
WYSTERIA: A Programming Language for Generic,
Mixed-Mode Multiparty Computations

Aseem Rastogi
University of Maryland, College Park

aseem@cs.umd.edu

Matthew A. Hammer
University of Maryland, College Park

hammer@cs.umd.edu

Michael Hicks
University of Maryland, College Park

mwh@cs.umd.edu

Abstract—In a Secure Multiparty Computation (SMC), mu-
tually distrusting parties use cryptographic techniques to co-
operatively compute over their private data; in the process
each party learns only explicitly revealed outputs. In this paper,
we present WYSTERIA, a high-level programming language for
writing SMCs. As with past languages, like Fairplay, WYSTERIA
compiles secure computations to circuits that are executed by
an underlying engine. Unlike past work, WYSTERIA provides
support for mixed-mode programs, which combine local, private
computations with synchronous SMCs. WYSTERIA complements
a standard feature set with built-in support for secret shares
and with wire bundles, a new abstraction that supports generic
n-party computations. We have formalized WYSTERIA, its re-
finement type system, and its operational semantics. We show
that WYSTERIA programs have an easy-to-understand single-
threaded interpretation and prove that this view corresponds
to the actual multi-threaded semantics. We also prove type
soundness, a property we show has security ramifications, namely
that information about one party’s data can only be revealed
to another via (agreed upon) secure computations. We have
implemented WYSTERIA, and used it to program a variety of
interesting SMC protocols from the literature, as well as several
new ones. We find that WYSTERIA’s performance is competitive
with prior approaches while making programming far easier, and
more trustworthy.

I. INTRODUCTION

Secure multi-party computation (SMC) protocols [1], [2],
[3] enable two or more parties p1, ..., pn to cooperatively
compute a function f over their private inputs x1, ..., xn in a
way that every party directly sees only the output f(x1, ..., xn)
while keeping the variables xi private. Some examples are

• the xi are arrays of private data and f is a statistical
function (e.g., median) [4], [5];

• (private set intersection) the xi are private sets (im-
plemented as arrays) and f is the ∩ set-intersection
operator [6], [7]; one use-case is determining only
those friends, interests, etc. that individuals have in
common;

• (second-price auction) the xi are bids, and f determines
the winning bidders [8], [9]

Of course, there are many other possibilities.

An SMC for f is typically implemented using garbled
circuits [1], homomorphic encryption [10], or cooperative
computation among a group of servers (e.g., using secret
shares) [8], [11], [2], [12]. Several libraries and intermediate
languages have been designed that provide efficient building

blocks for constructing SMCs [13], [14], [15], [16], but their
use can be tedious and error prone. As such, there have been
several efforts, led by the Fairplay project [17], to define higher-
level languages from which an SMC protocol can be compiled.
In Fairplay, a compiler accepts a Pascal-like imperative program
and compiles it to a garbled circuit. More recent efforts by
Holzer et al [18] and Kreuter et al [16] support subsets of ANSI
C, and follow-on work has expanded Fairplay’s expressiveness
to handle n > 2 parties [19].

We are interested in making SMC a building block for
realistic programs. Such programs will move between “normal”
(i.e., per-party local) computations and “secure” (i.e., joint,
multi-party secure) modes repeatedly, resulting overall in what
we call mixed mode computations. For example, we might
use SMCs to implement the role of the dealer in a game of
mental poker [20]—the game will be divided into rounds of
local decision-making and joint interaction (shuffling, dealing,
bidding, etc.). Mixed-mode computations are also used to
improve performance over monolithic secure computations.
As one example, we can perform private set intersection by
having each party iteratively compare elements in their private
sets, with only the comparisons (rather than the entire looping
computation) carried out securely [7]. Computing the joint
median can similarly be done by restricting secure computations
only to comparisons, which Kerschbaum [5] has shown can
net up to a 30× performance improvement.

Existing projects, like Fairplay, focus on how to compile
normal-looking code into a representation like a boolean
circuit that can be run by an SMC engine. In most cases,
such compilation is done in advance. As such, mixed-mode
programming is implemented by writing local computations in
some host language (like C or Java) that call out to the SMC
engine to evaluate the generated code. However, writing mixed-
mode computations in a single language has some compelling
benefits over the multi-lingual approach. First, it is easier to
write mixed-mode programs since the programmer can see all
of the interactions in one place, and not have to navigate foreign
function interfaces, which are hard to use [21]. Second, for
the same reason, programs are easier to understand, and thus
answers to security concerns (could the overall computation leak
too much information about my secrets?) will be more evident.
Third, there is an opportunity for more dynamic execution
models, e.g., compiling secure blocks on the fly where the
participants or elements of the computation may be based on
the results of prior interactions. Finally, there is an opportunity
for greater code reuse, as a single language can encapsulate
mixed mode protocols as reusable library functions.

This paper presents a new programming language for writ-
ing mixed-mode secure computations called WYSTERIA1 that
realizes all of these benefits. WYSTERIA is the first language
to support writing mixed-mode, multiparty computations in a
generic manner, supporting any number of participants. It does
this by offering several compelling features:

Conceptual single thread of control: All WYSTERIA programs
operate in a combination of parallel and secure modes, where
the former identifies local computations taking place on one
or more hosts (in parallel), and the latter identifies secure
computations occurring jointly among parties. Importantly,
WYSTERIA mixed-mode computations can be viewed as
having a single thread of control, with all communication
between hosts expressed as variable bindings accessed within
secure computations. Single threadedness makes programs
far easier to write and reason about (whether by humans or
by automated analyses [5], [22]). We formalize WYSTERIA’s
single-threaded semantics and prove a simulation theorem from
single- to multi-threaded semantics. We also prove a theorem
for correspondence of final configurations in the other direction,
for successfully terminating multi-threaded executions. In both
semantics, it is evident that all communication among parties
occurs via secure blocks, and thus, information flows are easier
to understand.

Generic support for more than two parties: WYSTERIA
programs may involve an arbitrary number of parties, such
that which parties, and their number, can be determined
dynamically rather than necessarily at compile-time. To support
such programs, WYSTERIA provides a notion of principals as
data which can be used to dynamically determine computation
participants or their outcomes (e.g., to identify winners in a
tournament proceeding to the next round). WYSTERIA also
implements a novel feature called wire bundles that are used
to represent the inputs and outputs of secure computations
such that a single party’s view of a wire bundle is his own
value, while the shared view makes evident all possible values.
A secure computation, having the shared view, may iterate
over the contents of a bundle. The length of such a bundle
may be unspecified initially. The WYSTERIA compiler employs
dynamic circuit generation to produce circuits when unknowns
(like wire bundle lengths) become available. Despite this
dynamism, Wysteria’s meta-theoretical properties guarantee
that participants proceed synchronously, i.e., they will always
agree on the protocol they are participating in.

Secret shares: Many interesting programs interleave local and
secure computations where the secured outcomes are revealed
later. For example, in mental poker, each party must maintain
a representation of the deck of cards whose contents are
only revealed as cards are dealt. To support such programs,
WYSTERIA provides secret shares as first-class objects. Secret
shares resemble wire bundles in that each party has a local
view (copy) and these views are combined in secure blocks to
recover the original value. The WYSTERIA type system ensures
shares are used properly; e.g., programs cannot inadvertently
combine the shares from different objects.

Refinement type system: WYSTERIA is a functional pro-
gramming language that comes equipped with a refinement

1Wisteria is a vine plant. Mixed-mode computations exhibit similar patterns
as vines, alternating between parallel and entangled (secure) forms.

type system to express the expectations and requirements of
computations in the language. In particular, the types for wire
bundles and shares are dependent, and directly identify the
parties involved. For example, suppose we have a function
is_richer that takes a list of principals and their net worths

and returns who is richest. The logical refinement on the
function’s return type will state that the returned principal
is one from the original set. Our type system also provides
delegation effects for expressing in which context a function
can be called; e.g., a function that computes in parallel mode
cannot be called from within a secure computation, while the
reverse is possible in certain circumstances. In general, our
type system ensures the standard freedom from type errors:
there will be no mistake of Alice communicating a string to
a secure computation which expects an integer. WYSTERIA’s
mixed-mode design enables such reasoning easily: separating
the host and SMC languages would make a proof of type
soundness for mixed-mode programs far more difficult.

We have implemented a WYSTERIA interpreter which
executes secure blocks by compiling them to boolean circuits,
executed by Choi et al’s implementation [23] of the Goldreich,
Micali, and Wigderson protocol [2]. We have used WYSTERIA
to build a broad array of mixed-mode programs proposed in the
literature, along with some new ones. Our experimental results
demonstrate three key points. First WYSTERIA’s performance
is competitive with prior approaches; e.g., we can reproduce the
mixed-mode performance gains reported previously. Second,
generic protocols for n-principals can be expressed with ease
in WYSTERIA, and executed efficiently. Finally, WYSTERIA’s
novel high-level abstractions, e.g. secure state, enables express-
ing novel protocols not present in the existing literature.

Related work: WYSTERIA is not the first language for mixed
mode SMC, but is unique in its high-level design, generality,
and formal guarantees. For example, languages like L1 [24]
and SMCL [8] permit some mixed-mode computations to be
expressed directly. However, these languages lack WYSTERIA’s
single-threaded semantics, exposing more low-level details, e.g.,
for performing communication or constructing secret shares.
As such, there are more opportunities for mistakes; e.g., one
party may fail to always receive a sent message (or may receive
the wrong one), or may not provide the right protocol shares.
L1 is also limited to only two parties, and neither language
has a type system expressing the requirements for well-formed
mixed-mode compositions (which is handled by our delegation
effects). No prior system of which we are aware has formalized
its operational semantics and type system and shown them to be
sensible (with the notable exception of Liu et al. [25], discussed
later). Similar pitfalls exist for other languages (Section IX
surveys related work).

The next section begins by presenting an overview of
WYSTERIA’s design and features by example. Section III
presents λWy, a formalization of WYSTERIA, and Sections IV
and V formalize λWy’s type system and operational semantics,
both single- and multi-threaded versions. Section VI proves
the type system is sound and that the two semantics corre-
spond. Sections VII and VIII describe our implementation
and experimental results, and we finish with related work and
conclusions.

The WYSTERIA implementation is available at http://
bitbucket.org/aseemr/wysteria.

http://bitbucket.org/aseemr/wysteria
http://bitbucket.org/aseemr/wysteria

II. OVERVIEW OF WYSTERIA

WYSTERIA is a functional programming language for
performing mixed-mode secure multiparty computations. It has
many features inherited directly from functional programming,
such as first-class (higher order) functions, variable binding
with let , tuples (aka records), sums (aka variants or tagged
unions), and standard primitive values like integers and arrays.
In this section we introduce WYSTERIA’s novel features.

Computation Modes: WYSTERIA defines two computation
modes: secure mode in which secure (multiparty) computations
take place, and parallel mode in which one or more parties
compute locally, in parallel. Here is a version of the so-called
millionaires’ problem that employs both modes:2

1 le t a =par ({ Alice})= read() in
2 le t b =par ({Bob})= read() in
3 le t out =sec({ Alice ,Bob})= a>b in
4 out

Ignoring the par () and sec () annotations, this program is just
a series of let-bindings: it first reads Alice’s value, then reads
Bob’s value, computes which is bigger (who is richer?), and
returns the result. The annotations indicate how and where
these results should be computed. The par ({ Alice }) annotation
indicates that the read () (i.e., the rhs computation) will be
executed locally (and normally) at Alice’s location, while the
par ({ Bob}) annotation indicates that the second read () will be
executed at Bob’s location. The sec ({ Alice ,Bob}) annotation
indicates that a > b will be executed as a secure multiparty
computation between Alice and Bob. Notice communication
from local nodes (Bob and Alice) to the secure computation is
done implicitly, as variable binding: the secure block “reads
in” values a and b from each site. Our compiler sees this and
compiles it to actual communication. In general, WYSTERIA
programs, though they will in actuality run on multiple hosts,
can be viewed as having the apparent single-threaded semantics,
i.e., as if there were no annotations; we have proved a simulation
theorem from single- to multi-threaded semantics.

