
WYSINWYX: What You See Is Not What You eXecute

G. Balakrishnan1, T. Reps1,2, D. Melski2, and T. Teitelbaum2

1 Comp. Sci. Dept., University of Wisconsin
{bgogul,reps}@cs.wisc.edu

2 GrammaTech, Inc.
{melski,tt}@grammatech.com

Abstract. What You See Is Not What You eXecute: computers do not execute
source-code programs; they execute machine-code programs that are generated
from source code. Not only can the WYSINWYX phenomenon create a mis-
match between what a programmer intends and what is actually executed by the
processor, it can cause analyses that are performed on source code to fail to detect
certain bugs and vulnerabilities. This issue arises regardless of whether one’s fa-
vorite approach to assuring that programs behave as desired is based on theorem
proving, model checking, or abstract interpretation.

1 Introduction

Recent research in programming languages, software engineering, and computer secu-
rity has led to new kinds of tools for analyzing code for bugs and security vulnerabilities
[23,41,18,12,8,4,9,25,15]. In these tools, static analysis is used to determine a conser-
vative answer to the question “Can the program reach a bad state?”1 However, these
tools all focus on analyzing source code written in a high-level language, which has
certain drawbacks. In particular, there can be a mismatch between what a programmer
intends and what is actually executed by the processor. Consequently, analyses that are
performed on source code can fail to detect certain bugs and vulnerabilities due to the
WYSINWYX phenomenon: “What You See Is Not What You eXecute”. The following
source-code fragment, taken from a login program, illustrates the issue [27]:

memset(password, ‘\0’, len);
free(password);

The login program temporarily stores the user’s password—in clear text—in a dynam-
ically allocated buffer pointed to by the pointer variable password. To minimize the
lifetime of the password, which is sensitive information, the code fragment shown above
zeroes-out the buffer pointed to by password before returning it to the heap. Unfortu-
nately, a compiler that performs useless-code elimination may reason that the program
never uses the values written by the call on memset, and therefore the call on memset

1 Static analysis provides a way to obtain information about the possible states that a pro-
gram reaches during execution, but without actually running the program on specific inputs.
Static-analysis techniques explore the program’s behavior for all possible inputs and all pos-
sible states that the program can reach. To make this feasible, the program is “run in the
aggregate”—i.e., on descriptors that represent collections of memory configurations [13].

B. Meyer and J. Woodcock (Eds.): Verified Software, LNCS 4171, pp. 202–213, 2008.
c© IFIP International Federation for Information Processing 2008

WYSINWYX: What You See Is Not What You eXecute 203

can be removed—thereby leaving sensitive information exposed in the heap. This is
not just hypothetical; a similar vulnerability was discovered during the Windows secu-
rity push in 2002 [27]. This vulnerability is invisible in the source code; it can only be
detected by examining the low-level code emitted by the optimizing compiler.

The WYSINWYX phenomenon is not restricted to the presence or absence of pro-
cedure calls; on the contrary, it is pervasive:

– Bugs and security vulnerabilities can exist because of a myriad of platform-specific
details due to features (and idiosyncrasies) of compilers and optimizers, including

• memory-layout details, such as (i) the positions (i.e., offsets) of variables in the
runtime stack’s activation records, and (ii) padding between structure fields.

• register usage
• execution order (e.g., of actual parameters)
• optimizations performed
• artifacts of compiler bugs

Access to such information can be crucial; for instance, many security exploits
depend on platform-specific features, such as the structure of activation records.
Vulnerabilities can escape notice when a tool does not have information about ad-
jacency relationships among variables.

– Analyses based on source code2 typically make (unchecked) assumptions, e.g., that
the program is ANSI-C compliant. This often means that an analysis does not ac-
count for behaviors that are allowed by the compiler (e.g., arithmetic is performed
on pointers that are subsequently used for indirect function calls; pointers move off
the ends of arrays and are subsequently dereferenced; etc.)

– Programs typically make extensive use of libraries, including dynamically linked
libraries (DLLs), which may not be available in source-code form. Typically, anal-
yses are performed using code stubs that model the effects of library calls. Because
these are created by hand they are likely to contain errors, which may cause an
analysis to return incorrect results.

