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Abstract: The tropospheric model is the key model in space geodetic techniques such as Global
Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI). In this paper, we
established the site-wise empirical Wuhan University Tropospheric Model (WTM) by using 10-year
(2011–2020) monthly mean and 5-year (2016–2020) hourly ERA5 reanalysis data, where the Zenith
Path Delay (ZPD), mapping function, and horizontal gradient as well as meteorological parameters
are provided at 1583 specific space geodetic stations with additionally considering the diurnal and
semi-diurnal variations. The mapping function and horizontal gradient from the WTM model were
evaluated at 524 globally distributed GNSS stations during the year 2020 and compared with the latest
grid-wise (1◦ × 1◦) Global Pressure and Temperature 3 (GPT3) model. The significant improvements
of the WTM model to the GPT3 model were found at the stations with terrain relief, and the maximal
mapping function and horizontal gradient accuracy improvements reached 12.8 and 14.71 mm. The
ZPD and mapping functions from the two models were also validated at 31 Multi-GNSS Experiment
(MGEX) stations spanning the year 2020 by BeiDou Navigation Satellite System (BDS) Precise Point
Positioning (PPP). The significant vertical coordinate and ZTD difference biases between the PPP
schemes adopted by the two models were also found, and the largest biases reached −1.78 and
0.87 mm.

Keywords: space geodetic technique; tropospheric model; mapping function; horizontal gradient;
BDS PPP

1. Introduction

The Tropospheric Slant Total Delay (STD) is well known as a major error source in
space geodetic techniques such as Global Navigation Satellite Systems (GNSS), Very Long
Baseline Interferometry (VLBI), and Doppler Orbitography and Radio-positioning Inte-
grated by Satellite (DORIS) [1–3]. The high-precision correction of the tropospheric delay
error is therefore very important to improving the accuracy of space geodetic parameter
estimations [1,2]. In tropospheric correction, the STD at a specific elevation angle ε and az-
imuth α is usually expressed as the function of Zenith Path Delay (ZPD), mapping function,
and horizontal gradient as,

STD(ε, α) = ZHD·MFh(ε) + ZWD·MFw(ε) + MFg(ε)·(Gn· cos(α) + Ge· sin(α)) (1)

where ZHD and ZWD are Zenith Hydrostatic and Wet Delays. MFh, MFw and MFg denote
hydrostatic, wet and gradient mapping functions. Gn and Ge represent the north-south and
east-west gradients. Then the STD is corrected by using the tropospheric models, including
the ZPD, mapping function, and horizontal gradient models. The tropospheric models
can be divided into two categories, namely discrete epoch-wise products and empirical
models [2]. In this study, we will focus on the empirical mapping function and horizontal
gradient models.
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The widely-used tropospheric mapping function models are based on the continued
fraction form as [4,5],

MF(ε) =
1 + a

1+ b
1+c

sin(ε) + a
sin(ε)+ b

sin(ε)+c

(2)

where a, b and c are mapping function coefficients. Niell [6] established the tabular Niell
Mapping Function (NMF) with radiosonde data, where the hydrostatic (ah, bh and ch)
and wet (aw, bw and cw) coefficients as well as the annual amplitudes of the hydrostatic
coefficients are listed at five latitudinal zones (15◦, 35◦, 45◦, 60◦, and 75◦). Böhm et al. [7]
refined the b and c coefficients for the determination of Vienna Mapping Function 1 (VMF1)
where the bh coefficient is fixed and the ch coefficient is the function of latitude and day of
year, and the bw and cw coefficients are the same as NMF. Böhm et al. [8] developed the
Global Mapping Function (GMF) using 3 years (from September 1999 to August 2002) of
European Centre for Medium-Range Weather Forecasts (ECMWF) 40 year Re-Analysis
(ERA-40) data, where the b and c coefficients are fixed to VMF1 values, and the ah and aw
coefficients are expressed by the spherical harmonic function of order 9 with considering
annual variation. Lagler et al. [9] determined the Global Pressure and Temperature 2 (GPT2)
model with 10 years of (2001–2010) monthly mean ECMWF Re-Analysis Interim (ERAI)
data, where the b and c coefficients are also identical with VMF1, and the ah and aw
coefficients at 5◦ × 5◦ horizontal grids are fitted by considering the annual and semi-annual
variations. Böhm et al. [10] improved the horizontal resolutions of the empirical ah and aw
coefficients from 5◦ × 5◦ to 1◦ × 1◦, deriving the GPT2 wet (GPT2w) model. Landskron
and Böhm [2] introduced the latest GPT3 model with 10 years of (2001–2010) monthly
mean ERAI data and considering the annual and semi-annual variations, where b and c
coefficients are presented by a spherical harmonic function of order 12, and the ah and aw
coefficients are determined in the horizontal resolutions of 1◦ × 1◦.