In the example we used parallel mode merely as a means to
acquire and communicate values to a secure-mode computation
(which we sometimes call a secure block). As we show through-
out the paper, there are many occasions in which parallel mode
is used as a substantial component of the overall computation,
often as a way to improve performance. On these occasions we
specify the mode par(w) where w is a set of principals, rather
than (as above) a single principal. In this case, the rhs of the
let binding executes the given code at every principal in the set.
Indeed, the code in the example above is implicitly surrounded
by the code let result =par ({ Alice ,Bob})= e in result (where e
is the code given above). This says that Alice and Bob both, in
parallel, run the entire program. In doing so, they will delegate
to other computation modes, e.g., to a mode in which only Alice
performs a computation (to bind to a) or in which only Bob
does one, or in which they jointly and securely compute the a>b.
The delegation rules stipulate that parallel mode computations
among a set of principals may delegate to any subset of those
principals for either secure or parallel computations. We will
see several more examples as we go.

2This program does not actually type check in WYSTERIA, but it is useful
for illustration; the corrected program (using “wires”) is given shortly.

Wires: In the above example, we are implicitly expressing that
a is Alice’s (acquired in par ({ Alice }) mode) and b is Bob’s.
But suppose we want to make the computation of out into
a function: what should the function’s type be, so that the
requirements of input sources are expressed? We do this with
a novel language feature we call wires, as follows:

1 is_richer = λa: W {Alice } nat . λb: W {Bob} nat .
2 le t out =sec({ Alice ,Bob})= a[Alice] > b[Bob] in
3 out

Here, the is_richer function takes two arguments a and b,
each of which is a wire. The wires express that the data
“belongs to” a particular principal: a value of type W {Alice } t is
accessible only to Alice, which is to say, inside of par ({ Alice })
computations or sec ({ Alice } ∪w) computations (where w can
be any set of principals); notably, it is not accessible from
within computations par ({ Alice } ∪w}) where w is a nonempty
set. Note that wires are given dependent types which refer to
principal values, in this case the values Alice and Bob; we will
see interesting uses of such types shortly. Here is how we can
call this function:

1 le t a =par ({ Alice})= read() in
2 le t b =par ({Bob})= read() in
3 le t out = is_richer (wire {Alice } a) (wire {Bob} b) in
4 out

This code is creating wires from Alice and Bob’s private values
and passing them to the function. Note that the output is not a
wire, but just a regular value, and this is because it should be
accessible to both Alice and Bob.

Delegation effects: Just as we use types to ensure that the
inputs to a function are from the right party, we can use
effects on a function’s type to ensure that the caller is in
a legal mode. For example, changing the third line in the
above program to let out =par ({ Alice })= is_richer · · · would be
inappropriate, as we would be attempting to invoke the is_richer
function only from Alice even though we also require Bob to
participate in the secure computation in the function body. The
requirement of joint involvement is expressed as a delegation
effect in our type system, which indicates the expected mode
of the caller. The delegation effect for is_richer function is
sec ({ Alice ,Bob}), indicating that it must be called from a mode
involving at least Alice and Bob (e.g., par ({ Alice ,Bob})). The
effect annotates the function’s type; the type of is_richer
is thus W {Alice }nat → W {Bob}nat −sec({ Alice ,Bob})→ bool; i.e.,
is_richer takes Alice’s wire and Bob’s wire, delegates to a

secure block involving the two of them, and produces a boolean
value. Delegation effects like par ({ Alice ,Bob}) are also possible.

Wire bundles: So far we have used single wires, but WYSTE-
RIA also permits bundling wires together, which (as we will
see later) is particularly useful when parties are generic over
which and how many principals can participate in a secure
computation. Here is our example modified to use bundling:

1 is_richer = λ v: W {Alice ,Bob} nat .
2 le t out =sec({ Alice ,Bob})= v[Alice] > v[Bob] in
3 out

This code says that the input is a wire bundle whose values
are from both Alice and Bob. We extract the individual values
from the bundle v inside of the secure block using array-like
projection syntax. To call this function after reading the inputs
a and b we write is_richer ((wire { Alice } a) ++ (wire {Bob} b)) .

Here the calling code concatenates together, using ++, the two
wires from Alice and Bob into a bundle containing both of
their inputs. Of course, this is just an abstraction, and does
not literally represent what is going on at either party’s code
when this is compiled. For principal p, an empty wire bundle ·
(“dot”) is used for a wire bundle when p is not in its domain,
so that for Alice the above wire bundle would be represented as
{ Alice :a} ++ · while for Bob it would be · ++ {Bob:b}. When
the secure computation begins, each party contributes its own
value for every input bundle, and receives only its own value
for every output bundle. The type system’s accessibility rules
for bundles generalize what was stated above: if v has type
W ({A} ∪ w1) nat, where w1 may or may not be empty, then
v[A] is only allowed in par ({ A}) mode or in sec ({A} ∪ w2) mode
(s.t. v is accessible to sec ({A} ∪ w2), and nowhere else.

First-class principals and n-party computation: Now suppose
we would like to generalize our function to operate over an
arbitrary number of principals. At the moment we would have
to write one function for two principals, a different one for
three, and yet another one for four. To be able to write just
one function for n parties we need two things, (1) a way to
abstract which principals might be involved in a computation,
and (2) a way to iterate over wire bundles. Then we can write
a function that takes a wire bundle involving multiple arbitrary
principals and iterate over it to find the highest value, returning
the principal who has it. Here is the code to do this:

1 richest_of = λms:ps. λ v: W ms nat .
2 le t out =sec(ms)=
3 wfold(None, v ,
4 λ richest . λp. λn. match richest with
5 | None ⇒ Some p
6 | Some q ⇒ i f n > v[q] then Some p
7 else Some q)))
8 in (wire ms out)

The idea is that ms abstracts an unknown set of principals
(which has type ps), and wfold permits iterating over the wire
bundle for those principals: notice how ms appears in the
type of v. The wfold construct takes three arguments. Its first
argument None is the initial value for the loop’s accumulator
(None is a value of optional type). The second argument v
is the wire bundle to iterate over. The wfold’s body above is
an anonymous function with three parameters: richest is the
current accumulator, whose value is the richest principal thus
far (or None), p is the current principal under consideration,
and n is p’s wire value, a nat. On line 5, no principal has
yet been considered so the first becomes a candidate to be
richest. Otherwise, on line 6, the protocol compares the current
maximum with the present principal’s worth and updates the
accumulator. When the loop terminates, it yields the value of
the accumulator, which is placed in a wire bundle and returned.

In addition to wfold , WYSTERIA also provides a way to
apply a function to every element of a wire bundle, producing
a new bundle (like the standard functional map).

The richest_of function can be applied concretely as follows
(where the variables ending in _networth we assume are read
from each party’s console):

1 le t a l l = {Alice ,Bob, Charlie } in
2 le t r : W a l l (ps{ singl ∧ ⊆ a l l } option) =
3 richest_of a l l (wire {Alice } alice_networth
4 ++ wire {Bob} bob_networth
5 ++ wire {Charlie } charlie_networth)

The richest_of function illustrates that first-class principals are
useful as the object of computation: the function’s result r is a
wire bundle carrying principal options. The type for values in
r is a refinement type of the form tφ where φ is a formula that
refines the base type t . The particular type states that every
value in r is either None or Some(s) where not only s has type
ps (a set of principals), but that it is a singleton set (the singl
part), and this set is a subset of all (the ⊆ all part); i.e., s is
exactly one of the set of principals involved in the computation.
WYSTERIA uses refinements to ensure delegation requirements,
e.g., to ensure that if ps0 is the set of principals in a nested
parallel block, then the set of principals ps1 in the enclosing
block is a superset, i.e., that ps1 ⊇ ps0. Refinements capture
relationships between principal sets in their types to aid in
proving such requirements during type checking.

Secret shares: Secure computations are useful in that they
only reveal the final outcome, and not any intermediate results.
However, in interactive settings we might not be able to perform
an entire secure computation at once but need to do it a little
at a time, hiding the intermediate results until the very end.
To support this sort of program, WYSTERIA provides secret
shares. Within a secure computation, e.g., involving principals
A and B, we can encode a value of type t into shares having
type Sh w t where w is the set of principals involved in the
computation (e.g., {A,B}). When a value of this type is returned,
each party gets its own encrypted share (similar to how wire
bundles work, except that the contents are abstract). When the
principals engage in a subsequent secure computation their
shares can be recombined into the original value.

To illustrate the utility of secret shares in the context of
mixed mode protocols, we consider a simple two-player, two-
round bidding game. In each of the two rounds, each player
submits a private bid. A player “wins” the game by having
the higher average of two bids. The twist is that after the first
round, both players learn the identity of the higher bidder,
but not their bid. By learning which initial bid is higher, the
players can adjust their second bid to be either higher or lower,
depending on their preferences and strategy.

The protocol below implements the game as a mixed-mode
computation that consists of two secure blocks, one per round.
In order to force players to commit to their initial bid while
not revealing it directly, the protocol stores the initial bids in
secret shares. In the second secure block, the protocol recovers
these bids in order to compute the final winning bidder:

1 / * Bidding round 1 of 2: * /
2 le t a1 =par ({ Alice})= read () in
3 le t b1 =par ({Bob})= read () in
4 le t in1 = (wire {Alice } a1) ++ (wire {Bob} b1) in
5 le t (higher1 , sa, sb) =sec({ Alice ,Bob})=
6 le t c = i f in1 [Alice] > in2 [Bob] then Alice else Bob in
7 (c , makesh in1 [Alice] , makesh in1 [Bob])
8 in
9 print higher1 ;

11 / * Bidding round 2 of 2: * /
12 le t a2 =par ({ Alice})= read () in
13 le t b2 =par ({Bob})= read () in
14 le t in2 = (wire {Alice } a2) ++ (wire {Bob} b2) in
15 le t higher2 =sec({ Alice ,Bob})=
16 le t (a1, b1) = (combsh sa, combsh sb) in
17 le t bid_a = (a1 + in2 [Alice]) / 2 in
18 le t bid_b = (b1 + in2 [Bob]) / 2 in
19 i f bid_a > bid_b then Alice else Bob
20 in
21 print higher2

Principal p, q ::= Alice | Bob | Charlie | · · ·
Value v , w ::= x | n | inji v | (v1, v2) | p | {w} | w1 ∪ w2

Expression
e ::= v1 ⊕ v2 | case (v , x1.e1, x2.e2) | fst (v) | snd (v) |λx .e | v1 v2

| fix x .λy.e | array(v1, v2) | select(v1, v2) | update(v1, v2, v3)

| let x = e1 in e2 | let x M
= e1 in e2 |wirew (v) | e1 ++ e2 | v [w]

| wfoldw (v1, v2, v3) |wappw (v1, v2) |wapsw (v1, v2)
| wcopyw (v) |makesh(v) | combsh(v) | v

Type environment Γ ::= . | Γ, x :M τ | Γ, x : τ
Mode M, N ::= m(w) | >
Modal operator m ::= p | s
Effect ε ::= · | M | ε1, ε2
Refinement φ ::= true | singl(ν) | ν ⊆ w | ν = w | φ1 ∧ φ2

Type τ ::= nat | τ1 + τ2 | τ1 × τ2 | ps φ | Ww τ

| Array τ | Shw τ | x :τ1
ε→ τ2

Fig. 1. Program syntax: values, expressions and types.

The first secure block above resembles the millionaires’
protocol, except that it returns not only the principal c with the
higher input but also secret shares of both inputs: sa has type
Sh { Alice ,Bob} int , and both Alice and Bob will have a different
value for sa, analogous to wire bundles; the same goes for sb.
The second block recovers the initial bids by combining the
players’ shares and computes the final bid as two averages.

Unlike past SMC languages that expose language primitives
for secret sharing (e.g., [24]), in WYSTERIA the type system
ensures that shares are not misused, e.g., shares for different
underlying values may not be combined.

Expressive power: We have used WYSTERIA to program a
wide variety of mixed-mode protocols proposed in the literature,
e.g., all of those listed in the introduction, as well as several of
our own invention. In all cases, WYSTERIA’s design arguably
made writing these protocols simpler than their originally
proposed (often multi-lingual) implementations, and required
few lines of code. We discuss these examples in more detail
in Section VIII and in Appendix A.

III. FORMAL LANGUAGE

In this section we introduce λWy, the formal core calculus
that underpins the language design of WYSTERIA. Sections IV
and V present λWy’s type system and operational semantics,
respectively, and Section VI proves type soundness and a
correspondence theorem.

Figure 1 gives the λWy syntax for values v , expressions
e, and types τ . λWy contains standard values v consisting of
variables x , natural numbers n (typed as nat), sums inji v
(typed by the form τ1 + τ2),3 and products (v1, v2) (typed by
the form τ1 × τ2). In addition, λWy permits principals p to
be values, as well as sets thereof, constructed from singleton
principal sets {w} and principal set unions w1∪w2. These are all
given type ps φ, where φ is a type refinement; the type system
ensures that if a value w has type ps φ, then φ[w/ν] is valid.4
Refinements in λWy are relations in set theory. Refinements
ν ⊆ w and ν = w capture subset and equality relationships,

3Sums model tagged unions or variant types
4We write φ[w/ν] to denote the result of substituting w for ν in φ.

respectively, with another value w . The refinement singl(ν)
indicates that the principal set is a singleton.