– Programs are sometimes modified subsequent to compilation, e.g., to perform opti-
mizations or insert instrumentation code [42]. (They may also be modified to insert
malicious code.) Such modifications are not visible to tools that analyze source.

– The source code may have been written in more than one language. This com-
plicates the life of designers of tools that analyze source code because multiple
languages must be supported, each with its own quirks.

– Even if the source code is primarily written in one high-level language, it may
contain inlined assembly code in selected places. Source-level tools typically either
skip over inlined assembly code [11] or do not push the analysis beyond sites of
inlined assembly code [1].

In short, there are a number of reasons why analyses based on source code do not
provide the right level of detail for checking certain kinds of properties:

– Source-level tools are only applicable when source is available, which limits
their usefulness in security applications (e.g., to analyzing code from open-source
projects).

2 Terms like “analyses based on source code” and “source-level analyses” are used as a short-
hand for “analyses that work on intermediate representations (IRs) built from the source code.”

204 G. Balakrishnan et al.

– Even if source code is available, a substantial amount of information is hidden from
analyses that start from source code, which can cause bugs, security vulnerabilities,
and malicious behavior to be invisible to such tools. Moreover, a source-code tool
that strives to have greater fidelity to the program that is actually executed would
have to duplicate all of the choices made by the compiler and optimizer; such an
approach is doomed to failure.

The issue of whether source code is the appropriate level for verifying program prop-
erties is one that should concern all who are interested in assuring that programs behave
as desired. The issues discussed above arise regardless of whether one’s favorite ap-
proach is based on theorem proving, model checking, or abstract interpretation.

The remainder of the paper is organized as follows: §2 presents some examples
that show why analysis of an executable can provide more accurate information than
a source-level analysis. §3 discusses different approaches to analyzing executables. §4
describes our work on CodeSurfer/x86, as an example of how it is possible to analyze
executables in the absence of source code.

2 Advantages of Analyzing Executables

The example presented in §1 showed that an overzealous optimizer can cause there to
be a mismatch between what a programmer intends and what is actually executed by
the processor. Additional examples of this sort have been discussed by Boehm [5]. He
points out that when threads are implemented as a library (e.g., for use in languages
such as C and C++, where threads are not part of the language specification), compiler
transformations that are reasonable in the absence of threads can cause multi-threaded
code to fail—or exhibit unexpected behavior—for subtle reasons that are not visible to
tools that analyze source code.

A second class of examples for which analysis of an executable can provide more ac-
curate information than a source-level analysis arises because, for many programming
languages, certain behaviors are left unspecified by the semantics. In such cases, a source-
level analysis must account for all possible behaviors, whereas an analysis of an exe-
cutable generally only has to deal with one possible behavior—namely, the one for the
code sequence chosen by the compiler. For instance, in C and C++ the order in which
actual parameters are evaluated is not specified: actuals may be evaluated left-to-right,
right-to-left, or in some other order; a compiler could even use different evaluation orders
for different functions. Different evaluation orders can give rise to different behaviors
when actual parameters are expressions that contain side effects. For a source-level anal-
ysis to be sound, at each call site it must take the join of the abstract descriptors that result
from analyzing each permutation of the actuals. In contrast, an analysis of an executable
only needs to analyze the particular sequence of instructions that lead up to the call.

A second example in this class involves pointer arithmetic and an indirect call:
int (*f)(void);
int diff = (char*)&f2 - (char*)&f1; // The offset between f1 and f2
f = &f1;
f = (int (*)())((char*)f + diff); // f now points to f2
(*f)(); // indirect call;

WYSINWYX: What You See Is Not What You eXecute 205

Existing source-level analyses (that we know of) are ill-prepared to handle the above
code. The conventional assumption is that arithmetic on function pointers leads to un-
defined behavior, so source-level analyses either (a) assume that the indirect function
call might call any function, or (b) ignore the arithmetic operations and assume that the
indirect function call calls f1 (on the assumption that the code is ANSI-C compliant).
In contrast, the analysis described by Balakrishnan and Reps [3,34] correctly identifies
f2 as the invoked function. Furthermore, the analysis can detect when arithmetic on
addresses creates an address that does not point to the beginning of a function; the use
of such an address to perform a function “call” is likely to be a bug (or else a very
subtle, deliberately introduced security vulnerability).

