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Nonwords are essential in lexical decision tasks in 
which participants are confronted with strings of letters or 
sounds and have to decide whether the stimulus forms an 
existing word. Together with word naming, semantic clas-
sification, perceptual identification, and eye-movement 
tracking during reading, the lexical decision task is one 
of the core instruments in the psycholinguist’s toolbox for 
the study of word processing.

Although researchers are concerned particularly with 
the quality of their word stimuli (because their investiga-
tion depends on them), there is plenty of evidence that the 
nature of the nonwords also has a strong impact on lexical 
decision performance. As a rule, the more dissimilar the 
nonwords are to the words, the faster are the lexical decision 
times and the smaller is the impact of word features such 
as word frequency, age of acquisition, and spelling–sound 
consistency (e.g., Borowsky & Masson, 1996; Gerhand 
& Barry, 1999; Ghyselinck, Lewis, & Brysbaert, 2004; 
Gibbs & Van Orden, 1998). For instance, in Gibbs and Van 
Orden (Experiment 1), lexical decision times to the words 
were shortest (496 msec) when the nonwords were illegal 
letter strings (i.e., letter sequences, such as ldfa, that are 
not observed in the language), longer (558 msec) when 
the nonwords were legal letter strings (e.g., dilt), and still 
longer (698 msec) when the nonwords were pseudohomo-
phones (i.e., sounding like real words, e.g., durt). At the 
same time, the difference in reaction times (RTs) between 
words with a consistent rhyme pronunciation (e.g., beech) 
and matched words with an inconsistent rhyme pronun-
ciation (e.g., beard [inconsistent with heard]) increased. 
Because of the impact of the nonwords on lexical decision 
performance, there is general agreement among research-
ers that nonwords should be legal nonwords, unless there 
are theoretical reasons to use illegal nonwords. Legal non-
words that conform to the orthographic and phonological 
patterns of a language are also called pseudowords.

Although the requirement of pseudowords solves many 
problems for the creation of nonwords in the lexical de-
cision task, there are additional considerations that must 
be taken into account. Because lexical decision is, in es-
sence, a signal detection task (e.g., Ratcliff, Gomez, & 
McKoon, 2004), participants in a lexical decision task not 
only base their decision on whether the stimuli belong to 
the language, they also rely on other cues that help to dif-
ferentiate between the word and nonword stimuli. In the 
same way that participants learn ties in apparently random 
materials generated on the basis of an underlying gram-
mar (i.e., the phenomenon of implicit learning; Reber, 
1989), so are participants susceptible to systematic differ-
ences between the word trials (requiring a “yes” response) 
and the nonword trials (requiring a “no” response). They 
exploit these biases to optimize their responses. Chumb-
ley and Balota’s (1984) study provides an example of this 
process. Because of an oversight, in their Experiment 2, 
the nonwords were on average one letter shorter than were 
the words (stimuli ranged from three to nine letters). This 
gave rise to rather fast RTs (566 msec) and small effects of 
the word variables under investigation. When Chumbley 
and Balota (Experiment 3) repeated the experiment with 
proper nonwords, RTs became longer (579 msec) and the 
effects became stronger. Another example of a subtle bias 
in lexical decision tasks was reported by Rastle and Brys-
baert (2006). They reviewed the literature on the masked 
phonological priming effect, where it has been shown that 
a target word is recognized faster when it is preceded by 
a pseudohomophonic prime than when an orthographic 
control is presented. The target word FARM is responded 
to faster in a lexical decision task when it is preceded 
by the masked prime pharm than when it is preceded by 
the control prime gharm. However, Rastle and Brysbaert 
noticed that, in these experiments, every time the prime 
was a pseudohomophone, it was followed by a word (i.e., 
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quency is. It would inform the user that the word milk has 
8 neighbors and has a summed bigram frequency of 3,582 
and that the pseudowords score as follows: pilk (7 neigh- 
bors, summed bigram frequency  3,183), malk (12 
neighbors, summed bigram frequency  6,329), mirk 
(9 neighbors, summed bigram frequency  2,949), and 
milp (5 neighbors, summed bigram frequency  3,497). 
It would also tell an informed user1 that, on the two cri-
teria, the pseudoword filk may be a better option than is 
pilk, because it has 8 neighbors and a summed frequency 
of 3,083.

