
Wys�: A DSL for Verified Secure
Multi-party Computations

Aseem Rastogi1(B), Nikhil Swamy2, and Michael Hicks3

1 Microsoft Research, Bangalore, India
aseemr@microsoft.com

2 Microsoft Research, Redmond, USA
nswamy@microsoft.com

3 University of Maryland, College Park, USA
mwh@cs.umd.edu

Abstract. Secure multi-party computation (MPC) enables a set of
mutually distrusting parties to cooperatively compute, using a crypto-
graphic protocol, a function over their private data. This paper presents
Wys�, a new domain-specific language (DSL) for writing mixed-mode
MPCs. Wys� is an embedded DSL hosted in F�, a verification-oriented,
effectful programming language. Wys� source programs are essentially
F� programs written in a custom MPC effect, meaning that the program-
mers can use F�’s logic to verify the correctness and security properties
of their programs. To reason about the distributed runtime semantics of
these programs, we formalize a deep embedding of Wys�, also in F�. We
mechanize the necessary metatheory to prove that the properties veri-
fied for the Wys� source programs carry over to the distributed, multi-
party semantics. Finally, we use F�’s extraction to extract an interpreter
that we have proved matches this semantics, yielding a partially verified
implementation. Wys� is the first DSL to enable formal verification of
MPC programs. We have implemented several MPC protocols in Wys�,
including private set intersection, joint median, and an MPC-based card
dealing application, and have verified their correctness and security.

1 Introduction

Secure multi-party computation (MPC) enables two or more parties to compute
a function f over their private inputs xi so that parties don’t see each others’
inputs, but rather only see the output f(x1, ..., xn). Using a trusted third party
to compute f would achieve this goal, but in fact we can achieve it using one
of a variety of cryptographic protocols carried out only among the participants
[12,26,58,65]. One example use of MPC is private set intersection (PSI): the
xi could be individuals’ personal interests, and the function f computes their
intersection, revealing which interests the group has in common, but not any
interests that they don’t. MPC has also been used for auctions [18], detecting
tax fraud [16], managing supply chains [33], privacy preserving statistical anal-
ysis [31], and more recently for machine learning tasks [19,21,30,38,44].
c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 99–122, 2019.
https://doi.org/10.1007/978-3-030-17138-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_5

100 A. Rastogi et al.

Typically, cryptographic protocols expect f to be specified as a boolean
or arithmetic circuit. Programming directly with circuits and cryptography is
painful, so starting with the Fairplay project [40] many researchers have designed
higher-level domain-specific languages (DSLs) for programming MPCs [6,14,17,
19,23,27,29,34,37,39,45,48,49,52,56,61]. These DSLs compile source code to
circuits which are then given to the underlying cryptographic protocol. While
doing this undoubtedly makes it easier to program MPCs, these languages still
have several drawbacks regarding both security and usability.

This paper presents Wys�, a new MPC DSL that addresses several problems
in prior DSLs. Unlike most previous MPC DSLs, Wys� is not a standalone
language, but is rather an embedded DSL hosted in F� [59], a full-featured,
verification-oriented, effectful programming language. Wys� has the following
two distinguishing elements:

1. A program logic for MPC (Sects. 2 and 3). In their most general form, MPC
applications are mixed-mode: they consist of parties performing (potentially dif-
ferent) local, in-clear computations (e.g. I/O, preprocessing inputs) interleaved
with joint, secure computations. Wys� is the first MPC DSL to provide a pro-
gram logic to formally reason about the correctness and security of such applica-
tions, e.g., to prove that the outputs will not reveal too much information about
a party’s inputs [41].1

To avoid reasoning about separate programs for each party, Wys� builds on
the basic programming model of the Wysteria MPC DSL [52] that allows applica-
tions to be written as a single specification. Wys� presents a shallow embedding
of the Wysteria programming model in F�. When writing Wys� source pro-
grams, programmers essentially write F� programs in a new Wys effect, against
a library of MPC combinators. The pre- and postcondition specifications on
the combinators encode a program logic for MPC. The logic provides observ-
able traces—a novel addition to the Wysteria semantics—which programmers
can use to specify security properties such as delimited release [55]. Since Wys�

programs are F� programs, F� computes verification conditions (VCs) for them
which are discharged using Z3 [2] as usual.

We prove the soundness of the program logic—that the properties proven
about the Wys� source programs carry over when these programs are run by
multiple parties in a distributed manner—also in F�. The proof connects the
pre- and postconditions of the Wys� combinators to their distributed semantics
in two steps. First, we implement the combinators in F�, proving the validity
of their pre- and postconditions against their implementation. Next, we reason
about this implementation and the distributed runtime semantics through a deep
embedding of Wys� in F�. Essentially, we deep-embed the Wys� combinator
abstract syntax trees (ASTs) as an F� datatype and formalize two operational
semantics for them: a conceptual single-threaded semantics that models their

1 Our attacker model is the “honest-but-curious” model where the attackers are the
participants themselves, who play their roles in the protocol faithfully, but are moti-
vated to infer as much as they can about the other participants’ secrets by observing
the protocol. Section 2.3 makes the security model of Wys� more precise.

Wys�: A DSL for Verified Secure Multi-party Computations 101

F� implementation, and the actual distributed semantics that models the multi-
party runs of the programs. We prove, in F�, that the single-threaded semantics
is sound with respect to the distributed semantics (Sect. 3). While we use F�, the
program logic is general and it should be possible to embed it in other verification
frameworks (e.g., in Coq, in the style of Hoare Type Theory [46]).

2. A full-featured, partially verified implementation (Sect. 3). Wys�’s imple-
mentation is, in part, formally verified. The hope is that formal verification
will reduce the occurrence of security threatening bugs, as it has in prior
work [15,36,50,63,64].

We define an interpreter in F� that operates over the Wys� ASTs produced
by a custom F� extraction for the Wys effect. While the local computations are
executed locally by the interpreter, the interpreter compiles secure-computation
ASTs to circuits, on the fly, and executes them using the Goldreich, Micali and
Wigderson (GMW) multi-party computation protocol [26]. The Wys� AST (and
hence the interpreter) does not “bake in” standard F� constructs like numbers
and lists. Rather, inherited language features appear abstractly in the AST, and
their semantics is handled by a foreign function interface (FFI). This permits
Wys� programs to take advantage of existing code and libraries available in F�.

To prove the interpreter behaves correctly, we prove, in F�, that it correctly
implements the formalized distributed semantics. The circuit library and the
GMW implementation are not verified—while it is possible to verify the circuit
library [4], verifying a GMW implementation is an open research question. But the
stage is set for verified versions to be plugged into the Wys� codebase. We char-
acterize the Trusted Computing Base (TCB) of the Wys� toolchain in Sect. 3.5.

Using Wys� we have implemented several programs, including PSI, joint
median, and a card dealing application (Sect. 4). For PSI and joint median
we implement two versions: a straightforward one and an optimized one that
improves performance but increases the number of adversary-observable events.
We formally prove that the optimized and unoptimized versions are equivalent,
both functionally and w.r.t. privacy of parties’ inputs. Our card dealing appli-
cation relies on Wys�’s support for secret shares [57]. We formally prove that
the card dealing algorithm always deals a fresh card.

In sum, Wys� constitutes the first DSL that supports proving security and
correctness properties about MPC programs, which are executed by a partially
verified implementation of a full-featured language. No prior DSL provides these
benefits (Sect. 5). The Wys� implementation, example programs, and proofs
are publicly available on Github at https://github.com/FStarLang/FStar/tree/
stratified_last/examples/wysteria.2

2 Verifying and Deploying Wys� Programs

We illustrate the main concepts of Wys� by showing, in several stages, how
to program, optimize, and verify the two-party joint median example [32,53].
2 This development was done on an older F� version, but the core ideas of what we

present here apply to the present version as well.

https://github.com/FStarLang/FStar/tree/stratified_last/examples/wysteria
https://github.com/FStarLang/FStar/tree/stratified_last/examples/wysteria

102 A. Rastogi et al.

In this example, two parties, Alice and Bob, each have a set of n distinct, locally
sorted integers, and they want to compute the median of the union of their sets
without revealing anything else; our running example fixes n = 2, for simplicity.

