
Neuroinform (2015) 13:471–486

DOI 10.1007/s12021-015-9271-8

SOFTWARE ORIGINAL ARTICLE

Wyrm: A Brain-Computer Interface Toolbox in Python

Bastian Venthur1
· Sven Dähne1,2,3

· Johannes Höhne1
· Hendrik Heller1

·

Benjamin Blankertz1

Published online: 24 May 2015

© Springer Science+Business Media New York 2015

Abstract In the last years Python has gained more and

more traction in the scientific community. Projects like

NumPy, SciPy, and Matplotlib have created a strong foun-

dation for scientific computing in Python and machine lear-

ning packages like scikit-learn or packages for data analysis

like Pandas are building on top of it. In this paper we present

Wyrm (https://github.com/bbci/wyrm), an open source BCI

toolbox in Python. Wyrm is applicable to a broad range of

neuroscientific problems. It can be used as a toolbox for

analysis and visualization of neurophysiological data and in

real-time settings, like an online BCI application. In order to

prevent software defects, Wyrm makes extensive use of unit

testing. We will explain the key aspects of Wyrm’s software

architecture and design decisions for its data structure, and

demonstrate and validate the use of our toolbox by present-

ing our approach to the classification tasks of two different

data sets from the BCI Competition III. Furthermore, we

will give a brief analysis of the data sets using our toolbox,

and demonstrate how we implemented an online experiment

using Wyrm. With Wyrm we add the final piece to our ongo-

ing effort to provide a complete, free and open source BCI

system in Python.

� Bastian Venthur

bastian.venthur@tu-berlin.de

1 Department of Neurotechnology, Technische Universität

Berlin, Sekr. MAR 4-3 Marchstraße 23,

10587 Berlin, Germany

2 Department of Machine Learning, Technische Universität,

Berlin, Germany

3 Bernstein Center for Computational Neuroscience,

Berlin, Germany

Keywords Brain-computer interface · BCI · EEG ·

ECoG · Toolbox · Python · Machine learning · Signal

processing

Introduction

Python is currently amongst the most popular programming

languages (Louden et al. 2011; Bissyandé et al. 2013) and

has become an important platform for scientific computing.

Open source projects like NumPy, SciPy (Oliphant 2007;

Jones et al. 2001), Matplotlib (Hunter 2007), IPython (Pérez

and Granger 2007) have become the foundation of scien-

tific computing in Python and other projects like Scikit-

learn (Pedregosa et al. 2011) for machine learning or Pan-

das (McKinney 2012) for data analysis are building on top

of them. Python is free- and open source software, and runs

on most platforms, which makes it attractive for research

institutions and substantially lowers the entry barrier for

newcomers to the field.

Yet, in the brain-computer interface (BCI) community

Matlab is still prevalent. Many toolboxes have been devel-

oped over the years to cover the various needs and research

interests. One of the oldest toolboxes is BioSig (Schlögl and

Brunner 2008) which is mainly for offline analysis of var-

ious biosignals, including EEG and ECoG data. BioSig is

running in Matlab and Octave but experimental bindings for

other programming languages exist. BioSig is free and open

source software. The BBCI toolbox (http://bbci.de/toolbox)

is also a Matlab toolbox which has matured with age. The

BBCI toolbox is suitable for online experiments and offline

data analysis and has been open sourced in 2012. It allows

complex online processing chains, e.g., acquiring data

from several data sources that operate with different sam-

pling rates, to use different feature extraction methods and

https://github.com/bbci/wyrm
mailto:bastian.venthur@tu-berlin.de
http://bbci.de/toolbox


472 Neuroinform (2015) 13:471–486

classifiers simultaneously and to implement adaptive fea-

ture extraction and classifiers. FieldTrip (Oostenveld et al.

2011) is an open source Matlab toolbox for MEG and EEG

analysis. It is relatively new but has already gained a lot of

attention in the community. BCILAB (Kothe and Makeig

2013) is the latest open source Matlab toolbox for BCI

research. It supports offline analysis and online experi-

ments. Interesting toolboxes also exist outside the Matlab

community: BCI2000 (Schalk et al. 2004) is a general pur-

pose BCI system. It is written in C++ and its use is free

for non-profit research and educational purposes. The open

source software OpenViBE (Renard et al. 2010) has a spe-

cial approach, as it allows for a visual programming of

BCI paradigms. It also has Python and Matlab bindings and

is licensed under the terms of the Affero General Public

License (AGPL).

In Python we have BCPy2000 (Schreiner et al. 2008),

which allows for writing BCI2000 modules in Python

instead of C++, leveraging the infrastructure of BCI2000

without forcing the user to program in C++. A relatively

new toolbox is pySPACE (Krell et al. 2013), a signal pro-

cessing and classification environment in Python. pySPACE

has implemented many signal processing algorithms and

allows for conducting experiments without programming by

providing configuration files for each experiment. Due to its

modular design it allows for implementing own algorithms

as well. pySPACE is suitable for offline analysis and online

classification and licensed under the terms of the GPL.

There is also OpenBCI (http://openbci.pl), a BCI system in

Python. This project provides drivers for a few EEG ampli-

fiers, tools for displaying and storing EEG signals and tools

for creating bindings for 3rd party software for performing

experiments. The project accumulated quite a lot of code but

is unfortunately seemingly discontinued as the last commit

in the repository was in 2011. MNE-Python (Gramfort et al.

2013) allows for offline analysis of MEG and EEG data and

is available under the terms of the BSD license. SCoT is

a special purpose toolbox for EEG source connectivity in

Python licensed under the terms of the MIT license.

For more in depth information on related BCI software,

see Brunner et al. (2013).

In this paper we introduce our toolbox Wyrm. Together

with Mushu (Venthur and Blankertz 2012) for signal acqui-

sition and Pyff (Venthur et al. 2010) for feedback- and

stimulus presentation, Wyrm is the final step in our ongo-

ing effort to create a complete, open source BCI system in

Python.

The rest of the paper is divided into the following

parts: in the next section we will give a slightly tech-

nical overview of the toolbox, including the design of

the main data structure, an overview of the functions,

and some means of quality assurance we have taken. In

the Sections “Classification of Motor Imagery in ECoG

Recordings” and “ERP Component Classification in EEG

Recordings” we will demonstrate how we perform the clas-

sification task on two different data sets from the BCI

Competition III (Blankertz et al. 2006). One data set is

about classification of imagined pinky and tongue move-

ment using ECoG recordings, the other is about classifying

event-related potentials (ERPs) from a matrix speller using

EEG recordings. We also will show some brief analysis

of the data and present the results of the classification. In

Section “Performing Online- and Simulated Online Expe-

riments” we will demonstrate how to conduct an online

experiment using Wyrm and in Section “Performance” we

will analyze Wyrm’s realtime capabilities and performance

limitations. Finally, we will discuss the results and conclude

the paper.

Toolbox Architecture

In this section we will give an introduction into the technical

details of the toolbox. We will explain the main data struc-

ture that is used throughout the toolbox, show an overview

of the toolbox functions, discuss performance concerns,

explain how we utilize unit testing as a mean of quality

assurance, and how the extensive documentation is created.

Data Structures

In order to work efficiently with the toolbox, it is neces-

sary to understand the toolbox’ main data structure, dubbed

Data. It is used in almost all functions of the toolbox and

fortunately it is not very difficult. Before we can begin, we

have to explain the terminology that is used in NumPy and

thus throughout our toolbox for describing n-dimensional

arrays. A NumPy array is a table of elements of the same

type, indexed by positive integers. The dimensions of an

array are sometimes called axes. For example: an array

with n rows and m columns has two dimensions (axes),

the first dimension having the length n and the second

the length m. The shape of an array is a tuple indicat-

ing the length (or size) of each dimension. The length of

the shape tuple is therefore the number of dimensions of

the array. Let’s assume we have an EEG recording with

1000 data points and 32 channels. We could store this data

in a [time, channel] array. This array would have two

dimensions and the shape (1000, 32). The time axis would

have the length of 1000 and the channel axis the length of

32.