Another way of searching for pseudowords that match 
a given word is the ARC nonword database (Rastle et al., 
2002). This database contains all legal monosyllabic En-
glish nonwords with various features (e.g., bigram fre-
quency, trigram frequency, pronunciation, whether or not 
the nonword is a pseudohomophone, the consistency of 
the rhyme pronunciation). Here again, the user can search 
for the pseudoword in the list that best matches the word 
on specified criteria.

Limitations of the Available Solutions
A major limitation of the subjective judgment strat-

egy is that the outcome is likely to depend on the judge’s 
experience with the language and with nonwords. This 
disadvantages young researchers and researchers who 
do not fully master the language (e.g., nonnative English 
speakers doing research in English). It also introduces the 
possibility of experimenter biases, because researchers 
may have an idiosyncratic preference to change certain 
letters or letter combinations. It further makes it diffi-
cult to equate the “wordlikeness” of nonwords of differ-
ent length. For instance, if only one letter is changed to 
make a nonword, the nonword increasingly resembles the 
word as the latter becomes longer (compare fand/fund to 
fandament/fundament).

The availability of criteria such as the number of neigh-
bors or the summed bigram frequency is a big help for the 
researcher. However, at present, this information is largely 
limited to short words. The ARC nonword database pro-
vides only information for monosyllabic nonwords, and 
the time needed to generate nonwords with WordGen in-
creases rapidly with the length of the nonword, because 
the software does not allow researchers to systematically 
search the problem space. For instance, the best search 
strategy to find good nonwords for milk is to start by gen-
erating many English nonwords with from seven to nine 
neighbors, summed bigram frequencies between 3,000 
and 4,000, and the letter patterns *ilk, m*lk, mi*k, and 
mil*. The latter cannot be done in a single search but re-
quires the researcher to run four searches. In addition, the 
algorithm does not search systematically and, in a sparse 
region, is likely to come up with the same solution over 
and over again, even though another solution may be 
available (a way around this is to have many nonwords 
generated and to check whether all are the same).

Because of these problems, and because we had to cre-
ate tens of thousands of mono- and disyllabic nonwords 
for a number of studies we wanted to run, we decided to 
build a more sophisticated algorithm. Because the purpose 

the target that sounds like the pseudohomophone). When 
Rastle and Brysbaert corrected for this confound, they 
observed that the phonological priming effect decreased 
from 13 to 9 msec.

For the above reasons, researchers have to be very care-
ful in the design of nonwords. They must make sure that 
there are no systematic differences between the words and 
the nonwords, other than the fact that the former belong to 
the language and the latter do not (see Rastle, Harrington, 
& Coltheart, 2002, for a similar message). This require-
ment is particularly relevant when the number of trials is 
large and participants have the time to tune in to any bias 
in the stimulus materials. For instance, if many more non-
words than words end with the letters -ck, participants are 
likely to pick up this correlation and, after some time, will 
show faster rejection times for nonwords ending with -ck 
and slower acceptance times for words ending with -ck.

Current Options for Making Pseudowords
A review of the literature suggests that researchers have 

been using two methods to create pseudowords. The domi-
nant procedure is to start from the word stimuli in the ex-
periment and to change one or more letters in these words 
to turn them into pseudowords. For instance, the word milk 
can be changed into a nonword by changing any single let-
ter. Hence, we could get nonwords like pilk, malk, mirk, or 
milp. In this procedure, the researcher’s judgment is the pri-
mary criterion to evaluate the goodness of the pseudowords. 
This judgment, in turn, relies on the constraints picked up 
by the researcher from the language (e.g., the observation 
that English monosyllabic words can start with the letters 
pi- and ma- and can end with the letters -rk and -lp). Argu-
ably, the largest experiment in which this approach was 
used is the English Lexicon Project (Balota et al., 2007), in 
which the researchers created over 40,000 pseudowords by 
changing one or two letters in the word stimuli.