A third example related to unspecified behavior is shown in Fig. 1. The C code on
the left uses an uninitialized variable (which triggers a compiler warning, but compiles
successfully). A source-code analyzer must assume that local can have any value,
and therefore the value of v in main is either 1 or 2. The assembly listings on the
right show how the C code could be compiled, including two variants for the prolog of
function callee. The Microsoft compiler (cl) uses the second variant, which includes
the following strength reduction:

The instruction sub esp,4 that allocates space for local is replaced by
a push instruction of an arbitrary register (in this case, ecx).

In contrast to an analysis based on source code, an analysis of an executable can deter-
mine that this optimization results in local being initialized to 5, and therefore v in
main can only have the value 1.

int callee(int a, int b) {
int local;
if (local == 5) return 1;
else return 2;

}

int main() {
int c = 5;
int d = 7;

int v = callee(c,d);
// What is the value of v here?
return 0;

}

mov [ebp+var_8], 5
mov [ebp+var_C], 7
mov eax, [ebp+var_C]
push eax
mov ecx, [ebp+var_8]
push ecx
call _callee
. . .

Standard prolog Prolog for 1 local
push ebp push ebp
mov ebp, esp mov ebp, esp
sub esp, 4 push ecx

Fig. 1. Example of unexpected behavior due to compiler opti-
mization. The box at the top right shows two variants of code
generated by an optimizing compiler for the prolog of callee.
Analysis of the second of these reveals that the variable local
necessarily contains the value 5.

A fourth example re-
lated to unspecified
behavior involves a func-
tion call that passes fewer
arguments than the pro-
cedure expects as param-
eters. (Many compilers
accept such (unsafe) code
as an easy way to imple-
ment functions that take
a variable number of pa-
rameters.) With most com-
pilers, this effectively
means that the call-site
passes some parts of one
or more local variables
of the calling procedure
as the remaining parame-
ters (and, in effect, these
are passed by reference—
an assignment to such a parameter in the callee will overwrite the value of
the corresponding local in the caller.) An analysis that works on executables can be

206 G. Balakrishnan et al.

created that is capable of determining what the extra parameters are [3,34], whereas
a source-level analysis must either make a cruder over-approximation or an unsound
under-approximation.

3 Approaches to Analyzing Executables

The examples in §2 illustrate some of the advantages of analyzing executables instead
of source code: an executable contains the actual instructions that will be executed,
and hence reveals more accurate information about the behaviors that might occur dur-
ing execution; an analysis can incorporate platform-specific details, including mem-
ory layout, register usage, execution order, optimizations, and artifacts of compiler
bugs.

Moreover, many of the issues that arise when analyzing source code disappear when
analyzing executables:

– The entire program can be analyzed—including libraries that are linked to the pro-
gram. Because library code can be analyzed directly, it is not necessary to rely on
potentially unsound models of library functions.

– If an executable has been modified subsequent to compilation, such modifications
are visible to the analysis tool.

– Source code does not have to be available.
– Even if the source code was written in more than one language, a tool that analyzes

executables only needs to support one language.
– Instructions inserted because of inlined assembly directives in the source code are

visible, and do not need to be treated any differently than other instructions.

The challenge is to build tools that can benefit from these advantages to provide a level
of precision that would not otherwise be possible.

One dichotomy for classifying approaches is whether the tool assumes that informa-
tion is available in addition to the executable itself—such as the source code, symbol-
table information, and debugging information. For instance, the aim of translation
validation [33,32] is to verify that compilation does not change the semantics of a
program. A translation-validation system receives the source code and target code as
input, and attempts to verify that the target code is a correct implementation (i.e., a
refinement) of the source code. Rival [37] presents an analysis that uses abstract in-
terpretation to check whether the assembly code produced by a compiler possesses
the same safety properties as the original source code. The analysis assumes that both
source code and debugging information is available. First, the source code and the as-
sembly code of the program are analyzed. Next, the debugging information is used
to map the results of assembly-code analysis back to the source code. If the results
for the corresponding program points in the source code and the assembly code are
compatible, then the assembly code possesses the same safety properties as the source
code.