The horizontal gradient models provide the north-south (Gn) and east-west (Ge) hori-
zontal gradient parameters. MacMillan and Ma [11] determined the DAO model by using
the reanalysis data from the Data Assimilation Office (DAO) at the National Aeronautics
and Space Administration (NASA). Böhm et al. [12] developed the A Priori Gradient (APG)
model using the ERA40 data where the global horizontal gradient (Gn and Ge) annual aver-
ages are provided by the 9-order spherical harmonic function. In the GPT3 model released
by Landskron and Böhm [2], the annual averages, annual amplitudes, and semi-annual
amplitudes of the hydrostatic (Gnh and Geh ) and wet (Gnw and Gew ) horizontal gradients
are presented with the horizontal resolutions of 1◦ × 1◦ [3].

The accuracy of the empirical mapping function and horizontal gradient models
mainly depends on the accuracy of the modeling data source and the temporal-spatial
resolutions of the models. In the past decades, the modeling data sources and temporal-
spatial resolutions have been greatly improved, resulting the best GPT3 model. However,
the GPT3 model has a horizontal resolution of 1◦ × 1◦ and only considers the annual and
semi-annual variations, therefore it poorly performs in regions with complex terrain and
cannot capture the potential diurnal variation of the mapping function coefficients and
horizontal gradient parameters.

In June 2018, ECMWF released the fifth-generation Re-Analysis (ERA5) [13]. Ben-
efiting from the higher temporal-spatial resolutions (1 h and 0.25◦ × 0.25◦) as well as
the more advanced model physics, core dynamics and data assimilation [13], ERA5 has
shown superiority to its predecessor ERAI in global meteorological parameter, tropospheric
delay and diurnal variation retrieval [14,15], making ERA5 an excellent data source for
the determination of the tropospheric models. We dedicate this paper to eradicating the
deficiencies in the GPT3 model and will establish the more sophisticated Wuhan Univer-
sity Tropospheric Model (WTM) by using the superior ERA5 reanalysis data, where the
empirical ZPD, mapping function, and horizontal gradient as well as the meteorological
parameters are presented at specific space geodetic stations with considering the annual
and semi-annual variations as well as the diurnal and semi-diurnal variations. We will
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organize this paper as follows: Section 2 determines the WTM model. Section 3 evaluates
the model’s accuracy. Section 4 validates the model in BeiDou Navigation Satellite System
(BDS) Precise Point Positioning (PPP) analyses. Section 5 summarizes the conclusions.

2. Determination of WTM

This section determines the WTM model at 1583 space geodetic stations as shown
in Figure 1, including 1120 GNSS stations, 256 VLBI stations, and 207 DORIS stations,
where the GNSS stations include 697 International GNSS Service (IGS) or European core
stations, 269 Crustal Movement Observation Network of China (CMONOC) stations, and
154 National BDS Augmentation Service System (NBASS) stations. The VLBI and DORIS
stations are the same as the VMF3 products (https://vmf.geo.tuwien.ac.at (accessed on
19 September 2022)). The WTM model is established through five steps, namely ray-tracing,
a-priori coefficient determination, slant path delay modeling, time-variant analysis, and
time series fitting.
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Figure 1. Distribution of GNSS (red circles), VLBI (green squares) and DORIS (blue triangles) stations
included in WTM model.

2.1. Ray-Tracing

In this section, the tropospheric delays and meteorological parameters are calculated
with the modified ray-tracing software RADIATE [15,16]. The global ERA5 geopotential,
specific humidity and temperature data on 37 pressure levels with 0.25◦ × 0.25◦ horizontal
resolution were selected for the calculations. The U.S. Standard Atmosphere 1976 (COESA
1976) was used to extend the height converges of the ERA5 reanalysis (about 42 km) to
the whole neutral atmosphere (about 84 km) [16]. The ERA5 geopotential and specific
humidity data were converted to ellipsoidal height and water vapor pressure according
to the equations in Hofmeister [16] and Wallace and Hobbs [17]. The pressure (P) and
water vapor pressure (e) as well as temperature (T) in the primary 37 height levels were
interpolated to the dense height levels described in Rocken et al. [18] by utilizing the
exponential and linear interpolation methods, respectively. The hydrostatic (nh), wet (nw)
and total refractive (n) indices on the height levels and 0.25◦ × 0.25◦ grid points were