The second approach is used by programs such as 
 WordGen (Duyck, Desmet, Verbeke, & Brysbaert, 2004), 
which is available for English, Dutch, German, and French, 
and  MCWord (Medler & Binder, 2005), which is avail-
able only for English. These programs allow the user to 
generate a number of pseudowords by stringing together 
high-frequency bigrams or trigrams and to compute sta-
tistics that help the user to select the pseudoword that best 
matches a given word on a number of criteria. Such a cri-
terion could be the number of words that can be made by 
changing a letter (the so-called orthographic neighbors). 
For instance, four well-known and four less familiar 
 En glish words can be made by changing one letter of the 
word milk (silk, mild, mile, mink, mill, bilk, mick, and milt). 
So, to match the word milk, we would look for a nonword 
that has the same number of orthographic neighbors. An-
other criterion could be the frequencies of the successive 
letter pairs in the word (-m, mi, il, lk, k-). Then, we would 
try to match the pseudoword on these frequencies (this is 
the so-called bigram frequency criterion; sometimes re-
searchers also control for trigram frequencies—i.e., the 
frequencies of three-letter sequences). WordGen, for in-
stance, can inform the user about the number of neighbors 
a word or a nonword has and what its summed bigram fre-
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lables (e.g., monosyllabic pseudowords are generated on 
the basis of monosyllabic words, and disyllabic pseudo-
words are generated on the basis of disyllabic words).

To output orthographic pseudowords, Wuggy is supplied 
with a list containing the syllabified orthography of each 
word. At first sight, it may seem odd that no phonetic rep-
resentations are used. For the ARC database, for instance, 
orthographic pseudowords were made by first generating 
phonetic pseudowords and then transcribing them using 
phoneme-to-grapheme conversion rules. Wuggy does not 
use phonetic representations, but it uses a list of possible 
syllable nuclei for each particular language to directly 
segment spelled syllables into orthographic subsyllabic 
elements. Although there is no principled way to resolve 
all ambiguities in segmenting spelled words, this does not 
often lead to problems when generating spelled pseudo-
words. Take, for instance, the words house and touch. The 
status of u is ambiguous, because, in the spoken syllable 
 / ha s/, it can be treated as the consonant / /, which is part 
of the coda, whereas in the spoken syllable /t t / it is part 
of the nucleus / /. In Wuggy’s English language module, 
ou is considered a possible nucleus. Therefore, house and 
touch are segmented as h-ou-se and t-ou-ch. Because 
Wuggy strings together two segments if they are found 
to occur in sequence in some word in the lexicon, we will 
get the pseudowords houch (h-ou-ch) and touse (t-ou-se). 
Although the pronunciation of these pseudowords is un-
clear, none of the possible pronunciations violate the pho-
notactic constraints of English. For our purposes (i.e., the 
generation of spelled pseudowords), this approach seems 
sufficient. Of course, the quality of the pseudowords that 
are generated also depends on the correct syllabifica-
tion of the words that Wuggy uses to construct its model 
from. We hope that users will give feedback about cases in 
which the syllabification seems to be unsatisfactory or in 
which the segmentation rules give unexpected results, so 
that this can be improved in subsequent versions.

A limitation of the Wuggy algorithm is that it does not 
generate the pronunciations for orthographic pseudo-
words. This means that Wuggy cannot indicate whether a 
word is a pseudohomophone. A solution to this problem 
would be to add individual grapheme-to-phoneme con-
version modules for each language, which is beyond the 
scope of the program in its current state.

Up to now, we have discussed how Wuggy constructs 
a model that allows it to generate all possible pseudo-
words. However, because billions of polysyllabic pseudo-
words can be generated, such a list would not be search-
able within a reasonable time. We resolved this problem 
by observing that, in psycholinguistic research, usually 
an existing word or stimulus is used as a template for a 
pseudoword stimulus to be generated. And, in the case 
that pseudowords are required that specifically do not re-
semble a certain template, another template usually can be 
specified. Therefore, the bigram chain can be restricted to 
generate only words matching the template to a particular 
degree, by removing all elements of the chain that do not 
match the restrictions. Currently, the bigram chain can 
be restricted in two ways. The first is the segment length 
criterion. A template such as bridge can be seen as a se-

was to collect data in different languages, we wanted the 
algorithm to be applicable to any alphabetic language.