2.1 Secure Computations with as_sec

In Wys�, as in its predecessor Wysteria [52], an MPC is written as a single
specification that executes in one of the two computation modes. The primary
mode is called sec mode. In it, a computation is carried out using an MPC
protocol among multiple principals. Here is the joint median in Wys�:

1 let median a b in_a in_b =
2 as_sec {a, b} (fun () → let cmp = fst (reveal in_a) > fst (reveal in_b) in
3 let x3 = if cmp then fst (reveal in_a) else snd (reveal in_a) in
4 let y3 = if cmp then snd (reveal in_b) else fst (reveal in_b) in
5 if x3 > y3 then y3 else x3)

The four arguments to median are, respectively, principal identifiers for Alice and
Bob, and Alice and Bob’s secret inputs expressed as tuples. In Wys�, values
specific to each principal are sealed with the principal’s name (which appears in
the sealed container’s type). As such, the types of in_a and in_b are, respectively,
sealed {a} (int ∗ int) and sealed {b} (int ∗ int). The as_sec ps f construct indicates
that thunk f should be run in sec mode among principals in the set ps. In this
mode, the code has access to the secrets of the principals ps, which it can reveal
using the reveal coercion. As we will see later, the type of reveal ensures that
parties cannot reveal each others’ inputs outside sec mode.3 Also note that the
code freely uses standard F� library functions like fst and snd. The example
extends naturally to n > 2 [3].

To run this program, both Alice and Bob would start a Wys� interpreter
at their host and direct it to run the median function Upon reaching the as_sec
thunk, the interpreters coordinate with each other to compute the result using
the underlying MPC protocol. Section 2.5 provides more details.

2.2 Optimizing median with as_par

Although median gets the job done, it can be inefficient for large n. However,
it turns out if we reveal the result of comparison on line 2 to both the parties,
then the computation on line 3 (resp. line 4) can be performed locally by Alice
(resp. Bob) without the need of cryptography. Doing so can massively improve
performance: previous work [32] has observed a 30× speedup for n = 64.

This optimized variant is a mixed-mode computation, where participants per-
form some local computations interleaved with small, jointly evaluated secure
computations. Wys�’s second computation mode, par mode, supports such
mixed-mode computations. The construct as_par ps f states that each princi-
pal in ps should locally execute the thunk f, simultaneously; any principal not in
3 The runtime representation of sealed a v at b’s host is an opaque constant •

(Sect. 2.5).

Wys�: A DSL for Verified Secure Multi-party Computations 103

the set ps simply skips the computation. Within f, while running in par mode,
principals may engage in secure computations via as_sec.

Here is an optimized version of median using as_par:

1 let median_opt a b in_a in_b =
2 let cmp = as_sec {a, b} (fun () → fst (reveal in_a) > fst (reveal in_b)) in
3 let x3 = as_par {a} (fun () → if cmp then fst (reveal in_a) else snd (reveal (in_a))) in
4 let y3 = as_par {b} (fun () → if cmp then snd (reveal in_b) else fst (reveal (in_b))) in
5 as_sec {a, b} (fun () → if reveal x3 > reveal y3 then reveal y3 else reveal x3)

The secure computation on line 2 only computes cmp and returns the result
to both the parties. Line 3 is then a par mode computation involving only Alice
in which she discards one of her inputs based on cmp. Similarly, on line 4, Bob
discards one of his inputs. Finally, line 5 compares the remaining inputs using
as_sec and returns the result as the final median.

One might wonder whether the par mode is necessary. Could we program the
local parts of a mixed-mode program in normal F�, and use a special compiler to
convert the sec mode parts to circuits and pass them to a GMW MPC service?
We could, but it would complicate both writing MPCs and formally reasoning
that the whole computation is correct and secure. In particular, programmers
would need to write one program for each party that performs a different local
computation (as in median_opt). The potential interleaving among local compu-
tations and their synchronization behavior when securely computing together
would be a source of possible error and thus must be considered in any proof.
For example, Alice’s code might have a bug in it that prevents it from reach-
ing a synchronization point with Bob, to do a GMW-based MPC. For Wys�,
the situation is much simpler. Programmers may write and maintain a single
program. This program can be formally reasoned about directly using a SIMD-
style, “single-threaded” semantics, per the soundness result from Sect. 3.4. This
semantics permits reasoning about the coordinated behavior of multiple princi-
pals, without worry about the effects of interleavings or wrong synchronizations.
Thanks to par mode, invariants about coordinated local computations are directly
evident since we can soundly assume the lockstep behavior (e.g., loop iterations
in the PSI example in Sect. 4).

2.3 Embedding a Type System for Wys� in F�

Designing high-level, multi-party computations is relatively easy using Wyste-
ria’s abstractions. Before trying to run such a computation, we might wonder:

1. Is it realizable? For example, does a computation that is claimed to be exe-
cuted only by some principals ps (e.g., using an as_par ps or an as_sec ps) only
ever access data belonging to ps?

2. Is it correct? For example, does median_opt correctly compute the median of
Alice and Bob’s inputs?

3. Is it secure? For example, do the optimizations in median_opt, which produce
more visible outputs, potentially leak more about the inputs?

104 A. Rastogi et al.

By embedding Wys� in F� and leveraging its extensible, monadic, dependent
type-and-effect system, we address each of these three questions. We define a new
indexed monad called Wys for computations that use MPC combinators as_sec
and as_par. Using Wys along with the sealed type, we can ensure that protocols
are realizable. Using F�’s capabilities for formal verification, we can reason about
a computation’s correctness. By characterizing observable events as part of Wys,
we can define trace properties of MPC programs to reason about their security.

To elaborate on the last: we are interested in application-level security prop-
erties, assuming that the underlying cryptographic MPC protocol (GMW [26]
in our implementation) is secure. In particular, the Wys monad models the ideal
behavior of sec mode—a secure computation reveals only the final output and
nothing else. Thus the programmer could reason, for example, that optimized
MPC programs reveal no more than their unoptimized versions. To relate the
proofs over ideal functionality to the actual implementation, as is standard, we
rely on the security of the cryptographic protocol and the composition theo-
rem [20] to postulate that the implementation securely realizes the ideal speci-
fication.

The Wys monad. The Wys monad provides several features. First, all DSL code
is typed in this monad, encapsulating it from the rest of F�. Within the monad,
computations and their specifications can make use of two kinds of ghost state:
modes and traces. The mode of a computation indicates whether the compu-
tation is running in an as_par or in an as_sec context. The trace of a com-
putation records the sequence and nesting structure of outputs of the jointly
executed as_sec expressions—the result of a computation and its trace consti-
tute its observable behavior. The Wys monad is, in essence, the product of a
reader monad on modes and a writer monad on traces [43,62].