https://vmf.geo.tuwien.ac.at
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computed by taking the prepared meteorological parameters as inputs and adopting the
following equation as [19]: 

nh = 1 + k1
P
T ·10−6

nw = 1 +
(

k′2
e
T + k3

e
T2

)
·10−6

n = nh + nw − 1

(3)

where the k1, k′2 and k3 refraction index coefficients take the values of 77.6890 K/hPa,
22.9742 K/hPa and 37.5463 K2/hPa, respectively [20].

The two-dimensional (2D) Piece-Wise-Linear (2D-PWL) ray-tracing algorithm de-
scribed by Böhm [21] was used to determine the ray path according to the Snell laws of
refraction and the pre-determined refraction index fields and calculate the zenith and slant
tropospheric delays by the numerical integration along the zenith direction and ray path
as [16]: 

ZTD =
k−1
∑

i=1

[(
nz

i − 1
)
∆hi
]

ZHD =
k−1
∑

i=1

[(
nz

h,i − 1
)

∆hi

]
ZWD =

k−1
∑

i=1

[(
nz

w,i − 1
)

∆hi

]
STD =

k−1
∑

i=1
[(ni − 1)si] + gbend

SHD =
k−1
∑

i=1
[(nh,i − 1)si] + gbend

SWD =
k−1
∑

i=1
[(nw,i − 1)si]

gbend =
k−1
∑

i=1
[si − cos(εi − εk)·si]

(4)

where SHD and SWD are the Slant Hydrostatic and Wet Delays. k denotes the height level
number. nz

i , nz
h,i and nz

w,i stand for the total, hydrostatic and wet refractive index averages
between i and i + 1 height levels in the zenith direction, and ni, nh,i and nw,i represent the
corresponding refractive indices along the ray paths. ∆hi is the height difference between
i and i + 1 levels, and si denotes the ray path length between the two successive height
levels. gbend stands for the geometric bend term. εi is the elevation angle at i height level.
εk represents the final outgoing elevation angle.

The derived meteorological parameters include site-wise pressure (Ps), temperature
(Ts), water vapor pressure (es) and water vapor weighted mean temperature (Tm) where Ps,
Ts and es are retrieved from the pre-determined ERA5 meteorological parameter field by
bilinear interpolation and Tm are determined as [14]:

Tm =
∑k−1

i=1 (ei/Ti)∆hi

∑k−1
i=1

(
ei/T2

i
)
∆hi

(5)

where ei and Ti are the water vapor pressure and temperature averages between i and i + 1
height levels.

The 10-year (2011–2020) monthly mean and 5-year (2016–2020) hourly ERA5 reanalysis
data were downloaded from the Copernicus Climate Data Store as the modeling data source
of WTM [13]. The tropospheric delays, including ZHD, ZWD, SHD, and SWD as well as
the meteorological parameters including Ps, Ts, es and Tm over the 1583 stations shown in
Figure 1 were derived by using the prepared ERA5 data and the above-mentioned methods
where the SHD and SWD were retrieved at 7 elevation angles (3◦, 5◦, 7◦, 10◦, 15◦, 30◦, and
70◦) and 16 azimuths (with an interval of 22.5◦).
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2.2. A-Priori Coefficient Determination

The determination of mapping function relies on the a-priori b and c coefficients. In
this section, we re-determine the a-priori b and c coefficients at specific stations by using
the 10-year monthly mean tropospheric delays. The 10-year a, b and c coefficients were first
calculated by using the rigorous least-squares method [22]. Then the 10-year coefficient
time series were fitted as [2]:

PAR = A0 + A1· cos
(

doy
365.25 2π

)
+ B1· sin

(
doy

365.25 2π
)

+A2· cos
(

doy
365.25 4π

)
+ B2· sin

(
doy

365.25 4π
) (6)

where PAR denotes a, b, and c coefficients. doy represents the day of year. A0 stand for the
annual average of the coefficients. A1 and B1 are the annual amplitudes of the coefficients.
A2 and B2 are the semi-annual amplitudes. Finally, the a-priori a, b, and c coefficient model
for the 1583 stations were derived. The mapping function coefficients at JFNG station (B:
30.5156◦, L: 114.4910◦, H: 71.30 m, Jiufeng, China) are presented in Figure 2 as an example.
We can find that the ah, aw, and ch coefficients show obvious annual variations.
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2.3. Slant Path Delay Modeling

