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Abstract 

The 3D similarity coordinate transformation is fundamental and frequently encountered in many areas of work 

such as geodesy, engineering surveying, LIDAR, terrestrial laser scanning, photogrammetry, machine vision, etc. The 

algorithms of 3D similarity transformation are divided into two categories. One is a closed-form algorithm that is 

straightforward and fast. However, it cannot provide the accuracy information for the transformation parameters. The 

other category of algorithm is iterative, and this can offer the accuracy information for the transformation parameters. 

However, the latter usually needs a good initial value of the unknown. Considering the accuracy information for trans-

formation parameters is essential or indispensable from the viewpoint of uncertainty, this contribution proposes a 

weighted total least squares (WTLS) iterative algorithm of the 3D similarity coordinate transformation based on Gibbs 

vectors. It is fast in terms of fewer iterations, reliable and does not need good initial values of transformation param-

eters. Two cases including the registration of LIDAR points with big rotation angles and a geodetic datum transforma-

tion with small rotation angles are demonstrated to validate the new algorithm.

Keywords: 3D similarity coordinate transformation, Weighted total least squares (WTLS), Initial value of parameter, 

Accuracy assessment, Point cloud registration
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Introduction
�e 3D similarity coordinate transformation aims to align 

the coordinate of points in different coordinate systems 

into a common coordinate system. It usually implements 

the transformation based on 3D seven-parameter simi-

larity transformation utilizing a set of control points with 

the coordinates both in the source coordinate system and 

in the target coordinate system. �is work is very popu-

lar in many fields, such as geodesy, engineering survey-

ing, LIDAR, terrestrial laser scanning, photogrammetry, 

machine vision, etc. (Besl and McKay 1992; Crosilla and 

Beinat 2002; Horn 1987; Jaw and Chuang 2008; Kashani 

2006; Krarup 1985; Marx 2017; Paffenholz and Bae 2012; 

Walker et al. 1991; Wang et al. 2014; Závoti and Kalmár 

2016; Zeng 2014; Zeng et al. 2018).

As far as the algorithm of 3D similarity coordinate 

transformation is concerned, much related literature has 

been published. �e algorithms proposed in that litera-

ture can be divided into two categories. One is the closed-

form or analytical algorithm. �is category of algorithms 

utilizes the technologies such as singular value decompo-

sition (SVD) also known as the Procrustes algorithm, e.g., 

Umeyama (1991), Crosilla and Beinat (2002), Grafarend 

and Awange (2003), eigenvalue–eigenvector decomposi-

tion (a quaternion-based algorithm), e.g., Horn (1987), 

Shen et  al. (2006), orthonormal matrix, e.g., Horn et  al. 

(1988), Zeng (2015). Additionally, Leick and Van Gelder 

(1975), Zeng and Yi (2010) presented, respectively, a step-

wise algorithm based on the physical meaning of the 

similarity transformation. Wang et  al. (2014) proposed 

a closed-form pairwise registration algorithm of point 

clouds utilizing the dual quaternion. �e closed-form 
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algorithms are fast and efficient because the parameters 

are recovered directly by exact formulae without solution 

of nonlinear equations. However, this type of algorithm 

cannot deal with the general weight matrix of observa-

tions (i.e., the coordinates as pseudo-observations) as 

well as the accuracy estimation of transformation param-

eters. �e other one is the iterative algorithm, which uti-

lizes the numerical (iterative) computation technique to 

find the unknowns. Lots of iterative algorithms have been 

presented at present, e.g., Zeng and Tao (2003), Chen 

et al. (2004), El-Habiby et al. (2009), Zeng and Yi (2011), 

Zeng et  al. (2016), Kurt (2018), Zeng et  al. (2019). �is 

type of algorithm usually requires a good initial value of 

unknown and iterative computation (e.g., Zeng and Tao 

2003; Zeng and Yi 2011). But, in some situations, e.g., 

registration of LIDAR points due to the arbitrary size of 

rotation angles, it is difficult or even unlikely to obtain a 

good initial value of parameter. As a result, the algorithm 

needs many iterations or falls into a local minimum or 

diverges. Sometimes initial values are not required if 

global optimization algorithms are performed (e.g., Xu 

2003); unfortunately it may lead to much more compu-

tation time and burden. �e advantage of iterative algo-

rithms over closed-form algorithms is the former can 

supply the accuracy information of unknowns, which is 

essential from the viewpoint of uncertainty.

In recent years, the errors-in-variables (EIV) model 

has evoked a lot of research interest. It considers the 

errors in all variables; for instance, in the 3D similar-

ity transformation, the errors of target coordinates and 

source coordinates of control points are considered. 