THE WUGGY ALGORITHM2

The traditional method to generate pseudowords, as 
was used to fill the ARC nonword database (Rastle et al., 
2002), is based on combining subsyllabic elements that 
are legal in the language of choice. A conventional way to 
describe a syllable is to divide it into onset, nucleus, and 
coda. The element of the syllable that has maximal sonor-
ity is called the nucleus. In most cases, this is a vowel, 
although in some languages a consonant with high sonor-
ity, such as r, can also be the nucleus, as in the Serbian 
word crn (“black”). The nucleus is an essential element 
of every syllable and optionally can be preceded as well 
as followed by consonants; these are called, respectively, 
the onset (the consonants before the nucleus) and the 
coda (the consonants after the nucleus). For instance, by 
combining the legal onset b (as in bat) with a legal nu-
cleus u (as in fun) and with a legal coda p (as in ship), we 
get the pseudoword bup, which is phonotactically legal in 
English. The major disadvantage to this approach is that 
it leads to a combinatorial explosion. For monosyllabic 
words, the list is still manageable (hundreds of thousands 
of pseudowords), but combining elements into polysyl-
labic strings quickly leads to billions of phonotactically 
legal possibilities. Finding a pseudoword matching some 
specific constraints soon becomes unfeasible, because 
there are too many candidates to search.

The Wuggy algorithm resolves this problem by build-
ing a grammar of the lexicon as a bigram3 chain: (1) To 
build the bigram chain, a list of syllabified words in a par-
ticular language is required. (2) The algorithm segments 
each word in this list into subsyllabic elements. (3) From 
each subsyllabic element, a tuple is constructed, consist-
ing of four components: the letters of the subsyllabic ele-
ment, the position of the element in the word, the number 
of elements in the word from which it originates, and the 
next subsyllabic element. (4) Then, there is a lookup to 
see whether a link consisting of the first three components 
already exists in the bigram chain. (5) If the link does not 
yet exist, it is inserted and the next subsyllabic element is 
added as a possible continuation. (6) If it does exist, its 
frequency is updated and, if necessary, the next subsyl-
labic element is added to the possible continuations for 
that link. (7) When all words in the list have been pro-
cessed, the bigram chain constitutes an inductive phono-
tactic grammar of the language. (8) By recursively iterat-
ing through the chain, we can generate all possible words 
and pseudowords.

The algorithm has the built-in restriction that, to gener-
ate sequences of n syllables, only elements originating 
from words with n syllables are used, as if there were sepa-
rate grammars for words with different numbers of syl-
lables. This is a careful consideration, based on the facts 
that, for instance, the first syllable of a disyllabic word 
differs in many respects from the second syllable and that 
both differ from monosyllabic words (e.g., the latter are 
often longer). Therefore, we used position-dependent syl-
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a segment, even if they are empty (e.g., at has an empty 
onset; pro has an empty coda). Thus, in a monosyllabic 
word, either the onset, the nucleus, or the coda would be 
changed. In a disyllabic word, two segments would be 
changed. In the latter case, the algorithm does not require 
the changes to be in two different syllables, because such 
a constraint usually involves higher frequency deviations 
from the template. The default option is, thus, to make as 
many changes as there are syllables, although this does 
not have to result in exactly one change in every syllable.

To make the operation of the algorithm more concrete, 
we will discuss a few examples. First, the best nonwords 
for milk, according to the Wuggy algorithm, are misk and 
mirl. The transition frequencies between -i- and -sk or -rl 
are almost the same as the one between -i- and -lk (a differ-
ence of 1 in favor of -sk and -rl ). Of the previously gener-
ated nonwords, the best matching is mirk. The end letters 
-irk occur in 13 more monosyllabic words in the corpus 
than do the end letters -ilk. The transition frequencies are 
also higher for malk (ma- occurs in 34 more monosyllabic 
words than does mi-) and pilk (44 more monosyllabic 
words start with pi- than with mi-). Finally, the nonword 
milp is not produced by Wuggy, because the end sequence 
-ilp never occurs in English monosyllabic words. In con-
clusion, of the 4 nonwords we made on the basis of sound 
judgment, 3 were too good (i.e., were more wordlike than 
the word itself on the transition frequency criterion) and 1 
was rather bad (the end sequence -ilp never occurs in En-
glish words).

