W_{v} Paths on the Torus
D. W. Barnette
Department of Mathematics, University of California, Davis, CA 95616, USA

Abstract

We say that a cell complex has the W_{v} property provided any two vertices can be joined by a path that never returns to a facet once it leaves it. The boundaries of convex polytopes have been shown to have the W_{V} property for polytopes of dimensions at most 3 . We extend the three-dimensional result to polyhedral maps on the torus by showing that all such maps have the W_{v} property. We also show that the W_{V} property for all polyhedral maps on manifolds of a given genus is equivalent to the property that for all maps on manifolds of that genus each two faces lie in a subcomplex that is a cell.

1. Introduction

One of the most important unsolved problems in the theory of convex polytopes is the Hirsch conjecture, that each two vertices of a d-polytope with n facets can be joined by a path of length at most $n-d$.

We say that a path in a cell complex is a W_{v} path if and only if its intersection with each face is connected (i.e., it never returns to a face once it leaves it). We say that a cell complex has the W_{v} property if and only if each two vertices can be joined by a W_{V} path. The truth of the Hirsch conjecture is implied by the W_{V} property for polytopes (see [3]). The W_{V} conjecture is known to be true for polytopes of dimensions at most 3 [3].

Larman [4] has found a topological 2-cell complex that does not have the \boldsymbol{W}_{V} property. Mani and Walkup [5] have found a triangulated 3-sphere whose dual fails to have the W_{V} property. The author has proved the W_{V} property for projective plane polyhedral maps [2] and in this paper we prove it for toroidal polyhedral maps. For polyhedral maps in other surfaces it is not known whether the W_{V} property holds.

2. Definitions

If a graph G is embedded in a manifold M, then the closures of the connected components of $M-G$ are called the faces of G. If each face is a closed cell, each
vertex is of valence at least three and each two faces meet on a vertex, an edge, or not at all, then G is a polyhedral map and we say that faces meet properly. If M is the torus, then we call G a toroidal polyhedral map, or TPM.

If P is a path in G with vertices x and y on P, then $P[x, y]$ denotes the portion of P joining x and y. If we wish to exclude an endpoint of $P[x, y]$ we use a parenthesis rather than a bracket. A path is simple provided it has no selfintersections. All paths in this paper are simple paths.

If P is a path in G whose intersection with a face F is not connected, then there exist vertices x and y of F such that $P[x, y] \cap F=\{x, y\}$. The path $P[x, y]$ is called a revisit of F by the path P. Let x and y be two vertices of a face F of a TPM in a torus T and let Γ_{1} be a path along F from x to y. If $P[x, y]$ is a revisit such that $P[x, y] \cup \Gamma_{1}$ bounds a cell that is a subset of T, then we say that $P[x, y]$ is a planar revisit, otherwise we say that $P[x, y]$ is nonplanar.

By a chain of faces in a polyhedral map we mean a sequence of faces $F_{1}, F_{2}, \ldots, F_{n}$ such that $F_{i} \cap F_{i+1}$ is an edge for $1 \leq i \leq n-1$.

If P is a path with vertices x and y, then $d(x, y)$ denotes the number of edges of $P[x, y]$. If there is possible ambiguity we say " $d(x, y)$ along P." For any path $P[x, y], d(x, y)$ is called its length.

3. The Main Theorem

We prove the existence of W_{V} paths joining any two vertices x and y in a TPM by proving that joining x and y is a path having only planar revisits. It then follows from the following lemma of the author that a W_{v} path joins x and y.

Lemma 1. If x and y are two vertices of a polyhedral manifold M joined by a path having only planar revisits, then a W_{v} path joins x and y in M.

The proof of Lemma 1 is found in [2].

Theorem 1. Any two vertices of a TPM can be joined by a W_{v} path.

Proof. Let x be a vertex of a TPM M. Let V be the set of all vertices of M which can be joined to x by a W_{v} path. Suppose there exist vertices of M not in V. Then there will exist a vertex y_{0} not in V and a vertex y_{1} in V such that $y_{0} y_{1}$ is an edge. Let P_{1} be a W_{V} path from x to y_{1} and let $P_{0}=P_{1} \cup y_{0} y_{1}$. We assume that among all choices of y_{0}, y_{1}, and P_{1} we have chosen ones which minimize the length of P_{0}.

We now show that P_{0} can be modified to produce a path from x to y_{0} that is either a W_{V} path or a path with only planar revisits. Since $y_{0} \notin V$, there is a face F revisited by P_{0}. Since P_{1} has no revisits, $P_{0} \cap F=\left\{y_{0}\right\} \cup P_{2}\left[x_{1}, x_{2}\right]$ where P_{2} is a subpath of P_{1}. We assume that the order of the vertices on P_{0} is $x, x_{1}, x_{2}, y_{1}, y_{0}$. Among all faces having nonplanar revisits by P_{0} we assume that F is chosen

Fig. 1
such that $d\left(x, x_{1}\right)$ along P_{0} is minimal. If there is no such face F, then by Lemma 1 we are done.