Formally, we define the following F� types for modes and traces. A mode
Mode m ps is a pair of a mode tag (either Par or Sec) and a set of principals
ps. A trace is a forest of trace element (telt) trees. The leaves of the trees record
messages TMsg x that are received as the result of executing an as_sec thunk. The
tree structure represented by the TScope ps t nodes record the set of principals
that are able to observe the messages in the trace t.

type mtag = Par | Sec
type mode = Mode: m:mtag → ps:prins → mode
type telt = TMsg : x:α → telt | TScope: ps:prins → t:list telt → telt
type trace = list telt

Every Wys� computation e has a monadic computation type Wys t pre post.
The type indicates that e is in the Wys monad (so it may perform multi-party
computations); t is its result type; pre is a precondition on the mode in which e
may be executed; and post is a postcondition relating the computation’s mode, its
result value, and its trace of observable events. When run in a context with mode
m satisfying the precondition predicate pre m, e may produce the trace tr, and if
and when it returns, the result is a t-typed value v validating post m v tr. The style
of indexing a monad with a computation’s pre- and postcondition is a standard
technique [7,47,59]—we defer the definition of the monad’s bind and return to

Wys�: A DSL for Verified Secure Multi-party Computations 105

the actual implementation and focus instead on specifications of Wys� specific
combinators. We describe as_sec, reveal, and as_par, and how we give them types
in F�, leaving the rest to the online technical report [54]. By convention, any
free variables in the type signatures are universally prenex quantified.

Defining as_sec in Wys�

1 val as_sec: ps:prins → f:(unit → Wys a pre post) → Wys a
2 (requires (fun m → m=Mode Par ps ∧ pre (Mode Sec ps)))
3 (ensures (fun m r tr → tr=[TMsg r] ∧ ∃t. post (Mode Sec ps) r t)))

The type of as_sec is dependent on the first parameter, ps. Its second argu-
ment f is the thunk to be evaluated in sec mode. The result’s computation type
has the form Wys a (requires φ) (ensures ψ), for some precondition and postcondi-
tion predicates φ and ψ, respectively. We use the requires and ensures keywords
for readability—they are not semantically significant.

The precondition of as_sec is a predicate on the mode m of the computation
in whose context as_sec ps f is called. For all the ps to jointly execute f, we require
all of them to transition to perform the as_sec ps f call simultaneously, i.e., the
current mode must be Mode Par ps. We also require the precondition pre of f to
be valid once the mode has transitioned to Mode Sec ps—line 2 says just this.

The postcondition of as_sec is a predicate relating the initial mode m, the
result r:a, and the trace tr of the computation. Line 3 states that the trace
of a secure computation as_sec ps f is just a singleton [TMsg r], reflecting that
its execution reveals only result r. Additionally, it ensures that the result r is
related to the mode in which f is run (Mode Sec ps) and some trace t according to
post, the postcondition of f. The API models the “ideal functionality” of secure
computation protocols (such as GMW) where the participants only observe the
final result.

Defining reveal in Wys�. As discussed earlier, a value v of type sealed ps t encap-
sulates a t value that can be accessed by calling reveal v. This call should only
succeed under certain circumstances. For example, in par mode, Bob should not
be able to reveal a value of type sealed {Alice} int. The type of reveal makes the
access control rules clear:

val unseal: sealed ps α →Ghost α

val reveal: x:sealed ps α →Wys α

(requires (fun m →m.mode=Par =⇒ m.ps ⊆ ps ∧ m.mode=Sec =⇒ m.ps ∩ ps �= ∅))
(ensures (fun m r tr → r=unseal x ∧ tr=[]))

The unseal function is a Ghost function, meaning that it can only be used in
specifications for reasoning purposes. On the other hand, reveal can be called
in the concrete Wys� programs. Its precondition says that when executing in
Mode Par ps’, all current participants must be listed in the seal, i.e., ps’ ⊆ ps.
However, when executing in Mode Sec ps’, only a subset of current participants is
required: ps’ ∩ ps �= ∅. This is because the secure computation is executed jointly
by all of ps’, so it can access any of their individual data. The postcondition of
reveal relates the result r to the argument x using the unseal function.

106 A. Rastogi et al.

Defining as_par in Wys�

1 val as_par: ps:prins → (unit →Wys a pre post) →Wys (sealed ps a)
2 (requires (fun m →m.mode=Par ∧ ps ⊆ m.ps ∧ can_seal ps a ∧ pre (Mode Par ps)))
3 (ensures (fun m r tr → ∃t. tr=[TScope ps t] ∧ post (Mode Par ps) (unseal r) t)))

The type of as_par enforces the current mode to be Par, and ps to be a subset
of current principals. Importantly, the API scopes the trace t of f to model the
fact that any observables of f are only visible to the principals in ps. Note that
as_sec did not require such scoping, as there ps and the set of current principals
in m are the same. The can_seal predicate enforces that a is a zero-order type
(i.e. closures cannot be sealed), and that in case a is already a sealed type, its
set of principals is a subset of ps.

2.4 Correctness and Security Verification

Using the Wys monad and the sealed type, we can write down precise types for our
median and median_opt programs, proving various useful properties. We discuss
the statements of the main lemmas and the overall proof structure. By program-
ming the protocols as a single specification using the high-level abstractions
provided by Wys�, our proofs are relatively straightforward—in all the proofs
of this section, F� required no additional hints. In particular, we rely heavily on
the view that both parties execute (different fragments of) the same code, thus
avoiding the unwieldy task of reasoning about low-level message passing.

Correctness and Security of median. We first define a pure specification of median
of two int tuples:

let median_of (x1, x2) (y1, y2) = let (_, m, _, _) = sort x1 x2 y1 y2 in m

Further, we capture the preconditions using the following predicate:

let median_pre (x1, x2) (y1, y2) = x1 < x2 ∧ y1 < y2 ∧ distinct x1 x2 y1 y2

Using these, we prove the following top-level specification for median:

val median: in_a:sealed {a} (int ∗ int) → in_b:sealed {b} (int ∗ int) → Wys int
(requires (fun m → m = Mode Par {a, b})) (∗ should be called in the Par mode ∗)
(ensures (fun m r tr → let in_a, in_b = unseal in_a, unseal in_b in

(median_pre in_a in_b =⇒ r = median_of in_a in_b) ∧
(∗ functional correctness ∗)

tr = [TMsg r])) (∗ trace is just the final value ∗)
This signature establishes that when Alice and Bob simultaneously execute

median (in Par mode), with secrets in_a and in_b, then, if and when the protocol
terminates, (a) if their inputs satisfy the precondition median_pre, then the result
is the joint median of their inputs and (b) the observable trace consists only of
the final result, as there is but a single as_sec thunk in median, i.e., it is secure.

Correctness and Security of median_opt. The security proof of median_opt is par-
ticularly interesting, because the program intentionally reveals more than just

Wys�: A DSL for Verified Secure Multi-party Computations 107

the final result, i.e., the output of the first comparison. We would like to verify
that this additional information does not compromise the privacy of the parties’
inputs. To do this, we take the following approach.

First, we characterize the observable trace of median_opt as a pure,
specification-only function. Then, using relational reasoning, we prove a nonin-
teference with delimited release property [55] on these traces. Essentially we prove
that, for two runs of median_opt where Bob’s inputs and the output median are
the same, the observable traces are also the same irrespective of Alice’s inputs.
Thus, from Alice’s perspective, the observable trace does not reveal more to
Bob than what the output already does. We prove this property symmetrically
for Bob.

We start by defining a trace function for median_opt:

let opt_trace a b (x1, _) (y1, _) r = [
TMsg (x1 > y1); (∗ observable from the first as_sec ∗)
TScope {a} []; TScope {b} []; (∗ observables from two local as_par ∗)
TMsg r] (∗ observable from the final as_sec ∗)

A trace will have four elements: output of the first as_sec computation, two
empty scoped traces for the two local as_par computations, and the final output.