To illustrate the Wuggy output for a wider range of 
words, we collected the best pseudoword matches with 
default parameter settings for the English sentence “This 
sentence has been modified by the Wuggy algorithm.” 
This gave the output “Thas muntence mas boan setified 
py thi Giggy alworyard.”

Because the Wuggy algorithm is generic, it can be used 
for all languages that have an alphabetic script. As soon as 
the program has a list of syllabified words and is informed 
about how the syllables are segmented, it can operate.

Table 1 lists the modules for generating orthographic 
pseudowords available at the time of writing. Although 
researchers with programming skills may be happy to use 
the source code of the algorithm, we decided to write an in-
terface that makes the algorithm easy to use for everyone. 
In addition, we added a few options so that researchers are 
not bound to the choices we made for our research.

quence of subsyllabic elements br-i-dge, with lengths 
2–1–3. If we keep only the elements of the bigram chain 
that have the same length at the same position, the number 
of words that can be generated is much smaller, and the 
resulting pseudowords will have exactly the same subsyl-
labic structure as does the template. The second way in 
which we can restrict the number of words that can be 
generated is by using a frequency criterion. If the bigrams 
[_,br], [br,i], [i,dge], and [dge,_] occur with frequencies 
125, 25, 4, and 29, respectively, we can filter out all links 
that do not occur within a given deviation of this particular 
frequency. This restriction makes the Wuggy algorithm 
particularly effective, because it is initially set to a very 
small value (2 above and below the reference frequencies), 
which dramatically reduces the number of words that can 
be generated. If this restriction does not result in enough 
candidates, a less severe restriction is applied (the next 
power of 2), and so on. We call this method of generating 
sequences with matching frequencies concentric search.

The concentric search mode turns out to have two 
other advantages. First, in the vast majority of cases, the 
changes involve two subsyllabic elements that have a low 
transition frequency (the number of words in which two 
specific subsyllabic elements occur in sequence). These 
are easier to replace than are word segments with high 
transition frequencies. As an example, a monosyllabic 
word ending in -s will virtually always result in a  nonword 
ending in -s, because there is no replacement of this let-
ter that does not involve a massive change of transition 
frequency (given that so many words end in -s). In other 
words, the algorithm tends to go for the weakest link in the 
word. For the same reason, words with frequent syllables 
(e.g., prefixes) tend to keep that syllable, because it cannot 
be changed without introducing a major shift in transi-
tion frequency. Second, because the frequency differences 
are kept as minimal as possible, the algorithm usually re-
places high-frequency segments by other high-frequency 
segments and replaces low-frequency segments by other 
low-frequency segments.

When the segment length restriction and the concentric 
search mode are used together, the Wuggy algorithm can 
often immediately generate pseudowords matching a given 
template in transition frequency and subsyllabic structure.

The default option in Wuggy is to generate pseudo-
words that differ from the template in one out of three 
segments, where onset and coda are always counted as 

Table 1 
Subsyllabic Modules for Generating Orthographic Pseudowords

Language  Lexicon  Source

Basque 18,486 Basque word forms from E-HITZ Perea et al. (2006)

Dutch 293,749 Dutch word forms from the CELEX lexical database Baayen, Piepenbrock, & Gulikers (1995)

English 66,330 English word forms from the CELEX lexical database Baayen et al. (1995)

French 116,194 French word forms from the Lexique 3 database New, Pallier, Brysbaert, & Ferrand (2004)

German 236,890 German word forms from the CELEX lexical database Baayen et al. (1995)

Serbian (Latin and Cyrillic) 144,105 word forms from the frequency dictionary of contempo- 
 rary Serbian language

Kostić (1999)

Spanish  31,490 Spanish word forms from the base-lexicon of B-PAL  Davis & Perea (2005)
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and searches either for up to 10 sec or until 10 candidates 
are generated. Additionally, the candidates are required to 
match the subsyllabic structure of the input word, to have 
the same length (in letters) as the input word, to have the 
fewest possible deviations in transition probabilities from 
the input word, and to match two out of three subsyllabic 
segments.