λWy expressions e are, for simplicity, in so-called adminis-
trative normal form (ANF), where nearly all sub-expressions are
values, as opposed to arbitrary nested expressions. ANF form
can be generated from an unrestricted WYSTERIA program
with simple compiler support.

Expressions include arithmetic operations (v1 ⊕ v2), case
expressions (for computing on sums), and fst and snd for
accessing elements of a product. Expressions λx .e and v1 v2

denote abstractions and applications respectively. λWy also
includes standard fix point expressions (which encode loops)
and mutable arrays: array(v1, v2) creates an array (of type
Array τ) whose length is v1, and whose elements (of type
τ) are each initialized to v2; array accesses are written as
select(v1, v2) where v1 is an array and v2 is an index; and
array updates are written as update(v1, v2, v3), updating array
v1 at index v2 with value v3.

Let bindings in λWy can optionally be annotated with
a mode M , which indicates that expression e1 should be
executed in mode M as a delegation from the present mode.
Modes are either secure (operator s) or parallel (operator p),
among a set of principals w . Mode > represents is a special
parallel mode among all principals; at run-time, > is replaced
with p(w) where w is the set of all principals participating
in the computation. Once the execution of e1 completes, e2

then executes in the original mode. Unannotated let bindings
execute in the present mode. λWy has dependent function types,
written x :τ1

ε→ τ2, where x is bound in ε and τ2; the ε
annotation is an effect that captures all the delegations inside
the function body. An effect is either empty, a mode, or a list
of effects.

Wire bundle creation, concatenation, and folding are written
wirew (v), w1 ++ w2, and wfoldw (v1, v2, v3), respectively (the
w annotation on wfold and other combinators denotes the
domain of the wire bundle being operated on). Wire bundles
carrying a value of type τ for each principal in a set w are
given the (dependent) type Ww τ . We also support mapping a
wire bundle by a either a single function (wapsw (v1, v2)), or
another wire bundle of per-principal functions (wappw (v1, v2)).
Finally, the form wcopyw (v) is a coercion that allows wire
bundles created in delegated computations to be visible in
computations that contain them (operationally, wcopyw (v) is a
no-op). λWy also models support for secret shares, which have
type Shw τ , analogous to the type of wire bundles. Shares
of value v are created (in secure mode) with makesh(v) and
reconstituted (also in secure mode) with combsh(v).

IV. TYPE SYSTEM

At a high level, the λWy type system enforces the key
invariants of a mixed-mode protocol: (a) each variable can only
be used in an appropriate mode, (b) delegated computations
require that all participating principals are present in the
current mode, (c) parallel local state (viz., arrays) must remain
consistent across parallel principals, and (d) code in the secure
blocks must be restricted so that it can be compiled to a boolean
circuit in our implementation. In this section, we present the
typing rules, and show how these invariants are maintained.

Γ `M v : τ (Value typing)

T-VAR
x :M τ ∈ Γ ∨ x : τ ∈ Γ

Γ ` τ
Γ `M x : τ

T-NAT

Γ `M n : nat

T-INJ
Γ `M v : τi
j ∈ {1, 2}
τj IsFlat

Γ ` τj
Γ `M inji v : τ1 + τ2

T-PROD
Γ `M vi : τi

Γ `M (v1, v2) : τ1 × τ2

T-PRINC

Γ `M p : ps (ν = {p})

T-PSONE
Γ `M w : ps (singl(ν))

Γ `M {w} : ps (ν = {w})

T-PSUNION
Γ `M wi : ps φi

Γ `M w1 ∪ w2 : ps (ν = w1 ∪ w2)

T-PSVAR
Γ `M x : ps φ

Γ `M x : ps (ν = x)

T-MSUB
Γ `M

Γ `M x : τ
Γ `M �N

N = s(_)⇒ τ IsSecIn

Γ `N x : τ

T-SUB
Γ `M v : τ1
Γ ` τ1 <: τ

Γ ` τ
Γ `M v : τ

Fig. 2. Value typing judgement.

Γ `M �N (Mode M can delegate to mode N)

D-REFL
Γ ` w2 : ps (ν = w1)

Γ ` m(w1) �m(w2)

D-TOP
Γ ` w : ps φ

Γ ` >�m(w)

D-PAR
Γ ` w2 : ps (ν ⊆ w1)

Γ ` p(w1) � p(w2)

D-SEC
Γ ` w2 : ps (ν = w1)

Γ ` p(w1) � s(w2)

Γ ` τ1 <: τ2 (Subtyping)

S-REFL

Γ ` τ <: τ

S-TRANS
Γ ` τ1 <: τ2
Γ ` τ2 <: τ3

Γ ` τ1 <: τ3

S-SUM
Γ ` τi <: τ ′i

Γ ` τ1 + τ2 <: τ ′1 + τ ′2

S-PROD
Γ ` τi <: τ ′i

Γ ` τ1 × τ2 <: τ ′1 × τ ′2

S-PRINCS
JΓK � φ1 ⇒ φ2

Γ ` ps φ1 <: ps φ2

S-WIRE
Γ ` w2 : ps (ν ⊆ w1)

Γ ` τ1 <: τ2

Γ `Ww1 τ1 <: Ww2 τ2

S-ARRAY
Γ ` τ1 <: τ2
Γ ` τ2 <: τ1

Γ ` Array τ1 <: Array τ2

S-SHARE
Γ ` w2 : ps (ν = w1)

Γ ` τ1 <: τ2
Γ ` τ2 <: τ1

Γ ` Shw1 τ1 <: Shw2 τ2

S-ARROW
Γ ` τ ′1 <: τ1

Γ, x : τ ′1 ` τ2 <: τ ′2

Γ ` x :τ1
ε→ τ2 <: x :τ ′1

ε→ τ ′2

Fig. 3. Subtyping and delegation judgements.

Value typing: Figure 2 shows the value typing judgement
Γ `M v : τ , read as under Γ and in current mode M , value v
has type τ . Variable bindings in Γ are of two forms: the usual
x : τ , and x :M τ where M is the mode in which x is
defined. Rule T-VAR looks up the binding of x in Γ, and
checks that either x is bound with no mode annotation, or
matches the mode M in the binding to the current mode. It
uses an auxiliary judgement for type well-formedness, Γ ` τ ,

which enforces invariants like, for a wire bundle type Ww τ , w
should have a ps φ type. The rule T-INJ uses another auxiliary
judgement τ IsFlat which holds for types τ that lack wire
bundles and shares. Both auxiliary judgments are defined in the
Appendix (Figure 12). WYSTERIA disallows wire bundles and
shares in sum values, since it hides their precise sizes; the size
information of wires and shares is required for boolean circuit
generation. The rules T-PROD, T-PRINC, T-PSONE, T-PSUNION,
and T-PSVAR are unsurprising.

Delegations: Rule T-MSUB is used to permit reading a variable
in the present mode N , though the variable is bound in mode M .
This is permitted under two conditions: when mode M is well-
formed N = s(_)⇒ τ IsSecIn, and when Γ `M�N , which
is read as under type environment Γ, mode M can delegate
computation to mode N . The former condition enforces that
variables accessible in secure blocks do not include functions
known only to some parties as they can’t be compiled to
circuits by all the parties. As such, the condition excludes
wire bundles that carry functions. The condition Γ `M �N
captures the intuitive idea that a variable defined in a larger
mode can be accessed in a smaller mode. It is defined at the
top of Figure 3. In addition to capturing valid variable accesses
across different modes, the same relation also checks when it
is valid for a mode to delegate computation to another mode
(let x N

= e1 in e2). The rule D-REFL type checks the reflexive
case, where the refinement ν = w1 captures that w2 = w1 at
run-time. The special mode >, that we use to type check generic
library code written in WYSTERIA, can delegate to any mode
(rule D-TOP). Recall that at run-time, > is replaced with p(w),
where w is the set of all principals. A parallel mode p(w1) can
delegate computation to another parallel mode p(w2) only if
all the principals in w2 are present at the time of delegation,
i.e. w2 ⊆ w1. The rule D-PAR enforces this check by typing
w2 with the ν ⊆ w1 refinement. Finally, principals in parallel
mode can begin a secure computation; rule D-SEC again uses
refinements to check this delegation. We note that uses of rule D-
PAR and rule D-SEC can be combined to effectively delegate
from parallel mode to secure block consisting of a subset of
the ambient principal set. Secure modes are only allowed to
delegate to themselves (via rule D-REFL), since secure blocks
are implemented using monolithic boolean circuits.

Subtyping: Rule T-SUB is the (declarative) subsumption rule,
and permits giving a value of type τ1 the type τ if the τ is a
subtype of τ1. More precisely, the subtyping judgement Γ `
τ1 <: τ2 is read as under Γ type τ1 is a subtype of τ2. The rules
for this judgement are given at the bottom of Figure 3. Rules S-
REFL, S-TRANS, S-SUM, S-PROD, S-ARRAY, and S-ARROW are
standard. Rule S-PRINCS offloads reasoning about refinements
to an auxiliary judgement written JΓK � φ1 ⇒ φ2, which reads
assuming variables in Γ satisfy their refinements, the refinement
φ1 entails φ2. We elide the details of this ancillary judgement,
as it can be realized with an SMT solver; our implementation
uses Z3 [26], as described in Section VII. For wire bundles,
the domain of the supertype, a principal set, must be a subset
of domain of the subtype, i.e. type Ww1 τ1 is a subtype of
Ww2 τ2 if w2 ⊆ w1, and τ1 <: τ2 (rule S-WIRE). As mentioned
earlier, value w2 is typed with no mode annotation. Rule S-
SHARE is similar but requires τ1 and τ2 to be invariant since
circuit generation requires an fixed size (in bits) for the shared
value.

Γ `M e : τ ; ε (Expression typing: “Under Γ, expression e has type τ , and may be run at M . ”)

T-BINOP
Γ `M vi : nat

Γ `M v1 ⊕ v2 : nat; ·

T-FST
Γ `M v : τ1 × τ2
Γ `M fst (v) : τ1; ·

T-SND
Γ `M v : τ1 × τ2

Γ `M snd (v) : τ2; ·

T-CASE
(M = p(_) ∧ ε = p(·)) ∨ (τ IsFO ∧ ε = ·)
Γ ` v : τ1 + τ2 Γ, xi : τi `M ei : τ ; εi

Γ ` τ Γ `M � εi

Γ `M case (v , x1.e1, x2.e2) : τ ; ε, ε1, ε2

T-LAM
Γ ` τ Γ, x : τ `M e : τ1; ε

Γ `M λx .e : (x :τ
ε→ τ1); ·

T-APP
Γ `M v1 : x :τ1

ε→ τ2
Γ ` v2 : τ1 Γ ` τ2[v2/x]

Γ `M � ε[v2/x] M = s(_)⇒ τ2 IsFO

Γ `M v1 v2 : τ2[v2/x]; ε[v2/x]

T-LET1
Γ `M e1 : τ1; ε1

Γ, x : τ1 `M e2 : τ2; ε2
Γ ` τ2 Γ `M � ε2

Γ `M let x = e1 in e2 : τ2; ε1, ε2

T-LET2
M = m(_) N = _(w)

Γ `M �N Γ `N e1 : τ1; ε1
Γ, x :m(w) τ1 `M e2 : τ2; ε2

Γ ` τ2 Γ `M � ε2

Γ `M let x N
= e1 in e2 : τ2;N, ε1, ε2

T-FIX
M = p(_)

Γ ` (y:τ1
ε,p(·)→ τ2) Γ `M � ε

Γ, x : (y:τ1
ε,p(·)→ τ2) `M λy.e : (y:τ1

ε,p(·)→ τ2); ·

Γ `M fix x .λy.e : (y:τ1
ε,p(·)→ τ2); ·

T-ARRAY
M = p(_)