�us it is more reasonable than the traditional Gauss–

Markov (GM) model which just considers the errors of 

target coordinates of control points. Golub and Van 

Loan (1980) presented the approach dealing with the 

EIV model and named it total least squares (TLS) tech-

nique. Afterward, a few types of TLS algorithms of 2D 

or 3D similarity coordinate transformation have been 

proposed. Teunissen (1988) derived a closed-form solu-

tion for 2D similarity transformation in the EIV model, 

i.e., symmetric 2D similarity transformation. Goryn and 

Hein (1995) presented a TLS solution for the 3D rigid 

transformation based on the Procrustes algorithm con-

sidering homogenous and uncorrelated errors. Schaffrin 

and Felus (2008) proposed TLS approaches to empirical 

coordinate transformation, which improved the accuracy 

in 2D affine transformations. Felus and Burtch (2009) 

proposed a closed-form weighted TLS (WTLS) solu-

tion to the 3D similarity transformation with pointwise 

weights and uncorrelated errors among points based on 

the Procrustes algorithm. Neitzel (2010) proposed a TLS 

solution to 2D similarity transformation within the non-

linear Gauss–Helmert model. Fang (2015) presented a 

WTLS algorithm with constraints and universal formula 

for geodetic transformation. Chang (2015) presented 

a rigorous solution without presupposed fixing of the 

scale parameter (which some authors assume to be 1). 

Mahboub (2016) proposed a WTLS solution to 3D sym-

metrical similarity transformation without linearization; 

however, more iterations may be needed than the lin-

earized model method. Mercan et al. (2018) proposed a 

weighted similarity transformation based on quaternions. 

�e algorithm has seven unknowns including the transla-

tion parameters and scaled quaternion, and the iterations 

may lead to divergence.

As mentioned above, the closed-form solution to 3D 

similarity coordinate transformation is straightforward 

and fast, but cannot provide the accuracy of recovered 

transformation parameters. Iterative solutions to 3D 

similarity coordinate transformation can deal with gen-

eral weight and provide the accuracy of recovered trans-

formation parameters; however, it usually needs a good 

initial value of unknowns. �erefore, this contribution 

intends to present a new WTLS iterative solution to 3D 

similarity coordinate transformation based on Gibbs vec-

tors, which is fast and does not need a relatively good 

initial value of the unknowns; in other words, is not sen-

sitive to the initial value of unknowns.

In the next section, firstly 3D similarity transformation 

is introduced and the model of similarity transformation 

based on Gibbs vectors is established. Secondly in order 

to simplify the transformation model for improvement of 

computation performance, the translation parameters are 

derived in the WTLS sense and a WTLS iterative algo-

rithm of 3D similarity transformation based on Gibbs 

vectors is proposed with detailed derivation. Two cases 

including the registration of LIDAR points and geodetic 

datum transformation are studied; the results show the 

new algorithms are fast and reliable. Finally, conclusions 

are drawn in the last section.

Formulation and WTLS iterative algorithm of 3D 
similarity transformation
In this section, the basic EIV model of 3D similar-

ity transformation is introduced, and in order to avoid 

transcendental function and functional constraints, the 

model of similarity transformation based on Gibbs vec-

tors is established. Lastly, a WTLS iterative algorithm of 

3D similarity transformation based on Gibbs vectors is 

put forward.

3D similarity transformation in EIV model 

without functional constraints

Assume that a set of control points are given with their 

coordinates in both source and target coordinate systems. 
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�en the 3D similarity transformation in EIV model can 

be expressed as

subject to

where poi =

[

xoi yoi zoi
]T

 and pti =

[

xti yti zti
]T

 are the 

3D coordinate vectors of control point i ( i = 1, 2, . . . , n ) 

in the source coordinate system and the target coordinate 

system (denoted with superscript o and t ), respectively. 

e
o

i
 and et

i
 are the error vectors of po

i
 and pt

i
 , respectively. 

And superscript T is transpose of matrix, det represents 

determinant computation of matrix, I3 is a 3 × 3 identity 

matrix. � denotes the scale factor, t =

[

tx ty tz
]T

 is the 

vector of three translation parameters and R represents 

the rotation matrix of size 3 × 3, which is traditionally 

expressed by three rotation angles. Assume R is pro-

duced by counterclockwise coordinate-frame rotations 

θx , θy , θz ( θx applied first, θz applied last). �en R can be 

represented by rotation angles as

If R is known, and the 3 main diagonal elements are 

positive, θx , θy , θz can be calculated quickly by (3) as

where Rij is the element of R in the row i and column j.

For n control points, the 3D similarity transformation 

in EIV model is constructed easily from Eq. (1).

where po =

[

poT
1

poT
2

. . . poTn
]T

 , 

pt =

[

ptT
1

ptT
2

. . . ptTn
]T

 , B = In ⊗ �R , C = 1n ⊗ I3 , 

e
o

=

[

e
oT

1
e
oT

2
· · · e

oT
n

]T
 , et =

[

e
tT

1
e
tT

2
. . . e

tT
n

]T
 , and 

1n =

[
1 1 . . . 1

]T

︸ ︷︷ ︸
n

 . In is the identity matrix of size n × n , 

the symbol ⊗ means the Kronecker product.