This section carries out the mapping function and horizontal gradient modeling. The
5-year hourly a coefficients at the 1583 stations were first computed by using the 5 year
hourly tropospheric delays and the fast method that determines the a coefficient by taking
the mapping factor at 3◦ outgoing elevation angle as input and fixing the b and c coefficients
to the pre-determined values as [2,22,23]:

a =
1−MF(ε0)· sin(ε0)

MF(ε0)

sin(ε0)+
b0

sin(ε0)+c0

− 1
1+ b0

1+c0

(7)

where ε0 is equal to 3◦. b0 and c0 are the pre-determined b and c coefficients.
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Then the 5-year horizontal gradients were determined by using the widely-used
standard gradient formula as [24,25]:

AD(ε, α) =
1

sin(ε)· tan(ε) + C
·[Gn cos(α) + Ge sin(α)] (8)

where AD expresses the asymmetric delay. C stands for the gradient constant, and it
takes values of 0.0031 and 0.0007 for the hydrostatic and wet asymmetric modeling, re-
spectively [24,25]. Finally, the 5 year hourly mapping function coefficients (ah and aw) and
horizontal gradient (Gnh , Geh , Gnw and Gew ) for the 1583 stations were determined.

2.4. Time-Variant Analysis

In this section, we systematically analyze the time-variant characteristics of the map-
ping function coefficients and horizontal gradients for the 1583 stations by taking the
5-year time series as inputs and using the Power Spectral Density (PSD) function [26]. We
found that the hydrostatic components (ah, Gnh and Gne ) at most stations not only show
the prominent annual and semi-annual variations but also include the clear diurnal and
semi-diurnal variations. In comparison, the diurnal and semi-diurnal variations of the
wet components (aw, Gnw and Gnw ) are not as significant as the hydrostatic components,
and only a few stations show the obvious variations, such as AREG station (B: −16.4654◦,
L: −71.4929◦, H: 2489.30 m, Arequipa, Peru) shown in Figure 3.
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the AREG station. The four dash lines from left to right mark the semi-diurnal, diurnal, semi-annual,
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2.5. Time Series Fitting

In this section, we fit the 5-year hourly ZPD, mapping function coefficients, and
horizontal gradients as well as the meteorological parameters for the 1583 stations by
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considering the annual, semi-annual, diurnal, and semi-diurnal variations. The fitting
formulas are shown as [27]:

PAR = A0 +
2
∑

i=1

[
Ai sin

(
2πi doy

365.25

)
+ Bi cos

(
2πi doy

365.25

)]
+

2
∑

i=1

[
ci(t)· sin

(
2πi hod

24

)
+ di(t)· cos

(
2πi hod

24

)]
ci(t) = C0

i + C1
i sin

(
2π

doy
365.25

)
+ C2

i cos
(

2π
doy

365.25

)
+C3

i sin
(

4π
doy

365.25

)
+ C4

i cos
(

4π
doy

365.25

)
(i = 1, 2)

di(t) = D0
i + D1

i sin
(

2π
doy

365.25

)
+ D2

i cos
(

2π
doy

365.25

)
+D3

i sin
(

4π
doy

365.25

)
+ D4

i cos
(

4π
doy

365.25

)
(i = 1, 2)

(9)

where PAR represents the mapping function coefficients, ZPD, horizontal gradients, and
meteorological parameters. c1(t), d1(t), c2(t) and d2(t) stand for the time-dependent
coefficients for the diurnal and semi-diurnal variations, expressed by the second and third
formulas. hod denotes hour of day (UTC). C0

i is the annual average of ci(t). C1
i , C2

i , C3
i and

C4
i are the coefficients for the annual and semi-annual variations of ci(t). D0

i is the annual
average of di(t). D1

i , D2
i , D3

i and D4
i are the coefficients for the annual and semi-annual

variations of di(t). In total, there are 25 coefficients included.
We used the fitting formulas to model the 5-year hourly parameter time series, deriving

the site-wise WTM model for the 1583 station, and compared the signatures of the WTM
model with the latest GPT3 model in Table 1 [2]. We can find the better modeling data
source and temporal-spatial expression of the WTM model with respect to the GPT3 model,
which may improve the model performance.

Table 1. Signatures of the GPT3 model and the newly established WTM model.