For the design of the data structure it is essential to take

into account that the functions would deal with many kinds

of data, such as continuous multi-channel EEG record-

ings, epoched data of different kinds, spectrograms, spectra,

feature vectors, and many more. What all those types of

http://openbci.pl


Neuroinform (2015) 13:471–486 473

data have in common is that they are representable as

n-dimensional data. What separates them, from a data struc-

ture point of view, is merely the number of dimensions

and the different names (and meanings) of their axes. We

decided to create a simple data structure which has an n-

dimensional array to store the data at its core, and a small

set of meta information to describe the data sufficiently.

Those extra attributes are: names, axes, and units. The

names attribute is used to store the quantities or names for

each dimension in the data. For example: a multi-channel

spectrogram has the dimensions: (time, frequency, chan-

nel), consequently would the names attribute be an array of

three strings: [’time’, ’frequency’, ’channel’].

The order of the elements in the names attribute corre-

sponds to the order of the dimensions in the Data object: the

first element belongs to the first dimension of the data, and

so on. The axes attribute describes the rows and columns

of the data, like headers describe the rows and columns of

a table. It is an array of arrays. The length of the axes

array is equal to the number of dimensions of the data, the

lengths of the arrays inside correspond to the shape of the

data. For the spectrogram, the first array would contain the

times, the second the frequencies and the third the channel

names of the data. The last attribute, units contains the

(preferably) physical units of the data in axes. For the spec-

trogram that array would be: [’ms’, ’Hz’, ’#’] (Since

the channel names have no physical unit we use the hash

(#) sign to indicate that the corresponding axis contains

labels).

These three attributes are mandatory. It is tempting to add

more meta information to describe the data even better, but

more metadata adds more complexity to the toolbox func-

tions in order to maintain consistency. So there is a trade-off

between completeness of information and complexity of the

code. Since complex (or more) code is harder to understand,

harder to maintain and tends to have more bugs (Lipow

1982), we decided for a small set of obligatory metadata to

describe the data sufficiently and make the toolbox pleasant

to use, without the claim to provide a data structure that is

completely self-explaining on its own.

Keeping the data structure simple and easy to understand

was an important design decision. The rationale behind this

decision was that is must be clear what is stored in the

data structure, and where, to encourage scientists to not

only look at the data in different ways, but also manipu-

late at it at will without the data structure getting in the

way. It was also clear that specific experiments have spe-

cific requirements for the information being stored, since

we cannot anticipate all future use cases of the toolbox, it

was important for us to allow the data structure to be eas-

ily extended, so users can add more information to the data

structure if needed. Consequently, we designed all toolbox

functions to ignore unknown attributes and more impor-

tantly, to never remove any additional information from

Data objects.

To summarize, Wyrm’s main data structure (visualized in

Fig. 1), the Data class, has the following attributes: .data,

which contains arbitrary, n-dimensional data, .axes which

contains the headers for the columns of the data, .names

which contains the of names the axes of .data, and .units

which contains the units for the values in .axes. The Data

class has some more functionality, for example built-in con-

sistency checking to test whether the lengths of the attributes

are compatible. This data structure is intentionally generic

enough to contain many kinds of data, even data the authors

of this paper did not anticipate during the design. Whenever

additional information is needed, it can be easily added to

the Data class by means of subclassing or by simply adding

it to existing Data objects, thanks to the dynamic nature of

Python.

Wyrm also implements two other data structures: a ring

buffer and a block buffer. Those data structures are use-

ful in online experiments and are demonstrated in Section

“Performing Online- and Simulated Online Experiments”.

Toolbox Functions

Our toolbox implements dozens of functions, covering a

broad range of aspects for offline analysis and online appli-

cations. The list of algorithms includes: channel selection,

Fig. 1 Visualization of the

Data object and its attributes.

In this example the data is two

dimensional (yellow block). The

axes (magenta) describe the

rows and columns of the data

and the names and units
(blue) are the headings of the

table

channel [#]

Fp1 Fp2 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 T5 P3 Pz P4 T6 O1 O2

tim
e
 [m

s
]

0

5

10

15

20

25

30

35

40

45



474 Neuroinform (2015) 13:471–486

IIR filters, sub-sampling, spectrograms, spectra, baseline

removal for signal processing, Common Spatial Patterns

(CSP) (Ramoser et al. 2000), Source Power Co-modulation

(SPoC) (Dähne et al. 2014), classwise average, jumping

means, signed r2-values for feature extraction, Linear Dis-

criminant Analysis (LDA) with and without shrinkage for

machine learning (Blankertz et al. 2011), various plotting

functions and many more. Wyrm’s io module also pro-

vides a few input/output functions for foreign formats.

Currently supported file formats are EEG files from Brain

Products and from the Mushu signal acquisition, reading

data from amplifiers supported by Mushu, and two func-

tions specifically written to load the BCI competition data

sets used in Sections “Classification of Motor Imagery

in ECoG Recordings”, “ERP Component Classification in

EEG Recordings”, and “Performing Online- and Simulated

Online Experiments”. For a complete overview, please refer

to Wyrm’s documentation (http://bbci.github.io/wyrm/).

It is worth mentioning that with scikit-learn (Pedregosa

et al. 2011) you have a wide range of machine learning

algorithms readily at your disposal. This list includes: cross

validation, Support Vector Machines (SVM), k-Nearest

Neighbours (KNN), Independent- and Principal Component

Analysis (ICA, PCA), Gaussian Mixture Models (GMM),

Kernel Regression, and many more. Our data format

(Section “Data Structures”) is compatible with scikit-learn

and one can mostly apply the algorithms without any data

conversion step at all.

Almost all functions operate on Data objects introduced

in Section “Data Structures” and are responsible for keeping

the data and the metadata consistent. While a few functions

like square, variance, or logarithm are just convenient

wrappers around the respective NumPy equivalents that

accept Data object instead of NumPy arrays, the vast major-

ity of functions implement a lot more functionality. For

example the function select_channels requires a Data

object and a list of strings as parameters. The strings can

be channel names or regular expressions that are matched

against the channel names in the Data object’s metadata.

select_channels will not only return a copy of the Data

object with all channels removed that where not part of

the list, it will also make sure the metadata that contains

the channel names for the returned Data object is correctly

updated. This approach is less error prone and much easier

to read, than doing the equivalent operations on the data and

metadata separately.

To ease the understanding of the processing functions,

special attention was paid to keep syntax and semantics of

the functions consistent. We also made sure that the user

can rely on a set of features shared by all functions of the

toolbox. For example: functions never modify their input

arguments. They create a deep copy of them and return a

possibly modified version of that copy if necessary. This

encourages a functional style of programming which, in our

opinion, is well suited when delving into the data:

A function never touches attributes of a Data object

which are unrelated to the functionality of that function.

In particular, a function never removes custom or unknown

attributes:

If a function operates on a specific axis of a Data object

(Section “Data Structures”), it adheres by default to our

convention, but gives the option to change the index of the

axis to operate on by means of Python’s default arguments.

Those default arguments are clearly named as timeaxis,

or classaxis, etc.:

In Sections “Classification of Motor Imagery in ECoG

Recordings”, “ERP Component Classification in EEG

Recordings”, and “Performing Online- and Simulated

Online Experiments”, you will find some realistic examples

of the usage of our toolbox and its functions.