WYSINWYX: What You See Is Not What You eXecute 207

4 Analyzing Executables in the Absence of Source Code

CodeSurfer

Build SDG

Browse

Executable

Connector

Value-set
Analysis

Initial estimate of
• code vs. data
• procedures
• call sites
• malloc sites

IDA Pro

Build
CFGs

Parse
Executable

• fleshed-out CFGs
• fleshed-out call graph
• used, killed, may-killed
variables for CFG nodes

• points-to sets
• reports of violations

Code
Rewriter

Decompiler

Path
Inspector

User Scripts
WPDS++

CodeSurfer/x86

Fig. 2. Organization of CodeSurfer/x86 and companion tools

For the past few years,
we have been work-
ing to create a platform
to support the analy-
sis of executables in
the absence of source
code. The goal of the
work is to extend static
vulnerability-analysis
techniques to work di-
rectly on stripped ex-
ecutables. We have
developed a prototype
tool set for analyzing
x86 executables. The
members of the tool set are: CodeSurfer/x86, WPDS++, and the Path Inspector. Fig. 2
shows how the components of CodeSurfer/x86 fit together.

Recovering IRs from x86 executables. To be able to apply analysis techniques like the
ones used in [23,41,18,12,8,4,9,25,15], one already encounters a challenging program-
analysis problem. From the perspective of the model-checking community, one would
consider the problem to be that of “model extraction”: one needs to extract a suitable
model from the executable. From the perspective of the compiler community, one would
consider the problem to be “IR recovery”: one needs to recover intermediate represen-
tations from the executable that are similar to those that would be available had one
started from source code.

To solve the IR-recovery problem, several obstacles must be overcome:

– For many kinds of potentially malicious programs, symbol-table and debugging
information is entirely absent. Even if it is present, it cannot be relied upon.

– To understand memory-access operations, it is necessary to determine the set of
addresses accessed by each operation. This is difficult because

• While some memory operations use explicit memory addresses in the instruc-
tion (easy), others use indirect addressing via address expressions (difficult).

• Arithmetic on addresses is pervasive. For instance, even when the value of a
local variable is loaded from its slot in an activation record, address arithmetic
is performed.

• There is no notion of type at the hardware level, so address values cannot be
distinguished from integer values.

To recover IRs from x86 executables, CodeSurfer/x86 makes use of both IDAPro
[28], a disassembly toolkit, and GrammaTech’s CodeSurfer system [11], a toolkit for
building program-analysis and inspection tools.

An x86 executable is first disassembled using IDAPro. In addition to the disassem-
bly listing, IDAPro also provides access to the following information: (1) procedure

208 G. Balakrishnan et al.

boundaries, (2) calls to library functions, and (3) statically known memory addresses
and offsets. IDAPro provides access to its internal resources via an API that allows
users to create plug-ins to be executed by IDAPro. We created a plug-in to IDAPro,
called the Connector, that creates data structures to represent the information that it
obtains from IDAPro. The IDAPro/Connector combination is also able to create the
same data structures for dynamically linked libraries, and to link them into the data
structures that represent the program itself. This infrastructure permits whole-program
analysis to be carried out—including analysis of the code for all library functions that
are called.

Using the data structures in the Connector, we implemented a static-analysis algo-
rithm called value-set analysis (VSA) [3,34]. VSA does not assume the presence of
symbol-table or debugging information. Hence, as a first step, a set of data objects called
a-locs (for “abstract locations”) is determined based on the static memory addresses and
offsets provided by IDAPro. VSA is a combined numeric and pointer-analysis algorithm
that determines an over-approximation of the set of numeric values and addresses (or
value-set) that each a-loc holds at each program point.3 A key feature of VSA is that it
tracks integer-valued and address-valued quantities simultaneously. This is crucial for
analyzing executables because numeric values and addresses are indistinguishable at
execution time.