Item GPT3 WTM

Model Type • Grid-wise (1◦ × 1◦) • Site-wise

Data source • 1◦ × 1◦ monthly mean ERAI from 2001 to 2010 • 0.25◦ × 0.25◦ monthly mean ERA5 from 2011 to 2020 as
well as hourly ERA5 from 2016 to 2020

Time variation • Annual and semi-annual variations • Annual and semi-annual as well as diurnal and
semi-diurnal variations

Space coverage • Global coverage • 1583 global distributed GNSS, VLBI and DORIS stations

Input parameters

• Modified Julian date (mjd)
• Geographic latitude (ϕ, unit: rad)
• Geographic longitude (λ, unit: rad)
• Ellipsoidal height (hell )

• Station name
• Modified Julian date (mjd)
• UTC hour of day (hod )

Output parameters

• mapping function coefficients (ah and aw)
• Horizontal gradient (Gnh , Geh , Gnw and Gew , unit: m)
• Pressure (P, unit: hPa)
• Temperature (T, unit: ◦C)
• Temperature lapse rate (dT, unit : K/km)
• water vapor weighted mean temperature (Tm , unit: K)
• Water vapor pressure (e, unit: hPa)
• Water vapor decrease factorGeoid undulation (N, unit: m)

• Zenith hydrostatic delay (ZHD, unit: m)
• Zenith wet delay (ZWD, unit: m)
• mapping function coefficients (ah and aw)
• Horizontal gradient (Gnh , Geh , Gnw and Gew , unit: mm)
• Pressure (P, unit: hPa)
• Temperature (T, unit: ◦C)
• water vapor weighted mean temperature (Tm , unit: K)
• Water vapor pressure (e, unit: hPa)

A-priori b and c coefficients
• 12-order spherical harmonic function with considering

annual and semi-annual variations
• Site-wise presentation with considering annual and

semi-annual variations

To present the superiority of the WTM model clearly, we further took the AREG station
as an example and showed its calculated time series as well as the modeled time series
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with Equations (9) and (6) in Figure 4. We can find that the better performance benefited
from the additional consideration of diurnal and semi-diurnal variations, especially for the
hydrostatic horizontal gradient parameters (Gnh and Gne ).
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line) and (6) (green line) for the AREG station. The left two columns show the 5-year time series, and
the right two columns are the 10-day zoom in time series.

3. Evaluation of WTM
3.1. Evaluation Strategies

The ZPD and meteorological parameter modeling and evaluation based on the ERA5
reanalysis data have been well presented in the existing literature, such as Li et al. [27]
and Mateus et al. [28]. Therefore, this section only evaluates the accuracy of the mapping
function and horizontal gradient from the established WTM model and compares them
with the latest GPT3 model. The references are the symmetric and asymmetric delays
calculated from the 0.25◦ × 0.25◦ ERA5 data. The time period is the whole year of 2020,
including 8784 epochs (hours during the year 2020). The globally distributed 524 stations,
as shown in Figure 5, were selected for the model evaluation. The precision index is Mean
Absolute Error (MAE) [1–3,29], which can be calculated as:

[
MAEMF

GPT3(ε)
MAEMF

WTM(ε)

]
=

∣∣∣∣[ MFh
GPT3(ε)

MFh
WTM(ε)

]
·ZHDERA5 +

[
MFw

GPT3(ε)
MFw

WTM(ε)

]
·ZWDERA5 − STDERA5(ε)

∣∣∣∣[
MAEHG

GPT3(ε, α)
MAEHG

WTM(ε, α)

]
=

∣∣∣∣[ ADh
GPT3(ε, α)

ADh
WTM(ε, α)

]
+

[
ADw

GPT3(ε, α)
ADw

WTM(ε, α)

]
− ADERA5(ε, α)

∣∣∣∣ (10)

where MAEMF and MAEHG are the MAEs for mapping function and horizontal gradient,
respectively. ZHDERA5, ZWDERA5, STDERA5, and ADERA5 denote the ZHD, ZWD, sym-
metric STD and AD retrieved from the hourly ERA5 data. The evaluations are carried out
at seven elevation angles (3◦, 5◦, 7◦, 10◦, 15◦, 30◦, and 70◦) and 16 azimuths (with interval
of 22.5◦).
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3.2. Model Accuracy Analysis

The MAEs at 16 azimuths and 524 stations in 2020 were averaged at different elevation
angles and shown in Table 2. We can find that the mapping functions of the WTM model
show overall improvements to the GPT3 model, especially at low elevation angles. At 3◦

and 5◦ elevation angles, the MAE improvements reach 2.30 and 0.89 mm, respectively. The
horizontal gradient improvements also show similar elevation angle dependence where at
3◦ and 5◦ elevation angles, the WTM model improvements are 1.67 and 0.91 mm.