Speed

We realize that speed is an important factor in scientific

computation, especially for online experiments, were one

iteration of the main loop must not take longer than the dura-

tion of the samples being processed in that iteration. One

drawback of dynamic languages like Python or Ruby is the

slow execution speed compared to compiled languages like

http://bbci.github.io/wyrm/


Neuroinform (2015) 13:471–486 475

C or Java. This issue is particularly important in scientific

computing, where non-trivial computations in Python can

easily be in the order of two or more magnitudes slower than

the equivalent implementations in C. The main reason for

the slow execution speed is the dynamic type system: since

variables in Python have no fixed type and can change at

any time during the execution of the program, the Python

interpreter has to check the types of the involved variables

for compatibility before every single operation.

NumPy mitigates this problem by providing statically

typed arrays and fast operations on them. When used prop-

erly, this allows for almost C-like execution speed in Python

programs. In Wyrm all data structures use NumPy arrays

internally and Wyrm’s toolbox functions use NumPy or

SciPy operations on those data structures. We also care-

fully profiled our functions in order to find and eliminate

bottlenecks in execution speed. Wyrm is thus very fast and

suitable even for online experiments, as we will demonstrate

in the Sections “Performing Online- and Simulated Online

Experiments” and “Performance”.

Unit Tests and Continuous Integration

Since the correctness of its functions is crucial for a toolbox,

we used unit testing to ensure all functions work as intended.

The concept of unit testing is to write tests for small, indi-

vidual units of code (usually single functions). These tests

ensure that the tested function meets its design and is fit for

use. Typically, a test will simply call the tested function with

defined arguments and compare the returned result with the

expected result. If both are equal the test passes, if not it

fails. Well written tests are independent of each other and

treat the tested method as a black box by not making any

assumptions about how the function works, but only com-

paring the expected result with the actual one. Those tests

should be organized in a way that makes it easy to run all

tests at once with little effort (usually a single command).

This encourages developers to run tests often. When done

properly, unit tests facilitate refactoring of the code base

(i.e. restructuring the code without changing its functional-

ity), speed up development time significantly, and reduce

the number of bugs.

In our toolbox each method is tested respectively by

a handful of test cases which ensure that the functions

calculate the correct results, throw the expected errors if

necessary, do not modify the input arguments, work with

non-conventional ordering of axis, etc. The total amount

of code for all tests is roughly 2-3 times bigger than the

amount code for the toolbox functions. This is not unusual

for software projects.

To automate the testing even further, we use a continuous

integration (CI) service in conjunction with Wyrm’s github

repository. Whenever a new version is pushed to github, the

CI will run the unit tests with three different Python versions

(2.7, 3.3, and 3.4) to verify that all tests still pass. If and

only if the unit tests pass with all three Python versions,

the revision counts as passing, otherwise the developers will

get a notification via mail. The whole CI process is fully

automated and requires no interaction.

Documentation

A software toolbox would be hard to use without proper

documentation. We provide documentation that consists of

readable prose and extensive API documentation (http://

bbci.github.io/wyrm/). The first part consists of a high level

introduction to the toolbox, explaining the conventions and

terminology being used, as well as tutorials how to write

your own toolbox functions. The second part, the API docu-

mentation, is generated from special comments in the source

code of the tool box, so called docstrings (Goodger and van

Rossum 2001). External documentation of software tends

to get outdated as the software evolves. Therefore, having

documentation directly in the source code of the respec-

tive module, class, or method is an important mean to keep

the documentation and the actual behaviour of the code

consistent. Each method of the toolbox is extensively docu-

mented. Usually a method has a short summary, a detailed

description of the algorithm, a list of expected inputs, return

values and exceptions, as well as cross references to related

functions in- or outside the toolbox and example code to

demonstrate how to use the method. All this information

is written within the docstring of the method (i.e. in the

actual source code) and HTML or PDF documentation can

be generated for the whole toolbox with a single command.

The docstrings are also used by Python’s interactive help

system.

Python 2 versus Python 3

By the end of 2008 Python 3 was released. Python 3 was

intentionally not backwards compatible with Python 2, in

order to fix some longstanding design problems with Python

2. Since the porting of Python 2 software to Python 3 is not

trivial for bigger projects, the adoption of Python 3 gained

momentum only slowly. Although Python 2.7 is the last ver-

sion of the 2.x series, it still receives backwards compatible

bug fixes and enhancements. This is certainly a responsi-

ble decision by the Python developers but probably one of

the reasons for the slow adoption of Python 3. As of today,

most of the important packages have been ported to Python

3, but there is still a bit of a divide between the Python 2 and

Python 3 packages.

We decided to support both Python versions. Wyrm is

mainly developed under Python 2.7, but written in a for-

ward compatible way to support Python 3 as well. Our unit

http://bbci.github.io/wyrm/
http://bbci.github.io/wyrm/


476 Neuroinform (2015) 13:471–486

tests ensure that the functions provide the expected results

in Python 2.7, Python 3.3, and Python 3.4.

Classification of Motor Imagery in ECoG

Recordings

To demonstrate the usage of our toolbox we describe the

analysis and classification of two data sets from the BCI

Competition III (Blankertz 2005) using our toolbox. The

scripts we will show are included in the examples directory

of the Wyrm toolbox and the data sets are freely available

on the BCI Competition III homepage (http://www.bbci.de/

competition/iii). The reader can reproduce our results by

using the scripts and the data sets.

The following code examples in this and the next section

follow our convention to import Wyrm’s processing mod-

ule as proc:

The first data set uses Electrocorticography (ECoG) record-

ings, provided by the Eberhard-Karls-Universität Tübingen,

and the Max-Planck-Institute for Biological Cybernetics,

Täbingen, Germany, cf. (Lal et al. 2005). The time series

were recorded using a 8x8 ECoG platinum gird which was

placed on the contralateral, right motor cortex. The grid

covered the motor cortex completely, but also surrounding

cortex areas due to is size of approximately 8x8cm. All data

was recorded with a sampling frequency of 1kHz and the

data was stored as µV values. During the experiment the

subject had to perform imagined movements of either the

left small finger or the tongue. Each trial consisted of either

an imagined finger- or tongue movement and was recorded

for a duration of 3 seconds. The recordings in the data set

start at 0.5 seconds after the visual cue had ended in order to

avoid visual evoked potentials (Lal et al. 2005). It is worth

noting that the training- and test data were recorded on

the same subject but with roughly one week between both

recordings.

The data set consists of 278 trials of training data and

100 trials of test data. During the BCI Competition only

the labels (finger or tongue movement) for the training data

were available. The task for the competition was to use the

training data and its labels to predict the 100 labels of the

test data. Since the competition is over, we also had the true

labels for the test data, so we could calculate and compare

the accuracy of our results.

As part of the signal processing chain in this example, we

employ a spatial filtering technique called Common Spa-

tial Patterns (CSP) (Ramoser et al. 2000; Blankertz et al.

2008). CSP spatial filters are applied to band-pass filtered

data. The outputs of the spatial filters (sometimes also

referred to as CSP components) are then used in subsequent

processing steps. The main advantage of the CSP algo-

rithm is that the filter coefficients are optimized to maxi-

mize the difference in variance between two classes. Trial-

wise variance of band-passed filtered signals approximates

the spectral power in the pass-band and thus improves

the detectability of event-related (de-)synchronization

(ERD/ERS), which in turn represents the basis for motor

imagery BCI applications.

For classification we will use Linear Discriminant Anal-

ysis (LDA) (Blankertz et al. 2011). LDA is a simple

and robust linear classification method which is frequently

applied for BCI data.

