
978-1-4673-4404-3/12/$31.00 ©2012 IEEE

wtracert: An optimal timer based traceroute

implementation for wireless networks

Ani Taggu

Computer Science and Engineering Department

Rajiv Gandhi University

Itanagar, India

anitaggu@gmail.com

Amar Taggu

Deptt. of Computer Science and Engineering

NERIST

Nirjuli, India

ataggu@gmail.com

Abstract—Traceroute program is extensively used in wired
networks to track the route packets take on their way to a
destination. However, traceroute is often less effective in wireless
networks where broken routes are too common. In this paper,
the design of wtracert is presented that employs optimal timeouts
to provide a faster implementation of the traditional tracer-
oute. Optimal timeout period of timers is based on exponential
weighted moving average (EWMA) of round-trip-times of UDP
packets. Our linux based implementation of wtracert shows
marked improvement over standard traceroute especially when
the target is not reachable.

Index Terms—UDP, ICMP, traceroute, EWMA, TTL

I. INTRODUCTION

Traceroute [1] remains a critical piece of software in the

toolbox of a network administrator. It has proven its worth as

a diagnostic tool over the years. By default, traceroute uses

UDP probing to discover routes.

However, it is less effective in wireless networks. Experi-

ments show that the traceroute program, especially in wireless

environments, takes too long to detect if a host is not reachable.

In such environments, broken routes are frequent. This occurs

because of the lossy wireless links and mobility of the nodes.

In this paper, a new implementation of traceroute is pro-

posed for such wireless networks. The primary idea is to

terminate traceroute if a given hop is not reachable. The key

then, is to find an optimal timeout interval before reporting a

broken route. Obviously, the timeout should be larger than a

connection’s round-trip time (RTT). How much larger should

it be is the key question.

The proposed tool, named wtracert, can also be used as a

drop-in replacement to traceroute in wired networks. It will

simply be a resource-optimized version of traceroute.

The contribution of this paper is the application of well-

known Exponential Weighted Moving Average(EWMA) based

formulas used in TCP design to create a wireless version of the

standard traceroute program. It also implements early detection

of a broken route and termination of traceroute.

The remainder of this paper is organized as follows: In

Section II, we review some of the related work done. Section

III analyzes the classic traceroute algorithm and explains our

wtracert implementation in detail. Section IV describes the

comparative results obtained for wtracert in wireless networks.

Section V endeavors to identify the future directions. Finally,

Section VI concludes this paper.

II. RELATED WORKS

Van Jacobson, one of the pioneers of TCP congestion

control algorithm, is the original author of the traceroute

program. Many studies have focused on the limitations of the

traditional traceroute. Paris traceroute [2] is focused on the

effect of load-balancing routers on the traditional traceroute.

Parallel probing using simultaneous probes are explored in [3],

[4]. The issues caused by asymmetric links in a network has

been discussed in [5], [6]. AS-level route discovery is studied

in [7]. Modern traceroute implementations provide multiple

methods to track a route including ICMP, UDP, TCP and raw

packets as seen in LFT [8] and Linux implementations like

[9].

Computation of Retransmission TimeOut (RTO) using ex-

ponential aging algorithms in TCP timers are described in [10]

and IETF recommendations for managing TCP Timers [11].

These well-known formulas have been used extensively across

different TCP implementations.

III. WTRACERT

Traceroute [1] sends out probes to unlikely destination UDP

ports. Whenever a probe returns, it contains this target port.

Thus, a history of the packets are maintained. Then, the TTL

is increased and the same process gets repeated again.

By default, the maximum number of hops supported by

traceroute is 30. In each TTL, the total number of probes is

3 by default. Since the average hop count in Internet is found

to be 15 [13], traceroute can, on an average, take 225 seconds

or more.

This worst case situation can arise for traceroute when hops

along the route are reachable but do not send back any replies

to the source host. This could happen, e.g. when packet filters

along the route do not respond to UDP queries.

Thus, the standard traceroute takes an inordinately long time

under two conditions:

1) Broken Routes: Even when route to a host is not detected

by traceroute, it continues probing until all 30 hops are

over.

2) Expiry of Polling: By default, traceroute waits for up-to

5 seconds for a reply to a probe sent by it. However,

if a node is reachable within a few milliseconds, it is

wasteful to wait for the default timeout of 5 seconds.

Based on the above observations, it makes sense to optimize

traceroute by preventing the conditions that cause it to delay.

These modifications are as follows:

A. Broken Route Identification

If all the probes in a particular hop expire without receiving

a reply, it clearly indicates a broken route. Under such condi-

tions, it is preferable especially in wireless networks to stop

tracerouting rather than attempting to probe all the 30 hops.