Table 2. Model MAE (mm) at different elevation angles.

Components Models e = 3◦ e = 5◦ e = 7◦ e = 10◦ e = 15◦ e = 30◦ e = 70◦

MF
GPT3 60.64 21.57 10.06 4.11 1.36 0.19 0.03
WTM 58.34 20.68 9.39 3.77 1.27 0.18 0.03

HG
GPT3 74.66 35.66 20.35 10.73 4.99 1.25 0.15
WTM 72.99 34.75 19.81 10.44 4.85 1.22 0.15

In addition to the statistical MAEs, the 5◦ elevation angle MAE distribution for the
524 stations as well as the global topography are shown in Figure 6, considering the
mapping function modeling at 3◦ elevation angle (Section 2.3). We find that the mapping
function MAE distribution for the WTM model generally surpasses the distribution for
the GPT3 model, while the improvements are hardly distinguished, except for the stations
located in the western part of South America (Figure 6a,b). As a consequence, we further
presented the MAE difference distribution between the two mapping functions as well
as its histogram in Figure 6c,d. At this point, the MAE differences are clearly presented,
and about 78.4% of the stations show the MAE improvements benefitted from the WTM
model, with the maximal improvements of 12.8 mm (UNSA station). In contrast to the
mapping function MAE distribution, the horizontal gradient MAE distribution shows
obvious latitude dependence, and the stations with middle and low latitudes generally
have larger MAEs. The horizontal gradient MAE distribution for the WTM model is also
superior to the GPT3 model (Figure 6e,f), and the MAE difference distribution can show
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the superiority more clearly (Figure 6g,h). About 91.4% of stations are profited by the WTM
model, and the maximal improvement reaches 14.71 mm (UNSA station).
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Figure 6. Distribution for the 5◦ elevation angle MAE and global topography. (a,b) are the MAE
distributions for the mapping functions from the GPT3 and WTM models. (c) denotes the MAE
difference distributions between (a) and (b). (d) shows the histogram of (c). (e,f) are the MAE
distribution for the horizontal gradients from the GPT3 and WTM models. (g) is the MAE difference
distribution between (e) and (f). (h) represents the histogram of (g). (i) shows the global topography
distribution.

The UNSA station (B: −24.7274◦, L: −65.4076◦, H: 1257.80 m, Salta, Argentina) shows
the largest MAE improvements both for the mapping function and horizontal gradients,
and therefore the MAE time series as well as the surrounding terrain of the UNSA station
are further shown in Figure 7. We can find significant improvements in most epochs, both
for mapping function and horizontal gradient (Figure 7a,b). The main reason is that the
UNSA station is located in an area with large terrain relief (Figure 7c) where the parameter
spatial interpolation calculation from the 1◦ × 1◦ GPT3 model will introduce a significant
loss of accuracy. However, the WTM model is directly modeled at the station location and
therefore is free of interpolation and no loss of accuracy.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

distribution between (e) and (f). (h) represents the histogram of (g). (i) shows the global topography 

distribution. 

The UNSA station (B: −24.7274°, L: −65.4076°, H: 1257.80 m, Salta, Argentina) shows 

the largest MAE improvements both for the mapping function and horizontal gradients, 

and therefore the MAE time series as well as the surrounding terrain of the UNSA station 

are further shown in Figure 7. We can find significant improvements in most epochs, both 

for mapping function and horizontal gradient (Figure 7a,b). The main reason is that the 

UNSA station is located in an area with large terrain relief (Figure 7c) where the parameter 

spatial interpolation calculation from the 1° × 1° GPT3 model will introduce a significant 

loss of accuracy. However, the WTM model is directly modeled at the station location and 

therefore is free of interpolation and no loss of accuracy. 

 

Figure 7. Mapping function (a) and horizontal gradient (b) MAE time series as well as surrounding 

topography (c) of the UNSA station. The red triangle represents the station location. The blue grid 

denotes the 1° × 1° grid of the GPT3 model. 