After initial conversion from the epoched data in Mat-

lab format into our Data format, we preprocessed both the

training and test data in the following way: First the data

was 13Hz low-pass- and 9Hz high-pass-filtered and sub-

sampled to 50Hz. Note that we used the filtfilt method

here, which implements a non-causal forward-backward

filter. This is only feasible in offline analysis where the

complete data set is available from the beginning. For

online experiments one has to use the lfilter method

which implements a regular IIR/FIR filter (cf. Section

“Performing Online- and Simulated Online Experiments”).

After filtering and subsampling, we calculated the Common

Spatial Filter (CSP) on the training set:

In the next step we perform the spatial filtering by applying

the CSP filters to the training- and test data to reduce the 64-

channel data down to 2 components. apply_csp by default

uses the first and last spatial filter (i.e. columns of the filt

argument). If more or other spatial filters are needed one can

overwrite the

The last step of the preprocessing is creating the feature vec-

tors by computing the variance along the time axis and the

logarithm thereof:

Until here, the processing of training and test data is almost

identical, the only difference being the calculation of the

CSP filters on the training set only. In the next steps we

will use fv_train and fv_test instead of fv to differ-

entiate between the feature vectors of the training- and test

data.

http://www.bbci.de/competition/iii
http://www.bbci.de/competition/iii


Neuroinform (2015) 13:471–486 477

During the preprocessing we reduced the training data

with the shape (278, 3000, 64) down to a feature vector with

the shape (278, 2) – meaning each trial is represented by two

numbers. Analogous, the test data was reduced from (100,

3000, 64) to (100, 2). After the preprocessing of training-

and test-data, we can train the Linear Discriminant Analysis

(LDA) classifier, using the feature vector of the training data

and the class labels:

Applying the feature vector of the test data to the classi-

fier yields the projection of the test data on the hyperplane,

trained by the lda_train method:

The result is an array of LDA classifier outputs (i.e. one per

trial), and we use the sign of each element to determine the

corresponding class membership for each trial.

Analysis and Results

In Fig. 2 we have visualized two CSP spatial patterns, which

were also calculated during the computation of the CSP

filter. We show the pattern for the imagined pinky move-

ment (left pattern) as well as for the tongue movement

(right pattern). Each pattern is an 8x8 grid, where each

cell represents the respective electrode on the ECoG grid.

The class-specific activation patterns show the spatially

distinct regions that give rise to the strongest ERD/ERS dur-

ing imagined movement of either the pinky or the tongue.

See Haufe et al. (2014) for a discussion about the inter-

pretability of spatial patterns in contrast to spatial filters.

Comparing our resulting predicted labels with the true

labels, showed that our method has an accuracy of 94 %

for that data set. The expected accuracy if classification is

made by chance is 50 %. That result is comparable with the

results of the BCI Competition, where the first three win-

ners reached an accuracy of 91 %, 87 %, and 86 %. It is

important to note that the goal here was not to “win” the

competition, but to provide some context for the results we

achieved. We had the advantage of having the true labels,

which the competitors of the competition had not.

ERP Component Classification in EEG Recordings

The second data set uses Electroencephalography (EEG)

recordings, provided by the Wadsworth Center, NYS

Department of Health, USA. The data were acquired using

BCI2000’s Matrix Speller paradigm (Schalk et al. 2004),

originally described in (Donchin et al. 2000). The sub-

ject had to focus on one out of 36 different characters,

arranged in a 6x6 matrix. The rows and columns were

successively and randomly intensified. Two out of 12 inten-

sifications contained the desired character (i.e. one row and

one column). The event-related potential (ERP) components

evoked by these target stimuli are different from those ERPs

evoked by stimuli that did not contain the desired charac-

ter. The ERPs are composed of a combination of visual

and cognitive components (Brunner et al. 2010; Treder and

Blankertz 2010).

The subject’s task was to focus her/his attention on char-

acters (i.e. one at a time) in a word that was prescribed

by the investigator. For each character of the word, the 12

intensifications were repeated 15 times before moving on to

the next character. Any specific row or column was inten-

sified 15 times per character and there were in total 180

intensifications per character.

The data was recorded using 64 channel EEG. The 64

channels covered the whole scalp of the subject and were

aligned according to the 10-20 system. The collected sig-

nals were bandpass filtered from 0.1-60Hz and digitized at

240Hz.

The data set consists of a training set of 85 characters and

a test set of 100 characters for each of the two subjects. For

the trainings sets the labels of the characters were available.

The task for this data set was to predict the labels of the test

sets using the training sets and the labels.

After the initial conversion of the original data into our

Data format, the data was available as continuous data in

Fig. 2 Spatial activation

patterns of CSP components that

show the strongest

class-discriminative ERD/ERS

for imagined pinky or tongue

movement as measured on the

8x8 ECoG grid



478 Neuroinform (2015) 13:471–486

a [{time, channel] fashion, with the markers describing

the positions in the data stream where the intensifications

took place.

In the first step, the data was 30Hz low-pass- and 0.4Hz

high-pass filtered and subsampled to 60Hz:

In contrast to the ECoG data set, which was already in

the epoched form, this data set is a continuous recording

and has to be segmented into epochs. For segmentation

we use the markers which define certain events (MRK_DEF)

and “cut” the data around the time point defined by the

marker and a segmentation interval (SEG_IVAL), in this

case [0, 700) ms around the respective marker onset, and

assign each resulting chunk to a class defined by the

marker definition. The resulting epoched data has the form

[class, time, channel]:

In order to receive good classification results for ERP clas-

sification tasks, it is a good strategy to calculate the means

over certain time intervals (JUMPING_MEANS_IVALS) for

each channel, instead of using the data set as is. The time

intervals are highly subject specific and have to be cho-

sen by using the classwise average, signed r2 values or

some other heuristic (Blankertz et al. 2011). The number of

intervals is usually between 3-6.

By appending the average values for each channel to a

vector, we receive the feature vectors for each trial:

Now we can use again the LDA to train a classifier using

the feature vectors of the training data and the labels and

classify the feature vector of the testing data:

The result is a LDA classifier output for each trial (i.e. inten-

sification), predicting whether that intensified row or col-

umn was the one the subject was concentrating on. In order

to get the actual letters the subjects wanted to spell, one

has to combine the 15 classifier outputs for each row and

column that the row/column has been intensified into one

respectively and choose the most probable row and column.

Each row-column combination defines a letter which has

been the one the subject was probably attending to. This

“unscrambling” step has been omitted in this paper for the

sake of brevity but is available in the example script.

Analysis and Results

So far we did not explain how we choose the time intervals

for the means for each subject. Figure 3 shows the classwise

average time course for three selected channels (FCz, Cz,

and Oz) and both subjects. Those plots can be generated

using plot_timeinterval from Wyrm’s plot module.

As expected, we see for both subjects an early activation

in the occipital areas around 200ms, followed by activation

in the central and fronto-central areas. We also see that the

kind of activation, especially in the occipital area, differs

highly between the two subjects: subject A has a positive

response on channel Oz around 200ms whereas subject B

Fig. 3 Classwise average time

courses for subject A (top row)

and subject B (bottom row) for

three selected channels. The

averages were calculated on the

whole training set, t=0 ms is the

onset of the stimulus



Neuroinform (2015) 13:471–486 479

Fig. 4 Signed r2-values for

subject A (top row) and subject

B (bottom row). The channels

are sorted from frontal to

occipital and within each row

from left to right. The blobs

show the time intervals for each

channel, which discriminate best

against the other class.

has a negative one. Moreover subject B’s Oz resonates much

stronger at the frequency the stimuli were presented with

than subject A. Not only is the inter-subject difference very

large, also the variance of single time courses compared to

the average is especially high for ERP experiments.

In order to quantify the discriminative information

for each channel and time point, we compute the

signed r2-values, cf. (Blankertz et al. 2011). Those r2-

values serve as univariate statistical measures for sepa-

rability. The discriminative information across all chan-

nels and time points can then be visualized as a

matrix using plot_spatio_temporal_r2_values from

Wyrm’s plot module (see Fig. 4).