�e objective of 3D similarity transformation in EIV 

model is to recover the seven transformation parameters 

in the principle of total least squares, i.e.,

where W of size 3n × 3n is a weight matrix of observa-

tions, adopting the point (i.e., row or column) weight in 

(1)pt
i
− et

i
= �R

(

po
i
− eo

i

)

+ t

(2)R
T
R = I3 and det(R) = +1,

(3)R =





cos θz cos θy sin θz cos θx + cos θz sin θy sin θx sin θz sin θx − cos θz sin θy cos θx

− sin θz cos θy cos θz cos θx − sin θz sin θy sin θx cos θz sin θx + sin θz sin θy cos θx

sin θy − cos θy sin θx cos θy cos θx



.

(4)

θx = − tan
−1 R32

R33

, θy = sin
−1(R31), θz = − tan

−1 R21

R11

,

(5)pt − et = Bpo − Beo + Ct,

(6)e
tT
We

t
+ e

oT
We

o
= min,

Felus and Burtch (2009) as follows, since the point weight 

is more reasonable than the identity matrix weight usu-

ally employed in practice.

where wi is the weight of point i ( i = 1, 2, . . . , n ). Note 

that the components of R in Eq.  (3) are trigonometric 

functions of rotation angles, which causes a high com-

putation burden in the solution of parameters. In some 

particular situations, for instance in geodesy, the small 

rotation angles are small usually at the level of seconds; 

the elements of rotation matrix can be reduced to rota-

tion angles (in radians) or constants (one or zero) and the 

3D similarity transformation model is simplified to a lin-

ear one. Evidently this reduced treatment causes model 

error and then is not applicable to big rotation angle 

cases. In this contribution, the nonlinear 3D similarity 

transformation model is adopted to maintain validity for 

any rotation angles.

Apart from using rotations, there are other represen-

tation of R , such as unit quaternion (e.g., Horn 1987; 

Shen et al. 2006; Zeng and Yi 2011; Závoti and Kalmár 

2016), dual quaternion (e.g., Walker et  al. 1991; Wang 

et  al. 2014; Zeng et  al. 2018, 2019), direction cosine 

matrix (e.g., Chen et  al. 2004; Wang et  al. 2018), and 

the Rodrigues matrix or Gibbs vector (e.g., Zeng and Yi 

2010; Závoti and Kalmár 2016; Zeng et  al. 2016; Kurt 

2018). �e first three approaches to the representa-

tion of R introduce functional constraints, for instance 

the norm of quaternion is unity as the unit quaternion 

representation is concerned. Additional functional 

constraints increase the complexity of formulation 

and computation. However, the 4th approach is free 

of transcendental function and functional constraints, 

and then improves the speed of computation. For this 

sake, this paper adopts the Rodrigues matrix or Gibbs 

vector to represent the rotation matrix R . Due to the 

orthogonality of rotation matrix, it can be represented 

by a Rodrigues matrix as

where

(7)W =









w1I3

w2I3

. . .

wnI3









,

(8)R = (I3 + S)(I3 − S)−1
,
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is a skew-symmetric matrix, and v =

(

a b c
)T

 is a Gibbs 

vector. If Eq. (8) is expanded, it is rewritten as

It is easy to see that the rotation matrix R is expressed 

in terms of polynomials without trigonometric functions 

and functional constraints.

Deduction of translation parameters and simpli�ed 3D 

similarity transformation model

�e similarity transformation parameters in preceding 

EIV model based on the Rodrigues matrix or Gibbs vec-

tor theoretically can be recovered by the TLS derivation; 

however, it is found in computation practice that the 

normal equation is singular because the numerical mag-

nitude of translation parameter t and those of the Gibbs 

vector v as well as scale factor � probably differ greatly 

from each other, which prevents a solution to the equa-

tion. For this reason, we seek to eliminate the translation 

parameters t from the original model.

Lagrangian extremum principle is a reliable way to 

solve the 3D similarity transformation problem in the 

sense of TLS. In order to obtain the explicit solution of t 

regarding � and R as known parameters, the Lagrangian 

extremum problem which just considers t as unknown is 

established as

where k is a vector of the Lagrangian multiplier. In order 

to obtain the solution, partial derivations with respect to 

all variables should be set to zero. From the partial deri-

vations with respect to eo , one gets

From the partial derivations with respect to et , one gets

Inserting Eqs. (12) and (13) into the partial derivations 

with respect to k which is identical to Eq. (5) and arrang-

ing the terms, one obtains

(9)S =





0 −c b

c 0 −a

−b a 0





(10)R =
1

1+a2 + b2 + c2





1 + a
2
− b

2
− c

2
2(ab − c) 2(ac + b)

2(ab + c) 1 − a
2
+ b

2
− c

2
2(bc − a)

2(ac − b) 2(bc + a) 1 − a
2
− b

2
+ c

2



.

(11)

min
eo,et ,t,k

{

L(eo,et , t, k) = eoTWeo + etTWet

+2kT(pt − et − Bpo + Beo − Ct)
}

,

(12)e
o

= −W
−1

B
T
k.

(13)e
t
= W

−1
k.