IDAPro does not identify the targets of all indirect jumps and indirect calls, and
therefore the call graph and control-flow graphs that it constructs are not complete.
However, the information computed during VSA can be used to augment the call graph
and control-flow graphs on-the-fly to account for indirect jumps and indirect calls.

VSA also checks whether the executable conforms to a “standard” compilation
model—i.e., a runtime stack is maintained; activation records are pushed onto the stack
on procedure entry and popped from the stack on procedure exit; a procedure does not
modify the return address on stack; the program’s instructions occupy a fixed area of
memory, are not self-modifying, and are separate from the program’s data. If it can-
not be confirmed that the executable conforms to the model, then the IR is possibly
incorrect. For example, the call-graph can be incorrect if a procedure modifies the re-
turn address on the stack. Consequently, VSA issues an error report whenever it finds a
possible violation of the standard compilation model; these represent possible memory-
safety violations. The analyst can go over these reports and determine whether they are
false alarms or real violations.

Once VSA completes, the value-sets for the a-locs at each program point are used to
determine each point’s sets of used, killed, and possibly-killed a-locs; these are emitted
in a format that is suitable for input to CodeSurfer. CodeSurfer then builds a collection
of IRs, consisting of abstract-syntax trees, control-flow graphs (CFGs), a call graph, a
system dependence graph (SDG) [26], VSA results, the sets of used, killed, and possibly
killed a-locs at each instruction, and information about the structure and layout of global
memory, activation records, and dynamically allocated storage. CodeSurfer supports
both a graphical user interface (GUI) and an API (as well as a scripting language) to
provide access to these structures.

3 VSA is a flow-sensitive, interprocedural dataflow-analysis algorithm that uses the “call-
strings” approach [40] to obtain a degree of context sensitivity.

WYSINWYX: What You See Is Not What You eXecute 209

Model-checking facilities. For model checking, the CodeSurfer/x86 IRs are used to
build a weighted pushdown system (WPDS) [7,35,36,31,30] that models possible pro-
gram behaviors. Weighted pushdown systems generalize a model-checking technol-
ogy known as pushdown systems (PDSs) [6,19], which have been used for software
model checking in the Moped [39,38] and MOPS [9] systems. Compared to ordinary
(unweighted) PDSs, WPDSs are capable of representing more powerful kinds of ab-
stractions of runtime states [36,31], and hence go beyond the capabilities of PDSs. For
instance, the use of WPDSs provides a way to address certain kinds of security-related
queries that cannot be answered by MOPS.

WPDS++ [29] is a library that implements the symbolic reachability algorithms from
[36,31,30] on weighted pushdown systems. We follow the standard approach of us-
ing a pushdown system (PDS) to model the interprocedural control-flow graph (one of
CodeSurfer/x86’s IRs). The stack symbols correspond to program locations; there is
only a single PDS state; and PDS rules encode control flow as follows:

Rule Control flow modeled

q〈u〉 ↪→ q〈v〉 Intraprocedural CFG edge u → v
q〈c〉 ↪→ q〈entryP r〉 Call to P from c that returns to r
q〈x〉 ↪→ q〈〉 Return from a procedure at exit node x

In a configuration of the PDS, the symbol at the top of the stack corresponds to the cur-
rent program location, and the rest of the stack holds return-site locations—this allows
the PDS to model the behavior of the program’s runtime execution stack.

An encoding of the interprocedural control-flow as a pushdown system is sufficient
for answering queries about reachable control states (as the Path Inspector does; see
below): the reachability algorithms of WPDS++ can determine if an undesirable PDS
configuration is reachable. However, WPDS++ also supports weighted PDSs, which
are PDSs in which each rule is weighted with an element of a (user-defined) semiring.
The use of weights allows WPDS++ to perform interprocedural dataflow analysis by
using the semiring’s extend operator to compute weights for sequences of rule firings
and using the semiring’s combine operator to take the meet of weights generated by
different paths [36,31,30]. (When the weights on rules are conservative abstract data
transformers, an over-approximation to the set of reachable concrete configurations is
obtained, which means that counterexamples reported by WPDS++ may actually be
infeasible.)