Comparing the signed r2-values on Fig. 4 between the

two subjects, we see both subjects feature a positive ERP

component between 200 and 280ms after stimulus onset.

This component is known as P300 component which is

strongest in in the central- to frontal areas, as shown in

Fig. 3. Moreover, subject B displays a strong negative

component (called N200) around 150-250ms after stimu-

lus onset (Fig. 6). This visual N200 component is mainly

located in occipital areas.

Fig. 5 Spatial topographies of

the average voltage distribution

for the different time intervals

used for classification for

subject A. The top row shows

the nontarget trials, the bottom

row the targets



480 Neuroinform (2015) 13:471–486

In order to find the optimal time intervals for classifica-

tion, we manually chose four intervals where the signed r2

have their maximum or minimum and the respective other

class does not change the sign on one of the other channels.

For subject A, the intervals: 150-220 ms, 200-260 ms, 310-

360 ms and 550-660 ms have been chosen; for subject B:

150-250 ms, 200-280 ms, 280-380 ms and 480-610 ms. The

Figs. 5 and 6 show the spatial topographies of the average

voltage distributions in the selected time intervals we chose

for classification. Those scalp plots can be generated using

plot_scalp.

Comparing the resulting letters, predicted by our classifi-

cation with the real ones the subjects were supposed to spell,

our implementation reaches an accuracy of 91,0 % (91 %

for both, subject A and subject B) which is comparable with

the results of the winners of the competition, where the first

three winners reached an accuracy of 96,5 %, 90,5 %, and

90 %. The expected accuracy if classification is made by

chance is 2,8 %.

Note that a much better classification can be achieved by

a much simpler preprocessing method, namely: 10Hz low-

pass filtering the data, subsampling down to 20Hz and just

creating the feature vectors (without calculating the means

over intervals):

The results for that classification are 96 % (96 % for subject

A and B). Due to the increased dimensionality of features,

this approach requires a lot of training examples to work

well and which are available in this data set. In practice,

one aims at keeping the calibration short such that inter-

val selection as explained above can be expected to work

better.

Performing Online- and Simulated Online

Experiments

In this section we will show how to use Wyrm to perform

an online experiment. To demonstrate the experiment we

will use the ERP data set from Section “ERP Component

Classification in EEG Recordings”, subject A and perform

the classification task in an online fashion by using a soft-

ware amplifier that reads data from a file and returns signals

and markers in small chunks in realtime in exactly the same

manner as when acquiring data from a real amplifier. This

capability of realistically simulating online processing of

Wyrm is not only good for demonstration but also for other

purposes, see discussion in Secion “Discussion”.

The principal processing steps and parameters for filter-

ing, subsampling, etc., that lead to the classification are the

same as in the offline experiment shown in Section “ERP

Component Classification in EEG Recordings ”, so we can

focus here on the differences between the offline and online

processing.

In order to simulate an online experiment with the

available EEG data, we will use the ReplayAmp pseudo

amplifier from the Mushu signal acquisition (Venthur and

Blankertz 2012). The pseudo amplifier can load a complete

data set and its get_data method returns only as much data

and markers as possible given the sampling frequency of the

data and the time passed since the last call of get_data.

From our toolboxes point of view this software amplifier

Fig. 6 Spatial topographies of

the average voltage distribution

for the different time intervals

used for classification for

subject B



Neuroinform (2015) 13:471–486 481

behaves like a real amplifier. Using this ReplayAmp also

makes the experiment reproducible for the reader as the

Mushu signal acquisition, the online experiment script, as

well as the data used, are freely available.

In contrast to the offline experiment, where the entire

data set is available, in the online setting we have to process

the incoming data chunk-wise. The chunks of data typically

have a length of just a few samples (or blocks). This leads

to differences in some of the processing steps:

When filtering the data chunk-wise, we have to use

lfilter with filter delay values in order to receive the

same results as if we were filtering the whole data set at

once.

The subsampling from 240Hz to 60Hz internally works

by returning every 4th sample from the data to be subsam-

pled. When subsampling chunk-wise, we have to make sure

that the data to be subsampled has a length of multiples

of 4 samples in order to avoid losing samples between the

chunks of data. For that we have to either set a block size

of 4 samples (or an integer multiple of 4) in the amplifier or

utilize Wyrm’s block buffer. Since most amplifiers allow for

a configuration of the block size, we set the block size of 4

samples in the ReplayAmp as well.

If the amplifier does not support the configuration of the

block size, one can use Wyrm’s implementation of a block

buffer. The block buffer behaves like a queue, a first-in-

first-out data structure, that is unlimited in size. The block

buffer has two functions: append and get. append accepts

a continuous Data object and appends it to its internal

data storage. get returns (and internally deletes) the largest

possible block of data that is divisible by blocksize, start-

ing from the beginning of its internal data storage. After a

get, the block buffer’s internal data has at most the length

blocksize−1. A subsequent call of get would return empty

data, a subsequent call of append will append the new data

to the remaining data in the internal representation and so

on.

We will also utilize Wyrm’s implementation of a ring

buffer where we can append small chunks of data in each

iteration of the online loop and get the last 5000ms of the

acquired data to perform the classification on.

Training

The online experiment can be divided into the training part

and the online part. In the first part, the training EEG data

is recorded and after the recording is done, the entire train-

ing data is used for training the LDA classifier, much like

in the offline setting. The signal processing and training of

the LDA classifier in the training part is identical to the

signal processing and training of the LDA in the offline

analysis in Section “ERP Component Classification in EEG

Recordings”.

Online Classification

In the second part we use the classifier cfy obtained from

the training, to classify the incoming data.

First we prepare the online loop. We load the test data

set and provide it to Mushu’s ReplayAmp. Note how we

configure the amplifier to use a block size of four samples

and set it into the realtime mode.

Assuming we have an amplifier amp, we need to know the

sampling frequency, the names of the EEG channels and the

number of channels:

Then we setup the ring buffer with a length of 5000 ms.

We calculate the filter coefficients and the initial filter

states for the low- and high-pass filters and put the amplifier

into the recording mode.



482 Neuroinform (2015) 13:471–486

The actual online processing happens in a loop. At the

beginning of each iteration we acquire new data from the

amplifier and convert it into Wyrm’s data format using the

convert_mushu_data method provided by Wyrm’s io

module.

The remaining code samples from this section are all part

of the loop. We removed the first level indentation from the

loop for better readability.

We can filter the data using lfilter and the optional

zi parameter that represents the initial conditions for the

filter delays. Note how lfilter also returns the initial con-

ditions for the next call of lfilter when called with the

optional zi parameter:

The filtered data can now be subsampled from the initial

240 Hz to 60 Hz.

Now we append the data to the ring buffer and query the

ring buffer for the data it contains, thus we will always have

the last 5000 ms of acquired data. Before putting the data

into the ring buffer we store the number of new samples in a

variable as this number is needed later when calculating the

epochs.

In the next step we segment the 5000 ms of data. Since

the difference between the 5000ms of data from this itera-

tion and the 5000 ms from the previous iteration is probably

only a few samples, we have to make sure that segment

returns each epoch only once within all iterations of the

loop in order to avoid classifying the same epoch more

than once. For that we provide the segment method with

the optional newsamples parameter. Using the information

about the number of new samples, segment can calculate

which epochs must have already been returned in previ-

ous iterations and returns only the new epochs. Note, that

segment has to take into account, that the interval of inter-

est SEG_IVAL typically extends to poststimulus time. I.e.,

a segment is only returned when enough time has elapsed

after a marker in order to extract the specified interval.