Denoting

(14)k =

(

W−1
+ BW−1BT

)

−1
(

pt − Bpo − Ct
)

.

substituting B = In ⊗ �R into Eq. (15), the following for-

mula can be easily derived:

Combining CTk = CTW1

(

pt − Bpo − Ct
)

 from 

Eq. (14) with kTC = 0 from the partial derivative of t, one 

obtains the solution of t as

Inserting Eq. (16) into Eq. (17), one obtains the follow-

ing formula and its proof is given in Additional file  1: 

Appendix S1:

where

and

are the weighted coordinates of the barycenter in the tar-

get coordinate system and the source coordinate system, 

respectively.

Inserting Eq. (17) into Eq. (5) and carrying out arrange-

ments, one gets

Denoting

(15)W1 =

(

W
−1

+ BW
−1

B
T

)

−1

(16)W1 =

(

1 + �
2

)

−1

W.

(17)t =

(

CTW1C
)

−1

CTW1

(

pt − Bpo
)

.

(18)t = pt − �Rpo,

(19)pt =

∑
n

i=1
wip

t

i∑
n

i=1
wi

(20)po =

∑
n

i=1
wip

o

i∑
n

i=1
wi

(21)

(

I3n − C
(

CTW1C
)

−1

CTW1

)

pt−et

=

(

I3n − C
(

CTW1C
)

−1

CTW1

)

Bpo − Beo.
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thus Eq. (21) is rewritten as

It is easily proved that

and the proof is given in Additional file 2: Appendix S2. 

�en Eq. (23) is re-expressed as

where

and

are centralized coordinate vectors, i.e., the difference of 

original coordinates and the weighted coordinates of the 

barycenter, in the target coordinate system and source 

coordinate system, respectively. D is a centering matrix. 

It is obvious to see that the translation parameter t is 

eliminated.

WTLS iterative algorithm of 3D similarity transformation 

in errors‑in‑variables model

Linearizing Eq. (25) by Taylor’s formula, one obtains

where superscript j denotes the approxima-

tion from iteration j of the corresponding variable, 

dx =

[

d� da db dc
]T

 is the correction vector of 

unknowns x =

[

� a b c
]T

 , and

(22)D = I3n − C

(

C
T
W1C

)

−1

C
T
W1,

(23)Dpt−et = DBpo − Beo.

(24)DB = BD,

(25)�pt−et = B�po − Beo,

(26)�pt = Dpt

(27)�po = Dpo

(28)

�pt − et = Bj
�po − Bjeo,j +

∂B

∂�

(

�po − eo,j
)

d�

+
∂B

∂a

(

�po − eo,j
)

da +
∂B

∂b

(

�po − eo,j
)

db

+
∂B

∂c

(

�po − eo,j
)

dc − Bj
deo,j ,

(29)
∂B

∂�
= In ⊗ R,

(30)
∂B

∂a
= In ⊗ �

∂R

∂a
,

Denoting

and considering

Eq. (28) is rewritten as

�e WTLS solution process of dx in Eq. (39) is simi-

lar to that of t in Eq.  (5) by the Lagrangian extremum 

principle shown in the preceding subsection. Replacing 

pt , po , C , t with �pt , �po , Aj , dx in the solution process 

of t , respectively, one can easily get the solution as

where

(31)
∂B

∂b
= In ⊗ �

∂R

∂b
,

(32)
∂B

∂c
= In ⊗ �

∂R

∂c
,

(33)

∂R
∂vx

=
∂S
∂vx

(I3 − S)−1
+ (I3 + S)(I3 − S)−1 ∂S

∂vx
(I3 − S)−1

=
∂S
∂vx

(I3 − S)−1
+ R

∂S
∂vx

(I3 − S)−1

= (I3 + R) ∂S
∂vx

(I3 − S)−1, vx = a, b, c,

(34)
∂S

∂a
=





0 0 0

0 0 −1

0 1 0



,

(35)
∂S

∂b
=





0 0 1

0 0 0

−1 0 0



,

(36)
∂S

∂c
=





0 −1 0

1 0 0

0 0 0



.

(37)A =

[

∂B
∂�

(

�po − eo,j
)

∂B
∂a

(

�po − eo,j
)

∂B
∂b

(

�po − eo,j
)

∂B
∂c

(

�po − eo,j
) ]

(38)e
o

= e
o,j

+ deo,j ,

(39)�pt − et = Bj
�po − Bjeo + Aj

dx.

(40)dx =

(

AjTW1A
j
)

−1

AjTW1

(

�pt − Bj
�po

)

,

(41)e
o

= −W
−1

B
T
k

′
,

(42)e
t
= W

−1
k

′
,

(43)k′
= W1

(

�pt − Bj
�po − Aj

dx
)

.
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Next, we can utilize an iterative algorithm to com-

pute the final solution of x . Set the initial value 

x
0

=

[

1 0 0 0
]T

 , the initial value of the unknown eo as 
[
0 0 · · · 0

]T

︸ ︷︷ ︸

3n

 and compute the dx , if the absolute val-

ues of all elements of dx are less than a small tolerance 

value τ (e.g., 1.0 × 10−10), stop the iteration, otherwise 

update the x with previous iterative value of x plus dx 

and repeat the iterative computation until the stop cri-

terion is satisfied. After iteration, the variance factor of 

unit weight is estimated as

or if Aj
dx is a sufficiently small term, the approximate 

formula as follows is adopted:

By Eq. (40) the estimated covariance matrix of trans-

formation parameters x is derived as

Similarly by Eq. (17) the estimated covariance matrix 

of transformation parameters t is derived as

To sum up, the above presented WTLS iterative algo-

rithm is listed in Table 1.