The advantage of answering reachability queries on WPDSs over conventional
dataflow-analysis methods is that the latter merge together the values for all states as-
sociated with the same program point, regardless of the states’ calling context. With
WPDSs, queries can be posed with respect to a regular language of stack configurations
[7,35,36,31,30]. (Conventional merged dataflow information can also be obtained [36].)

The Path Inspector provides a user interface for automating safety queries that are
only concerned with the possible control configurations that an executable can reach.
It uses an automaton-based approach to model checking: the query is specified as a
finite automaton that captures forbidden sequences of program locations. This “query
automaton” is combined with the program model (a WPDS) using a cross-product con-
struction, and the reachability algorithms of WPDS++ are used to determine if an error
configuration is reachable. If an error configuration is reachable, then witnesses (see

210 G. Balakrishnan et al.

[36]) can be used to produce a program path that drives the query automaton to an error
state.

The Path Inspector includes a GUI for instantiating many common reachability
queries [17], and for displaying counterexample paths in the disassembly listing.4 In
the current implementation, transitions in the query automaton are triggered by pro-
gram points that the user specifies either manually, or using result sets from CodeSurfer
queries. Future versions of the Path Inspector will support more sophisticated queries in
which transitions are triggered by matching an AST pattern against a program location,
and query states can be instantiated based on pattern bindings.

Related work. Previous work on analyzing memory accesses in executables has dealt
with memory accesses very conservatively: generally, if a register is assigned a value
from memory, it is assumed to take on any value. VSA does a much better job than
previous work because it tracks the integer-valued and address-valued quantities that
the program’s data objects can hold; in particular, VSA tracks the values of data objects
other than just the hardware registers, and thus is not forced to give up all precision
when a load from memory is encountered.

The basic goal of the algorithm proposed by Debray et al. [16] is similar to that
of VSA: for them, it is to find an over-approximation of the set of values that each
register can hold at each program point; for us, it is to find an over-approximation of
the set of values that each (abstract) data object can hold at each program point, where
data objects include memory locations in addition to registers. In their analysis, a set of
addresses is approximated by a set of congruence values: they keep track of only the
low-order bits of addresses. However, unlike VSA, their algorithm does not make any
effort to track values that are not in registers. Consequently, they lose a great deal of
precision whenever there is a load from memory.

Cifuentes and Fraboulet [10] give an algorithm to identify an intraprocedural slice
of an executable by following the program’s use-def chains. However, their algorithm
also makes no attempt to track values that are not in registers, and hence cuts short the
slice when a load from memory is encountered.

The two pieces of work that are most closely related to VSA are the algorithm for
data-dependence analysis of assembly code of Amme et al. [2] and the algorithm for
pointer analysis on a low-level intermediate representation of Guo et al. [22]. The al-
gorithm of Amme et al. performs only an intraprocedural analysis, and it is not clear
whether the algorithm fully accounts for dependences between memory locations. The
algorithm of Guo et al. [22] is only partially flow-sensitive: it tracks registers in a flow-
sensitive manner, but treats memory locations in a flow-insensitive manner. The al-
gorithm uses partial transfer functions [43] to achieve context-sensitivity. The transfer
functions are parameterized by “unknown initial values” (UIVs); however, it is not clear
whether the the algorithm accounts for the possibility of called procedures corrupting
the memory locations that the UIVs represent.

4 We assume that source code is not available, but the techniques extend naturally if it is: one
can treat the executable code as just another IR in the collection of IRs obtainable from source
code. The mapping of information back to the source code would be similar to what C source-
code tools already have to perform because of the use of the C preprocessor (although the kind
of issues that arise when debugging optimized code [24,44,14] complicate matters).