Choosing the Run option from the Generate drop-down 
menu opens the Results window. Figure 2 shows the out-
put for the words milk and sentence using the default out-
put restrictions and with all output options checked.

Overview of Options
Main window. First column (Word): Reference words 

can be entered manually or read from a text file by select-
ing the Open Input Sequences option from the File drop-
down menu. The input file must be in tab-delimited for-
mat. To ensure maximal flexibility and compatibility, 
Wuggy reads Unicode (UTF-8) encoded files.

Second column (Syllables): Wuggy automatically syl-
labifies all words it finds in its lexicon. Choosing the Syl-
labify option from the Tools drop-down menu fills the 
second column with the syllabified versions of the input 
in the first column. For input words that are not found 
in the lexicon, a syllabified version should be entered 
manually.

Third column (Matching Expression): Typing a regu-
lar expression here requires all generated pseudowords 
to match that regular expression. For instance, if only 
pseudowords ending in -ing are required, one would type 
. ing$ in this column. Information about regular expres-
sions is widely available online (e.g., http://en.wikipedia 
.org/wiki/Regular_expression, accessed on December 12, 
2009).

Downloading and Installing
Wuggy is available for Macintosh, Windows, and 

Linux operating systems at http://crr.ugent.be/Wuggy/. 
To install Wuggy on a computer running Mac OS X, the 
Wuggy[version].dmg file must be downloaded. Next, the 
folder “Wuggy app” must be dragged to the Applications 
folder, and the “Wuggy” folder must be dragged to the Ap-
plications Support folder. To install Wuggy on Windows, 
the Wuggy-[version]-setup.exe executable must be down-
loaded. This opens a wizard that installs Wuggy. Linux 
users can download the source files and start the applica-
tion from the command line.

Overview of Operation
Wuggy has a native look and feel on the different plat-

forms (Mac OS X, Windows, Linux). Figure 1 shows 
Wuggy’s main window on OS X. After starting the pro-
gram, a language module should be chosen from the 
“General Settings” options on the right. This loads a syl-
labified language lexicon, which allows the program to 
compute the model for the language. The lexicon is also 
used to syllabify input and to test the lexicality of gener-
ated forms. Loading a language module may take a few 
minutes on older computers. In Figure 1, the English lan-
guage module is loaded.

Then, reference words can be input by typing them in 
the appropriate column or reading them from a file. In 
Figure 1, the words milk and sentence have been input and 
then syllabified by choosing the Syllabify option from the 
Tools drop-down menu.

When input is given, the program is ready to gener-
ate candidates. The default values for pseudoword gen-
eration are those that we found most appropriate for our 
research. By default, Wuggy outputs only pseudowords 

Figure 1. Main window of the application.
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Lexicality: Indicates whether the generated form is a 
word (W) or a nonword (N). This is particularly useful 
with the “Output Type  Both” option in the General 
Settings.

OLD20: Checking this option computes the average 
orthographic Levenshtein distance between the generated 
candidate and its 20 most similar words in the lexicon. 
This gives a good indication of the neighborhood size and 
density of the nonword (Yarkoni, Balota, & Yap, 2008). A 
small value of OLD20 indicates that many words can be 
made by changing a single letter (by substitution, dele-
tion, or insertion). The difference in OLD20 between the 
generated nonword and the reference word is also shown. 
Lower values indicate that the candidate has a denser 
neighborhood. Setting this option slows down Wuggy 
considerably.

Neighbors at edit distance 1: This option outputs the 
number of orthographic neighbors at edit distance 1. This 
is the number of words that can be made from the candi-
date by substituting, deleting, or inserting a single letter. 
Setting this option slows down the program considerably.