Using this function, we prove correctness of median_opt, thus:

val median_opt: in_a:sealed {a} (int ∗ int) → in_b:sealed {b} (int ∗ int) → Wys int
(requires (fun m → m = Mode Par {a, b})) (∗ should be called in the Par mode ∗)
(ensures (fun m r tr → let in_a = unseal in_a in let in_b = unseal in_b in

(median_pre in_a in_b =⇒ r = median_of in_a in_b) ∧
(∗ functional correctness ∗)

tr = opt_trace a b in_a in_b r
(∗ opt_trace precisely describes the observable trace ∗)

The delimited release property is then captured by the following lemma:

val median_opt_is_secure_for_alice: a:prin → b:prin
→ in_a1:(int ∗ int) → in_a2:(int ∗ int) → in_b:(int ∗ int) (∗ possibly diff a1, a2 ∗)
→ Lemma (requires (median_pre in_a1 in_b ∧ median_pre in_a2 in_b ∧

median_of in_a1 in_b = median_of in_a2 in_b)) (∗ but same median ∗)
(ensures (opt_trace a b in_a1 in_b (median_of in_a1 in_b) = (∗ ensures .. ∗)

opt_trace a b in_a2 in_b (median_of in_a2 in_b))) (∗ .. same trace ∗)

The lemma proves that for two runs of median_opt where Bob’s input and
the final output remain same, but Alice’s inputs vary arbitrarily, the observable
traces are the same. As such, no more information about information leaks about
Alice’s inputs via the traces than what is already revealed by the output. We
also prove a symmetrical lemma median_opt_is_secure_for_bob.

In short, because the Wys monad provides programmers with the observable
traces in the logic, they can then be used to prove properties, relational or
otherwise, in the pure fragment of F� outside the Wys monad. We present more
examples and their verification details in Sect. 4.

108 A. Rastogi et al.

Fig. 1. Architecture of an Wys� deployment

2.5 Deploying Wys� Programs

Having defined a proved-secure MPC program in Wys�, how do we run it? Doing
so requires the following steps (Fig. 1). First, we run the F� compiler in a special
mode that extracts the Wys� code (say psi.fst), into the Wys� AST as a data
structure (in psi.ml). Except for the Wys� specific nodes (as_sec, as_par, etc.),
the rest of the program is extracted into FFI nodes that indicate the use of, or
calls into, functionality provided by F� itself.

The next step is for each party to run the extracted AST using the Wys�

interpreter. This interpreter is written in F� and we have proved (see Sect. 3.5)
that it implements a deep embedding of the Wys� semantics, also specified in
F� (Figs. 5 and 6, Sect. 3). The interpreter is extracted to OCaml by the usual
F� extraction. Each party’s interpreter executes the AST locally until it reaches
an as_sec ps f node, where the interpreter’s back-end compiles f, on-the-fly, for
particular values of the secrets in f’s environment, to a boolean circuit. First-
order, loop-free code can be compiled to a circuit; Wys� provides specialized
support for several common combinators (e.g., fst, snd, list combinators such as
List.intersect, List.mem, List.nth etc.).

The circuit is handed to a library by Choi et al. [22] that implements the
GMW [26] MPC protocol. Running the GMW protocol involves the parties in ps
generating and communicating (XOR-based) secret shares [57] for their secret
inputs, and then cooperatively evaluating the boolean circuit for f over them.
While our implementation currently uses the GMW protocol, it should be pos-
sible to plugin other MPC protocols as well.

One obvious question is how both parties are able to get this process off
the ground, given that they don’t know some of the inputs (e.g., other parties’
secrets). The sealed abstraction helps here. Recall that for median, the types of
the inputs are of the form sealed {a} (int ∗ int) and sealed {b} (int ∗ int). When the
program is run on Alice’s host, the former will be a pair of Alice’s values, whereas
the latter will be an opaque constant (which we denote as •). The reverse will

Wys�: A DSL for Verified Secure Multi-party Computations 109

Fig. 2. Wys� syntax

be true on Bob’s host. When the circuit is constructed, each principal links their
non-opaque inputs to the relevant input wires of the circuit. Similarly, the output
map component of each party is derived from their output wires in the circuit,
and thus, each party only gets to see their own output.

3 Formalizing and Implementing Wys�

In the previous section, we presented examples of verifying properties about
Wys� programs using F�’s logic. However, these programs are not executed using
the F� (single-threaded) semantics; they have a distributed semantics involving
multiple parties. So, how do the properties that we verify using F� carry over?

In this section, we present the metatheory that answers this question. First,
we formalize the Wys� single-threaded (ST) semantics, that faithfully models
the F� semantics of the Wys� API presented in Sect. 2. Next, we formalize the
distributed (DS) semantics that multiple parties use to run Wys� programs.
Then we prove the former is sound with respect to the latter, so that properties
proved of programs under ST apply when run under DS. We have mechanized
the proof of this theorem in F�.

3.1 Syntax

Figure 2 shows the complete syntax of Wys�. Principals and principal sets are
first-class values, and are denoted by p and s respectively. Constants in the lan-
guage also include () (unit), booleans (� and ⊥), and FFI constants c. Expres-
sions e include the regular forms for functions, applications, let bindings, etc.
and the Wys�-specific constructs. Among the ones that we have not seen in
Sect. 2, expression mkmap e1 e2 creates a map from principals in e1 (which is a
principal set) to the value computed by e2. project e1 e2 projects the value of
principal e1 from the map e2, and concat e1 e2 concatenates the two maps. The
maps are used if an as_sec computation returns different outputs to the parties.

Host language (i.e., F�) constructs are also part of the syntax of Wys�,
including constants c for strings, integers, lists, tuples, etc. Likewise, host lan-
guage functions/primitives can be called from Wys�—ffi f ē is the invocation of
a host-language function f with arguments ē. The FFI confers two benefits. First,
it simplifies the core language while still allowing full consideration of security
relevant properties. Second, it helps the language scale by incorporating many
of the standard features, libraries, etc. from the host language.

110 A. Rastogi et al.

Map m ::= · | m[p �→ v]
Value v ::= p | s | () | � | ⊥ | m | v | (L, λx.e) | (L, fix f.λx.e) | sealed s v | •
Mode M ::= Par s | Sec s

Context E ::= 〈〉 | as par 〈〉 e | as par v 〈〉 | as sec 〈〉 e | as sec v 〈〉 | . . .
Frame F ::= (M, L, E, T)
Stack X ::= · | F, X

Environment L ::= · | L[x �→ v]
Trace element t ::= TMsg v | TScope s T

Trace T ::= · | t, T
Configuration C ::= M ;X;L;T ; e

Par component P ::= · | P [p �→ C]
Sec component S ::= · | S[s �→ C]

Protocol π ::= P ;S

Fig. 3. Runtime configuration syntax

S-aspar
e1 = as par s (L1, λx.e) M = Par s1

s ⊆ s1 X1 = (M ;L; seal s 〈〉;T), X
M ;X;L;T ; e1 → Par s;X1;L1[x �→ ()]; ·; e

S-parret
X = (M1;L1; seal s 〈〉;T1), X1

can seal s v T2 = append T1 [TScope s T]
M ;X;L;T ; v → M1;X1;L1;T2; sealed s v

S-assec
e1 = as sec s (L1, λx.e) M = Par s

X1 = (M ;L; 〈〉 T), X
M ;X;L;T ; e1 → Sec s;X1;L1[x �→ ()]; ·; e

S-secret
M = Sec X = (M1;L1; 〈〉;T), X1

T1 = append T [TMsg v]
M ;X;L; ·; v → M1;X1;L1;T1; v

Fig. 4. Wys� ST semantics (selected rules)

3.2 Single-Threaded Semantics

We formalize the semantics in the style of Hieb and Felleisen [24], where the
redex is chosen by (standard, not shown) evaluation contexts E, which prescribe
left-to-right, call-by-value evaluation order. The ST semantics, a model of the F�

semantics and the Wys� API, defines a judgment C → C ′ that represents a single
step of an abstract machine (Fig. 4). Here, C is a configuration M ;X;L;T ; e.
This five-tuple consists of a mode M , a stack X, a local environment L, a trace
T , and an expression e. The syntax for these elements is given in Fig. 3. The value
form v represents the host language (FFI) values. The stack and environment
are standard; trace T and mode M were discussed in the previous section.