WYSINWYX: What You See Is Not What You eXecute 211

Challenges for the future. There are a number of challenging problems for which
additional research is needed. Most of these are similar to the challenges one faces
when analyzing source code:

– efficiency and scalability of analysis algorithms, including how to create summary
transformers for procedures

– accounting for non-local transfers of control (e.g., setjmp/longjmp and C++
exception handling)

– analysis of variable-argument functions
– analysis of multi-threaded code
– analysis of heap-allocated data structures

As with source-code analysis, it would be useful to develop specialized analyses for
particular kinds of data or particular programming idioms, including

– how strings are used in the program
– the “macro-level” effects of loops that perform array operations (e.g., that an array-

initialization loop initializes all elements of an array [21])
– the effects of loops that perform sentinel search
– analysis of self-modifying code [20]

References

1. PREfast with driver-specific rules, Windows Hardware and Driver Central (WHDC) (Octo-
ber, 2004),http://www.microsoft.com/whdc/devtools/tools/PREfast-
drv.mspx

2. Amme, W., Braun, P., Zehendner, E., Thomasset, F.: Data dependence analysis of assembly
code. Int. J. Parallel Proc (2000)

3. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In: Comp. Con-
struct. pp. 5–23 (2004)

4. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV
2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

5. Boehm, H.-J.: Threads cannot be implemented as a library. In: PLDI, pp. 261–268 (2005)
6. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-

tion to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, Springer, Heidelberg (1997)

7. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent
programs with procedures. In: POPL, pp. 62–73 (2003)

8. Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic programming errors.
Software–Practice&Experience 30, 775–802 (2000)

9. Chen, H., Wagner, D.: MOPS: An infrastructure for examining security properties of soft-
ware. In: Conf. on Comp. and Commun. Sec, November 2002, pp. 235–244 (2002)

10. Cifuentes, C., Fraboulet, A.: Intraprocedural static slicing of binary executables. Int. Conf.
on Softw. Maint. 188–195 (1997)

11. CodeSurfer, GrammaTech, Inc.
http://www.grammatech.com/products/codesurfer/

12. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S.: Bandera: Extracting
finite-state models from Java source code. In: ICSE (2000)

13. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In: POPL (1977)

http://www.microsoft.com/whdc/devtools/tools/PREfast-drv.mspx
http://www.microsoft.com/whdc/devtools/tools/PREfast-drv.mspx
http://www.grammatech.com/products/codesurfer/

212 G. Balakrishnan et al.

14. Coutant, D.S., Meloy, S., Ruscetta, M.: DOC: A practical approach to source-level debugging
of globally optimized code. In: PLDI (1988)

15. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in polynomial time.
In: PLDI (2002)

16. Debray, S.K., Muth, R., Weippert, M.: Alias analysis of executable code. In: POPL (1998)
17. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-state verifi-

cation. In: ICSE (1999)
18. Engler, D.R., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-specific,

programmer-written compiler extensions. In: Op. Syst. Design and Impl. pp. 1–16 (2000)
19. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown

systems. Elec. Notes in Theor. Comp. Sci. 9 (1997)
20. Gerth, R.: Formal verification of self modifying code. In: Proc. Int. Conf. for Young Com-

puter Scientists, pp. 305–313 (1991)
21. Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array operations. In:

POPL, pp. 338–350 (2005)
22. Guo, B., Bridges, M.J., Triantafyllis, S., Ottoni, G., Raman, E., August, D.I.: Practical and

accurate low-level pointer analysis. In: 3nd Int. Symp. on Code Gen. and Opt (2005)
23. Havelund, K., Pressburger, T.: Model checking Java programs using Java PathFinder. Softw.

Tools for Tech. Transfer 2(4) (2000)
24. Hennessy, J.L.: Symbolic debugging of optimized code. Trans. on Prog. Lang. and Syst. 4(3),

323–344 (1982)
25. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70

(2002)
26. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. Trans.

on Prog. Lang. and Syst. 12(1), 26–60 (1990)
27. Howard, M.: Some bad news and some good news. In: MSDN (October, 2002),

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dncode/html/secure10102002.asp

28. IDAPro disassembler, http://www.datarescue.com/idabase/
29. Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ library for weighted pushdown

systems (2004), http://www.cs.wisc.edu/wpis/wpds++/
30. Lal, A., Reps, T.: Improving pushdown system model checking. In: Ball, T., Jones, R.B.