We replace $P_{0}\left[y_{0}, x_{1}\right]$ by a path along F as in Fig. 1, producing a path P_{3} from x to y_{0}. If P_{3} has a nonplanar revisit to a face F_{1}, then F_{1} must meet $P_{3}\left(x_{1}, x\right]$, for otherwise F_{1} and F would meet improperly.

The face F_{1} will not meet y_{0} because the minimality of $d\left(x, x_{1}\right)$ would be violated. Thus $F_{1} \cap P_{3}=P_{4}\left[x_{3}, x_{4}\right] \cup P_{5}\left[x_{5}, x_{6}\right]$ where $P_{4} \subseteq P_{3}\left(x_{1}, x\right], P_{5} \subseteq$ $P_{3}\left(y_{0}, x\right)$ and the order of the vertices on P_{3} is $x, x_{3}, x_{4}, x_{1}, x_{5}, x_{6}, y_{0}$ (of course, some of these can be the same vertex, e.g., x_{6} could equal x_{5}).

Topologically there is only one way $F_{1} \cup P_{3}\left[x_{4}, x_{5}\right]$ can be embedded (see Fig. 2). We note that since P_{1} is a W_{V} path, F_{1} misses $P_{0}\left[y_{0}, x_{2}\right]$. We now assume that F_{1} is chosen so that $d\left(x, x_{3}\right)$ along P_{3} is minimized. We now replace $P_{3}\left[x_{6}, x_{3}\right]$ by a path along F_{1}, as in Fig. 2, producing a path P_{6} from x to y_{0}. Let A be the cell bounded by $P_{6}\left[y_{0}, x_{4}\right] \cup P_{0}\left[x_{4}, y_{0}\right]$ (see Fig. 2(a)) or by $P_{6}\left[y_{0}, x_{3}\right] \cup P_{1}\left[x_{3}, y_{0}\right]$ (see Fig. 2(b)).

Suppose x is in A. For P_{6} to have a nonplanar revisit, a face G would have to lie outside of A (for the revisit to be nonplanar) and meet y_{0} and x_{3} (with $x_{3}=x_{4}$) or x_{6} and x_{3} (with $x_{6}=x_{5}$). The first case is ruled out by the minimality

Fig. 2

Fig. 3
condition on F (F minimizes $d\left(x, x_{1}\right)$). In the second case, since the revisit is nonplanar, F_{1} meets G improperly. Thus all revisits to P_{6} are planar when x is in A.

Suppose x is not in A. The only nonplanar revisits possible would be to faces lying outside A meeting vertices of $P_{6}\left[x, x_{4}\right]$ and vertices of $P_{6}\left[x_{6}, y_{0}\right)$. The only vertex of $P_{6}\left[x_{6}, y_{0}\right)$ accessible to such a face would be x_{6} (in the case $x_{6}=x_{5}$).

Let F_{2} be such a revisited face. Then $F_{2} \cap P_{6}=\left\{x_{6}\right\} \cup P_{7}\left[x_{7}, x_{8}\right]$ where $P_{7} \subseteq$ $P_{6}\left[x, x_{3}\right)$ and the order of the vertices is $x, x_{7}, x_{8}, x_{3}, x_{4}$, etc. (Note F_{2} misses $P_{0}\left[x_{3}, x_{4}\right]$ because F_{2} and F_{1} must meet properly.) We assume that F_{2} is chosen such that $d\left(x_{7}, x\right)$ is minimal.

Let $F_{2} \cap F=P_{9}\left[x_{6}, x_{9}\right]$. We construct a path P_{8} from P_{3} by replacing $P_{3}\left[x_{6}, x_{7}\right]$ by a path along F_{2} as in Fig. 3. Let B be the cell bounded by $P_{8}\left[x_{9}, x_{8}\right] \cup P_{0}\left[x_{1}, x_{8}\right]$ together with the path along F from x_{9} to x_{1}, missing y_{0} (see Fig. 3(a)) or $P_{8}\left[x_{9}, x_{7}\right] \cup P_{0}\left[x_{1}, x_{7}\right]$ together with a path along F (see Fig. 3(b)). Note that F_{2} misses $P_{0}\left(x_{8}, x_{1}\right)$ because P_{1} is a W_{v} path, thus B is a cell. Any face in B can have only planar revisits by P_{8}. If a face F_{3} lies outside B and has a nonplanar revisit by P_{8}, then it must meet $P_{8}\left[y_{0}, x_{6}\right]$ and $P_{8}\left[x_{8}, x\right]$.

If F_{3} meets x_{6} and $P_{7}\left[x_{7}, x_{8}\right]$ and if the revisit is nonplanar, then F_{2} and F_{3} meet improperly. The face F_{1} prevents F_{3} meeting $P_{7}\left[x_{7}, x_{8}\right]$ and vertices of $P_{8}\left(y_{0}, x_{6}\right)$. The minimality condition on F prevents F_{3} from meeting y_{0}. If, however, F_{3} meets x_{6} and $P_{8}\left(x_{7}, x\right]$, then the minimality of $d\left(x_{7}, x\right)$ is violated. Thus all revisits of P_{8} are planar.