Numerical analysis and discussion
Two cases are studied. One is the registration of LIDAR 

points involving big rotation angles and the weight 

matrix is not considered, i.e., an identity matrix is 

(44)σ = ±

√

eoTWe
o + etTWe

t

3n − 7
,

(45)σ ≈ ±

√

(

�pt − Bj�po
)T

W1

(

�pt − Bj�po
)

3n − 7
.

(46)Dx = σ
2

(

A
jT
W1A

j
)

−1

.

(47)Dt = σ
2

(

C
T
W1C

)

−1

.

adopted. �e other one is 3D coordinate transformation 

in geodesy, which encounters small rotation angles and 

point-weighting is adopted.

Case 1 (registration of LIDAR points)

�is data are adopted from Wang et al. (2014). �e point 

features extracted from two neighboring LIDAR point 

clouds are listed in Table  2. In order to verify the new 

algorithm, the 18 points are divided into control points 

and check points. �e first 10 points in Table 2 are arbi-

trarily chosen as control points and the last 8 points are 

check points. �e distribution of all points is depicted in 

Fig. 1. In Fig. 1 plus signs denote control points and cross 

signs denote check points. �e weight matrix adopted is 

an identity matrix in this case; in other words, the weights 

of all points are the same, and the correlation among the 

three coordinates of each point is not considered.

�e transformation parameters in the WTLS sense are 

computed by the new algorithm and Algorithm  4 pre-

sented in Felus and Burtch (2009), henceforth described 

as the Felus–Burtch Algorithm. All results are listed in 

Table 3. It is seen from Table 3, that the new algorithm 

needs only 6 iterations to converge. And for two algo-

rithms, the results are exactly the same. �us the new 

algorithm is fast and reliable. Additionally, the Felus–

Burtch Algorithm does not provide the accuracies of 

recovered transformation parameters; however, the new 

algorithm does. It gives the accuracy information which 

is shown in Table 3. For more details, refer to the covari-

ance matrix of recovered transformation parameters 

offered by the new algorithm, which is listed in Table 4. 

�e predicted errors of coordinates of control points by 

the new algorithm are listed in Table 5. It is worth men-

tioning that the formula to compute ẼY  in Algorithm  4 

presented from Felus and Burtch (2009) is wrong. �e 

first term namely the inverse of weight matrix should 

be removed from the formula. If the LS transformation 

parameters and predicted error of coordinates of control 

Table 1 WTLS iterative algorithm of 3D similarity transformation in EIV model

Initiation:
Input 3D coordinates vector po , pt of control points and pointwise weight matrix W , set the initial value of the unknown x as 

[

1 0 0 0
]T

 and the initial 

value of the unknown eo as 
[
0 0 · · · 0

]T

︸ ︷︷ ︸

3nIterative computation:
Step 1. Calculate the centering matrix D by Eq. (22), and then calculate the centralized coordinate vectors �po , �pt by Eqs. (27) and (26)
Step 2. Compute R by Eq. (8) or Eq. (10), W1 by Eq. (16), and Aj by Eqs. (29) to (37)
Step 3. Compute dx by Eq. (40). If absolute values of all the elements of dx are less than a threshold τ (1.0 × 10−10 is set in the paper), turn to Step 4, 

otherwise turn to Step 2 with the undated value x = x + dx and eo by Eq. (41) and Eq. (43)
Step 4. Compute R by Eq. (8) or Eq. (10). If rotation angles θx , θy , θz are needed, compute them by Eq. (4). Compute t by Eqs. (18) to (20)
Step 5. Estimate the variance factor of unit weight σ by Eq. (44) or Eq. (45), estimate the covariance matrix of transformation parameters x and t by 

Eqs. (46) and (47), respectively
Output the scale factor � (the first element of x ), the Gibbs vector v =

(

a b c
)T

 (the latter three elements of x ), the rotation matrix R and the transla-
tion parameter t . If required, output rotation angles θx , θy , θz . Output the variance factor of unit weight σ and the covariance matrixes of transforma-
tion parameters x and t
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points are computed with the algorithm in Wang et  al. 

(2014), one finds that LS variance factor of unit weight is 

0.0234 m, which is bigger than that of WTLS. �erefore, 

the WTLS solution is better than the LS solution from 

the viewpoint of variance factor of unit weight.