For space reasons, we focus on the two main Wys� constructs as_par and
as_sec. Our technical report [54] shows other Wys� specific constructs.

Rules S-aspar and S-parret (Fig. 4) reduce an as_par expression once its
arguments are fully evaluated—its first argument s is a principal set, while the
second argument (L1, λx.e) is a closure where L1 captures the free variables of
thunk λx.e. S-aspar first checks that the current mode M is Par and contains
all the principals from the set s. It then pushes a seal s 〈〉 frame on the stack, and

Wys�: A DSL for Verified Secure Multi-party Computations 111

P-par
C � C′

P [p �→ C];S −→ P [p �→ C′];S

∀p ∈ s. P [p].e = as sec s (Lp, λx.e)
s �∈ dom(S) L = combine L̄p

P ;S −→ P ;S[s �→ Sec s; ·;L[x �→ ()]; ·; e] P-enter

P-sec
C → C′

P ;S[s �→ C] −→ P ;S[s �→ C′]

P-exit
S[s] = Sec s; ·;L;T ; v

P ′ = ∀p ∈ s. P [p �→ P [p] � (slice v p v)] S′ = S \ s

P ;S −→ P ′;S′

Fig. 5. Distributed semantics, multi-party rules

L-aspar1
e1 = as par s (L1, λx.e) p ∈ s

X1 = (M ;L; seal s 〈〉;T), X
Par p;X;L;T ; e1 � Par p;X1;L1[x �→ ()]; ·; e

L-parret
X = (M ;L1; seal s 〈〉;T1), X1

T2 = append T1 T v1 = sealed s v

Par p;X;L;T ; v � Par p;X1;L1;T2; v1

L-aspar2
p �∈ s

Par p;X;L;T ; as par s (L1, λx.e) � Par p;X;L;T ; sealed s •

Fig. 6. Distributed semantics, selected local rules (the mode M is always Par p)

starts evaluating e under the environment L1[x �→ ()]. The rule S-asparret pops
the frame and seals the result, so that it is accessible only to the principals in s.
The rule also creates a trace element TScope s T , essentially making observations
during the reduction of e (i.e., T) visible only to principals in s.

Turning to as_sec, the rule S-assec checks the precondition of the API, and
the rule S-assecret generates a trace observation TMsg v, as per the post-
condition of the API. As mentioned before, as_sec semantics models the ideal,
trusted third-party semantics of secure computations where the participants only
observe the final output. We can confirm that the rules implement the types of
as_par and as_sec shown in Sect. 2.

3.3 Distributed Semantics

In the DS semantics, principals evaluate the same program locally and asyn-
chronously until they reach a secure computation, at which point they synchro-
nize to jointly perform the computation. The semantics consists of two parts: (a)
a judgment of the form π −→ π′ (Fig. 5), where a protocol π is a tuple (P ;S)
such that P maps each principal to its local configuration and S maps a set of
principals to the configuration of an ongoing, secure computation; and (b) a local
evaluation judgment C � C ′ (Fig. 6) to model how a single principal behaves
while in par mode.

Rule P-Par in Fig. 5 models a single party taking a step, per the local eval-
uation rules. Figure 6 shows these rules for as_par. (See technical report [54]
for more local evaluation rules.) A principal either participates in the as_par

112 A. Rastogi et al.

computation, or skips it. Rules L-aspar1 and L-parret handle the case when
p ∈ s, and so, the principal p participates in the computation. The rules closely
mirror the corresponding ST semantics rules in Fig. 4. One difference in the rule
L-asparret is that the trace T is not scoped. In the DS semantics, traces only
contain TMsg elements; i.e., a trace is the (flat) list of secure computation out-
puts observed by that active principal. If p 	∈ s, then the principal skips the
computation with the result being a sealed value containing the opaque con-
stant • (rule L-aspar2). The contents of the sealed value do not matter, since
the principal will not be allowed to unseal the value anyway.

As should be the case, there are no local rules for as_sec—to perform a secure
computation parties need to combine their data and jointly do the computation.
Rule P-enter in Fig. 5 handles the case when principals enter a secure compu-
tation. It requires that all the principals p ∈ s must have the expression form
as_sec s (Lp, λx.e), where Lp is their local environment associated with the clo-
sure. Each party’s local environment contains its secret values (in addition to
some public values). Conceptually, a secure computation combines these environ-
ments, thereby producing a joint view, and evaluates e under the combination.
We define an auxiliary combine function for this purpose:

combine_v (•, v) = v
combine_v (v, •) = v
combine_v (sealed s v1, sealed s v2) = sealed s (combine_v v1 v2)
...

The rule P-enter combines the principals’ environments, and creates a new
entry in the S map. The principals are now waiting for the secure computation
to finish. Rule P-sec models a stepping rule inside the sec mode.

The rule P-exit applies when a secure computation has completed and
returns results to the waiting principals. If the secure computation terminates
with value v, each principal p gets the value slice_v p v. The slice_v function is
analogous to combine, but in the opposite direction—it strips off the parts of v
that are not accessible to p:

slice_v p (sealed s v) = sealed s •, if p �∈ s
slice_v p (sealed s v) = sealed s (slice_v p v), if p ∈ s
...

In the rule P-exit, the � notation is defined as:
M ;X;L;T ;_ � v = M ;X;L; append T [TMsg v]; v
That is, the returned value is also added to the principal’s trace to note their

observation of the value.

3.4 Metatheory

Our goal is to show that the ST semantics faithfully represents the semantics of
Wys� programs as they are executed by multiple parties, i.e., according to the
DS semantics. We do this by proving simulation of the ST semantics by the DS
semantics, and by proving confluence of the DS semantics. Our F� development
mechanizes all the metatheory presented in this section.

Wys�: A DSL for Verified Secure Multi-party Computations 113

Simulation. We define a slice s C function that returns the corresponding protocol
πC for an ST configuration C. In the P component of πC , each principal p ∈ s is
mapped to their slice of the protocol. For slicing values, we use the same slice_v
function as before. Traces are sliced as follows:

slice_tr p (TMsg v) = [TMsg (slice_v p v)]
slice_tr p (TScope s T) = slice_tr p T, if p ∈ s
slice_tr p (TScope s T) = [], if p �∈ s

The slice of an expression (e.g., the source program) is itself. For all other
components of C, slice functions are defined analogously.

We say that C is terminal if it is in Par mode and is fully reduced to a value
(i.e. when C = _;X;_;_; e, e is a value and X is empty). Similarly, a protocol
π = (P, S) is terminal if S is empty and all the local configurations in P are
terminal. The simulation theorem is then the following:

Theorem 1 (Simulation of ST by DS). Let s be the set of all principals. If
C1 →∗ C2, and C2 is terminal, then there exists some derivation (slice s C1) −→∗

(slice s C2) such that (slice s C2) is terminal.

To state confluence, we first define the notion of strong termination.

Definition 1 (Strong termination). If all possible runs of protocol π termi-
nate at πt, we say π strongly terminates in πt, written π ⇓ πt.

Our confluence result then says:

Theorem 2 (Confluence of DS). If π −→∗ πt and πt is terminal, then π ⇓ πt.

Combining the two theorems, we get a corollary that establishes the sound-
ness of the ST semantics w.r.t. the DS semantics:

Corollary 1 (Soundness of ST semantics). Let s be the set of all principals.
If C1 →∗ C2, and C2 is terminal, then (slice s C1) ⇓ (slice s C2).

Now suppose that for a Wys� source program, we prove in F� a postcondi-
tion that the result is sealed alice n, for some n > 0. By the soundness of the ST
semantics, we can conclude that when the program is run in the DS semantics,
it may diverge, but if it terminates, alice’s output will also be sealed alice n, and
for all other principals their outputs will be sealed alice •. Aside from the corre-
spondence on results, our semantics also covers correspondence on traces. Thus
the correctness and security properties that we prove about a Wys� program
using F�’s logic, hold for the program that actually runs.