Γ `M v1 : nat Γ `M v2 : τ

Γ `M array(v1, v2) : Array τ ; ·

T-SELECT
Γ `M v1 : Array τ Γ `M v2 : nat

Γ `M select(v1, v2) : τ ; ·

T-UPDATE
M = p(_)

mode(v1,Γ) = M Γ `M v1 : Array τ
Γ `M v2 : nat Γ `M v3 : τ

Γ `M update(v1, v2, v3) : unit; ·

T-WIRE
Γ ` w1 : ps (ν ⊆ w2)
m = s⇒ N = s(w2)

m = p⇒ N = p(w1) Γ `N v : τ
m = s⇒ τ IsFO τ IsFlat

Γ `m(w2) wirew1 (v) : Ww1 τ ; ·

T-WPROJ
m = p⇒ φ = (ν = w1)
m = s⇒ φ = (ν ⊆ w1)

Γ `m(w1) v : Ww2 τ
Γ ` w2 : ps (φ ∧ singl(ν))

Γ `m(w1) v [w2] : τ ; ·

T-WIREUN
Γ `M v1 : Ww1 τ Γ `M v2 : Ww2 τ

Γ `M v1 ++ v2 : W (w1 ∪ w2) τ ; ·

T-WFOLD
M = s(_)

τ2 IsFO φ = (ν ⊆ w ∧ singl(ν))
Γ `M v1 : Ww τ Γ `M v2 : τ2

Γ `M v3 : τ2
·→ ps φ ·→ τ

·→ τ2

Γ `M wfoldw (v1, v2, v3) : τ2; ·

T-WAPP
M = p(_) Γ `M v1 : Ww τ1

Γ `M v2 : Ww (τ1
·→ τ2)

Γ `M wappw (v1, v2) : Ww τ2; ·

T-WAPS
M = s(_) τ2 IsFO τ2 IsFlat

Γ `M v1 : Ww τ1 Γ `M v2 : τ1
·→ τ2

Γ `M wapsw (v1, v2) : Ww τ2; ·

T-WCOPY
M = p(w1) Γ ` w2 : ps (ν ⊆ w1)

Γ `p(w2) v : Ww2 τ

Γ `M wcopyw2
(v) : Ww2 τ ; ·

T-MAKESH
M = s(w)

τ IsFO τ IsFlat Γ `M v : τ

Γ `M makesh(v) : Shw τ ; ·

T-COMBSH
M = s(w) Γ `M v : Shw τ

Γ `M combsh(v) : τ ; ·

T-SUBE
Γ `M e : τ ′; ε Γ ` τ ′ <: τ Γ ` τ

Γ `M e : τ ; ε

Fig. 4. Expression typing judgements. Judgment Γ ` v : τ , for typing values appearing in dependent types, is defined in the appendix (Figure 11) .

Expression typing: Figure 4 gives the typing judgement for
expressions, written Γ `M e : τ ; ε and read under Γ at mode M ,
the expression e has type τ and delegation effects ε. The rules
maintain the invariant that Γ `M � ε, i.e. if e is well-typed,
then M can perform all the delegation effects in e .

The rules T-BINOP, T-FST, and T-SND are standard. Rule T-
CASE is mostly standard, except for two details. First, the effect
in the conclusion contains the effects of both branches. The
second detail concerns secure blocks. We need to enforce that
case expressions in secure blocks do not return functions, since
it won’t be possible to inline applications of such functions
when generating circuits. So, the premise (M = p(_) ∧ ε =
M) ∨ (τ IsFO ∧ ε = ·) enforces that either the current mode
is parallel, in which case there are no restrictions on τ , but we
add an effect p(·) so that secure blocks cannot reuse this code,
or the type returned by the branches is first order (viz., not a
function).

Rule T-LAM is the standard rule for typing a dependent
effectful function: the variable x may appear free in the type of
function body τ1 and its effect ε, and ε appears on the function
type. Rule T-APP is the function application rule. It checks
that v1 is a function type, v2 matches the argument type of the
function,5 and that the application type τ2[v2/x] is well-formed
in Γ. The rule performs two additional checks. First, it ensures
that the current mode M can perform the delegation effects
inside the function body (Γ `M�ε[v2/x]). Second, it disallows
partial applications in secure blocks (M = s(_)⇒ τ IsFO) to
prevent a need to represent functional values as circuits; our
implementation of secure blocks inlines all function applications
before generating circuits.

5We restrict the values appearing in dependent types (v2 in this case) to be
typed without any mode annotation. We use an auxiliary judgment (similar to
value-typing) Γ ` v : τ to type such values (see Appendix Figure 11). This
judgment can only access those variables in Γ that are bound without any
mode.

Rule T-LET1 is the typing rule for regular let bindings.
Rule T-LET2 type checks the let bindings with delegation
annotations. The rule differs from rule T-LET1 in several aspects.
First, it checks that the delegation is legal (premise Γ `M�N).
Second, it checks e1 in mode N , instead of current mode M .
Third, it checks e2 with variable x bound in mode m(w) in
Γ. This mode consists of the outer modal operator m and
the delegated party set w , meaning that x is available only
to principals in w , but within the ambient (secure or parallel)
block.

Rule T-FIX type checks unguarded recursive loops (which
are potentially non-terminating). The rule is standard, but with
the provisos that such loops are only permitted in parallel
blocks (M = p(_)) and the current mode can perform all the
effects of the loop (Γ ` M � ε). It also adds an effect p(·)
to the final type, so that secure blocks cannot use such loops
defined in parallel blocks.

The rules T-ARRAY, T-SELECT, and T-UPDATE type array
creation, reading, and writing, respectively, and are standard
with the proviso that the first and third are only permitted in
parallel blocks. For array writes, the premise mode(v1,Γ) =
M also requires the mode of the array to exactly match the
current mode, so that all principals who can access the array do
the modification. We elide the definition of this function, which
simply extracts the mode of the argument from the typing
context (note that since the type of v1 is an array, and since
programmers do not write array locations in their programs
directly, the value v1 must be a variable and not an array
location).

Rule T-WIRE introduces a wire bundle for the given principal
set w1, mapping each principal to the given value v . The first
premise Γ ` w1 : ps (ν ⊆ w2) requires that w1 ⊆ w2, i.e., all
principals contributing to the bundle are present in the current
mode. The mode under which value v is typed is determined
by the modal operator m of the current mode. If it is p, v is
typed under p(w1). However, if it is s, v is typed under the
current mode itself. In parallel blocks, where parties execute
locally, the wire value can be typed locally. However, in secure
blocks, the value needs to be typable in secure mode. The next
premise m = s⇒ τ IsFO ensures that wire bundles created in
secure mode do not contain functions, again to prevent private
code execution in secure blocks. Finally, the premise τ IsFlat
prevents creation of wire bundles containing shares.

Rule T-WPROJ types wire projection v [w2]. The premise
Γ `m(w1) v : Ww2 τ ensures that v is a wire bundle having
w2 in its domain. To check w2, there are two subcases,
distinguished by current mode being secure or parallel. If
the latter, there must be but one participating principal, and
that principal value needs to be equal to the index of wire
projection: the refinement φ enforces that w2 = w1, and w2

is a singleton. If projecting in a secure block, the projected
principal need only be a member of the current principal set.
Intuitively, this check ensures that principals are participants
in any computation that uses their private data.

The rule T-WIREUN concatenates two wire bundle argu-
ments, reflecting the concatenation in the final type W (w1 ∪
w2) τ . The rules T-WFOLD, T-WAPP, T-WAPS, and T-WCOPY
type the remaining primitives for wire bundles. In rule T-
WFOLD, the premise enforces that wfold is only permitted

in secure blocks, that the folding function is pure (viz., its set
of effects is empty), and that the types of the wire bundle,
accumulator and function agree. As with general function
application in secure blocks, the rule enforces that the result of
the fold is first order. The rules T-WAPP and T-WAPS are similar
to each other, and to rule T-WFOLD. In both rules, a function
v2 is applied to the content of a wire bundle v1. rule T-WAPP
handles parallel mode applications where the applied functions
reside in a wire bundle (i.e., each principal can provide their
own function). Rule T-WAPS handles a more restricted case
where the applied function is not within a wire bundle; this
form is required in secure mode because to compile a secure
block to a boolean circuit at run-time each principal must know
the function being applied. As with rule T-WFOLD, the applied
functions must be pure. Rule T-WCOPY allows copying of a wire
bundle value v from p(w2) to p(w1) provided w2 ⊆ w1. This
construct allows principals to carry over their private values
residing in a wire bundle from a smaller mode to a larger mode
while maintaining the privacy – principals in larger mode that
are not in the wire bundle see an empty wire bundle (·).

Rules T-MAKESH and T-COMBSH introduce and eliminate
secret share values of type Shw τ , respectively. In both rules,
the type of share being introduced or eliminated carries the
principal set of the current mode, to enforce that all sharing
participants are present when the shares are combined. Values
within shares must be flat and first-order so that their bit-level
representation size can be determined. Finally, rule T-SUBE is
the subsumption rule for expressions.

V. OPERATIONAL SEMANTICS

We define two distinct operational semantics for λWy
programs, each with its own role and advantages. The single-
threaded semantics of λWy provides a deterministic view of
execution that makes apparent the synchrony of multi-party
protocols. The multi-threaded semantics of λWy provides a non-
deterministic view of execution that makes apparent the relative
parallelism and privacy of multi-party protocols. In Section VI,
we state and prove correspondence theorems between the two
semantics.

A. Single-threaded semantics

WYSTERIA’s single-threaded semantics defines a transition
relation for machine configurations (just configurations for
short). A configuration C consists of a designated current
mode M , and four additional run-time components: a store σ,
a stack κ, an environment ψ and a program counter e (which
is an expression representing the code to run next).

Configuration C ::= M{σ;κ;ψ; e}
Store σ ::= · | σ{` :M v1, . . . , vk}
Stack κ ::= · | κ :: 〈M ;ψ; x .e〉 | κ :: 〈ψ; x .e〉
Environment ψ ::= · | ψ{x 7→M v} | ψ{x 7→ v}

A store σ models mutable arrays, and consists of a finite map
from (array) locations ` to value sequences v1, .. , vk . Each entry
in the store additionally carries the mode M of the allocation,
which indicates which parties have access. A stack κ consists
of a (possibly empty) list of stack frames, of which there are
two varieties. The first variety is introduced by delegations (let
bindings with mode annotations) and consists of a mode, an
environment (which stores the values of local variables), and

C1 −→ C2 Configuration stepping: “Configuration C1 steps to C2”

STPC-LOCAL M{σ1;κ;ψ1; e1} −→ M{σ2;κ;ψ2; e2} when σ1;ψ1; e1
M−→ σ2;ψ2; e2

STPC-LET M{σ;κ;ψ; let x = e1 in e2} −→ M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1}

STPC-DELPAR p(w1 ∪ w2){σ;κ;ψ; let x
p(w′)

= e1 in e2} −→ p(w2){σ;κ :: 〈p(w1 ∪ w2);ψ; x .e2〉 ;ψ; e1} when ψJw ′K = w2

STPC-DELSSEC s(w){σ;κ;ψ; let x
s(w′)

= e1 in e2} −→ s(w){σ;κ :: 〈s(w);ψ; x .e2〉 ;ψ; e1} when ψJw ′K = w

STPC-DELPSEC p(w){σ;κ;ψ; let x
s(w′)

= e1 in e2} −→ p(w){σ;κ :: 〈p(w);ψ; x .e2〉 ;ψ; securew′ (e1)}
STPC-SECENTER p(w){σ;κ;ψ; securew′ (e)} −→ s(w){σ;κ;ψ; e} when ψJw ′K = w
STPC-POPSTK1 N{σ;κ :: 〈M ;ψ1; x .e〉 ;ψ2; v} −→ M{σ;κ;ψ1{x 7→m(w) (ψ2JvKN)}; e} when M = m(_) and N = _(w)
STPC-POPSTK2 M{σ;κ :: 〈ψ1; x .e〉 ;ψ2; v} −→ M{σ;κ;ψ1{x 7→ (ψ2JvKM)}; e}

σ1;ψ1; e1
M−→ σ2;ψ2; e2 Local stepping: “Under store σ1 and environment ψ1, expression e1 steps at mode M to σ2, ψ2 and e2”

STPL-CASE σ;ψ; case (v , x1.e1, x2.e2)
M−→ σ;ψ{xi 7→ v ′}; ei when ψJvKM = inji v ′

STPL-FST σ;ψ; fst (v)
M−→ σ;ψ; v1 when ψJvKM = (v1, v2)

STPL-SND σ;ψ; snd (v)
M−→ σ;ψ; v2 when ψJvKM = (v1, v2)

STPL-BINOP σ;ψ; v1 ⊕ v2
M−→ σ;ψ; v ′ when ψJv1KM = v ′1, ψJv2KM = v ′2 and v ′1 ⊕ v ′2 = v ′