If segment does not find any valid epochs, we abort this

iteration and start the next one. Otherwise epo contains at

least one or more epochs. On these epochs we calculate the

jumping means, create the feature vectors and apply it to the

LDA classifier, exactly as in the offline example.

What happens with the output is highly application

dependent. In the online experiment example script avail-

able in the examples directory that contains the complete

script from above, we use lda_out to calculate the prob-

abilities for each letter after each iteration of the loop.

After 12 intensifications we select the most probable let-

ter, reset all probabilities to zero and continue with the next

letter. Running the script takes ca 50 minutes (equalling

the duration of the recording since we used the setting

realtime=True in the initialization of the ReplayAmp; for

other options see the Section “Discussion”) and classifica-

tion accuracy for correctly detected letters is identical with

the accuracy of subject A in the offline classification (91 %).

On the testing machine, a Laptop with a quad-core Intel

i7 CPU at 2.8 GHz, it takes a fairly constant time of

3.5 ms to complete a full iteration of the main loop. This

does not take into account the iterations that are aborted

early because of empty epochs, those iterations are naturally

completed even faster.

In ERP experiments, incoming data is usually processed

with the same frequency as the stimuli are presented. For

ERP experiments, 200 ms is a common interval between

two stimuli. In this case the time between two stimuli was

175 ms, which is also the maximum time allowed to pro-

cess the data per iteration. With 3.5 ms, Wyrm processed the

data faster by the order of two magnitudes which gives a lot

of margin. 3.5 ms is also well below the maximum time of

16.7 ms needed to process the data block by block (if one

block consists of 4 samples), and would be still faster than

the 4.17 ms needed to processes the data sample by sample,

given the sampling frequency of 240 Hz.

Performance

In this section we will investigate further on Wyrm’s real-

time capabilities and performance limitations. For that

we will use the online ERP-experiment from Section

“Performing Online- and Simulated Online Experiments”

and modify the two parameters that directly influence the

size of the data to be processed: the sampling frequency and

the channel count. The goal of this analysis is to evaluate

the performance of Wyrm with increasing load. Moreover,



Neuroinform (2015) 13:471–486 483

we want to assess and describe scenarios in which the

performance breaks down.

The code we used to measure the performance is based

on the online experiment from the previous section. A few

changes were made to increase the load and measure the

performance: (1) Instead of real data from an amplifier, we

generate random data. The signal generator behaves like a

standard amplifier: in each iteration it produces as much

data as possible, given the configured sampling frequency

and the last time data was acquired. (2) We added a block

buffer (Section “Performing Online- and Simulated Online

Experiments”) that ensures that the data is processed in mul-

tiples of 10 ms. The block buffer is usually not necessary

if the amplifier supports a configurable block size, and we

added it here to increase the load on the computer during the

online loop. (3) Instead of subsampling down to 60 Hz, we

subsample to 100 Hz. (4) We generate markers every 10 ms,

which yields 100 classifications per second.

To assess the performance, we measured the execution

times (dt) for full iterations of the online loop. The mea-

surements start before the data is generated and end after

the classification. For each scenario we measured the exe-

cution times of 500 full iterations. We did not measure

the execution times of iterations that aborted early due to

empty blocks from the block buffer or empty epochs after

the segmentation. Since the ring buffer’s append method is

slightly faster when the ring buffer has not been completely

filled yet, the measurements start only after the ring buffer

has been completely filled in order to avoid the better exe-

cution times in the beginning of the measurement. In order

to keep up with the incoming data in this scenario, a full

iteration should not take longer than 10 ms.

Since the code is based on the code from Section

“Performing Online- and Simulated Online Experiments”,

we show it here only in an abbreviated form, to highlight the

measurement method. The full script that measures the tim-

ings and generates the plot from Fig. 7, can be found in the

performance.py script in the examples directory.

We ran this experiment with three sampling frequencies:

100 Hz, 1k Hz, and 10 kHz, and three channel counts: 50,

100, and 500. This results in 9 combinations of sampling

frequencies and channels. The results are shown in Fig. 7

(left). Each box plot displays the 500 measurements (i.e. the

execution times of a full iteration of the main loop). As we

can see, Wyrm can, in all cases, process new data in less than

10 ms and thus, keep up with the classification rate of 100

classifications per second. We also note that the execution

Fig. 7 Execution times of full iterations of the online loop in various

settings. On the left side, the data was subsampled to 100 Hz during

the processing, on the right no subsampling took place. Each box plot

contains 500 measurements, the boxes mark the quartiles, the red lines

the medians, and the whiskers the minimum- and maximum values.

The blue values below each box show the range between the maximum

and minimum value in milliseconds



484 Neuroinform (2015) 13:471–486

times are fairly consistent throughout the iterations as the

differences between the minimum and maximum times (the

blue numbers below each box plot) are in all cases less than

2.6 ms.

To demonstrate Wyrm’s limits in online processing, we

repeated the experiment and further increased the size of

the data to be processed, by omitting the subsampling step

(everything else is the same). In this scenario, the second

part of the online loop (ring buffer, segmentation, and fea-

ture vectors) will have to process 10 and 100 times more

data in the 1 kHz and 10 kHz scenarios.

The results are shown in Fig. 7 (right). As we see, in

the 100Hz and 1kHz groups the results are still compara-

ble with the with-subsampling counterparts, with slightly

increased execution times in the 1kHz group and the exe-

cution times are still very consistent within each scenario.

In the 10kHz group, however, the performance degrades

quickly with increasing channel count and Wyrm is unable

to keep up with the required 100 classifications per second

anymore. With 50 and 100 channels, Wyrm could still pro-

cess the data in time if we would reduce the requirement

from 100 to 10 classifications per second, with 500 chan-

nels, the performance breaks down. The execution times

themselves also become very unpredictable, ranging more

than 700 ms between the best and the worst iteration, and

taking almost a second in the worst cases.

We tested Wyrm with two normal sampling frequencies

and an extreme value that is rarely used. The same holds for

the channel count. We also forced Wyrm to produce a very

high classification rate and created a scenario where data

is processed without subsampling. We did this deliberately

to demonstrate how the performance behaves in both, nor-

mal and extreme cases. Whie the performance clearly breaks

down in the most extreme case of 10kHz/500 channels/no-

subsampling, we also show that Wyrm performs more than

sufficient in all other scenarios.

While this experiment does not proof that Wyrm will

be fast enough for all kinds of BCI experiments, it shows

what kind of performance one can expect, given the param-

eters: sampling frequency, channel count, algorithms used,

and classification rate. The experimental setup contained

many algorithms that are likely to be used in other scenarios

as well. While other experiments might need more expen-

sive operations, they will probably also have more relaxed

requirements in at least one other aspect of the experiment

(e.g. a reduced number of classifications per second). Other

experiments might as well include operations that drasti-

cally reduce the computation time. For example, in a typical

motor imagery experiment, CSP filters are applied, which

drastically reduce the number of channels.

Discussion

In the previous sections we showed how to use our tool-

box with two very different data sets (ECoG and EEG) and

two different paradigms (motor imagery and ERP). For both

data sets we provide a brief analysis of key aspects of the

data, typical for their respective paradigm. We also demon-

strated how to complete the classification tasks, achieving

classification accuracies comparable with the ones of the

winners of the BCI Competition. This comparison is not

meant as a fair competition, since the true labels of the eval-

uation data have been available to us. The purpose of the

comparison was only to provide reproducible evidence that

state-of-the-art classification can easily be obtained with our

toolbox.

We also showed how to use Wyrm to perform an online

experiment. For that we used again the ERP data set and

performed the same classification task in an online fashion

by replaying the data in realtime using a software amplifier.

The online variant yields the exact same result and classifi-

cation accuracy as the offline classification which demon-

strates the consistency of offline and online processing in

Wyrm.

Replaying the data in realtime, however, is not a very

common use case in BCI as the replay takes as long as the

original recording (in this case 50 minutes). We showed it

here only to demonstrate the realtime capabilities of our

toolbox. Replaying data in timelapse, however, can be use-

ful to evaluate more complex methods, e.g., when some

parameters of the feature extraction or the classifiers are

continuously adapted. Furthermore, simulated online pro-

cessing can help the debugging, when online experiments

did not work as expected from previous offline test. For that

it is desirable to replay the data faster than realtime. For that

we can turn the realtime mode off so the ReplayAmp will

always return the next block of data with each call of the

get_data call. The bigger we set the block size, the faster

the data will be processed. Turning the realtime mode in the

amplifier off and setting a block size of 40 samples (block

length: 166.7 ms), the whole experiment (including loading

of the train- and test data sets and training of the classifier)

takes a little less than 2 minutes to complete. Changing the

block size to 400 samples (block length: 1.7 s), takes less

than 50 seconds to complete. All variations of the online

experiment yield the exact same results and classification

accuracies.

In real online experiments, however, block sizes are typ-

ically small. The sampling frequency and channel count

influence the size of the data to be processed and thus the

performance. We demonstrated that Wyrm performs well in



Neuroinform (2015) 13:471–486 485

online experiments, even in extreme scenarios where block

sizes are small, and sampling frequency and channel count

extremely high.

This shows that Wyrm is not only capable of perform-

ing offline and online experiments, but that its functions are

written in a way to solve the necessary computations very

efficiently.

While Wyrm does not provide a turnkey solution to run

BCI experiments, it provides the user with all tools nec-

essary to create online experiments and perform offline

analyses. All functions of the toolbox are carefully tested

for accuracy and profiled for speed and efficiency.

Conclusion

In this paper we introduced Wyrm, an open source toolbox

for BCI. We gave an overview of Wyrm’s software architec-

ture and design ideas, and described the fundamental data

structure used throughout the toolbox. We also explained

how we used unit testing and continuous integration as a

mean of quality assurance.

To showcase Wyrm’s capabilities, we described in depth

the offline analysis and classification of two common

BCI paradigms and discussed the results. Furthermore, we

demonstrated how to perform an online experiment using

Wyrm and showed that Wyrm’s functions are efficient enough

to process the data in realtime and even faster, if necessary.

As data sets we used publicly available data sets from the

BCI Competition III (Blankertz 2005). We also published

the scripts explained in this paper along the source code of

Wyrm to make the results reproducible for the reader.

Compared to the existing toolboxes in the field of BCI,

Wyrm is still very young and other toolboxes may pro-

vide a larger set of functions or more sophisticated plotting

functions. Some of the other toolboxes are for a special

purpose, like SCoT for source connectivity, or BioSig and

MNE-Python for analysis of biosignals. In those cases,

Wyrm, being a general purpose BCI toolbox, offers a greater

scope but at the same time lacks the special features pro-

vided by those toolboxes. Toolboxes like FieldTrip, BioSig,

MNE-Python and SCoT are only for offline analysis of

data, while Wyrm is able to perform offline analyses and

online experiments. Regarding the scope of application and

features, Wyrm is comparable to the BBCI toolbox and

BCILAB. Both toolboxes provide a bigger set of tool-

box functions than Wyrm but are otherwise comparable.

However, both toolboxes are also written in Matlab and

thus depend on commercial software, whereas Wyrm only

depends on freesoftware. All toolboxes provide extensive

documentation and all, except BioSig and the BBCI tool-

box, use unit testing.

We think Wyrm is a valuable addition to the Matlab

dominated BCI toolbox ecosystem. Moreover, together with

Mushu (Venthur and Blankertz 2012) for signal acquisition

and Pyff (Venthur et al. 2010) for feedback and stimu-

lus presentation, we provide a completely free and open

source BCI system written in Python that is geared towards

researchers that develop new BCI paradigms and- methods.

Information Sharing Statement

All source code and data utilized in this work is freely

available. Wyrm’s source code can be downloaded at http://

github.com/bbci/wyrm. The online reference and documen-

tation is available at http://bbci.github.io/wyrm/. Wyrm is

licensed under the terms of the MIT license. The data sets

used in this paper are from the BCI Competition III, and

available from the homepage (http://bbci.de/competition/

iii/). The code that loads the BCI Competition data into

Wyrm’s native format is included in Wyrm’s io module.

The classification-, analysis-, and online code shown in

this paper is available in Wyrm’s examples directory. The

ReplayAmp used in the simulated online example is part of

the Mushu signal acquisition which is available at http://

github.com/bbci/mushu and licensed under the terms of the

GPL.

Acknowledgments This work was supported in part by grants of

the BMBF: 01GQ0850 and 16SV5839. The research leading to this

results has received funding from the European Union Seventh Frame-

work Programme (FP7/2007-2013) under grant agreements 611570

and 609593.

Conflict of interests The authors declare that they have no conflict

of interest.

References

Bissyandé, T.F., Thung, F., Lo, D., Jiang, L., & Réveillère, L. (2013).

Popularity, interoperability, and impact of programming languages

in 100,000 open source projects. In Proceedings of the 37th annual

international computer software & amp; applications conference

(COMPSAC 2013) (pp. 1–10). Kyoto. http://hal.archives-ouvertes.

fr/hal-00809451.
Blankertz, B. (2005). BCI Competition III results (web page). http://

www.bbci.de/competition/iii/results.
Blankertz, B., Müller, K.R., Krusienski, D., Schalk, G., Wolpaw, J.R.,

Schlögl, A., Pfurtscheller, G., del R Millán, J., Schröder, M., &

Birbaumer, N. (2006). The BCI competition III: Validating alter-

native approachs to actual BCI problems. IEEE Transactions on

Neural Systems and Rehabilitation Engineering, 14(2), 153–159.

doi:10.1109/TNSRE.2006.875642.

http://github.com/bbci/wyrm
http://github.com/bbci/wyrm
http://bbci.github.io/wyrm/
http://bbci.de/competition/iii/
http://bbci.de/competition/iii/
http://github.com/bbci/mushu
http://github.com/bbci/mushu
http://hal.archives-ouvertes.fr/hal-00809451
http://hal.archives-ouvertes.fr/hal-00809451
http://www.bbci.de/competition/iii/results
http://www.bbci.de/competition/iii/results
http://dx.doi.org/10.1109/TNSRE.2006.875642


486 Neuroinform (2015) 13:471–486

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Müller

KR (2008). Optimizing spatial filters for robust EEG single-

trial analysis. IEEE Signal Processing Magazine, 25(1), 41–56.

doi:10.1109/MSP.2008.4408441.

Blankertz, B., Lemm, S., Treder, M.S., Haufe, S., & Müller, K.R.

(2011). Single-trial analysis and classification of ERP components

– a tutorial. NeuroImage, 56, 814–825. doi:10.1016/j.neuroimage.

2010.06.048.

Brunner, C., Andreoni, G., Bianchi, L., Blankertz, B., Breitwieser, C.,

Kanoh, S., Kothe, C., Lécuyer, A., Makeig, S., Mellinger, J.,

Perego, P., Renard, Y., Schalk, G., Susila, I., Venthur, B., &

Müller-Putz, G. (2013). Bci software platforms. In B.Z. Allison,

S. Dunne, R. Leeb, J. Del R Millán, & A. Nijholt (Eds.) Towards

practical brain-computer interfaces, biological and medical

physics, biomedical engineering. doi:10.1007/978-3-642-29746-

5 16 (pp. 303–331). Berlin: Springer.

Brunner, P., Joshi, S., Briskin, S., Wolpaw, J.R., Bischof, H.,

& Schalk, G. (2010). Does the ”P300” speller depend

on eye gaze? Journal of neural engineering, 7, 056,013.

doi:10.1088/1741-2560/7/5/056013.