3.5 Implementation

The formal semantics presented in the prior section is mechanized as an induc-
tive type in F�. This style is useful for proving properties, but does not directly
translate to an implementation. Therefore, we implement an interpretation func-
tion step in F� and prove that it corresponds to the rules; i.e., that for all input

114 A. Rastogi et al.

configurations C, step(C) = C ′ implies that C → C ′ according to the semantics.
Then, the core of each principal’s implementation is an F� stub function tstep
that repeatedly invokes step on the AST of the source program (produced by the
F� extractor run in a custom mode), unless the AST is an as_sec node. Functions
step and tstep are extracted to OCaml by the standard F� extraction process.

Local evaluation is not defined for the as_sec node, so the stub implements
what amounts to P-enter and P-exit from Fig. 5. When the stub notices the
program has reached an as_sec expression, it calls into a circuit library we have
written that converts the AST of the second argument of as_sec to a boolean
circuit. This circuit and the encoded inputs are communicated to a co-hosted
server that implements the GMW MPC protocol [22]. The server evaluates the
circuit, coordinating with the GMW servers of the other principals, and sends
back the result. The circuit library decodes the result and returns it to the
stub. The stub then carries on with the local evaluation. Our FFI interface
currently provides a form of monomorphic, first-order interoperability between
the (dynamically typed) interpreter and the host language.

Our F� formalization of the Wys� semantics, including the AST specification,
is 1900 lines of code. This formalization is used both by the metatheory as well
as by the (executable) interpreter. The metatheory that connects the ST and
DS semantics (Sect. 3) is 3000 lines. The interpreter and its correctness proof
are another 290 lines of F� code. The interpreter step function is essentially
a big switch-case on the current expression, that calls into the functions from
the semantics specification. The tstep stub is another 15 lines. The size of the
circuit library, not including the GMW implementation, is 836 lines. The stub,
the implementation of GMW, the circuit library, and F� toolchain (including the
custom Wys� extraction mode) are part of our Trusted Computing Base (TCB).

4 Applications

In addition to joint median, presented in Sect. 2, we have implemented and
proved properties of two other MPC applications, dealing for online card games
and private set intersection (PSI).

Card Dealing. We have implemented an MPC-based card dealing application in
Wys�. Such an application can play the role of the dealer in a game of online
poker, thereby eliminating the need to trust the game portal for card dealing.
The application relies on Wys�’s support for secret shares [57]. Using secret
shares, the participating parties can share a value in a way that none of the
parties can observe the actual value individually (each party’s share consists of
some random-looking bytes), but they can recover the value by combining their
shares in sec mode.

In the application, the parties maintain a list of secret shares of already
dealt cards (the number of already dealt cards is public information). To deal a
new card, each party first generates a random number locally. The parties then
perform a secure computation to compute the sum of their random numbers
modulo 52, let’s call it n. The output of the secure computation is secret shares

Wys�: A DSL for Verified Secure Multi-party Computations 115

of n. Before declaring n as the newly dealt card, the parties needs to ensure
that the card n has not already been dealt. To do so, they iterate over the list of
secret shares of already dealt cards, and for each element of the list, check that it
is different from n. The check is performed in a secure computation that simply
combines the shares of n, combines the shares of the list element, and checks the
equality of the two values. If n is different from all the previously dealt cards,
it is declared to be the new card, else the parties repeat the protocol by again
generating a fresh random number each.

Wys� provides the following API for secret shares:

type Sh: Type →Type
type can_sh: Type →Type
assume Cansh_int: can_sh int

val v_of_sh: sh:Sh α →Ghost α

val ps_of_sh: sh:Sh α →Ghost prins

val mk_sh: x:α →Wys (Sh α)
(requires (fun m →m.mode = Sec ∧ can_sh α))
(ensures (fun m r tr → v_of_sh r = x ∧ ps_of_sh r = m.ps ∧ tr = [])

val comb_sh: x:Sh α →Wys α (requires (fun m →m.mode = Sec ∧ ps_of_sh x = m.ps))
(ensures (fun m r tr → v_of_sh x = r ∧ tr = [])

Type Sh α types the shares of values of type α. Our implementation currently
supports shares of int values only; the can_sh predicate enforces this restriction
on the source programs. Extending secret shares support to other types (such as
pairs) should be straightforward (as in [52]). Functions v_of_sh and ps_of_sh are
marked Ghost, meaning that they can only be used in specifications for reasoning
purposes. In the concrete code, shares are created and combined using the mk_sh
and comb_sh functions. Together, the specifications of these functions enforce
that the shares are created and combined by the same set of parties (through
ps_of_sh), and that comb_sh recovers the original value (through v_of_sh). The
Wys� interpreter transparently handles the low-level details of extracting shares
from the GMW implementation of Choi et al. (mk_sh), and reconstituting the
shares back (comb_sh).

In addition to implementing the card dealing application in Wys�, we have
formally verified that the returned card is fresh. The signature of the function
that checks for freshness of the newly dealt card is as follows (abc is the set of
three parties in the computation):

val check_fresh: l:list (Sh int){∀ s’. mem s’ l =⇒ ps_of_sh s’ = abc}
→ s:Sh int{ps_of_sh s = abc}
→ Wys bool (requires (fun m → m = Mode Par abc))

(ensures (fun _ r _ → r ⇐⇒ (∀ s’. mem s’ l =⇒ not (v_of_sh s’ = v_of_sh s))))

The specification says that the function takes two arguments: l is the list of
secret shares of already dealt cards, and s is the secret shares of the newly dealt
card. The function returns a boolean r that is true iff the concrete value (v_of_sh)
of s is different from the concrete values of all the elements of the list l. Using
F�, we verify that the implementation of check_fresh meets this specification.

116 A. Rastogi et al.

PSI. Consider a dating application that enables its users to compute their com-
mon interests without revealing all of them. This is an instance of the more
general private set intersection (PSI) problem [28].

We implement a straightforward version of PSI in Wys�:

let psi a b (input_a:sealed {a} (list int)) (input_b:sealed {b} (list int)) (l_a:int) (l_b:int) =
as_sec {a,b} (fun () → List.intersect (reveal input_a) (reveal input_b) l_a l_b)

where the input sets are expressed as lists with public lengths.
Huang et al. [28] provide an optimized PSI algorithm that performs much

better when the density of common elements in the two sets is high. We imple-
ment their algorithm in Wys�. The optimized version consists of two nested
loops – an outer loop for Alice’s set and an inner loop for Bob’s – where an
iteration of the inner loop compares the current element of Alice’s set with the
current element of Bob’s. The nested loops are written using as_par so that both
Alice and Bob execute the loops in lockstep (note that the set sizes are public),
while the comparison in the inner loop happens using as_sec. Instead of naive
l_a ∗ l_b comparisons, Huang et al. [28] observe that once an element of Alice’s
set ax matches an element of Bob’s set bx, the inner loop can return immedi-
ately, skipping the comparisons of ax with the rest of Bob’s set. Furthermore, bx
can be removed from Bob’s set, excluding it from any further comparisons with
other elements in Alice’s set. Since there are no repeats in the input sets, all the
excluded comparisons are guaranteed to be false. We show the full code and its
performance comparison with psi in the technical report [54].

As with the median example from Sect. 2, the optimized PSI intentionally
reveals more for performance gains. As such, we would like to verify that the
optimizations do not reveal more about parties’ inputs. We take the following
stepwise refinement approach. First, we characterize the trace of the optimized
implementation as a pure function trace_psi_opt la lb (omitted for space reasons),
and show that the trace of psi_opt is precisely trace_psi_opt la lb.

Then, we define an intermediate PSI implementation that has the same
nested loop structure, but performs l_a ∗ l_b comparisons without any opti-
mizations. We characterize the trace of this intermediate implementation as the
pure function trace_psi, and show that it precisely captures the trace.

To show that trace_psi does not reveal more than the intersection of the input
sets, we prove the following lemma.

Ψ la0 la1 lb0 lb1
def
= (∗ possibly diff input sets, but with ∗)

la0 ∩ lb0 = la1 ∩ lb1 ∧ (∗ intersections the same ∗)
length la0 = length la1 ∧ length lb0 = length lb1 (∗ lengths the same ∗)

val psi__interim_is_secure: la0:_ → lb0:_ → la1:_ → lb1:_ → Lemma
(requires (Ψ la0 la1 lb0 lb1))
(ensures (permutation (trace_psi la0 lb0) (trace_psi la1 lb1)))

Wys�: A DSL for Verified Secure Multi-party Computations 117

The lemma essentially says that for two runs on same length inputs, if the
output is the same, then the resulting traces are permutation of each other.4
We can reason about the traces of psi_interim up to permutation because Alice
has no prior knowledge of the choice of representation of Bob’s set (Bob can
shuffle his list), so cannot learn anything from a permutation of the trace.5 This
establishes the security of psi_interim.

Finally, we can connect psi_interim to psi_opt by showing that there exists
a function f, such that for any trace tr=trace_psi la lb, the trace of psi_opt,
trace_psi_opt la lb, can be computed by f (length la) (length lb) tr. In other words,
the trace produced by the optimized implementation can be computed using a
function of information already available to Alice (or Bob) when she (or he)
observes a run of the secure, unoptimized version psi_interim la lb. As such, the
optimizations do not reveal further information.

5 Related Work

Source MPC Verification. While the verification of the underlying crypto proto-
cols has received some attention [4,5], verification of the correctness and security
properties of MPC source programs has remained largely unexplored, surpris-
ingly so given that the goal of MPC is to preserve the privacy of secret inputs.
The only previous work that we know of is Backes et al. [9] who devise an applied
pi-calculus based abstraction for MPC, and use it for formal verification. For an
auction protocol that computes the min function, their abstraction comprises
about 1400 lines of code. Wys�, on the other hand, enables direct verification
of the higher-level MPC source programs, and not their models, and in addition
provides a partially verified toolchain.

Wysteria. Wys�’s computational model is based on the programming abstrac-
tions of a previous MPC DSL, Wysteria [52]. Wys�’s realization as an embedded
DSL in F� makes important advances. In particular, Wys� (a) enhances the
Wysteria semantics to include a notion of observable traces, and provides the
novel capability to prove security and correctness properties about mixed-mode
MPC source programs, (b) expands the programming constructs available by
drawing on features and libraries of F�, and (c) adds assurance via a (partially)
proved-correct interpreter.

VerifiedMPC Toolchain. Almeida et al. [4] build a verified toolchain consisting of
(a) a verified circuit compiler from (a subset of) C to boolean circuits, and (b) a
verified implementation of Yao’s [65] garbled circuits protocol for 2-party MPC.
They use CompCert [36] for the former, and EasyCrypt [11] for the latter. These
are significant advances, but there are several distinctions from our work. The
MPC programs in their toolchain are not mixed-mode, and thus it cannot express

4 Holding Bob’s (resp. Alice’s) inputs fixed and varying Alice’s (resp. Bob’s) inputs,
as done for median in Sect. 2.4, is covered by this more general property.

5 We could formalize this observation using a probabilistic, relational variant of F� [10].

118 A. Rastogi et al.

examples like median_opt and the optimized PSI. Their framework does not
enable formal verification of source programs like Wys� does. It may be possible
to use other frameworks for verifying C programs (e.g. Frama-C [1]), but it is
inconvenient as one has to work in the subset of C that falls in the intersection
of these tools. Wys� is also more general as it supports general n-party MPC;
e.g., the card dealing application in Sect. 4 has 3 parties. Nevertheless, Wys�

may use their verified Yao implementation for the special case of 2 parties.

MPC DSLs and DSL Extensions. In addition to Wysteria several other MPC
DSLs have been proposed in the literature [14,17,27,29,34,37,39,48,49,52,56,61].
Most of these languages have standalone implementations, and the (usability/s-
calability) drawbacks that come with them. Like Wys�, a few are implemented as
language extensions. Launchbury et al. [35] describe a Haskell-embedded DSL for
writing low-level “share protocols” on a multi-server “SMC machine”. OblivC [66]
is an extension to C for two-party MPC that annotates variables and condition-
als with an obliv qualifier to identify private inputs; these programs are compiled
by source-to-source translation. The former is essentially a shallow embedding,
and the latter is compiler-based; Wys� is unique in that it combines a shal-
low embedding to support source program verification and a deep embedding
to support a non-standard target semantics. Recent work [19,21] compiles to
cryptographic protocols that include both arithmetic and boolean circuits; the
compiler decides which fragments of the program fall into which category. It
would be interesting work to integrate such a backend in Wys�.

Mechanized Metatheory. Our verification results are different from a typical
verification result that might either mechanize metatheory for an idealized lan-
guage [8], or might prove an interpreter or compiler correct w.r.t. a formal seman-
tics [36]—we do both. We mechanize the metatheory of Wys� establishing the
soundness of the conceptual ST semantics w.r.t. the actual DS semantics, and
mechanize the proof that the interpreter implements the correct DS semantics.

General DSL Implementation Strategies. DSLs (for MPC or other purposes) are
implemented in various ways, such as by developing a standalone compiler/in-
terpreter, or by shallow or deep embedding in a host language. Our approach
bears relation to the approach taken in LINQ [42], which embeds a query lan-
guage in normal C# programs, and implements these programs by extracting
the query syntax tree and passing it to a provider to implement for a particular
backend. Other researchers have embedded DSLs in verification-oriented host
languages (e.g., Bedrock [13] in Coq [60]) to permit formal proofs of DSL pro-
grams. Low� [51] is a shallow embedding of a small, sequential, well-behaved
subset of C in F� that extracts to C using a F�-to-C compiler. Low� has been
used to verify and implement several cryptographic constructions. Fromherz et
al. [25] present a deep embedding of a subset of x64 assembly in F� that allows
efficient verification of assembly and its interoperation with C code generated
from Low�. They design (and verify) a custom VC generator for the deeply
embedded DSL, that allows for the proofs of assembly crypto routines to scale.

Wys�: A DSL for Verified Secure Multi-party Computations 119

6 Conclusions

This paper has presented Wys�, the first DSL to enable formal verification of
efficient source MPC programs as written in a full-featured host programming
language, F�. The paper presented examples such as joint median, card dealing,
and PSI, and showed how the DSL enables their correctness and security proofs.
Wys� implementation, examples, and proofs are publicly available on Github.

Acknowledgments. We would like to thank the anonymous reviewers, Catalin
Hriţcu, and Matthew Hammer for helpful comments on drafts of this paper. This
research was funded in part by the U.S. National Science Foundation under grants
CNS-1563722, CNS-1314857, and CNS-1111599.