4. Validation of WTM in BDS PPP 

4.1. Data Processing Strategies 

In this section, we validate the GPT3 and WTM models by two BDS PPP schemes, 

namely, using the GPT3 and WTM models, respectively, considering the newly available 

Full Operational Capability (FOC) of the BDS constellation. The BDS (BDS2 + BDS3) data 

from 31 globally distributed IGS Multi-GNSS Experiment (MGEX) stations [30] spanning 

the whole year of 2020 was selected for validation by Positioning And Navigation Data 

Analyst (PANDA) software [31], and the station distribution was shown in Figure 5. The 

satellite orbits and clock are fixed to the 5 min GBM products, and the data processing 

strategies are shown in Table 3. 

Table 3. Data processing strategies for BDS PPP. 

Observation 

Sampling interval 300 s 

Frequency combination Ionosphere-free combination of B1I and B3I 

Elevation cutoff angle 3° 

Elevation weighting strategy {
𝑝 = 2𝑠𝑖𝑛𝜀, (𝜀 ≤ 30°)
𝑝 = 1, (𝜀 > 30°)

 

Error correction 

Phase center variations igs14.atx 

Figure 7. Mapping function (a) and horizontal gradient (b) MAE time series as well as surrounding
topography (c) of the UNSA station. The red triangle represents the station location. The blue grid
denotes the 1◦ × 1◦ grid of the GPT3 model.
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4. Validation of WTM in BDS PPP
4.1. Data Processing Strategies

In this section, we validate the GPT3 and WTM models by two BDS PPP schemes,
namely, using the GPT3 and WTM models, respectively, considering the newly available
Full Operational Capability (FOC) of the BDS constellation. The BDS (BDS2 + BDS3) data
from 31 globally distributed IGS Multi-GNSS Experiment (MGEX) stations [30] spanning
the whole year of 2020 was selected for validation by Positioning And Navigation Data
Analyst (PANDA) software [31], and the station distribution was shown in Figure 5. The
satellite orbits and clock are fixed to the 5 min GBM products, and the data processing
strategies are shown in Table 3.

Table 3. Data processing strategies for BDS PPP.

Observation

Sampling interval 300 s
Frequency combination Ionosphere-free combination of B1I and B3I
Elevation cutoff angle 3◦

Elevation weighting strategy
{

p = 2sinε, (ε ≤ 30◦)
p = 1, (ε > 30◦)

Error correction

Phase center variations igs14.atx
Higher-order ionospheric delay GIM and IGRF13 (Fritsche et al. [32])

Ocean tide loading FES2014b

A priori tropospheric delay

Scheme 1: ZHD (GPT3 + Saastamoinen [33]);
ZWD (GPT3+Askne and Nordius [34]);

mapping function (GPT3)
Scheme 2: ZHD (WTM); ZWD (WTM);

mapping function (WTM)

Parameter estimation

Satellite orbits and clock corrections Fixed from GBM 5 min products

Mapping function Scheme 1: Wet GPT3
Scheme 2: Wet WTM

ZWD stochastic model
Piece-wise constant (1 h), random walk

between segments
(

15 mm/
√

h
)

Gradient mapping function m fw· cot (e) (MacMillan [35])

Gradient stochastic model
Piece-wise constant (2 h), random walk

between segments
(

10 mm/
√

h
)

Station coordinates Daily constant
Receiver clock corrections White noise

Ambiguities Fixed

4.2. Coordinate Repeatability Analysis

In this section, we compare the coordinate repeatability of the two PPP schemes. The
coordinate time series in 2020 for the 31 stations were first extracted from the daily PPP
solutions. Then the gross error, phase step terms, periodic terms, and linear trend terms
were removed from the time series by using the Hector software [36], deriving the North
(N), East (E), and Vertical (U) coordinate residual time series. Finally, the standard deviation
of the coordinate residual time series, namely the coordinate repeatability, was calculated
and shown in Table 4. We can find that the two PPP schemes almost show identical
coordinate repeatability. The main reason is that the impacts of different models on PPP
estimation are greatly reduced by the elevation weighting strategy and the estimation of
the residual Zenith Total Delay (ZTD) parameter [1]. In addition, other error sources, such
as multi-path effects and phase center variations, will also suppress the impacts.
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Table 4. Coordinate repeatability (mm) of the two PPP schemes.