Next, the new algorithm in this contribution and the 

Felus–Burtch Algorithm are used to calculate the tar-

get coordinate of check points once the transforma-

tion parameters are recovered by the 3D similarity 

transformation model, i.e., Eq.  (1). �e errors of com-

puted coordinates of check points are obtained by sub-

tracting the computed coordinates of check points from 

the known coordinates of check points. �e errors are 

listed in Table 6.

Lastly, in order to test the dependence of the new 

algorithm on the initial values of parameters, six sets of 

initial values of parameters are adopted which are listed 

in Table 7. From Table 7, it is seen that the maximum 

biased angle from the correct solution is 2.5°, 18.9°, 

29.4°, 44.5°, 59.4°, 74.9° for Set 1, Set 2, Set 3, Set 4, Set 

5, Set 6, respectively. Set 3 gives the default initial val-

ues of parameters. �e corresponding initial values of 

the Gibbs vector elements are computed from the ini-

tial values of rotation angles in Table  7. �en the new 

algorithm is performed with six sets of initial values of 

parameters, respectively. Results show that the algo-

rithm successively finds the correct solutions with six 

sets of initial values of parameters. Number of itera-

tions is 5, 5, 6, 6, 8, and 8 for Set 1, Set 2, Set 3, Set 4, 

Set 5, Set 6, respectively. It is evidently seen that with 

the increase of maximum biased angle from Set 1 to 

Set 6, the number of iterations increases slowly from 5 

to 8. �us the new algorithm is not sensitive to the ini-

tial values of parameters. Further, the iterative process 

is drawn in Fig.  2. From this figure, it is seen that the 

convergence rate is fast since that the logarithm (base 

10) of objective function, i.e., log10
(

e
oT
We

o
+ e

tT
We

t
)

 

Table 2 Point features extracted from two neighboring LIDAR point clouds

Point no. Reference station in the target system (m) Unregistered station in the source system (m)

x
t yt z

t x
o yo z

o

1 − 91.406 53.344 8.320 − 49.007 54.453 0.978

2 − 91.297 53.222 0.916 − 47.365 54.435 − 6.242

3 − 60.158 24.280 8.948 − 36.514 13.733 3.642

4 − 60.135 24.278 1.521 − 34.881 13.859 − 3.608

5 − 56.298 − 19.186 5.700 − 53.378 − 25.872 − 4.187

6 − 13.269 − 2.677 − 1.444 − 7.324 − 32.695 − 1.389

7 − 4.666 17.245 − 1.605 9.587 − 19.650 2.449

8 − 49.939 14.297 27.119 − 36.532 − 0.319 21.980

9 − 52.769 11.523 25.906 − 39.932 − 1.307 19.965

10 − 72.929 − 8.630 27.146 − 67.051 − 8.834 15.017

11 − 46.500 − 30.291 23.078 − 54.124 − 40.688 13.216

12 − 52.581 − 22.934 5.676 − 51.943 − 30.962 − 3.965

13 − 58.972 − 17.511 18.862 − 57.712 − 23.376 8.397

14 − 55.429 − 26.155 23.077 − 59.650 − 32.625 12.037

15 − 55.313 − 26.131 23.039 − 59.512 − 32.705 12.071

16 − 63.467 27.962 26.981 − 41.466 18.246 21.085

17 − 57.673 22.069 25.782 − 39.133 10.234 20.247

18 − 49.687 14.083 − 3.666 − 29.781 − 0.026 − 8.062

Fig. 1 3D space distribution of point features in the source 

coordinate system. Plus signs denote control points and cross signs 

denote check points
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linearly decreases for all six sets of initial values. So the 

new algorithm is very fast in terms of fewer iterations. 

It is worth noting that for this big rotation angle case, 

no good initial values of parameters are required while 

usually good initial values of parameters are needed, as 

shown in Zeng and Yi (2011). 

Case 2 (geodetic datum transformation)

�e data are from Grafarend and Awange (2003). �e 

3D coordinates of 7 points in the source coordinate sys-

tem and the target coordinate system, respectively, are 

given in Table 8. �e 3D space distribution of 7 points 

in the source coordinate system is shown in Fig.  3. In 

Table 3 Recovered parameters for Case 1 using the new algorithm and the Felus–Burtch algorithm, respectively

Parameters The new algorithm The Felus–Burtch algorithm

Iterations 6 –

Scale

 � 1.0002101164 ± 0.0002001329 1.0002101164

Gibbs vector

 a − 0.0381487705 ± 0.0001517110 –

 b 0.1072667832 ± 0.0001625734 –

 c 0.2637168674 ± 0.0001124502 –

Rotation angles

 θx (°) 1.0693156620 1.0693156620

 θy (°) − 12.5193487938 − 12.5193487938

 θz (°) − 29.4297272328 − 29.4297272328

Translation

 tx (m) − 22.9747 ± 0.0074 − 22.9747

 ty (m) 29.4056 ± 0.0074 29.4056

 tz (m) − 2.2626 ± 0.0074 − 2.2626

 σ (m) 0.0165797705 0.0165797705

Table 4 Covariance matrixes of recovered transformation parameters obtained by the new algorithm