STPL-LAMBDA σ;ψ;λx .e
M−→ σ;ψ; clos (ψ;λx .e)

STPL-APPLY σ;ψ1; v1 v2
M−→ σ;ψ2{x 7→ v ′}; e when ψ1Jv1KM = clos (ψ2;λx .e) and ψ1Jv2K = v ′

STPL-FIX σ;ψ; fix x .λy.e
p(w)−→ σ;ψ; clos (ψ; fix x .λy.e)

STPL-FIXAPPLY σ;ψ1; v1 v2
M−→ σ;ψ′; e when ψ1Jv1KM = clos (ψ; fix x .λy.e) and ψ1Jv2K = v ′

and ψ′ = ψ{x 7→ clos (ψ; fix x .λy.e); y 7→ v ′}
STPL-ARRAY σ;ψ; array(v1, v2)

M−→ σ{` :M wk};ψ; ` when ψJv1KM = k , ψJv2KM = w and nextM (σ) = `

STPL-SELECT σ;ψ; select(v1, v2)
M−→ σ;ψ;wi when ψJv1KM = `, ψJv2KM = i , i ∈ [1..k] and σ(`) = {w̄}k

STPL-SEL-ERR σ;ψ; select(v1, v2)
M−→ σ;ψ; error when ψJv1KM = `, ψJv2KM = i , i /∈ [1..k] and σ(`) = {w̄}k

STPL-UPDATE σ;ψ; update(v1, v2, v3)
M−→ σ′;ψ;() when ψJv1KM = `, ψJv2KM = i and ψJv3KM = w ′i

and σ(`) = {w̄}k , j ∈ [1..k] and w ′j = wj for j 6= i

and σ′ = σ{` :M {w̄ ′}k}
STPL-UPD-ERR σ;ψ; update(v1, v2, v3)

M−→ σ;ψ; error when ψJv1KM = `, ψJv2KM = i , i /∈ [1..k] and σ(`) = {w̄}k
STPL-MAKESH σ;ψ; makesh(v)

s(w)−→ σ;ψ; shw v ′ when ψJvKs(w) = v ′

STPL-COMBSH σ;ψ; combsh(v)
s(w)−→ σ;ψ; v ′ when ψJvKs(w) = shw v ′

STPL-WIRE σ;ψ; wirew (v)
M−→ σ;ψ; {|(ψJvKN)|}wires

w′ where {|v |}wires
w1∪w2

= {|v |}wires
w1

++ {|v |}wires
w2

STPL-WCOPY σ;ψ; wcopyw (v)
M−→ σ;ψ; v and {|v |}wires

{p} = {p : v} and {|v |}wires
· = ·

and ψJwK = w ′ and M = m(_)
m = s⇒ N = M and m = p⇒ N = p(w ′)

STPL-PARPROJ σ;ψ; v1[v2]
p({p})−→ σ;ψ; v ′ when ψJv2Kp({p}) = p and ψJv1Kp({p}) = {p : v ′} ++ w ′

STPL-SECPROJ σ;ψ; v1[v2]
s({p}∪w)−→ σ;ψ; v ′ when ψJv2Ks({p}∪w) = p and ψJv1Ks({p}∪w) = {p : v ′} ++ w ′

STPL-WIREUN σ;ψ; v1 ++ v2
M−→ σ;ψ; v ′1 ++ v ′2 when ψJv1KM = v ′1 and ψJv2KM = v ′2

STPL-WAPP1 σ;ψ; wappw (v1, v2)
M−→ σ;ψ; · when ψJwK = ·

STPL-WAPP2 σ;ψ; wappw (v1, v2)
M−→ σ;ψ; e when ψJwK = {p} ∪ w ′ and M = p(({p} ∪ w ′) ∪ w1)

and ψJv1KM = v ′1 and ψJv2KM = v ′2

where e = let z1
p({p})

= let z2 = v ′1[p] in let z3 = v ′2[p] in z2 z3 in let z4 = wappw′ (v ′1, v
′
2) in ((wire{p}(z1)) ++ z4)

STPL-WAPS1 σ;ψ; wapsw (v1, v2)
M−→ σ;ψ; · when ψJwK = ·

STPL-WAPS2 σ;ψ; wapsw (v1, v2)
M−→ σ;ψ; e when ψJwK = {p} ∪ w ′ and M = s(({p} ∪ w ′) ∪ w1)

and ψJv1KM = v ′1 and ψJv2KM = v ′2
where e = let z1 = v ′1[p] in let z2 = v ′2 z1 in let z3 = wapsw′ (v ′1, v

′
2) in ((wire{p}(z2)) ++ z3)

STPL-WFOLD1 σ;ψ; wfoldw (v1, v2, v3)
M−→ σ;ψ; v ′ when ψJwK = · and ψJv2KM = v ′

STPL-WFOLD2 σ;ψ; wfoldw (v1, v2, v3)
M−→ σ;ψ; e when ψJwK = {p} ∪ w ′ and M = s(({p} ∪ w ′) ∪ w1)

and ψJv1KM = v ′1, ψJv2KM = v ′2 and ψJv3KM = v ′3
where e = let z1 = v ′1[p] in let z2 = v ′3 v ′2 p z1 in wfoldw′ (v ′1, z2, v

′
3)

Fig. 5. λWy: operational semantics of single-threaded configurations

a return continuation, which is an expression containing one
free variable standing in for the return value supplied when the
frame is popped. The second variety is introduced by regular
let-bindings where the mode is invariant; it consists of only an
environment and a return continuation.

An environment ψ consists of a finite map from variables
to closed values. As with stores, each entry in the environment
additionally carries a mode M indicating which principals have
access and when (whether in secure or in parallel blocks). Note
that we extend the definition of values v from Figure 1 to
include several new forms that appear only during execution.
During run-time, we add forms to represent empty party sets
(written ·), empty wire bundles (written ·), single-principal
wire bundles ({p : v}), wire bundle concatenation (v1 ++ v2),
array locations (`), and closures (written clos (ψ;λx .e) and
clos (ψ; fix f .λx .e)).

Our “environment-passing” semantics (in contrast to a
semantics based on substitution) permits us to directly recover
the multi-threaded view of each principal in the midst of
single-threaded execution. Later, we exploit this ability to
show that the single and multi-threaded semantics enjoy a
precise correspondence. If we were to substitute values for
variables directly into the program text these distinct views of
the program’s state would be tedious or impossible to recover.

Figure 5 gives the single-threaded semantics in the form of
three judgements. The main judgement C1 −→ C2 is located at
the figure’s top and can be read as saying configuration C1 steps
to C2. Configuration stepping uses an ancillary judgement for
local stepping (lowest in figure). The local stepping judgement
σ1;ψ1; e1

M−→ σ2;ψ2; e2 covers all (common) cases where
neither the stack nor the mode of the configuration change.
This judgement can be read as under store σ1 and environment
ψ1, expression e1 steps at mode M to σ2, ψ2 and e2. Most
configuration stepping rules are local, in the sense that they
stay within one mode and do not affect the stack.

Configurations manage their current mode in a stack-
based discipline, using their stack to record and recover
modes as the thread of execution enters and leaves nested
parallel and secure blocks. The rules of C1 −→ C2 handle
eight cases: Local stepping only (STPC-LOCAL), regular let-
binding with no delegation annotation (STPC-LET), delegation
to a parallel block (STPC-DELPAR), delegation to secure
block from a secure or parallel block (STPC-DELSSEC and
STPC-DELPSEC, respectively), entering a secure block (STPC-
SECENTER) and handling return values using the two varieties
of stack frames (STPC-POPSTK1 and STPC-POPSTK2). We
discuss local stepping shortly, considering the other rules first.

Both delegation rules move the program counter under a let,
saving the returning context on the stack for later (to be used
in STPC-POPSTK). Parallel delegation is permitted when the
current principals are a superset of the delegated principal set;
secure delegation is permitted when the sets coincide. Secure
delegation occurs in two phases, which is convenient later
when relating the single-threaded configuration semantics to
the multi-threaded view; STPC-SECENTER handles the second
phase of secure delegation.

The standard language features of WYSTERIA are covered
by the first thirteen local stepping rules, including five rules

ψJvKM = v ′ Environment lookup: “Closing v for M under ψ is v ′”

ψJ(v1, v2)KM = (v ′1, v
′
2) when ψJv1KM = v ′1 and ψJv2KM = v ′2

ψJxKM = v when x 7→N v ∈ ψ and . ` N �M
ψJxKM = v when x 7→ v ∈ ψ

Fig. 6. λWy: Environment lookup judgments (selected rules).

to handle primitive array operations. We explain the first rule
in detail, as a model for the rest. Case analysis (STPL-CASE)
branches based on the injection, stepping to the appropriate
branch and updating the environment with the payload value of
the injected value v ′. The incoming environment ψ closes the
(possibly open) scruntinee value v of the case expression using
value bindings for the free variables accessible at the current
mode M . We write the closing operation as ψJvKM and show
selected rules in Figure 6 (complete rules are in the Appendix
Figure 13). Note the second rule makes values bound in larger
modes available in smaller modes. The rule STPL-CASE updates
the environment using the closed value, adding a new variable
binding at the current mode. The remainder of the rules follow
a similar pattern of environment usage.

Projection of pairs (STPL-FST,STPL-SND) gives the first
or second value of the pair (respectively). Binary operations
close the operands before computing a result (STPL-BINOP).
Lambdas and fix-points step similarly. In both cases a rule closes
the expression, introducing a closure value with the current
environment (STPL-LAMBDA and STPL-FIX). Their application
rules restore the environment from the closure, update it to
hold the argument binding, and in the case of the fix-points, a
binding for the fix expression. The mode p(w) enforces that
(potentially unguarded) recursion via STPL-FIX may not occur
in secure blocks.

The array primitives access or update the store, which
remained invariant in all the cases above. Array creation (STPL-
ARRAY) updates the store with a fresh array location `; the
location maps to a sequence of v1 copies of initial value v2.
The fresh location is chosen (deterministically) by the auxiliary
function nextM (σ). Array selection (STPL-SELECT,STPL-SEL-
ERR) projects a value from an array location by its index.
The side conditions of STPL-SELECT enforce that the index
is within range. When out of bounds, STPL-SEL-ERR applies
instead, stepping the program text to error, indicating that a
fatal (out of bounds error) has occurred. We classify an error
program as halted rather than stuck. As with (“successfully”)
halted programs that consist only of a return value, the error
program is intended to lack any applicable stepping rules.
Array updating (STPL-UPDATE,STPL-UPD-ERR) is similar to
projection, except that it updates the store with a new value at
one index (and the same values at all other indices). As with
projection, an out-of-bounds array index results in the error
program.

For secret sharing, the two rules STPL-MAKESH and
STPL-COMBSH give the semantics of makesh and combsh,
respectively. Both rules require secure computation, indicated
by the mode above the transition arrow. In STPL-MAKESH,
the argument value is closed and “distributed” as a share
value shw v ′ associated with the principal set w of the current
mode s(w). STPL-COMBSH performs the reverse operation,
“combining” the share values of each principal of w to recover

the original value.

The remaining local stepping rules support wire bundles
and their combinators. STPL-WIRE introduces a wire bundle
for given party set w, mapping each principal in the set to the
argument value (closed under the current environment). STPL-
WCOPY is a no-op: it yields its argument wire bundle. STPL-
PARPROJ projects from wire bundles in a parallel mode when
the projected principal is present and alone. STPL-SECPROJ
projects from wire bundles in a secure mode when the projected
principal is present (alone or not).

The wire combinator rules follow a common pattern. For
each of the three combinators, there are two cases for the
party set w that indexes the combinator: either w is empty, or
it consists of at least one principal. In the empty cases, the
combinators reduce according to their respective base cases:
Rules STPL-WAPP1 and STPL-WAPS1 both reduce to the empty
wire bundle, and STPL-WFOLD1 reduces to the accumulator
value v2. In the inductive cases there is at least one principal
p. In these cases, the combinators each unfold once for p (we
intentionally keep the order of this unfolding non-deterministic,
so all orderings of principals are permitted). Rule STPL-WAPP2
unfolds a parallel-mode wire application for p({p}), creating
let-bindings that project the argument and function from the
two wire bundle arguments, perform the function application
and recursively process the remaining principals; finally, the
unfolding concatenates the resulting wire bundle for the other
principals with that of p. Rule STPL-WAPS2 is similar to STPL-
WAPP2, except that the function being applied v2 is not carried
in a wire bundle (recall that secure blocks forbid functions
within wire bundles). Finally, STPL-WFOLD2 projects a value
for p from v1 and applies the folding function v3 to the current
accumulator v2, the principal p, the projected value. The result
of this application is used as the new accumulator in the
remaining folding steps.