In all cases we have obtained a path from x to y_{0} with only planar revisits and by Lemma 1 we have a W_{V} path from x to y_{0} contradicting the assumption that $y_{0} \notin V$. Thus V is the entire set of vertices of M and we are done.

4. A Necessary and Sufficient Condition for $\boldsymbol{W}_{\boldsymbol{v}}$ Paths

It is interesting to consider the duals of W_{v} paths. We need one more lemma to do so.

Lemma 2. The dual of a TPM is a TPM.

This follows from a theorem by the author [1]
Corollary 1. Any two faces of a TPM lie in a subcomplex that is a cell.

Proof. Let F_{1} and F_{n} be two faces of TPM T and let x_{1} and x_{n} be the corresponding vertices in the dual T^{*} of T. Let $P=x_{1} x_{2} \cdots x_{n}$ be a W_{v} path in T^{*} and let $F_{1}, F_{2}, \ldots, F_{n}$ be the corresponding chain of faces in T. We show by induction on k that $F_{1} \cup F_{2} \cup \cdots \cup F_{k}$ is a cell. Clearly, F_{1} is a cell, we assume $F_{1} \cup \cdots \cup F_{k-1}$ is a cell. It now suffices to show that $F_{k} \cap\left(F_{1} \cup \cdots \cup F_{k-1}\right)$ is an edge. Suppose F_{k} and $F_{j}, j<k$, have a vertex in common. Then x_{k} and x_{j} lie on a face F in T^{*}, and thus the path $x_{j} x_{j+1} \cdots x_{k}$ lies on that face. It follows that $F_{j}, F_{j+1}, \ldots, F_{k}$ meet at a vertex x. By the construction of the dual, $F_{k} \cap F_{k-1}$ is an edge e, and x is a vertex of e. Thus $F_{k} \cap\left(F_{1} \cup \cdots \cup F_{n-1}\right)=e$ and $F_{1} \cup \cdots \cup F_{k}$ is a cell.

We note that the proof of Corollary 1 works for polyhedral maps on manifolds of any genus whenever all polyhedral manifolds of that genus have the W_{V} property.

Theorem 2. Polyhedral maps on manifolds of a given genus have the W_{V} property if and only if each two faces of every polyhedral map on the manifolds of that genus lie in a subcomplex that is a cell.

Proof. The above observation shows that the W_{V} property implies each two faces lie in a cell. Assume now that each two faces of every polyhedral map of genus g lie in a cell. Assume x_{1} and x_{n} are two vertices of a polyhedral map on a manifold T of genus g. By Lemma 2, the dual T^{*} of T is a polyhedral map. Let F_{1} and F_{n} be the faces of T^{*} corresponding to x_{1} and x_{n}. Let C be a subcomplex of T^{*} that is a cell containing F_{1} and F_{n}. Let $F_{1}, F_{2}, \ldots, F_{n}$ be a chain of faces in C such that $F_{i} \cap F_{i+1}$ is an edge for $i=1, \ldots, n-1$. Corresponding to this chain is a path $P=x_{1} x_{2} \cdots x_{n}$ in T.

We assume that the dual of T is constructed in the usual way with vertices of T^{*} in the faces of T and two vertices a and b joined whenever the corresponding faces meet on an edge e, with the edge $a b$ crossing the edge e. Now P lies in the cell C. Any face F of T revisited by P will correspond to a vertex z of T^{*}.

Case I. Vertex z lies in the interior of C. In this case F lies in C. Since P lies in C, the revisit is planar.

Case II. Vertex z lies on the boundary of C. Since C is a cell the boundary of C will contain exactly two edges e_{1} and e_{2} meeting z. These two edges will separate the set of faces of T^{*} meeting z into two sets of faces, $H_{1}, H_{2}, \ldots, H_{k}$ lying in C and H_{k+1}, \ldots, H_{j} lying outside C, with $H_{1}, H_{2}, \ldots, H_{k}, \ldots, H_{j}$ the
cyclic ordering about z. The path P meets F at vertices that correspond to H_{1}, \ldots, H_{k}, thus there is a path in T along F lying in C joining any two connected components of $P \cap F$. Thus any such revisit is planar.

Since all revisits of P are planar, we are done by Lemma 1.

References

1. D. Barnette, Decompositions of homology manifolds and their graphs, Israel J. Math. 41 (1982), 203-212.
2. D. Barnette, W_{V} paths in the projective plane, Discrete Math. 62 (1986), 127-131.
3. V. Klee, Paths on polyhedra, I, J. Soc. Indust. Appl. Math. 13 (1965), 946-956.
4. D. Larman, Paths on polytopes, Proc. London Math. Soc. 20 (1970), 161-178.
5. P. Mani and D. Walkup, A 3 -sphere counterexample to the W_{v} path conjecture, Math. Oper. Res. 5(4) (1980), 595-598.

Received May 25, 1988.