Dx = 10−7
× 0.4005319716 0.0000000000 0.0000000000 0.0000000000

0.0000000000 0.2301623730 − 0.1041878824 − 0.0074983064

0.0000000000 − 0.1041878824 0.2643009705 − 0.0034785756

0.0000000000 − 0.0074983064 − 0.0034785756 0.1264504316

Dt = 10−4  m2
× 0.5498931099 0.0000000000 0.0000000000

0.0000000000 0.5498931099 0.0000000000

0.0000000000 0.0000000000 0.5498931099

Table 5 Predicted errors at 10 control points in the source system and target system by the new algorithm

Point no. Error of reference station (target system) (m) Error of unregistered station (source system) (m)

x
t yt z

t x
o yo z

o

1 0.0093 0.0054 − 0.0027 − 0.0111 − 0.0001 0.0003

2 0.0096 0.0015 − 0.0026 − 0.0095 0.0034 0.0006

3 0.0057 0.0058 − 0.0057 − 0.0089 − 0.0024 0.0039

4 0.0052 0.0034 − 0.0021 − 0.0065 − 0.0004 0.0007

5 0.0095 0.0073 0.0028 − 0.0110 − 0.0016 − 0.0053

6 0.0015 0.0069 − 0.0045 − 0.0056 − 0.0053 0.0033

7 − 0.0045 0.0075 − 0.0064 − 0.0011 − 0.0089 0.0061

8 − 0.0013 − 0.0014 − 0.0015 0.0015 0.0006 0.0019

9 − 0.0341 − 0.0198 − 0.0020 0.0381 0.0003 0.0105

10 − 0.0009 − 0.0166 0.0247 0.0141 0.0145 − 0.0220
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order to validate the new algorithm, the 7 points are 

divided into control points and check points. Four 

points are selected as control points from Fig. 3 based 

on the consideration that usually, in order to obtain 

good transformation parameters, control points should 

be distributed evenly and enclose as much of the sur-

veying area as possible. �e blue asterisk denotes the 

control points, and the red circle denotes the check 

points in Fig.  3. �e selected four control points are 

shown with bold font in Table  8. �e weight matrix 

adopted is a pointwise one, i.e., for each point, it has 

isotropic weight and its different coordinate compo-

nents are not correlated, and for all points, they are 

independent of each other. �e pointwise weights are 

listed in Table 9.

�e recovered transformation parameters in the 

WTLS sense by the new algorithm and the Felus–Burtch 

Algorithm are listed in Table 10. It is seen from Table 10 

that the new algorithm needs only 2 iterations to com-

plete computation. �e results are identical for the two 

algorithms if the decimal rounding is ignored. �us 

the new algorithm is fast and reliable for this case. As 

mentioned in the preceding case, the new algorithm 

can provide the accuracies of recovered transforma-

tion parameters while the Felus–Burtch Algorithm can-

not. �e accuracy information is shown in Table 10. For 

Table 6 Errors of  computed target coordinates of  check 

points by the two algorithms

Point no. Errors of computed target coordinates (m)

x
t yt z

t

11 0.0071 − 0.0060 0.0379

12 0.0433 0.0259 0.0167

13 − 0.0055 − 0.0549 0.0118

14 0.0345 0.0687 − 0.0609

15 0.0816 0.0456 − 0.0182

16 − 0.0139 − 0.0062 − 0.0012

17 − 0.0093 − 0.0592 0.0198

18 − 0.0496 0.0221 − 0.0098

Table 7 Six sets of initial values of transformation parameters

The values in italics denote the maximum biased angle from the correct solution for each set of initial values

Parameters Set 1 Set 2 Set 3 (default) Set 4 Set 5 Set 6

Scale

 � 1 1 1 1 1 1

Gibbs vector (from initial rotation angles)

 a − 0.0210 − 0.1981 0 0.0688 − 0.2513 − 0.7442

 b 0.0874 0.0453 0 − 0.2867 − 0.2235 0.2915

 c 0.2400 0.2565 0 0.2401 − 0.3192 − 0.1960

Rotation angles

 θx (°) 0 20 0 0 20 76

 θy (°) − 10 − 10 0 32 30 − 10

 θz (°) − 27 − 27 0 − 27 30 30

Biased angles (from the correct solution)

 For θx (°) − 1.1 18.9 − 1.1 − 1.1 18.9 74.9

 For θy (°) 2.5 2.5 12.5 44.5 42.5 2.5

 For θz (°) 2.4 2.4 29.4 2.4 59.4 59.4

Number of iterations 5 5 6 6 8 8

Fig. 2 Iterative process of the new algorithm with different initial 

values of parameters
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more details, refer to the covariance matrix of recovered 

transformation parameters offered by the new algorithm, 

which are listed in Table 11. �e predicted errors of coor-

dinates of control points by the new algorithm are listed 

in Table 12. Table 12 shows as far as absolute values are 

concerned, the predicted errors of coordinates of the new 

algorithm control points in the source coordinate system 

are approximately identical to those in the target coordi-

nate system. It is because the point weights are the same 

for the two systems, the scale factor is very close to 1 and 

the rotation angles are very small resulting in almost an 

identity rotation matrix.