References

1. Frama-c. https://frama-c.com/
2. Z3 theorem prover. z3.codeplex.com
3. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked ele-

ment. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 40–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3_3

4. Almeida, J.B., et al.: A fast and verified software stack for secure function eval-
uation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017 (2017)

5. Almeida, J.B., et al.: Verified implementations for secure and verifiable computa-
tion (2014)

6. Araki, T., et al.: Generalizing the SPDZ compiler for other protocols. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018 (2018)

7. Atkey, R.: Parameterised notions of computation. J. Funct. Program. 19, 335–376
(2009). https://doi.org/10.1017/S095679680900728X. http://journals.cambridge.
org/article_S095679680900728X

8. Aydemir, B.E., et al.: Mechanized metatheory for the masses: the PoplMark
challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
50–65. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868_4

9. Backes, M., Maffei, M., Mohammadi, E.: Computationally sound abstraction and
verification of secure multi-party computations. In: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2010) (2010)

10. Barthe, G., Fournet, C., Grégoire, B., Strub, P., Swamy, N., Béguelin, S.Z.: Prob-
abilistic relational verification for cryptographic implementations. In: The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 193–206 (2014).
https://doi.org/10.1145/2535838.2535847

11. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_5

https://frama-c.com/
http://z3.codeplex.com
https://doi.org/10.1007/978-3-540-24676-3_3
https://doi.org/10.1007/978-3-540-24676-3_3
https://doi.org/10.1017/S095679680900728X
http://journals.cambridge.org/article_S095679680900728X
http://journals.cambridge.org/article_S095679680900728X
https://doi.org/10.1007/11541868_4
https://doi.org/10.1145/2535838.2535847
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5

120 A. Rastogi et al.

12. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC (1990)

13. Bedrock, a coq library for verified low-level programming. http://plv.csail.mit.edu/
bedrock/

14. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS (2008)

15. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y.: Implement-
ing TLS with verified cryptographic security. In: IEEE Symposium on Security &
Privacy, Oakland, pp. 445–462 (2013). http://www.ieee-security.org/TC/SP2013/
papers/4977a445.pdf

16. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the Estonian Tax and Customs
Board Evaluated a tax fraud detection system based on secure multi-party compu-
tation. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 227–234.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_14

17. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5_13

18. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4_20

19. Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., Schneider, T.: HyCC:
compilation of hybrid protocols for practical secure computation. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018 (2018)

20. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

21. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: pro-
grammable, efficient, and scalable secure two-party computation for machine learn-
ing. Cryptology ePrint Archive, Report 2017/1109 (2017). https://eprint.iacr.org/
2017/1109

22. Choi, S.G., Hwang, K.W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-party
computation of Boolean circuits with applications to privacy in on-line market-
places (2011). http://eprint.iacr.org/

23. Crockett, E., Peikert, C., Sharp, C.: Alchemy: a language and compiler for homo-
morphic encryption made easy. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2018 (2018)

24. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoret. Comput. Sci. 103(2), 235–271 (1992)

25. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A., Swamy,
N.: A verified, efficient embedding of a verifiable assembly language. In: 46th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2019
(2019)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC
(1987)

27. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: CCS (2012)

28. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

29. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX (2011)

http://plv.csail.mit.edu/bedrock/
http://plv.csail.mit.edu/bedrock/
http://www.ieee-security.org/TC/SP2013/papers/4977a445.pdf
http://www.ieee-security.org/TC/SP2013/papers/4977a445.pdf
https://doi.org/10.1007/978-3-662-47854-7_14
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/s001459910006
https://eprint.iacr.org/2017/1109
https://eprint.iacr.org/2017/1109
http://eprint.iacr.org/

Wys�: A DSL for Verified Secure Multi-party Computations 121

30. Juvekar, C., Vaikuntanathan, V., Chandrakasani, A.: GAZELLE: a low latency
framework for secure neural network inference. In: USENIX Security 2018 (2018)

31. Kamm, L.: Privacy-preserving statistical analysis using secure multi-party compu-
tation. Ph.D. thesis, University of Tartu (2015)

32. Kerschbaum, F.: Automatically optimizing secure computation. In: CCS (2011)
33. Kerschbaum, F., et al.: Secure collaborative supply-chain management. Computer

44(9), 38–43 (2011)
34. Laud, P., Randmets, J.: A domain-specific language for low-level secure multiparty

computation protocols. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, CCS 2015 (2015)

35. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. In: ICFP (2012)

36. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

37. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model
secure computation. In: IEEE Symposium on Security and Privacy, Oakland (2014)

38. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017 (2017)

39. Malka, L.: VMCrypt: modular software architecture for scalable secure computa-
tion. In: CCS (2011)

40. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-
tation system. In: USENIX Security (2004)

41. Mardziel, P., Hicks, M., Katz, J., Hammer, M., Rastogi, A., Srivatsa, M.: Knowl-
edge inference for optimizing and enforcing secure computations. In: Proceedings
of the Annual Meeting of the US/UK International Technology Alliance (2013)

42. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and xml
in the .net framework. In: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2006, p. 706. ACM, New York
(2006). https://doi.org/10.1145/1142473.1142552

43. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

44. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: IEEE S&P (2017)

45. Mood, B., Gupta, D., Carter, H., Butler, K.R.B., Traynor, P.: Frigate: a validated,
extensible, and efficient compiler and interpreter for secure computation. In: IEEE
EuroS&P (2016)

46. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-
dent types for imperative programs. In: Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, ICFP (2008)

47. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type theory, poly-
morphism and separation. J. Funct. Program. 18(5–6), 865–911 (2008).
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf

48. Nielsen, J.D.: Languages for secure multiparty computation and towards strongly
typed macros. Ph.D. thesis (2009)

49. Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming language for
secure multiparty computation. In: PLAS (2007)

50. PolarSSL verification kit (2015). http://trust-in-soft.com/polarssl-verification-kit/
51. Protzenko, J., et al.: Verified low-level programming embedded in F* (ICFP) (2017)

https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1016/0890-5401(91)90052-4
http://ynot.cs.harvard.edu/papers/jfpsep07.pdf
http://trust-in-soft.com/polarssl-verification-kit/

122 A. Rastogi et al.

52. Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language for
generic, mixed-mode multiparty computations. In: Proceedings of the 2014 IEEE
Symposium on Security and Privacy (2014)

53. Rastogi, A., Mardziel, P., Hammer, M., Hicks, M.: Knowledge inference for opti-
mizing secure multi-party computation. In: PLAS (2013)

54. Rastogi, A., Swamy, N., Hicks, M.: WYS*: a DSL for verified secure multi-party
computations (2019). https://arxiv.org/abs/1711.06467

55. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi,
K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-37621-7_9

56. Schropfer, A., Kerschbaum, F., Muller, G.: L1 - an intermediate language for
mixed-protocol secure computation. In: COMPSAC (2011)

57. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
58. Shamir, A., Rivest, R.L., Adleman, L.M.: Mental poker. In: Klarner, D.A. (ed.)

The Mathematical Gardner, pp. 37–43. Springer, Boston (1981). https://doi.org/
10.1007/978-1-4684-6686-7_5

59. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: POPL
(2016)

60. The Coq Development Team: The Coq proof assistant. http://coq.inria.fr
61. VIFF, the virtual ideal functionality framework. http://viff.dk/
62. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)

AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5_2. http://dl.acm.org/citation.cfm?id=647698.734146

63. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2010 (2010)

64. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of ACM SIGPLAN 2011 Conference on Programming
Language Design and Implementation (2011)

65. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS (1986)
66. Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computa-

tion. Unpublished (2015). http://oblivc.org/downloads/oblivc.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/1711.06467
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.1007/978-1-4684-6686-7_5
https://doi.org/10.1007/978-1-4684-6686-7_5
http://coq.inria.fr
http://viff.dk/
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
http://dl.acm.org/citation.cfm?id=647698.734146
http://oblivc.org/downloads/oblivc.pdf
http://creativecommons.org/licenses/by/4.0/

	Wys: A DSL for Verified Secure Multi-party Computations
	1 Introduction
	2 Verifying and Deploying Wys Programs
	2.1 Secure Computations with assec
	2.2 Optimizing median with aspar
	2.3 Embedding a Type System for Wys in F
	2.4 Correctness and Security Verification
	2.5 Deploying Wys Programs

	3 Formalizing and Implementing Wys
	3.1 Syntax
	3.2 Single-Threaded Semantics
	3.3 Distributed Semantics
	3.4 Metatheory
	3.5 Implementation

	4 Applications
	5 Related Work
	6 Conclusions
	References