B. Multi-threaded semantics

Whereas the single-threaded semantics of λWy makes
synchrony evident, in actuality a WYSTERIA program is run as
a distributed program involving distinct computing principals.
We make this multi-agent view apparent in a multi-threaded
semantics of λWy which defines the notion of a protocol:

Protocol π ::= ε | π1 · π2 | A
Agent A ::= p {σ;κ;ψ; e} | s(w1

w2
) {σ;κ;ψ; e}

A protocol π consists of a (possibly empty) sequence of
agents A. There are two varieties of agents. First, princi-
pal agents are written p {σ;κ;ψ; e} and correspond to the
machine of a single principal p. Second, secure agents are
written s(w1

w2
) {σ;κ;ψ; e} and correspond to a secure block for

principals w2, where w1 is the subset of these principals still
waiting for their result. Both varieties of agents consist of a
store, stack, environment and expression—the same components
as the single-threaded configurations described above. We
note that in the rules discussed below, we treat protocols as
commutative monoids, meaning that the order of composition
does not matter, and that empty protocols can be freely added
and removed without changing the meaning.

Figure 7 defines the stepping judgement for protocols
π1 −→ π2, read as protocol π1 steps to protocol π2. Rule
STPP-PRIVATE steps principal p’s computing agent in mode

p({p}) according to the single-threaded semantics. We note
that this rule covers nearly all parallel mode code, by virtue of
parallel mode meaning “each principal does the same thing in
parallel.” However, single-threaded rules involving delegation
effects, STPC-DELPAR and STPC-SECENTER are different in
multi-threaded semantics.

Parallel delegation reduces by case analysis on the agent’s
principal p. Rule STPP-PRESENT applies when p is a member of
the delegated set. In that case, p simply reduces by pushing e2

on the stack and continue to e1. When p is not a member of the
delegated set, rule STPP-ABSENT entirely skips the first nested
expression and continues with e2. The type system ensures
that in this case, p never uses x , and hence does not needs its
binding in the environment.

To see the effect of these rules, consider the following code,
which is like the millionaires’ example we considered earlier.

e =

let x1

p({Alice})
= read () in

let x2
p({Bob})

= read () in
let x3 = (wire{Alice}(x1)) ++ (wire{Bob}(x2)) in
let x4

s({Alice,Bob})
= x3[Alice] > x3[Bob] in

x4

To start, both Alice and Bob start running the program (call it e)
in protocol Alice {·; ·; ·; e} ·Bob {·; ·; ·; e}. Consider evaluation
for Bob’s portion. The protocol will take a step according to
STPP-ABSENT (via STPP-FRAME) since the first let binding
is for Alice (so Bob is not permitted to see the result). Rule
STPP-PRESENT binds the x2 to whatever is read from Bob’s
console; suppose it is 5. Then, Bob will construct the wire
bundle x3, where Alice’s binding is absent and Bob’s binding
x2 is 5.

At the same time, Alice will evaluate her portion of the
protocol similarly, eventually producing a wire bundle where
her value for x1 is whatever was read in (6, say), and Bob’s
binding is absent. (Of course, up to this point each of the steps
of one party might have been interleaved with steps of the
other.) The key is that elements of the joint protocol that are
private to one party are hidden from the others, in fact totally
absent from others’ local environments. Now, both are nearly
poised to delegate to a secure block.

Secure delegation reduces in a series of phases that involve
multi-agent coordination. In the first phase, the principal agents
involved in a secure block each reduce to a secure expression
securew (e), using STPC-DELPSEC via STPP-PRIVATE. At any
point during this process, rule STPP-BEGIN (nondeterministi-
cally) creates a secure agent with a matching principal set w
and expression e. After which, each principal agent can enter
their input into the secure computation via STPP-SECENTER,
upon which they begin to wait, blocking until the secure block
completes. Their input takes the form of their current store σ
and environment ψ, which the rule combines with that of the
secure agent. We explain the combine operation below. Once
all principals have entered their inputs into the secure agent,
the secure agent can step via STPP-SECSTEP. The secure agent
halts when its stack is empty and its program is a value.

Once halted, the secure block’s principals can leave with
the output value via STPP-SECLEAVE. As values may refer to
variables defined in the environment, the rule first closes the

π1 −→ π2 Protocol stepping: “Protocol π1 steps to π2”

STPP-PRIVATE p {σ1;κ1;ψ1; e1} −→ p {σ2;κ2;ψ2; e2} when p({p}){σ1;κ1;ψ1; e1} −→ p({p}){σ2;κ2;ψ2; e2}

STPP-PRESENT p

{
σ;κ;ψ; let x

p(w)
= e1 in e2

}
−→ p {σ;κ1;ψ; e1} when {p} ⊆ ψJwK and κ1 = κ :: 〈p({p});ψ; x .e2〉

STPP-ABSENT p

{
σ;κ;ψ; let x

m(w)
= e1 in e2

}
−→ p {σ;κ;ψ; e2} when {p} 6⊆ ψJwK

STPP-FRAME π1 · π2 −→ π′1 · π2 when π1 −→ π′1
STPP-SECBEGIN ε −→ s(·w) {·; ·; ·; e}

STPP-SECENTER s(w1
w2) {σ; ·;ψ; e} · p {σ′;κ;ψ′; securew2 (e)} −→ s(

w1∪{p}
w2) {σ ◦ σ′; ·;ψ ◦ ψ′; e} · p {σ′;κ; ·; wait}

STPP-SECSTEP s(ww) {σ1;κ1;ψ1; e1} −→ s(ww) {σ2;κ2;ψ2; e2} when s(w){σ1;κ1;ψ1; e1} −→ s(w){σ2;κ2;ψ2; e2}

STPP-SECLEAVE s(
w1∪{p}
w2) {σ′; ·;ψ; v} · p {σ;κ; ·; wait} −→ s(w1

w2) {σ′; ·;ψ; v} · p {σ;κ; ·; v ′} when slicep(ψJvKs(w2)) ; v ′

STPP-SECEND s(·w2
) {σ; ·;ψ; v} −→ ε

Fig. 7. λWy: operational semantics of multi-threaded target protocols

slicep(v1) ; v2 Value slicing: “Value v1 sliced for p is v2”

slicep((v1, v2)) ; (v ′1, v
′
2) when slicep(vi) ; v ′i

slicep({p : v} ++ v1) ; {p : v}
slicep(v1 ++ v2) ; · when p 6∈ dom(v1 ++ v2)

slicep(ψ) ; ψ′ Environment slicing: “Environment ψ sliced for p is ψ′”

slicep(ψ{x 7→p(w) v}) ; slicep(ψ){x 7→p({p}) slicep(v)} , p ∈ w
slicep(ψ{x 7→p(w) v}) ; slicep(ψ) , p 6∈ w
slicep(ψ{x 7→ v}) ; slicep(ψ){x 7→ slicep(v)}

Fig. 8. λWy: Slicing judgments (selected rules).

value with the secure block’s environment, and then each party
receives the slice of the closed value that is relevant to him. We
show selected slicing rules in Figure 8. The complete definition
is in the Appendix (Figure 14). Intuitively, the slice of a value
is just a congruence, except in the case of wire bundle values,
where each principal of the bundle gets its own component;
other principals get ·, the empty wire bundle. The combine
operation mentioned above is analogous to slice, but in the
reverse direction – it combines the values in a congruent way,
but for wire bundles it concatenates them (see the appendix).

Returning to our example execution, we can see that Bob
and Alice will step to secure{Alice,Bob}(e

′) (with the result
poised to be bound to x4 in both cases) where e ′ is x3[Alice] >
x3[Bob]. At this point we can begin a secure block for e ′ using
STPP-SECBEGIN and both Bob and Alice join up with it using
STPP-SECENTER. This causes their environments to be merged,
with the important feature that for wire bundles, each party
contributes his/her own value, and as such x3 in the joined
computation is bound to {Alice : 6} ++ {Bob : 5}. Now the
secure block performs this computation while Alice and Bob’s
protocols wait. When the result 1 (for “true”) is computed, it
is passed to each party via STPP-SECLEAVE, along with the
sliced environment ψ′ (as such each party’s wire bundle now
just contains his/her own value). At this point each party steps
to 1 as his final result.

VI. META THEORY

We prove several meta-theoretical results for λWy that are
relevant for mixed-mode multi-party computations. Proofs for
these results can be found in Appendix B. First, we show that
well-typed WYSTERIA programs always make progress (and

stay well-typed). In particular, they never get stuck: they either
complete with a final result, or reach a well-defined error state
(due to an out of bounds array access or update, but for no
other reason).

Theorem 6.1 (Progress): If Σ ` C1 : τ then either
C1 halted or there exists configuration C2 such that C1 −→ C2.

Theorem 6.2 (Preservation): If Σ1 ` C1 : τ and C1 −→ C2,
then there exists Σ2 ⊇ Σ1 s.t. Σ2 ` C2 : τ .

The premise Σ ` C1 : τ appears in both theorems and
generalizes the notion of well-typed expressions to that of
well-typed configurations; it can be read as under store typing
Σ, configuration C1 has type τ . This definition involves giving
a notion of well-typed stores, stacks and environments, which
we omit here for space reasons (see appendix).

Next, turning to the relationship between the single- and
multi-threaded semantics, the following theorem shows that
every transition in the single-threaded semantics admits corre-
sponding transitions in the multi-threaded semantics:

Theorem 6.3 (Sound forward simulation): Suppose that
Σ ` C1 : τ and that C1 −→ C2. Then there exist π1 and π2

such that π1 −→∗ π2 and slicew (Ci) ; πi (for i ∈ {1, 2}),
where w is the set of all principals.

The conclusion of the theorem uses the auxiliary slicing
judgement to construct a multi-threaded protocol from a (single-
threaded) configuration.

Turning to the multi-threaded semantics, the following
theorem states that the non-determinism of the protocol
semantics always resolves to the same outcome, i.e., given
any two pairs of protocol steps that take a protocol to two
different configurations, there always exists two more steps
that bring these two intermediate states into a common final
state:

Theorem 6.4 (Confluence): Suppose that π1 −→ π2 and
π1 −→ π3, then there exists π4 such that π2 −→ π4 and
π3 −→ π4.

A corollary of confluence is that every terminating run of the
(non-deterministic) multi-threaded semantics yields the same
result.

For correspondence in the other direction (multi- to single-
threaded), we can prove the following lemma.

Lemma 6.1 (Correspondence of final configurations): Let
Σ ` C : τ and slicew (C) ; π, where w is the set of all
principals. If π −→∗ π′, where π′ is an error-free terminated
protocol, then there exists an error-free terminated C′ s.t.
C −→∗ C′ and slicew (C′) ; π′.

One of the most important consequences of these theorems
is that principals running parallel to one another, and whose
computations sucessfully terminate in the single-threaded
semantics, will be properly synchronized in the multi-threaded
semantics; e.g., no principal will be stuck waiting for another
one that will never arrive.

We would like to prove a stronger, backward simulation
result that also holds for non-terminating programs, but unfortu-
nately it does not hold because of the possibility of errors and
divergence. For example, when computing let x

M
= e1 in e2,

the single-threaded semantics could diverge or get an array
access error in e1, and therefore may never get to compute
e2. However, in multi-threaded semantics, principals not in M
are allowed to make progress in e2. Thus, for those steps in
the multi-threaded semantics, we cannot give a corresponding
source configuration. We plan to take up backward simulation
(e.g., by refining the semantics) as future work.

Security: As can be seen in Figure 7, the definition of the
multi-threaded semantics makes apparent that all inter-principal
communication (and thus information leakage) occurs via secure
blocks. As such, all information flows between parties must
occur via secure blocks. These flows are made more apparent
by WYSTERIA’s single-threaded semantics, and are thus easier
to understand.

VII. IMPLEMENTATION

We have implemented a tool chain for WYSTERIA, including
a frontend, a type checker, and a run-time interpreter. Our
implementation is written in OCaml, and is roughly 6000 lines
of code. Our implementation supports the core calculus features
(in gentler syntax) and also has named records and conditionals.
To run a WYSTERIA program, each party invokes the interpreter
with the program file and his principal name. If the program type
checks it is interpreted. The interpreter dynamically generates
boolean circuits from secure blocks it encounters, running them
using Choi et al.’s implementation [23] of the Goldreich, Micali,
and Wigderson (GMW) protocol [2], which provably simulates
(in the semi-honest setting) a trusted third party. Figure 9
gives a high-level overview of WYSTERIA running for four
clients (labeled A, B, C and D). The remainder of this section
discusses the implementation in detail.

