclusion

