
PS

Nonwords are essential in lexical decision tasks in
which participants are confronted with strings of letters or
sounds and have to decide whether the stimulus forms an
existing word. Together with word naming, semantic clas-
sification, perceptual identification, and eye-movement
tracking during reading, the lexical decision task is one
of the core instruments in the psycholinguist’s toolbox for
the study of word processing.

Although researchers are concerned particularly with
the quality of their word stimuli (because their investiga-
tion depends on them), there is plenty of evidence that the
nature of the nonwords also has a strong impact on lexical
decision performance. As a rule, the more dissimilar the
nonwords are to the words, the faster are the lexical decision
times and the smaller is the impact of word features such
as word frequency, age of acquisition, and spelling–sound
consistency (e.g., Borowsky & Masson, 1996; Gerhand
& Barry, 1999; Ghyselinck, Lewis, & Brysbaert, 2004;
Gibbs & Van Orden, 1998). For instance, in Gibbs and Van
Orden (Experiment 1), lexical decision times to the words
were shortest (496 msec) when the nonwords were illegal
letter strings (i.e., letter sequences, such as ldfa, that are
not observed in the language), longer (558 msec) when
the nonwords were legal letter strings (e.g., dilt), and still
longer (698 msec) when the nonwords were pseudohomo-
phones (i.e., sounding like real words, e.g., durt). At the
same time, the difference in reaction times (RTs) between
words with a consistent rhyme pronunciation (e.g., beech)
and matched words with an inconsistent rhyme pronun-
ciation (e.g., beard [inconsistent with heard]) increased.
Because of the impact of the nonwords on lexical decision
performance, there is general agreement among research-
ers that nonwords should be legal nonwords, unless there
are theoretical reasons to use illegal nonwords. Legal non-
words that conform to the orthographic and phonological
patterns of a language are also called pseudowords.

Although the requirement of pseudowords solves many
problems for the creation of nonwords in the lexical de-
cision task, there are additional considerations that must
be taken into account. Because lexical decision is, in es-
sence, a signal detection task (e.g., Ratcliff, Gomez, &
McKoon, 2004), participants in a lexical decision task not
only base their decision on whether the stimuli belong to
the language, they also rely on other cues that help to dif-
ferentiate between the word and nonword stimuli. In the
same way that participants learn ties in apparently random
materials generated on the basis of an underlying gram-
mar (i.e., the phenomenon of implicit learning; Reber,
1989), so are participants susceptible to systematic differ-
ences between the word trials (requiring a “yes” response)
and the nonword trials (requiring a “no” response). They
exploit these biases to optimize their responses. Chumb-
ley and Balota’s (1984) study provides an example of this
process. Because of an oversight, in their Experiment 2,
the nonwords were on average one letter shorter than were
the words (stimuli ranged from three to nine letters). This
gave rise to rather fast RTs (566 msec) and small effects of
the word variables under investigation. When Chumbley
and Balota (Experiment 3) repeated the experiment with
proper nonwords, RTs became longer (579 msec) and the
effects became stronger. Another example of a subtle bias
in lexical decision tasks was reported by Rastle and Brys-
baert (2006). They reviewed the literature on the masked
phonological priming effect, where it has been shown that
a target word is recognized faster when it is preceded by
a pseudohomophonic prime than when an orthographic
control is presented. The target word FARM is responded
to faster in a lexical decision task when it is preceded
by the masked prime pharm than when it is preceded by
the control prime gharm. However, Rastle and Brysbaert
noticed that, in these experiments, every time the prime
was a pseudohomophone, it was followed by a word (i.e.,

 627 © 2010 The Psychonomic Society, Inc.

Wuggy: A multilingual pseudoword generator

EMMANUEL KEULEERS AND MARC BRYSBAERT
Ghent University, Ghent, Belgium

Pseudowords play an important role in psycholinguistic experiments, either because they are required for
performing tasks, such as lexical decision, or because they are the main focus of interest, such as in nonword-
reading and nonce-inflection studies. We present a pseudoword generator that improves on current methods.
It allows for the generation of written polysyllabic pseudowords that obey a given language’s phonotactic
constraints. Given a word or nonword template, the algorithm can quickly generate pseudowords that match
the template in subsyllabic structure and transition frequencies without having to search through a list with all
possible candidates. Currently, the program is available for Dutch, English, German, French, Spanish, Serbian,
and Basque, and, with little effort, it can be expanded to other languages.

Behavior Research Methods
2010, 42 (3), 627-633
doi:10.3758/BRM.42.3.627

E. Keuleers, emmanuel.keuleers@ugent.be

PS

628 KEULEERS AND BRYSBAERT

quency is. It would inform the user that the word milk has
8 neighbors and has a summed bigram frequency of 3,582
and that the pseudowords score as follows: pilk (7 neigh-
bors, summed bigram frequency 3,183), malk (12
neighbors, summed bigram frequency 6,329), mirk
(9 neighbors, summed bigram frequency 2,949), and
milp (5 neighbors, summed bigram frequency 3,497).
It would also tell an informed user1 that, on the two cri-
teria, the pseudoword filk may be a better option than is
pilk, because it has 8 neighbors and a summed frequency
of 3,083.

Another way of searching for pseudowords that match
a given word is the ARC nonword database (Rastle et al.,
2002). This database contains all legal monosyllabic En-
glish nonwords with various features (e.g., bigram fre-
quency, trigram frequency, pronunciation, whether or not
the nonword is a pseudohomophone, the consistency of
the rhyme pronunciation). Here again, the user can search
for the pseudoword in the list that best matches the word
on specified criteria.

Limitations of the Available Solutions
A major limitation of the subjective judgment strat-

egy is that the outcome is likely to depend on the judge’s
experience with the language and with nonwords. This
disadvantages young researchers and researchers who
do not fully master the language (e.g., nonnative English
speakers doing research in English). It also introduces the
possibility of experimenter biases, because researchers
may have an idiosyncratic preference to change certain
letters or letter combinations. It further makes it diffi-
cult to equate the “wordlikeness” of nonwords of differ-
ent length. For instance, if only one letter is changed to
make a nonword, the nonword increasingly resembles the
word as the latter becomes longer (compare fand/fund to
fandament/fundament).

The availability of criteria such as the number of neigh-
bors or the summed bigram frequency is a big help for the
researcher. However, at present, this information is largely
limited to short words. The ARC nonword database pro-
vides only information for monosyllabic nonwords, and
the time needed to generate nonwords with WordGen in-
creases rapidly with the length of the nonword, because
the software does not allow researchers to systematically
search the problem space. For instance, the best search
strategy to find good nonwords for milk is to start by gen-
erating many English nonwords with from seven to nine
neighbors, summed bigram frequencies between 3,000
and 4,000, and the letter patterns *ilk, m*lk, mi*k, and
mil*. The latter cannot be done in a single search but re-
quires the researcher to run four searches. In addition, the
algorithm does not search systematically and, in a sparse
region, is likely to come up with the same solution over
and over again, even though another solution may be
available (a way around this is to have many nonwords
generated and to check whether all are the same).

Because of these problems, and because we had to cre-
ate tens of thousands of mono- and disyllabic nonwords
for a number of studies we wanted to run, we decided to
build a more sophisticated algorithm. Because the purpose

the target that sounds like the pseudohomophone). When
Rastle and Brysbaert corrected for this confound, they
observed that the phonological priming effect decreased
from 13 to 9 msec.

For the above reasons, researchers have to be very care-
ful in the design of nonwords. They must make sure that
there are no systematic differences between the words and
the nonwords, other than the fact that the former belong to
the language and the latter do not (see Rastle, Harrington,
& Coltheart, 2002, for a similar message). This require-
ment is particularly relevant when the number of trials is
large and participants have the time to tune in to any bias
in the stimulus materials. For instance, if many more non-
words than words end with the letters -ck, participants are
likely to pick up this correlation and, after some time, will
show faster rejection times for nonwords ending with -ck
and slower acceptance times for words ending with -ck.

Current Options for Making Pseudowords
A review of the literature suggests that researchers have

been using two methods to create pseudowords. The domi-
nant procedure is to start from the word stimuli in the ex-
periment and to change one or more letters in these words
to turn them into pseudowords. For instance, the word milk
can be changed into a nonword by changing any single let-
ter. Hence, we could get nonwords like pilk, malk, mirk, or
milp. In this procedure, the researcher’s judgment is the pri-
mary criterion to evaluate the goodness of the pseudowords.
This judgment, in turn, relies on the constraints picked up
by the researcher from the language (e.g., the observation
that English monosyllabic words can start with the letters
pi- and ma- and can end with the letters -rk and -lp). Argu-
ably, the largest experiment in which this approach was
used is the English Lexicon Project (Balota et al., 2007), in
which the researchers created over 40,000 pseudowords by
changing one or two letters in the word stimuli.

The second approach is used by programs such as
 WordGen (Duyck, Desmet, Verbeke, & Brysbaert, 2004),
which is available for English, Dutch, German, and French,
and MCWord (Medler & Binder, 2005), which is avail-
able only for English. These programs allow the user to
generate a number of pseudowords by stringing together
high-frequency bigrams or trigrams and to compute sta-
tistics that help the user to select the pseudoword that best
matches a given word on a number of criteria. Such a cri-
terion could be the number of words that can be made by
changing a letter (the so-called orthographic neighbors).
For instance, four well-known and four less familiar
 En glish words can be made by changing one letter of the
word milk (silk, mild, mile, mink, mill, bilk, mick, and milt).
So, to match the word milk, we would look for a nonword
that has the same number of orthographic neighbors. An-
other criterion could be the frequencies of the successive
letter pairs in the word (-m, mi, il, lk, k-). Then, we would
try to match the pseudoword on these frequencies (this is
the so-called bigram frequency criterion; sometimes re-
searchers also control for trigram frequencies—i.e., the
frequencies of three-letter sequences). WordGen, for in-
stance, can inform the user about the number of neighbors
a word or a nonword has and what its summed bigram fre-

WUGGY: A MULTILINGUAL PSEUDOWORD GENERATOR 629

lables (e.g., monosyllabic pseudowords are generated on
the basis of monosyllabic words, and disyllabic pseudo-
words are generated on the basis of disyllabic words).

To output orthographic pseudowords, Wuggy is supplied
with a list containing the syllabified orthography of each
word. At first sight, it may seem odd that no phonetic rep-
resentations are used. For the ARC database, for instance,
orthographic pseudowords were made by first generating
phonetic pseudowords and then transcribing them using
phoneme-to-grapheme conversion rules. Wuggy does not
use phonetic representations, but it uses a list of possible
syllable nuclei for each particular language to directly
segment spelled syllables into orthographic subsyllabic
elements. Although there is no principled way to resolve
all ambiguities in segmenting spelled words, this does not
often lead to problems when generating spelled pseudo-
words. Take, for instance, the words house and touch. The
status of u is ambiguous, because, in the spoken syllable
 / ha s/, it can be treated as the consonant / /, which is part
of the coda, whereas in the spoken syllable /t t / it is part
of the nucleus / /. In Wuggy’s English language module,
ou is considered a possible nucleus. Therefore, house and
touch are segmented as h-ou-se and t-ou-ch. Because
Wuggy strings together two segments if they are found
to occur in sequence in some word in the lexicon, we will
get the pseudowords houch (h-ou-ch) and touse (t-ou-se).
Although the pronunciation of these pseudowords is un-
clear, none of the possible pronunciations violate the pho-
notactic constraints of English. For our purposes (i.e., the
generation of spelled pseudowords), this approach seems
sufficient. Of course, the quality of the pseudowords that
are generated also depends on the correct syllabifica-
tion of the words that Wuggy uses to construct its model
from. We hope that users will give feedback about cases in
which the syllabification seems to be unsatisfactory or in
which the segmentation rules give unexpected results, so
that this can be improved in subsequent versions.

A limitation of the Wuggy algorithm is that it does not
generate the pronunciations for orthographic pseudo-
words. This means that Wuggy cannot indicate whether a
word is a pseudohomophone. A solution to this problem
would be to add individual grapheme-to-phoneme con-
version modules for each language, which is beyond the
scope of the program in its current state.

Up to now, we have discussed how Wuggy constructs
a model that allows it to generate all possible pseudo-
words. However, because billions of polysyllabic pseudo-
words can be generated, such a list would not be search-
able within a reasonable time. We resolved this problem
by observing that, in psycholinguistic research, usually
an existing word or stimulus is used as a template for a
pseudoword stimulus to be generated. And, in the case
that pseudowords are required that specifically do not re-
semble a certain template, another template usually can be
specified. Therefore, the bigram chain can be restricted to
generate only words matching the template to a particular
degree, by removing all elements of the chain that do not
match the restrictions. Currently, the bigram chain can
be restricted in two ways. The first is the segment length
criterion. A template such as bridge can be seen as a se-

was to collect data in different languages, we wanted the
algorithm to be applicable to any alphabetic language.

THE WUGGY ALGORITHM2

The traditional method to generate pseudowords, as
was used to fill the ARC nonword database (Rastle et al.,
2002), is based on combining subsyllabic elements that
are legal in the language of choice. A conventional way to
describe a syllable is to divide it into onset, nucleus, and
coda. The element of the syllable that has maximal sonor-
ity is called the nucleus. In most cases, this is a vowel,
although in some languages a consonant with high sonor-
ity, such as r, can also be the nucleus, as in the Serbian
word crn (“black”). The nucleus is an essential element
of every syllable and optionally can be preceded as well
as followed by consonants; these are called, respectively,
the onset (the consonants before the nucleus) and the
coda (the consonants after the nucleus). For instance, by
combining the legal onset b (as in bat) with a legal nu-
cleus u (as in fun) and with a legal coda p (as in ship), we
get the pseudoword bup, which is phonotactically legal in
English. The major disadvantage to this approach is that
it leads to a combinatorial explosion. For monosyllabic
words, the list is still manageable (hundreds of thousands
of pseudowords), but combining elements into polysyl-
labic strings quickly leads to billions of phonotactically
legal possibilities. Finding a pseudoword matching some
specific constraints soon becomes unfeasible, because
there are too many candidates to search.

The Wuggy algorithm resolves this problem by build-
ing a grammar of the lexicon as a bigram3 chain: (1) To
build the bigram chain, a list of syllabified words in a par-
ticular language is required. (2) The algorithm segments
each word in this list into subsyllabic elements. (3) From
each subsyllabic element, a tuple is constructed, consist-
ing of four components: the letters of the subsyllabic ele-
ment, the position of the element in the word, the number
of elements in the word from which it originates, and the
next subsyllabic element. (4) Then, there is a lookup to
see whether a link consisting of the first three components
already exists in the bigram chain. (5) If the link does not
yet exist, it is inserted and the next subsyllabic element is
added as a possible continuation. (6) If it does exist, its
frequency is updated and, if necessary, the next subsyl-
labic element is added to the possible continuations for
that link. (7) When all words in the list have been pro-
cessed, the bigram chain constitutes an inductive phono-
tactic grammar of the language. (8) By recursively iterat-
ing through the chain, we can generate all possible words
and pseudowords.

The algorithm has the built-in restriction that, to gener-
ate sequences of n syllables, only elements originating
from words with n syllables are used, as if there were sepa-
rate grammars for words with different numbers of syl-
lables. This is a careful consideration, based on the facts
that, for instance, the first syllable of a disyllabic word
differs in many respects from the second syllable and that
both differ from monosyllabic words (e.g., the latter are
often longer). Therefore, we used position-dependent syl-

630 KEULEERS AND BRYSBAERT

a segment, even if they are empty (e.g., at has an empty
onset; pro has an empty coda). Thus, in a monosyllabic
word, either the onset, the nucleus, or the coda would be
changed. In a disyllabic word, two segments would be
changed. In the latter case, the algorithm does not require
the changes to be in two different syllables, because such
a constraint usually involves higher frequency deviations
from the template. The default option is, thus, to make as
many changes as there are syllables, although this does
not have to result in exactly one change in every syllable.

To make the operation of the algorithm more concrete,
we will discuss a few examples. First, the best nonwords
for milk, according to the Wuggy algorithm, are misk and
mirl. The transition frequencies between -i- and -sk or -rl
are almost the same as the one between -i- and -lk (a differ-
ence of 1 in favor of -sk and -rl). Of the previously gener-
ated nonwords, the best matching is mirk. The end letters
-irk occur in 13 more monosyllabic words in the corpus
than do the end letters -ilk. The transition frequencies are
also higher for malk (ma- occurs in 34 more monosyllabic
words than does mi-) and pilk (44 more monosyllabic
words start with pi- than with mi-). Finally, the nonword
milp is not produced by Wuggy, because the end sequence
-ilp never occurs in English monosyllabic words. In con-
clusion, of the 4 nonwords we made on the basis of sound
judgment, 3 were too good (i.e., were more wordlike than
the word itself on the transition frequency criterion) and 1
was rather bad (the end sequence -ilp never occurs in En-
glish words).

To illustrate the Wuggy output for a wider range of
words, we collected the best pseudoword matches with
default parameter settings for the English sentence “This
sentence has been modified by the Wuggy algorithm.”
This gave the output “Thas muntence mas boan setified
py thi Giggy alworyard.”

Because the Wuggy algorithm is generic, it can be used
for all languages that have an alphabetic script. As soon as
the program has a list of syllabified words and is informed
about how the syllables are segmented, it can operate.

Table 1 lists the modules for generating orthographic
pseudowords available at the time of writing. Although
researchers with programming skills may be happy to use
the source code of the algorithm, we decided to write an in-
terface that makes the algorithm easy to use for everyone.
In addition, we added a few options so that researchers are
not bound to the choices we made for our research.

quence of subsyllabic elements br-i-dge, with lengths
2–1–3. If we keep only the elements of the bigram chain
that have the same length at the same position, the number
of words that can be generated is much smaller, and the
resulting pseudowords will have exactly the same subsyl-
labic structure as does the template. The second way in
which we can restrict the number of words that can be
generated is by using a frequency criterion. If the bigrams
[_,br], [br,i], [i,dge], and [dge,_] occur with frequencies
125, 25, 4, and 29, respectively, we can filter out all links
that do not occur within a given deviation of this particular
frequency. This restriction makes the Wuggy algorithm
particularly effective, because it is initially set to a very
small value (2 above and below the reference frequencies),
which dramatically reduces the number of words that can
be generated. If this restriction does not result in enough
candidates, a less severe restriction is applied (the next
power of 2), and so on. We call this method of generating
sequences with matching frequencies concentric search.

The concentric search mode turns out to have two
other advantages. First, in the vast majority of cases, the
changes involve two subsyllabic elements that have a low
transition frequency (the number of words in which two
specific subsyllabic elements occur in sequence). These
are easier to replace than are word segments with high
transition frequencies. As an example, a monosyllabic
word ending in -s will virtually always result in a nonword
ending in -s, because there is no replacement of this let-
ter that does not involve a massive change of transition
frequency (given that so many words end in -s). In other
words, the algorithm tends to go for the weakest link in the
word. For the same reason, words with frequent syllables
(e.g., prefixes) tend to keep that syllable, because it cannot
be changed without introducing a major shift in transi-
tion frequency. Second, because the frequency differences
are kept as minimal as possible, the algorithm usually re-
places high-frequency segments by other high-frequency
segments and replaces low-frequency segments by other
low-frequency segments.

When the segment length restriction and the concentric
search mode are used together, the Wuggy algorithm can
often immediately generate pseudowords matching a given
template in transition frequency and subsyllabic structure.

The default option in Wuggy is to generate pseudo-
words that differ from the template in one out of three
segments, where onset and coda are always counted as

Table 1
Subsyllabic Modules for Generating Orthographic Pseudowords

Language Lexicon Source

Basque 18,486 Basque word forms from E-HITZ Perea et al. (2006)

Dutch 293,749 Dutch word forms from the CELEX lexical database Baayen, Piepenbrock, & Gulikers (1995)

English 66,330 English word forms from the CELEX lexical database Baayen et al. (1995)

French 116,194 French word forms from the Lexique 3 database New, Pallier, Brysbaert, & Ferrand (2004)

German 236,890 German word forms from the CELEX lexical database Baayen et al. (1995)

Serbian (Latin and Cyrillic) 144,105 word forms from the frequency dictionary of contempo-
 rary Serbian language

Kostić (1999)

Spanish 31,490 Spanish word forms from the base-lexicon of B-PAL Davis & Perea (2005)

WUGGY: A MULTILINGUAL PSEUDOWORD GENERATOR 631

and searches either for up to 10 sec or until 10 candidates
are generated. Additionally, the candidates are required to
match the subsyllabic structure of the input word, to have
the same length (in letters) as the input word, to have the
fewest possible deviations in transition probabilities from
the input word, and to match two out of three subsyllabic
segments.

Choosing the Run option from the Generate drop-down
menu opens the Results window. Figure 2 shows the out-
put for the words milk and sentence using the default out-
put restrictions and with all output options checked.

Overview of Options
Main window. First column (Word): Reference words

can be entered manually or read from a text file by select-
ing the Open Input Sequences option from the File drop-
down menu. The input file must be in tab-delimited for-
mat. To ensure maximal flexibility and compatibility,
Wuggy reads Unicode (UTF-8) encoded files.

Second column (Syllables): Wuggy automatically syl-
labifies all words it finds in its lexicon. Choosing the Syl-
labify option from the Tools drop-down menu fills the
second column with the syllabified versions of the input
in the first column. For input words that are not found
in the lexicon, a syllabified version should be entered
manually.

Third column (Matching Expression): Typing a regu-
lar expression here requires all generated pseudowords
to match that regular expression. For instance, if only
pseudowords ending in -ing are required, one would type
. ing$ in this column. Information about regular expres-
sions is widely available online (e.g., http://en.wikipedia
.org/wiki/Regular_expression, accessed on December 12,
2009).

Downloading and Installing
Wuggy is available for Macintosh, Windows, and

Linux operating systems at http://crr.ugent.be/Wuggy/.
To install Wuggy on a computer running Mac OS X, the
Wuggy[version].dmg file must be downloaded. Next, the
folder “Wuggy app” must be dragged to the Applications
folder, and the “Wuggy” folder must be dragged to the Ap-
plications Support folder. To install Wuggy on Windows,
the Wuggy-[version]-setup.exe executable must be down-
loaded. This opens a wizard that installs Wuggy. Linux
users can download the source files and start the applica-
tion from the command line.

Overview of Operation
Wuggy has a native look and feel on the different plat-

forms (Mac OS X, Windows, Linux). Figure 1 shows
Wuggy’s main window on OS X. After starting the pro-
gram, a language module should be chosen from the
“General Settings” options on the right. This loads a syl-
labified language lexicon, which allows the program to
compute the model for the language. The lexicon is also
used to syllabify input and to test the lexicality of gener-
ated forms. Loading a language module may take a few
minutes on older computers. In Figure 1, the English lan-
guage module is loaded.

Then, reference words can be input by typing them in
the appropriate column or reading them from a file. In
Figure 1, the words milk and sentence have been input and
then syllabified by choosing the Syllabify option from the
Tools drop-down menu.

When input is given, the program is ready to gener-
ate candidates. The default values for pseudoword gen-
eration are those that we found most appropriate for our
research. By default, Wuggy outputs only pseudowords

Figure 1. Main window of the application.

632 KEULEERS AND BRYSBAERT

Lexicality: Indicates whether the generated form is a
word (W) or a nonword (N). This is particularly useful
with the “Output Type Both” option in the General
Settings.

OLD20: Checking this option computes the average
orthographic Levenshtein distance between the generated
candidate and its 20 most similar words in the lexicon.
This gives a good indication of the neighborhood size and
density of the nonword (Yarkoni, Balota, & Yap, 2008). A
small value of OLD20 indicates that many words can be
made by changing a single letter (by substitution, dele-
tion, or insertion). The difference in OLD20 between the
generated nonword and the reference word is also shown.
Lower values indicate that the candidate has a denser
neighborhood. Setting this option slows down Wuggy
considerably.

Neighbors at edit distance 1: This option outputs the
number of orthographic neighbors at edit distance 1. This
is the number of words that can be made from the candi-
date by substituting, deleting, or inserting a single letter.
Setting this option slows down the program considerably.

Figure 2 shows the output when both OLD20 and Neigh-
bors at edit distance 1 have been selected for the target word
milk. This output clearly shows that all but 1 of the proposed
nonwords have fewer neighbors than does the target word
milk. For instance, misk has 8 neighbors of edit distance 1,
which is 3 fewer than milk. Similarly, the average edit dis-
tance to the 20 closest neighbors is 1.6, which is 0.25 more
than that to milk. Mife looks like a better choice than misk,
because it has 1 neighbor more at edit distance 1 than does
milk, rather than 3 fewer. Given that OLD20 is an important
variable in lexical decision RTs (Yarkoni et al., 2008), re-
searchers may prefer to keep this as close to the word value
as possible, as long as it does not change the difference in
transition frequency too much. This shows the advantage of
having more than 1 candidate proposed by Wuggy.

General settings. Language module: Currently, there
are language modules available for Basque, Dutch, En-
glish, French, German, Serbian, and Spanish.

Output type: This option determines whether Wuggy
outputs only pseudowords, only words, or both. Choosing
“word” makes Wuggy find the closest word neighbors of
a target word.

Maximal number of candidates: The maximum number
of candidates to be generated for each word.

Maximal search time per word: The maximal time that
to be spent on trying to find candidates.

Output restrictions. Match length of subsyllabic seg-
ments: Checking this option causes only candidates with
the same subsyllabic structure as the input word to be out-
put. This option speeds up the output, because there are
fewer candidates to consider.

Match letter length: Checking this option generates
candidates with the same number of letters as the input
word. This option is redundant if the option “Match length
of subsyllabic segments” is checked.

Match transition frequencies (concentric search): This
option operates the concentric search algorithm as de-
scribed above. First, the algorithm tries to generate can-
didates that exactly match the transition frequencies of
the reference word. Then, the maximal allowed deviation
in transition frequencies increases by powers of 2 (i.e.,

2, 4, 8, etc.). Not checking this option results in the
generation of pseudowords without consideration for tran-
sition frequencies. However, because the problem space is
less well defined in that case, it may take longer.

Match subsyllabic segments: Here, a particular ratio of
overlapping segments can be specified. The default value
(2/3) generates candidates that are very wordlike but are
not easily identifiable as related to an existing word.

Output options. Syllables: This will give syllabified
output. Unchecking this option will give plain strings.

Figure 2. Output window with results for the words milk and sentence.

WUGGY: A MULTILINGUAL PSEUDOWORD GENERATOR 633

psycholinguistic indices in Spanish. Behavior Research Methods, 37,
665-671.

Duyck, W., Desmet, T., Verbeke, L. P. C., & Brysbaert, M. (2004).
WordGen: A tool for word selection and nonword generation in Dutch,
English, German, and French. Behavior Research Methods, Instru-
ments, & Computers, 36, 488-499.

Gerhand, S., & Barry, C. (1999). Age-of-acquisition and frequency
effects in speeded word naming. Cognition, 73, B27-B36.

Ghyselinck, M., Lewis, M. B., & Brysbaert, M. (2004). Age of acquisi-
tion and the cumulative-frequency hypothesis: A review of the literature
and a new multi-task investigation. Acta Psychologica, 115, 43-67.

Gibbs, P., & Van Orden, G. C. (1998). Pathway selection’s utility for
control of word recognition. Journal of Experimental Psychology:
Human Perception & Performance, 24, 1162-1187.

KostiĆ, Ð. (1999). Frekvencijski rěcnik savremenog srpskog jezika
[Frequency dictionary of contemporary Serbian language]. Yugosla-
via: University of Belgrade, Institute for Experimental Phonetics and
Speech Pathology and Laboratory for Experimental Psychology.

Medler, D. A., & Binder, J. R. (2005). MCWord: An on-line ortho-
graphic database of the English language. Available at www.neuro
.mcw.edu/mcword/.