Type checker: The WYSTERIA type checker uses standard
techniques to turn the declarative type rules presented earlier
into an algorithm (e.g., inlining uses of subsumption to make the
typing rules syntax-directed). We use the Z3 SMT solver [26] to
discharge the refinement implications, encoding sets using Z3’s
theory of arrays. Since Z3 cannot reason about the cardinality
of sets encoded this way, we add support for singl(ν) as
an uninterpreted logical function single that maps sets to
booleans. Facts about this function are added to Z3 in the
rule T-PRINC.

Interpreter: When the interpreter reaches a secure block it
compiles that block to a circuit in several steps. First, it

GMW
Server

Z3

Public
Wysteria
program

Private I/O

Wysteria Client (A)

Client
B

Client
C

Client
D

Parser

Type
Checker

Interpreter

Fig. 9. Overview of WYSTERIA system with four interacting clients.

must convert the block to straight-line code. It does this by
expanding wfold and waps expressions (according to the now
available principal sets), inlining function calls, and selectively
substituting in non-wire and non-share variables from its
environment. The type system ensures that, thanks to synchrony,
each party will arrive at the same result.

Next, the interpreter performs a type-directed translation
to a boolean circuit, taking place in two phases. In the first
phase, it assigns a set of wire IDs to each value and expression,
where the number of wires depends on the corresponding type.
The wires are stitched together using high-level operators (e.g.,
ADD r1 r2 r3, where r1, r2, and r3 are ranges of wire
IDs). As usual, we generate circuits for both branches of case
expressions and feed their results to a multiplexer switched
by the compiled guard expression’s output wire. Records and
wire bundles are simply an aggregation of their components.
Wire IDs are also assigned to the input and output variables
of each principal—these are the free wire and share variables
that remained in the block after the first step.

In the second phase, each high-level operator (e.g. ADD) is
translated to low-level AND and XOR gates. Once again, the
overall translation is assured to produce exactly same circuit,
including wire ID assignments, at each party. Each host’s
interpreter also translates its input values into bit representations.
Once the circuit is complete it is written to disk.

At this point, the interpreter signals a local server process
originally forked when the interpreter started. This server
process implements the secure computation using the GMW
library. This process reads in the circuit from disk and
coordinates with other parties’ GMW servers using network
sockets. At the end of the circuit execution, the server dumps
the final output to a file, and signals back the interpreter. The
interpreter then reads in the result, converts it to the internal
representation, and carries on with parallel mode execution (or
terminates if complete).

Secure computation extensions and optimizations: The GMW
library did not originally support secret shares, but they
were easy to add. We extended the circuit representation to
designate particular wires as making shares (due to makesh(v)
expressions) and reconstituting shares (due to combsh(v)
expressions). For the former, we modified the library to dump
the designated (random) wire value to disk—already a share—
and for the latter we do the reverse, directing the result into
the circuit. We also optimized the library’s Oblivious Transfer
(OT) extension implementation for the mixed-mode setting.

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	
0.4	

2	 3	 4	 5	 6	

El
ap

se
d	
)m

e	
(s
ec
s)
	

Number	 of	 principals	

GPS	

2-‐Round	 bidding	

Auc8on	

Richest	

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

64	 128	 256	 512	 1024	

El
ap

se
d	
)m

e	
(s
ec
s)
	

Number	 of	 elements	 per	 principal	

Secure-‐only	

Mixed-‐mode	

0	
2	
4	
6	
8	
10	
12	
14	
16	

64	 96	 128	

El
ap

se
d	
)m

e	
(s
ec
s)
	

Number	 of	 elements	 per	 principal	

Secure-‐only	
Mixed-‐mode,	 0.5	
Mixed-‐mode,	 0.75	
Mixed-‐mode,	 0.95	

Fig. 10. (a) n-party SMC examples. (b) Secure median vs mixed-mode median. (c) Secure PSI vs mixed-mode PSI for different density.

VIII. EXPERIMENTS

We conduct two sets of experiments to study WYSTERIA’s
empirical performance. First we measure the performance of
several n-party example programs of our own design and
drawn from the literature. We find that these programs run
relatively quickly and scale well with the number of principals.
Second, we reproduce two experiments from the literature that
demonstrate the performance advantage of mixed-mode vs.
monolithic secure computation.6

Secure computations for n parties: We have implemented
several n-party protocols as WYSTERIA functions that are
generic in the participating principal set (whose identity and
size can both can vary). The Richest protocol computes the
richest principal, as described in Section II. The GPS protocol
computes, for each participating principal, the other principal
that is nearest to their location; everyone learns their nearest
neighbor without knowing anyone’s exact location. The Auction
protocol computes the high bidder among a set of participating
principals, as well as the second-highest bid, which is revealed
to everyone; only the auction holder learns who is the winning
bidder. Finally, we have implemented the two-round bidding
game from Section II for multiple principals. Recall that this
example crucially relies on WYSTERIA’s notion of secret shares,
a high-level abstraction that existing SMC languages lack.

Figure 10(a) shows, for varying numbers of principals, the
elapsed time to compute these functions. We can see each
of these computations is relatively fast and scales well with
increasing numbers of parties.

Mixed-mode secure computations: To investigate the per-
formance advantages of mixed-mode secure computations,
we study two functions that mix modes: two-party median
computes the median of two principals’ elements, and two-party
intersect is a PSI protocol that computes the intersection of two

principals’ elements. In both cases, we compare the mixed-mode
version of the protocol with the secure-only versions, which
like FairPlayMP, only use a single monolithic secure block. We
chose these protocols because they have been studied in past
literature on secure computation [5], [7], [22]; both protocols
enjoy the property that by mixing modes, certain computation
steps in the secure-only version can either be off-loaded to
local computation (as in median) or avoided altogether (as in
intersect), while providing the same privacy guarantees.

6We ran all our experiments on Mac OS X 10.9, with 2.8 GHz Intel Core Duo
processor and 4GB memory. To isolate the performance of WYSTERIA from
that of I/O, all the principals run on the same host, and network communication
uses local TCP/IP sockets.

Mixed-mode median: Here is a simplified version of median
that accepts two numbers from each party:

1 le t m =sec({A,B})=
2 le t x1 = (fs t w1[A]) in le t x2 = (snd w1[A]) in
3 le t y1 = (fs t w2[B]) in le t y2 = (snd w2[B]) in
4 le t b1 = x1 ≤ y1 in
5 le t x3 = i f b1 then x2 else x1 in
6 le t y3 = i f b1 then y1 else y2 in
7 le t b2 = x3 ≤ y3 in
8 i f b2 then x3 else y3
9 in m

The participating principals A and B store their (sorted,
distinct) input pairs in wire bundles w1 and w2 such that w1

contains A and B’s smaller numbers and w2 contains their
larger ones. First, the protocol compares the smaller numbers.
Depending on this comparison, the protocol discards one input
for each principal. Then, it compares the remaining two numbers
and the smaller one is chosen as the median (thus preferring
the lower-ranked element when there is an even number).

Under certain common assumptions [22], the following
mixed-mode version equivalently computes median with the
same security properties.

1 le t w1 =par(A,B)= (wire {A} x1) ++ (wire {B} y1) in
2 le t b1 =sec(A B)= (w1[A] ≤ w1[B]) in
3 le t x3 =par(A)= i f b1 then x2 else x1 in
4 le t y3 =par(B)= i f b1 then y1 else y2 in
5 le t w2 =par(A,B)= (wire {A} x3) ++ (wire {B} y3) in
6 le t b2 =sec(A,B)= (w2[A] ≤ w2[B]) in
7 le t m =sec(A,B)= i f b2 then w2[A] else w2[B] in
8 m

The key difference compared with the secure-only version
is that the conditional assignments on lines 3 and 4 need not be
done securely. Rather, the protocol reveals b1 and b2, allowing
each principal to perform these steps locally. Past work as
shown that this change still preserves the final knowledge profile
of each party, and is thus equally secure in the semi-honest
setting [22].

Figure 10(b) compares the performance of mixed-mode
median over secure-only median for varying sizes of inputs
(generalizing the program above).

We can see that the elapsed time for mixed-mode median
remains comparatively fixed, even as input sizes increase expo-
nentially. By comparison, secure-only median scales poorly with
increasing input sizes. This performance difference illustrates
the (sometimes dramatic) benefit of supporting mixed-mode
computations.

Private set intersection: In intersect , two principals compute
the intersection of their private sets. The set sizes are assumed
to be public knowledge. As with median, the intersect protocol
can be coded in two ways: a secure-only pairwise comparison
protocol performs n1×n2 comparisons inside the secure block
which result from the straight-line expansion of two nested
loops. Huang et. al. [7] propose two optimizations to this naive
pairwise comparison protocol. First, when a matching element
is found, the inner loop can be short circuited, avoiding its
remaining iterations. Second, once an index in the inner loop is
known to have a match, it need not be compared in the rest of
the computation. We refer the reader to their paper for further
explanation. We note that WYSTERIA allows programmers to
easily express these optimizations in the language, using built-in
primitives for expressing parallel-mode loops and arrays.

Figure 10(c) compares the secure-only and mixed-mode
versions of intersect . For the mixed-mode version, we consider
three different densities of matching elements: 0.5, 0.75, and
0.95 (where half, three-quarters, and 95% of the elements are
held in common). For the unoptimized version, these densities
do not affect performance, since it always executes all program
paths, performing comparisons for every pair of input elements.
As can be seen in the figure, as the density of matching elements
increases, the mixed-mode version is far more performant,
even for larger input sizes. By contrast, the optimization fails
to improve performance at lower densities, as the algorithm
starts to exhibit quadratic-time behavior (as in the secure-only
version).

All the examples presented here, and more (including a
prototype WYSTERIA program to deal cards for mental card
games), are given in full in Appendix A.

IX. RELATED WORK

Several research groups have looked at compiling multiparty
programs in high-level languages to secure protocols. Our work
is distinguished from all of these in several respects.

Support for multi-party (n > 2) computations: Our language
design has carefully considered support for secure computations
among more than two parties. Most prior work has focused
on the two-party case. Fairplay [17] compiles a garbled circuit
from a Pascal-like imperative program. The entry point to this
program is a function whose two arguments are players, which
are records defining each participant’s expected input and output
type. More recently, Holzer et al [18] developed a compiler
for programs with similarly specified entry points, but written
in (a subset of) ANSI C. Alternatively, at the lowest level
there are libraries for building garbled circuits directly, e.g.,
those developed by Malka [13], Huang et al [14], and Mood et
al [15]. These lines of work provide important building blocks
for the back end of our language (in the two party case).

The only language of which we are aware that supports
n > 2 parties is FairplayMP [19]. Its programs are similar to
those of FairPlay, but now the entry point can contain many
player arguments, including arrays of players, where the size
of the array is statically known. Our wire bundles have a
similar feel to arrays of players. Just as FairPlayMP programs
can iterate over (arbitrary-but-known-length) arrays of players
in a secure computation, we provide constructs for iterating
over wire bundles. Unlike the arrays in FairplayMP, however,

our wire bundles have the possibility of representing different
subsets of principals’ data, rather than assume that all principals
are always present; moreover, in WYSTERIA these subsets can
themselves be treated as variable.

Support for mixed-mode computations: All of the above
languages specify secure computations in their entirety, e.g., a
complete garbled circuit, but much recent work (including
this work) has focused on the advantage of mixed-mode
computations.

As first mentioned in Section I, L1 [24] is an intermediate
language for mixed-mode SMC, but is limited to two parties.
Compared to L1, WYSTERIA provides more generality and ease
of use. Further, WYSTERIA programmers need not be concerned
with the low-level mechanics of inter-party communication
and secret sharing, avoiding entire classes of potential misuse
(e.g., when two parties wait to receive from each other at the
same time, or when they attempt to combine shares of distinct
objects).

PCF [16] is a circuit format language for expressing mixed-
mode secure computations for two parties. As with L1, it
allows programmers to distinguish secure computation from
surrounding computation that is run locally, in the clear. It also
suffers from limitations that are similar to those of L1, in that
it is (by design) very low level, and in that it lacks abstractions
for supporting multiple parties, as well as a formal semantics.