Models N E U

GPT3 2.12 3.28 7.72
WTM 2.12 3.29 7.73

In addition to the statistical coordinate repeatability, the distribution of the U coor-
dinate repeatability difference between the two PPP schemes and its histogram are also
presented in Figure 8. We can find the insignificant coordinate repeatability differences
with a maximal difference of 0.60 mm, again indicating the negligible impacts of different
empirical models on the coordinate repeatability.
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4.3. Coordinate and ZTD Difference Analysis

The coordinate repeatability generally reflects the standard deviation of the coordinate
time series, but cannot represent the coordinate differences. Therefore, in this section, we
directly compare the coordinate and ZTD time series estimated from the two PPP schemes
and list the statistical U coordinate and ZTD difference bias and Root Mean Square (RMS) in
Table 5. We can find the significant U coordinate and ZTD difference biases and RMSs, with
maximal biases of −1.78 and 0.87 mm and maximal RMSs of 2.95 and 1.03 mm, indicating
the systematic bias and significant difference between the two schemes.

Table 5. Coordinate and ZTD differences (mm) between the two PPP schemes.

Components

WTM-GPT3

Min Max Mean

Bias RMS Bias RMS Bias RMS

U −1.78 0.79 1.39 2.95 −0.64 1.36
ZTD −0.43 0.31 0.87 1.03 0.36 0.67

In addition, the U coordinate and ZTD difference bias distribution is also shown in
Figure 9. We can find the generally negative and positive biases for the U coordinate and
ZTD, respectively, verifying the significant systematic biases between the two PPP schemes
and the strong correlation between vertical coordinate and ZTD [37].
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Among all the stations, the MAS1 station (B: 27.7637◦, L: −15.6333◦, H: 197.30 m,
Maspalomas, Spain) located in the northwest of Africa shows the largest U coordinate and
ZTD biases of −1.78 and 0.87 mm. Therefore, we further present the U coordinate and
ZTD difference time series as well as the surrounding terrain distribution of the MAS1
station in Figure 10. We can find the consistently negative and positive biases for the U
coordinate and ZTD (Figure 10a,b), respectively, indicating the significantly systematic
biases between the two PPP schemes. The main reason is that the MAS1 station is located
on a small island (Figure 10c) where the parameter spatial interpolation calculation from
the 1◦ × 1◦ GPT3 model will cause a significant accuracy loss. Whereas the WTM model is
a site-wise empirical model and is interpolation free with no accuracy loss in its usage.
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Figure 10. U coordinate (a) and ZTD (b) difference time series and surrounding topography (c) of
the MAS1 station. The black lines represent the original time series. The red lines denote the weekly
smoothed time series. The red triangle shows the station location. The blue grid stands for the 1◦ × 1◦

grid of the GPT3 model.

5. Conclusions

Tropospheric delay has significant impacts on space geodetic techniques such as GNSS,
VLBI, and DORIS, and is regularly corrected with the tropospheric models, including ZPD,
mapping function, and horizontal models. In the past decades, the tropospheric models
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have been continuously improved on the modeling data source and temporal-spatial reso-
lution, deriving the latest GPT3 model. However, the GPT3 model is still with the limited
horizontal resolution of 1◦ × 1◦ and ignores the potential diurnal variations, and therefore
poorly performs in regions with complex terrain and loses the capability of catching the
diurnal variations of the Earth’s atmosphere that may contaminate the high-precision space
geodetic data processing and applications, such as earth reference frame realization, crustal
deformation monitoring and earth climate and weather change monitoring.

In this paper, we utilized the high temporal-spatial resolution advantages of the
newly released ERA5 reanalysis data and initiatively established the comprehensively site-
wise WTM model where the ZPD, mapping function, and horizontal gradient as well as
meteorological parameters at 1583 globally distributed space geodetic stations are involved
with additionally considering the diurnal and semi-diurnal variations. Different from the
GPT3 model, the WTM model directly models at the station location and considers the
diurnal variations, and therefore can avoid the accuracy loss from spatial interpolation and
the insufficient consideration of the atmospheric variations that essentially contribute to
the better model accuracy and BDS PPP performance of the WTM model, especially for the
stations with terrain relief.

Besides the site-wise empirical model involved in this work, the site-wise discrete
mapping function and horizontal gradient products from the reanalysis, operational, and
forecast numerical weather models (https://vmf.geo.tuwien.ac.at/ (accessed on 19 Septem-
ber 2022)) are also very important to improving the performance of space geodetic tech-
niques. However, the product time resolution is limited to the resolution of the numerical
weather model of 6 h that may restrict the product usage under extreme weather scenarios
and contaminate the retrieval of diurnal geophysical signals by using space geodetic tech-
niques. By using the high time resolution advantage of the ERA5 reanalysis data and the
GNSS tropospheric product, the site-wise discrete product can be further refined as for the
time resolution.
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