New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lex-
ique 2: A new French lexical database. Behavior Research Methods,
Instruments, & Computers, 36, 516-524.

Perea, M., Urkia, M., Davis, C. J., Agirre, A., Laseka, E., & Carrei-
ras, M. (2006). E-Hitz: A word frequency list and a program for deriv-
ing psycholinguistic statistics in an agglutinative language (Basque).
Behavior Research Methods, 38, 610-615.

Rastle, K., & Brysbaert, M. (2006). Masked phonological priming
effects in English: Are they real? Do they matter? Cognitive Psychol-
ogy, 53, 97-145.

Rastle, K., Harrington, J., & Coltheart, M. (2002). 358,534 non-
words: The ARC nonword database. Quarterly Journal of Experimen-
tal Psychology, 55A, 1339-1362.

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model
account of the lexical decision task. Psychological Review, 111, 159-
182.

Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of
Experimental Psychology: General, 118, 219-235.

Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond
Coltheart’s N: A new measure of orthographic similarity. Psycho-
nomic Bulletin & Review, 15, 971-979.

NOTES

1. This information is not given at once. One has to search for four-
letter nonwords with eight neighbors, with a summed bigram frequency
between 3,000 and 4,000, and ending with the letters -ilk.

2. The program is called Wuggy in honor of one of the first studies in-
volving nonwords. In this study, Berko (1958) presented children with a
picture of a birdlike figure and told them “This is a WUG.” Subsequently,
the children saw a picture with two such figures and were told “Now
there is another one. There are two of them. There are two ___.” This test
is known in the literature as the WUG Test.

3. To avoid confusion, it is important to note that bigram is used in its
generic sense (a sub-sequence of two items from a given sequence). In
this context, bigram refers to a sequence of two subsyllabic elements.

(Manuscript received December 17, 2009;
revision accepted for publication March 14, 2010.)

Number of overlapping segments: With this option
checked, the number of segments that overlap in the gen-
erated sequence and the reference sequence is shown as
a fraction.

Deviation statistics: This option shows the largest dif-
ference in transition frequencies between the subsyllabic
segments in the generated sequence and those in the ref-
erence sequence. For instance, if this measure is 14, the
generated sequence contains a transition that occurs in 14
more words than does the equivalent transition in the ref-
erence sequence. The frequencies of all other transitions
are closer to the frequencies of the transitions in the refer-
ence sequence. Checking this option also outputs the sum
of all transition frequency deviations (absolute values)
and a column showing where in the string the maximally
deviating transition is situated.

CONCLUSION

We have written a computer program that allows re-
searchers to find the best matching pseudowords in terms
of subsyllabic structure and transition frequencies be-
tween subsyllabic elements. This algorithm and its as-
sociated user interface are likely to improve the quality
of the nonwords used in lexical decision tasks and other
psycholinguistic experiments. The procedure computes
matching nonwords in very little time and is limited only
by its input lexica where length is considered. Finally, the
algorithm can easily be extended to new languages.

AUTHOR NOTE

Address correspondence to E. Keuleers, Department of Experimental
Psychology, Ghent University, Henri Dunantlaan 2, B-9000, Ghent, Bel-
gium (e-mail: emmanuel.keuleers@ugent.be).

REFERENCES

Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX
lexical database (release 2) [CD-ROM]. Philadelphia: Linguistic Data
Consortium, University of Pennsylvania.

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kess-
ler, B., Loftis, B., et al. (2007). The English Lexicon Project. Be-
havior Research Methods, 39, 445-459.

Berko, J. (1958). The child’s learning of English morphology. Word,
14, 150-177.

Borowsky, R., & Masson, M. E. J. (1996). Semantic ambiguity ef-
fects in word identification. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 22, 63-85. doi:10.1037/0278
-7393.22.1.63

Chumbley, J. I., & Balota, D. A. (1984). A word’s meaning affects the
decision in lexical decision. Memory & Cognition, 12, 590-606.

Davis, C. J., & Perea, M. (2005). BuscaPalabras: A program for deriv-
ing orthographic and phonological neighborhood statistics and other