To identify the “Route broken” case, it is simple to check if

at least one of the 3 probes in a hop has been replied. We use

a single variable, nprobes ret, to count the number of probes

replied per hop. If nprobes ret = 3 after the polling process

for one hop is over, the route is identified as broken.

B. Optimal Polling period

While polling for response to probes, usually 5.0 seconds

are used. However, timeout need not really be that long. For

instance, if in a particular hop, the first probe returns a RTT

of 100 ms, the second and third probes for that given hop

is expected to be near the 100 ms range. However, with the

network scenario being dynamic, the very next probe might

require a timeout of 2 seconds for the probe reply to arrive.

Thus, a mechanism for computing timeout using measured

RTTs (MRTT) is required. More precisely, a running average

of the RTTs seen so far can be used to compute how long

traceroute should wait. This mechanism is already used to

compute TCP retransmission timeout (RTO) as described in

[10], [12]. We propose to reuse the same EWMA equations

used to compute estimated RTT or “smoothed” RTT (SRTT)

as in TCP, but use these equations for traceroute also.

SRTT ← (1− α)× SRTT + α×MRTT (1)

EDEV ← (1− β)× EDEV + β × |MRTT − SRTT |

EDEV stands for estimated deviation. α and β are constants

with typical values of 1/4 and 1/8 respectively. Finally, the

timeout for a probe is computed using the equation

T imeout← SRTT + 4× EDEV (2)

C. wtracert Algorithm

The strategies discussed in the previous sections are incor-

porated into the standard traceroute as shown in Algorithm

1.

Unlike the classic traceroute, the modified Algorithm 1 can

exit the while statement prematurely if the variable final

becomes true. This condition becomes true if either the desti-

nation is reached or all the probes in a hop are unreachable.

Thus, premature termination is trivially implemented.

When wtracert starts, it sends 3 probes per hop. Pre-emptive

probes to hosts at a distance greater than one TTL can be

dispatched but is has the potential to cause broadcast storms

Algorithm 1 wtracert(dst)

Require: dst = hostname ∨ dst = hostIP

1: ttl← 1
2: while ttl ≤ 30 ∧ ¬final do

3: for probe = 1→ 3 do

4: send probe(dst, seq, ttl, currtime)
5: end for

6: for n = 1→ 3 do

7: probe⇐ poll(timeout)
8: nprobes ret⇐ nprobes ret+ 1
9: MRTT ⇐ compute mrtt()

10: print(MRTT)
11: srtt estimate(MRTT)
12: if dst reached then

13: final← 1
14: end if

15: end for

16: if nexthop 6= reachable then

17: final← 1
18: end if

19: ttl← ttl + 1
20: end while

especially in the opposite direction [9]. After the probes have

been sent, polling starts with a given timeout. Whenever a reply

to a probe arrives, the sequence number is used to identify the

precise probe for which the corresponding reply is received.

On receipt of a reply, the nprobe ret variable is incremented.

Then, MRTT is computed and printed. Using the measured

RTT, the smoothed RTT and the corresponding timeout value

is computed using the equations 1 and 2. srtt estimate()
procedure is a straightforward implementation of the Van

Jacobson equations.

IV. EXPERIMENTAL RESULTS

Algorithm 1 was implemented and executed in Fedora 13

(2.6.34.9-69). The reference traceroute version used is 1.4a12

with -n option.

To execute wtracert in a wireless network, a Linux-based

laptop was connected to our Institutional LAN via the WiMax

wireless network.

The first top 100 websites were selected from [14]. Both

traceroute and wtracert accept either a hostname or an IP

address. Since the time required for DNS name lookup for

websites could be variable, all the hosts were probed using

their IP addresses. If multiple IP addresses were available for

a website, one IP address was selected at random.

For each IP address, wtracert program is executed, imme-

diately followed by the standard traceroute for the same IP

address. wtracert, on an average, completes tracerouting within

a few seconds. Therefore, the network topology for both the

programs remain roughly the same Such a setup enables a

meaningful comparison of the relative performance of the two

traceroute versions.

 0

 100

 200

 300

 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

TTL [google.com (74.125.236.167)]

Measured RTT
Smoothed RTT

Timeout
Variance

Fig. 1. Optimal Timeout Interval for a successful wtracert session

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 300

 325

 350

 375

 400

 425

1 10 20 30 40 50 60 70 80 90 100

T
im

e
 t
o
 t
ra

c
e
ro

u
te

 (
s
e
c
o
n
d
s
)

a
s
 o

n
 2

3
 J

u
n
e
,
2
0
1
2

Top 100 websites

wtracert
traceroute

Fig. 2. Comparative Performance in WiMax Network

A. Estimated RTT and Timeout

As seen in Figure 1, the measured RTT, marked by ⊙,

swings variably. The smoothed RTT, on the other hand, shows

less perturbations. The variance, or deviation, of the measured

RTT from the estimated RTT is also shown. Thus, the effect

of equation 1 is clearly seen here.

Now, the plot of timeout shows that when measured RTT

varies mildly compared to estimated RTT, the timeout is quite

close to the Estimated RTT. However, with larger swings in

measured RTT, the algorithm reacts by increasing the timeout

quickly. This prevents premature timeouts; after all, if the

timeout is too low, it will expire even before the probe

reply arrives back to the host. The timeout increases very

quickly when the variance of the measured RTT is very high.

Essentially, this behavior is the realization of the equation 2.

B. Performance of wtracert

For each IP address, wtracert and traceroute were executed

turn by turn. The elapsed real time between invocation and ter-

mination of the wtracert and traceroute program were recorded

for comparison. The result so obtained for the wireless network

is shown in Figure 2. The wtracert performs far better than the

standard traceroute.

One primary reason for the sluggish performance of clas-

sic traceroute is the presence of packet filters and firewalls

in today’s Internet which are typically configured to ignore

connection requests to unlikely UDP ports. No valid route can

thus be found using UDP probes.

V. FUTURE DIRECTIONS

Since the firewalls and filters are increasingly blocking

UDP probes in today’s Internet, TCP based probing can be

implemented for wtracert. However, since TCP has a number

of issues with wireless networks, other probe methods need to

be investigated for implementation in wtracert.

VI. CONCLUSION

The classic traceroute is a critical tool in network adminis-

tration and design. However, when a route is broken, it takes an

inordinate amount of time to detect this condition. Especially

in wireless networks where broken routes are common, classic

traceroute becomes less effective.

In this paper, a modification to the basic traceroute algo-

rithm has been proposed. Exponential aging algorithms from

TCP congestion control are used in a novel way to compute

optimal timeouts for traceroute instead. Coupled with early

detection of broken route, wtracert overcomes suboptimal

latency associated with the classic traceroute.

The experimental results clearly demonstrate the superiority

of wtracert over classic traceroute both for wired and wireless

networks.

REFERENCES

[1] Van Jacobson, traceroute, ftp://ftp.ee.lbl.gov/traceroute-1.4a12.tar.gz.
[2] Augustin B., Cuvellier X., Orgogozo B., Viger F., Friedman T., Latapy

M., Magnien C. and Teixeira R., Avoiding traceroute anomalies with Paris

traceroute, Proc. ACM SIGCOMM IMC, Pages 153-158, 2006.
[3] NAGOG traceroute, ftp://ftp.login.com/pub/software/traceroute.
[4] Moors T., Streamlining traceroute by estimating path lengths, Proc. ACM

SIGCOMM 2006, Pages 153-158, 2006.
[5] Paxson V., End-to-end routing behavior in the Internet, Proc. ACM

SIGCOMM, Pages 25-38, 1996.
[6] Katz-Bassett E., Madhyastha H.V., Adhikari V.J., Scott C., Sherry J.,

Wesep P.V., Anderson T. and Krishnamurthy A.,Reverse traceroute, Proc.
of 7th NSDI USENIX conference, 2010.

[7] Mao Z., Rexford J., Wang J. and Katz R.,Towards an accurate AS-level

traceroute tool, Proc. SIGCOMM, pp 365-78, Aug 2003.
[8] McCarthy N., Oppleman V., Antsilevitch E., Kondryukov S., Kanner Z.,

Davis L., Ballard R., Andrei F.and McKim J., Layer Four traceroute,
http://pwhois.org/lft/index.who last downloaded 20th June 2012.

[9] Linux traceroute, traceroute(8), Linux manual page for traceroute(8), 11
October 2006.

[10] Jacobson V., Congestion Avoidance and Control, ACM SIGCOMM’88,
vol. 18, no. 4, August 1988.

[11] Paxon V., Allman M., Chu J., and Sargent M.,Computing TCP’s Re-

transmission Timer, RFC 6298, June 2011.
[12] Karns P. and Partridge C., Improving Round Trip Time Estimates in

Reliable Transport Protocols, ACM SIGCOMM’87, vol. 17, no. 5, August
1987.

[13] F. Begtasevic and P.V. Mieghem, Measurements of the Hopcount in

Internet, Proceedings of Passive and Active Measurements Workshop,
April 2001.

[14] Top 1000 Websites, http://www.google.com/adplanner/static/top1000,
April 2011, last downloaded on 20th June, 2012.