(eds.) CAV 2006. LNCS, vol. 4144, pp. 343–357. Springer, Heidelberg (2006)
31. Lal, A., Reps, T., Balakrishnan, G.: Extended weighted pushdown systems. In: Etessami, K.,

Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448. Springer, Heidelberg (2005)
32. Necula, G.: Translation validation for an optimizing compiler. In: PLDI (2000)
33. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.) ETAPS

1998 and TACAS 1998. LNCS, vol. 1384, Springer, Heidelberg (1998)
34. Reps, T., Balakrishnan, G., Lim, J.: Intermediate-representation recovery from low-level

code. In: Part. Eval. and Semantics-Based Prog. Manip (2006)
35. Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to inter-

procedural dataflow analysis. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, Springer,
Heidelberg (2003)

36. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application
to interprocedural dataflow analysis. Sci. of Comp. Prog. 58(1–2), 206–263 (2005)

37. Rival, X.: Abstract interpretation based certification of assembly code. In: Zuck, L.D., At-
tie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 41–55.
Springer, Heidelberg (2002)

38. Schwoon, S.: Moped system,
http://www.fmi.uni-stuttgart.de/szs/tools/moped/

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp
http://www.datarescue.com/idabase/
http://www.cs.wisc.edu/wpis/wpds++/
http://www.fmi.uni-stuttgart.de/szs/tools/moped/

WYSINWYX: What You See Is Not What You eXecute 213

39. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of Munich,
Munich, Germany (July, 2002)

40. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Muchnick,
S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applications, ch. 7, pp. 189–
234. Prentice-Hall, Englewood Cliffs (1981)

41. Wagner, D., Foster, J., Brewer, E., Aiken, A.: A first step towards automated detection of
buffer overrun vulnerabilities. In: Network and Dist. Syst. Security (February, 2000)

42. Wall, D.W.: Systems for late code modification. In: Giegerich, R., Graham, S.L. (eds.) Code
Generation – Concepts, Tools, Techniques, pp. 275–293. Springer, Heidelberg (1992)

43. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for C programs. In:
PLDI, pp. 1–12 (1995)

44. Zellweger, P.T.: Interactive Source-Level Debugging of Optimized Programs. PhD thesis,
Univ. of California, Berkeley (1984)

A Discussion on Thomas Reps’s Presentation

Egon Börger

It is more a remark on the first part of your talk. I think you are essentially saying that
we need to take some notion of correctness of our compilers into account, assuming
that at the semantical level, we have solved all our problems.

Thomas Reps

So, there are actually two points. One point is that you need to take that into account.
And the second point is, I agree with Patrick [Cousot] that static analysis has much to
offer. But the problem is, static analysis is the potential loss of precision that you can
have by taking into account all possible paths. But some choices are fixed, when the
code has been compiled. What we saw in the second example, was: You did not have to
take into account two paths in that call procedure, because it was only possible for that
program, as it had been compiled, to take one of those paths. So, it actually sharpens
the results that you can get from static analysis. And if you are worried about security
vulnerabilities or bugs, that helps you, that is just going to give us better answers.

Greg Nelson

Tom, how much effort would be required to port your tool to a platform other than
Wintel?

Thomas Reps

It is based on abstract domains that can be applied to other machines. So, for example,
there is an abstract domain that tracks integer arithmetic. That is actually a template;
we did it as a template, because we have to deal with 16-bit and 8-bit instructions. You
can instantiate it for 64-bit arithmetic, as well. So, most of it is language-independent,
and of course, there is a lot of plumbing that you have to do, in order to move things to
another platform.

My birthday is in seven months, and what I am hoping for is funds that would allow
us to pursue some of these things like moving to other platforms, so we could examine
the code that is running on your cell-phone, perhaps, or something like that. Thank you.

	WYSINWYX: What You See Is NotWhat You eXecute
	Introduction
	Advantages of Analyzing Executables
	Approaches to Analyzing Executables
	Analyzing Executables in the Absence of Source Code
	References