Figure 2 shows the output when both OLD20 and Neigh-
bors at edit distance 1 have been selected for the target word 
milk. This output clearly shows that all but 1 of the proposed 
nonwords have fewer neighbors than does the target word 
milk. For instance, misk has 8 neighbors of edit distance 1, 
which is 3 fewer than milk. Similarly, the average edit dis-
tance to the 20 closest neighbors is 1.6, which is 0.25 more 
than that to milk. Mife looks like a better choice than misk, 
because it has 1 neighbor more at edit distance 1 than does 
milk, rather than 3 fewer. Given that OLD20 is an important 
variable in lexical decision RTs (Yarkoni et al., 2008), re-
searchers may prefer to keep this as close to the word value 
as possible, as long as it does not change the difference in 
transition frequency too much. This shows the advantage of 
having more than 1 candidate proposed by Wuggy.

General settings. Language module: Currently, there 
are language modules available for Basque, Dutch, En-
glish, French, German, Serbian, and Spanish.

Output type: This option determines whether Wuggy 
outputs only pseudowords, only words, or both. Choosing 
“word” makes Wuggy find the closest word neighbors of 
a target word.

Maximal number of candidates: The maximum number 
of candidates to be generated for each word.

Maximal search time per word: The maximal time that 
to be spent on trying to find candidates.

Output restrictions. Match length of subsyllabic seg-
ments: Checking this option causes only candidates with 
the same subsyllabic structure as the input word to be out-
put. This option speeds up the output, because there are 
fewer candidates to consider.

Match letter length: Checking this option generates 
candidates with the same number of letters as the input 
word. This option is redundant if the option “Match length 
of subsyllabic segments” is checked.

Match transition frequencies (concentric search): This 
option operates the concentric search algorithm as de-
scribed above. First, the algorithm tries to generate can-
didates that exactly match the transition frequencies of 
the reference word. Then, the maximal allowed deviation 
in transition frequencies increases by powers of 2 (i.e., 

2, 4, 8, etc.). Not checking this option results in the 
generation of pseudowords without consideration for tran-
sition frequencies. However, because the problem space is 
less well defined in that case, it may take longer.

Match subsyllabic segments: Here, a particular ratio of 
overlapping segments can be specified. The default value 
(2/3) generates candidates that are very wordlike but are 
not easily identifiable as related to an existing word.

Output options. Syllables: This will give syllabified 
output. Unchecking this option will give plain strings.

Figure 2. Output window with results for the words milk and sentence.
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NOTES

1. This information is not given at once. One has to search for four-
letter nonwords with eight neighbors, with a summed bigram frequency 
between 3,000 and 4,000, and ending with the letters -ilk.

2. The program is called Wuggy in honor of one of the first studies in-
volving nonwords. In this study, Berko (1958) presented children with a 
picture of a birdlike figure and told them “This is a WUG.” Subsequently, 
the children saw a picture with two such figures and were told “Now 
there is another one. There are two of them. There are two ___.” This test 
is known in the literature as the WUG Test.

3. To avoid confusion, it is important to note that bigram is used in its 
generic sense (a sub-sequence of two items from a given sequence). In 
this context, bigram refers to a sequence of two subsyllabic elements.

(Manuscript received December 17, 2009; 
revision accepted for publication March 14, 2010.)

Number of overlapping segments: With this option 
checked, the number of segments that overlap in the gen-
erated sequence and the reference sequence is shown as 
a fraction.

Deviation statistics: This option shows the largest dif-
ference in transition frequencies between the subsyllabic 
segments in the generated sequence and those in the ref-
erence sequence. For instance, if this measure is 14, the 
generated sequence contains a transition that occurs in 14 
more words than does the equivalent transition in the ref-
erence sequence. The frequencies of all other transitions 
are closer to the frequencies of the transitions in the refer-
ence sequence. Checking this option also outputs the sum 
of all transition frequency deviations (absolute values) 
and a column showing where in the string the maximally 
deviating transition is situated.

CONCLUSION

We have written a computer program that allows re-
searchers to find the best matching pseudowords in terms 
of subsyllabic structure and transition frequencies be-
tween subsyllabic elements. This algorithm and its as-
sociated user interface are likely to improve the quality 
of the nonwords used in lexical decision tasks and other 
psycholinguistic experiments. The procedure computes 
matching nonwords in very little time and is limited only 
by its input lexica where length is considered. Finally, the 
algorithm can easily be extended to new languages.
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