Next, the new algorithm and the Felus–Burtch Algo-

rithm are employed to calculate the target coordinates 

of check points. �en errors of computed coordinates 

of the check points are computed. �e errors are the 

same for the two algorithms and are listed in Table 13.

Conclusions
�e paper presents a WTLS iterative algorithm of the 

3D similarity coordinate transformation based on the 

Gibbs vector considering that transformation model is 

compact and without redundant constraints of param-

eter, such as the norm of the unit quaternion is 1. �e 

Table 8 Coordinates of 7 points in the source system and target system

Point no. Source system (local system) (m) Target system (WGS-84 system) (m)

x
o yo z

o
x
t yt z

t

1 Solitude 4157222.543 664789.307 4774952.099 4157870.237 664818.678 4775416.524

2 Buoch Zeil 4149043.336 688836.443 4778632.188 4149691.049 688865.785 4779096.588

3 Hohenneuffen 4172803.511 690340.078 4758129.701 4173451.354 690369.375 4758594.075

4 Kuehlenberg 4177148.376 642997.635 4760764.800 4177796.064 643026.700 4761228.899

5 Ex Mergelaec 4137012.190 671808.029 4791128.215 4137659.549 671837.337 4791592.531

6 Ex Hof Asperg 4146292.729 666952.887 4783859.856 4146940.228 666982.151 4784324.099

7 Ex Kaisersbach 4138759.902 702670.738 4785552.196 4139407.506 702700.227 4786016.645

Fig. 3 3D space distribution of 7 points in the source coordinate 

system. The blue asterisk denotes the control points, and the red 

circle denotes the check points

Table 9 Pointwise weighting

Point no. i 1 2 3 4 5 6 7

wi 2.170137 2.097755 2.208968 2.201671 2.182928 2.268808 2.643404

Table 10 Recovered parameters for  Case 2 using the  new 

algorithm and the Felus–Burtch Algorithm, respectively

Parameters The new algorithm The Felus–
Burtch 
algorithm

Iterations 2 –

Scale

 � 1.0000062604 ± 0.8265 × 10−6 1.0000062604

Gibbs vector

 a 2.6896 × 10−6
±0.5939 × 10−6 –

 b − 2.2310 × 10−6
±0.6482 × 10−6 –

 c − 2.6177 × 10−6
±0.5187 × 10−6 –

Rotation angles

 θx (″) − 1.109526838 − 1.109526839

 θy (″) 0.920338884 0.920338882

 θz (″) 1.079870444 1.079870445

Translation

 tx (m) 639.3602 ± 0.0270 639.3602

 ty (m) 72.4921 ± 0.0270 72.4921

 tz (m) 412.2363 ± 0.0270 412.2363

 σ (m) 0.0579705587 0.0579705589
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cases studies show that whether the rotation angles are 

big or small, the new algorithm is fast in terms of fewer 

iterations, reliable and does not require good initial 

value of unknowns or not sensitive to the initial value. 

�e new algorithm can offer accuracy of the unknowns, 

i.e., transformation parameters while the analytical 

TIS algorithm, e.g., the Felus–Burtch Algorithm can-

not. �is is meaningful and indispensable from the 

viewpoint of the accuracy assessment. Additionally, it 

is shown that the TLS solution is advantageous over 

the LS solution from the viewpoint of variance factor 

of unit weight. In the near future, we intend to present 

new algorithms that deal with more general weighting 

of observations.
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Table 11 Covariance matrix of transformation parameters obtained by the new algorithm

Dx = 10−12
× 0.6830762558 0.0000000000 0.0000000000 0.0000000000

0.0000000000 0.3527666780 − 0.1693925312 − 0.1326418580

0.0000000000 − 0.1693925312 0.4202274973 0.1112063825

0.0000000000 − 0.1326418580 0.1112063825 0.2690705785

Dt = 10−3  m2
× 0.7276425140 0.0000000000 0.0000000000

0.0000000000 0.7276425140 0.0000000000

0.0000000000 0.0000000000 0.7276425140

Table 12 Predicted error coordinates of control points in the source system and target system by the new algorithm

Point no. Error of source coordinate (local system) (m) Error of target coordinate (WGS-84 system) (m)

x
o yo z

o
x
t yt z

t

3 0.0119 0.0379 − 0.0089 − 0.0119 − 0.0379 0.0089

4 − 0.0268 − 0.0127 0.0192 0.0268 0.0127 − 0.0192

5 0.0198 − 0.0206 − 0.0063 − 0.0198 0.0206 0.0063

7 − 0.0040 − 0.0041 − 0.0034 0.0040 0.0041 0.0034

Table 13 Errors of  computed target coordinates of  check 

points by the two algorithms

Point no. Error of computed target coordinate (m)

x
t yt z

t

1 − 0.1335 − 0.1670 − 0.1705

2 − 0.0942 0.0356 − 0.0296

6 − 0.0353 − 0.0371 0.0302
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