Dähne, S., Meinecke, F.C., Haufe, S., Höhne, J., Tangermann, M.,

Müller, K.R., & Nikulin, V.V. (2014). SPoC: a novel frame-

work for relating the amplitude of neuronal oscillations to

behaviorally relevant parameters. NeuroImage, 86(0), 111–122.

doi:10.1016/j.neuroimage.2013.07.079. http://www.sciencedirect.

com/science/article/pii/S1053811913008483.

Donchin, E., Spencer, K., & Wijesinghe, R. (2000). The mental

prosthesis: assessing the speed of a p300-based brain-computer

interface. IEEE Transactions on Rehabilitation Engineering, 8(2),

174–179. doi:10.1109/86.847808.

Goodger, D., & van Rossum, G. (2001). Docstring conventions. URL

http://www.python.org/dev/peps/pep-0257/.

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier,

D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L.,

& Hämäläinen, M. (2013). Meg and eeg data analysis with mne-

python. Frontiers in Neuroscience, 7(267). doi:10.3389/fnins.

2013.00267. http://www.frontiersin.org/brain imaging methods/

10.3389/fnins.2013.00267/abstract.

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.D.,

Blankertz, B., & Bießmann, F. (2014). On the interpretation of

weight vectors of linear models in multivariate neuroimaging.

NeuroImage, 87, 96–110. doi:10.1016/j.neuroimage.2013.10.067.

Hunter, J. (2007). Matplotlib: A 2d graphics environment. Com-

puting in Science & Engineering, 9(3), 90–95. doi:10.1109/

MCSE.2007.55.

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source

scientific tools for Python. URL http://www.scipy.org/.

Kothe, C.A., & Makeig, S. (2013). BCILAB: a platform for brain–

computer interface development. Journal of neural engineering,

10(5), 056,014.

Krell, M.M., Straube, S., Seeland, A., Wöhrle, H., Teiwes, J.,

Metzen, J.H., Kirchner, E.A., & Kirchner, F. (2013). pyspace– sig-

nal processing and classification environment in python. Frontiers

in Neuroinformatics 7.

Lal, T.N., Hinterberger, T., Widman, G., Schröder, M., Hill, N.J.,

Rosenstiel, W., Elger, C.E., Schölkopf, B., & Birbaumer,

N. (2005). Methods towards invasive human brain computer

interfaces. In L.K. Saul, Y. Weiss, & L. Bottou (Eds.) Advances

in neural information processing systems, (Vol. 17 pp. 737–744).

Cambridge: MIT Press.

Lipow, M. (1982). Number of faults per line of code. IEEE

Transactions on SE– Software Engineering, 8(4), 437–439.

doi:10.1109/TSE.1982.235579.

Louden, K. et al. (2011). Programming languages: principles and

practices. Cengage Learning.

McKinney, W. (2012). Python for Data Analysis: Data Wrangling with

PandasNumPy, and IPython. O’Reilly Media.

Oliphant, T.E. (2007). Python for scientific computing. Computing in

Science Engineering, 9(3), 10–20. doi:10.1109/MCSE.2007.58.

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.M. (2011). Field-

trip: open source software for advanced analysis of meg, eeg,

and invasive electrophysiological data. Computational intelligence

and neuroscience, 2011, 1.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,

M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12, 2825–2830.

Pérez, F., & Granger, B. (2007). Ipython: A system for interactive sci-

entific computing. Computing in Science Engineering, 9(3), 21–

29. doi:10.1109/MCSE.2007.53.

Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal

spatial filtering of single trial eeg during imagined hand move-

ment. IEEE Transactions on Rehabilitation Engineering, 8(4),

441–446.

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy,

V., Bertrand, O., & Lécuyer, A. (2010). Openvibe: an open-source

software platform to design, test, and use brain-computer inter-

faces in real and virtual environments. Presence: teleoperators and

virtual environments, 19(1), 35–53.

Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N.,

& Wolpaw, J.R. (2004). BCI2000: a general-purpose brain-

computer interface (BCI) system. IEEE Transactions on Biomedi-

cal Engineering, 51(6), 1034–1043.

Schlögl, A., & Brunner, C. (2008). Biosig: a free and open source

software library for BCI research. Computer, 41(10), 44–50.

Schreiner, T., Hill, N., Schreiner, T., Puzicha, C., & Farquhar, J.

(2008). Development and application of a python scripting frame-

work for bci2000. Tübingen: Master’s thesis Universität Tübingen.

Treder, M.S., & Blankertz, B. (2010). (C)overt attention and

visual speller design in an ERP-based brain-computer inter-

face. Behavioral and Brain Functions, 6, 28. http://www.

behavioralandbrainfunctions.com/content/6/1/28.

Venthur, B., & Blankertz, B. (2012). Mushu, a free-and open source

BCI signal acquisition, written in python. In Engineering in

Medicine and Biology Society (EMBC), 2012 Annual International

Conference of the IEEE. doi:10.1109/EMBC.2012.6346296,

(Vol. 2012 pp. 1786–1788): IEEE.

Venthur, B., Scholler, S., Williamson, J., Dähne, S., Treder, M.S.,

Kramarek, M.T., Müller KR, & Blankertz, B. (2010). Pyff—

a pythonic framework for feedback applications and stimu-

lus presentation in neuroscience. Frontiers in Neuroinformatics,

4, 100. doi:10.3389/fninf.2010.00100. http://www.frontiersin.org/

neuroinformatics/10.3389/fninf.2010.00100/abstract.

http://dx.doi.org/10.1109/MSP.2008.4408441
http://dx.doi.org/10.1016/j.neuroimage.2010.06.048
http://dx.doi.org/10.1016/j.neuroimage.2010.06.048
http://dx.doi.org/10.1007/978-3-642-29746-5_16
http://dx.doi.org/10.1007/978-3-642-29746-5_16
http://dx.doi.org/10.1088/1741-2560/7/5/056013
http://dx.doi.org/10.1016/j.neuroimage.2013.07.079
http://www.sciencedirect.com/science/article/pii/S1053811913008483
http://www.sciencedirect.com/science/article/pii/S1053811913008483
http://dx.doi.org/10.1109/86.847808
http://www.python.org/dev/peps/pep-0257/
http://dx.doi.org/10.3389/fnins.2013.00267
http://dx.doi.org/fnins.2013.00267
http://www.frontiersin.org/brain_imaging_methods/10.3389/fnins.2013.00267/abstract
http://www.frontiersin.org/brain_imaging_methods/10.3389/fnins.2013.00267/abstract
http://dx.doi.org/10.1016/j.neuroimage.2013.10.067
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://www.scipy.org/
http://dx.doi.org/10.1109/TSE.1982.235579
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.53
http://www.behavioralandbrainfunctions.com/content/6/1/28
http://www.behavioralandbrainfunctions.com/content/6/1/28
http://dx.doi.org/10.1109/EMBC.2012.6346296
http://dx.doi.org/10.3389/fninf.2010.00100
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2010.00100/abstract
http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2010.00100/abstract

	Wyrm: A Brain-Computer Interface Toolbox in Python
	Abstract
	Introduction
	Toolbox Architecture
	Data Structures
	Toolbox Functions
	Speed
	Unit Tests and Continuous Integration
	Documentation
	Python 2 versus Python 3

	Classification of Motor Imagery in ECoG Recordings
	Analysis and Results

	ERP Component Classification in EEG Recordings
	Analysis and Results

	Performing Online- and Simulated Online Experiments
	Training
	Online Classification

	Performance
	Discussion
	Conclusion
	Information Sharing Statement
	Acknowledgments
	Conflict of interests
	References