SMCL [8] is a language for secure computations involving
a replicated client and a shared “server” which represents
secure multiparty computations. Our approach is less rigid in its
specification of roles: we have secure and parallel computations
involving arbitrary numbers of principals, rather than all of
them, or just one, as in SMCL. SMCL provides a type system
that aims to enforce some information flow properties modulo
declassification. SMCL’s successor, VIFF [27], reflects the
SMCL computational model as a library/DSL in Python, but
lacks type-based guarantees.

Liu et al. define a typed intermediate language for mixed-
mode SMC protocols [25]. However, their approach is limited
to two parties and their proposed language is simplistic in
comparison to WYSTERIA, e.g., it lacks function abstractions
and is thus not suitable for expressing reusable library code.
Given each variable’s classification as public, secret (e.g., used
only within an SMC), or private, their compiler can produce
a mixed mode protocol guaranteed to have the same security
as a monolithic secure protocol. They use an information flow
control-style type system to prohibit illegal flows of information
between modal computations. By contrast, WYSTERIA makes
no attempt to relate the security properties of mixed-mode and
non-mixed-mode versions of a protocol; instead, one must use
a separate analysis for this purpose (e.g. [22]). We note that
WYSTERIA could safely use Liu et al.’s novel “RAM-model
secure” computation protocol as a means to implement secure
blocks among two parties.

SMCs as cloud computations: Another line of research in
SMCs deals with a client-server setting, where client wants to
run a function over his private input using untrusted servers
(e.g. in a cloud). To protect confidentiality of his data, the client
distributes secret shares of his input among the servers. The
servers run same function, but use their own shares. Finally,
they send the output shares to the client, who then recovers

the clear output value. Launchbury et. al. [12] present a table-
lookup based optimization for such SMC protocols, that aims
at minimizing the cost incurred by expensive operations such
as multiplication and network communication between servers.
Mitchell et. al. [11] give an expressive calculus for writing such
functions. Their calculus is mixed-mode, but only in terms of
data—the programs can use both encrypted (private) and non-
encrypted (public) values. They give an extended information
flow type system that rejects programs that cannot be run on a
secure computation platform (such as homomorphic encryption).
In WYSTERIA, the above client-server setting can be expressed
as a monolithic secure block to be run by the servers, each of
which holds secret shares of client’s input. As we have shown
in the paper, we can express more general mixed-mode SMCs.

Other language proposals: The TASTY compiler produces se-
cure computations that may combine homomorphic encryption
and garbled circuits [28]. Its input language, TASTYL, requires
explicit specification of communication between parties, as
well as the means of secure computation, whereas in our
approach, such concerns are handled automatically (during run-
time compilation of generated circuits). Kerschbaum et al. [29]
explore automatic selection of mixed protocols consisting of
garbled circuits and homomorphic encryption. Jif/Split enables
writing multi-party computations in Java as (conceptually)
single-threaded programs [30]. It offers compiler support for
dividing Java programs into pieces to run on different hosts,
based on information-flow analysis and explicit declassifications.
Unlike our work, Jif/Split runs statically (at compile time),
depends on real-life trusted third parties, and lacks language
abstractions and run-time techniques for employing secure
computations without a trusted third party.

X. CONCLUSION

This paper presents WYSTERIA, the first programming
language designed for expressing mixed-mode computations
for multiple parties. In contrast to prior work, multi-party
protocols in WYSTERIA can be expressed generically, and may
perform dynamic decisions about each principal’s role within
a protocol. WYSTERIA’s type system ensures that well-typed
programs never misuse the language’s abstractions. Further,
WYSTERIA programs are concise and readable, since they can
be interpreted through a (conceptually simple) single-threaded
semantics, as well as a (more realistic) multi-threaded semantics.
We show formally that these two views coincide. We present
implementation of WYSTERIA in the form of an interpreter that
uses the GMW protocol to realize secure blocks. We show our
implementation performs well on new and known protocols.

Acknowledgments: We would like to thank Nikhil Swamy and
anonymous reviewers for their helpful comments and suggestions, and
Jon Katz for helping us with the GMW library. This research was
sponsored by NSF award CNS-1111599 and the US Army Research
laboratory and the UK Ministry of Defence under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
US Army Research Laboratory, the U.S. Government, the UK Ministry
of Defense, or the UK Government. The US and UK Governments
are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS, 1986.
[2] O. Goldreich, S. Micali, and A. Wigderson, “How to play ANY mental

game,” in STOC, 1987.
[3] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure

protocols,” in STOC, 1990.
[4] G. Aggarwal, N. Mishra, and B. Pinkas, “Secure computation of the k

th-ranked element,” in EUROCRYPT. Springer, 2004.
[5] F. Kerschbaum, “Automatically optimizing secure computation,” in CCS,

2011.
[6] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching

and set intersection,” in EUROCRYPT, 2004.
[7] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled

circuits better than custom protocols?” in NDSS, 2012.
[8] J. D. Nielsen and M. I. Schwartzbach, “A domain-specific programming

language for secure multiparty computation,” in PLAS, 2007.
[9] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,

M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter,
M. Schwartzbach, and T. Toft, “Financial cryptography and data security,”
2009, ch. Secure Multiparty Computation Goes Live.

[10] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in EUROCRYPT, 1999.

[11] J. Mitchell, R. Sharma, D. Stefan, and J. Zimmerman, “Information-flow
control for programming on encrypted data,” in CSF, 2012.

[12] J. Launchbury, I. S. Diatchki, T. DuBuisson, and A. Adams-Moran,
“Efficient lookup-table protocol in secure multiparty computation,” in
ICFP, 2012.

[13] L. Malka, “Vmcrypt: modular software architecture for scalable secure
computation,” in CCS, 2011.

[14] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits,” in USENIX, 2011.

[15] B. Mood, L. Letaw, and K. Butler, “Memory-efficient garbled circuit
generation for mobile devices,” in Financial Cryptography, 2012.

[16] B. Kreuter, ahbi shelat, B. Mood, and K. Butler, “PCF: A portable
circuit format for scalable two-party secure computation,” in USENIX,
2013.

[17] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay: a secure two-
party computation system,” in USENIX Security, 2004.

[18] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure two-party
computations in ANSI C,” in CCS, 2012.

[19] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: a system for
secure multi-party computation,” in CCS, 2008.

[20] A. Shamir, R. L. Rivest, and L. M. Adleman, Mental poker. Springer,
1980.

[21] M. Furr and J. S. Foster, “Checking Type Safety of Foreign Function
Calls,” TOPLAS, vol. 30, no. 4, pp. 1–63, July 2008.

[22] A. Rastogi, P. Mardziel, M. Hammer, and M. Hicks, “Knowledge
inference for optimizing secure multi-party computation,” in PLAS,
2013.

[23] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein,
“Secure multi-party computation of boolean circuits with applications to
privacy in on-line marketplaces,” 2011, http://eprint.iacr.org/.

[24] A. Schropfer, F. Kerschbaum, and G. Muller, “L1 - an intermediate
language for mixed-protocol secure computation,” in COMPSAC, 2011.

[25] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks, “Automating efficient
ram-model secure computation,” in IEEE Symposium on Security and
Privacy (Oakland), 2014.

[26] “Z3 theorem prover,” z3.codeplex.com.
[27] “VIFF, the virtual ideal functionality framework,” http://viff.dk/.
[28] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,

“Tasty: tool for automating secure two-party computations,” in CCS,
2010.

[29] F. Kerschbaum, T. Schneider, and A. Schröpfer, “Automatic protocol
selection in secure two-party computations,” in NDSS, 2013.

[30] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers, “Secure program
partitioning,” ACM Trans. Comput. Syst., 2002.

http://eprint.iacr.org/
z3.codeplex.com
http://viff.dk/

APPENDIX

A. Additional Code Examples and Formal Definitions

Below, we list the WYSTERIA code for computing the private
set intersection of two parties’ integer array inputs:

1 psi : (x : princ)→(y : princ)→(in t→ in t→bool)→
2 nat→W {x,y } [in t]→ [W {x,y} in t]−par ({x ,y})→unit

4 le t psi λ x. λ y. λ testeq . λn. λ inp . λ out .
5 for i = 0 to (n − 1) do outer_loop :
6 for j = 0 to (n − 1) do inner_loop :
7 le t xv =par(x)= inp [x] [i] in
8 le t yv =par(y)= inp [y] [j] in
9 le t w = wire x xv ++ wire y yv in

10 le t eq =sec(x,y)= (testeq w[x] w[y]) in
11 i f eq then (out [i]←w ; outer_loop (i +1))
12 else inner_loop (j + 1)
13 done
14 done

The first two lines give the type of the function; the following
line gives names to its arguments. It is parameterized by two
principals x and y, an equivalence-testing function for integers
testeq of type int→ int→bool, a natural number n, a wire bundle
of integer arrays inp of type W{x,y }[int] , and an array of integer-
valued wire bundles out to hold the output of type [W{x,y} int] .
The final arrow indicates that the two principals must be present
to compute the protocol; the final return type unit is like void in
C in that no additional return value is given as output. Rather,
the output of the protocol is given by its side-effects to the wire
bundle array out, which it writes each time a pair of elements
from inp are deemed equivalent by the testing function testeq .

The computation’s structure mixes modes in a synchronous
looping pattern that consists of two doubly-nested for loops.
The indicies of the loops i and j index each pairing of the
two principals’ n input elements. The loop body projects x’s
i th element and y’s j th element, creating a wire bundle of the
pair to use as input in a secure test for equivalence. The secure
computation uses testeq to produce a boolean-valued output
that the protocol reveals to both principals. When equivalent,
the principals side-effect out, updating its i th entry to contain
the equivalent pair. After filling the i th entry, they advance
the outer loop, continuing to compare the (i +1)th element of x
with all the elements of y. When not equivalent, they update
nothing and continue to compare by comparing the i th element
of x with the (j +1)th element of y.

The protocol above is mixed-mode in that it exploits both
parallel and secure modes. The two loops of the protocol occur
in parallel mode and consist of the two principals doing the
same thing locally at the same time; in this mode they are in
sync, but not directly communicating. The secure computation
on line 14 requires the principals to synchronize requiring
communication and direct coordination.

Throughout the course of the psi protocol above, both parties
learn which elements of theirs are present in the intersection.
Instead, the parties may want to be more conservative, only
revealing (at the end of the protocol), the cardinality of the
intersection, i.e., a count of how many elements they have in
common, but not the precise identity of those elements. This
variation can also easily be expressed in WYSTERIA:

1 psi_cnt : (x : princ)→(y : princ)→(in t→ in t→bool)→
2 nat→W {x,y } [in t] −par ({x ,y})→ Sh{x,y}nat

4 le t psi_cnt = λ x. λ y. λ testeq . λn. λ inp .
5 le t cnt =sec({x ,y})= ref (makesh 0) in
6 for i = 0 to (n − 1) do
7 for j = 0 to (n − 1) do
8 le t xv =par(x)= inp [x] [i] in
9 le t yv =par(y)= inp [y] [j] in

10 le t w = wire x xv ++ wire y yv in
11 le t csh = ! cnt in
12 le t c =sec(x ,y)= begin
13 le t c = combsh csh in
14 le t eq = (testeq w[x] w[y]) in
15 i f eq then makesh (c + 1)
16 else makesh c
17 end
18 in cnt := c
19 done
20 done

As can be seen, psi_cnt is similar in structure to psi , but also
slightly different. Starting with its type and arguments, we note
that it does not take an output array to update like psi . Rather,
it conceals the elements of the intersection and reveals only a
final count as a share, typed by the Sh connective. The returned
share can be combined in a subsequent protocol, or revealed, as
determined by the calling context. Like psi , the function body
of psi_cnt consists of two nested loops. As before, the secure
block in the loop body performs equivalence tests; but unlike
psi , the result of each test is not revealed. Rather, the count
cnt consists of shares, and serves as an additional parameter
to both loops. Each test is used to securely update cnt; this
consists of combining secret shares of the prior count (using
combsh), and creating new shares for the updated count, either
incremented by one or unchanged (using makesh). Since the
output of the tests are not directly revealed, the loops both
proceed to completion; there is no short-circuiting in the inner
loop, as there was for psi .

1 / * Nearest neighbors * /
2 nns : (a l l :ps) → ps(ν ⊆ a l l ∧ single ν) →
3 W al l in t −par(a l l)→W al l ps(ν ⊆ a l l ∧ single ν)

5 nns = λ a l l . λ defaultnn . λ coords.
6 le t out =sec(a l l)=
7 le t answers =
8 waps(coords, λ pcoord.
9 wfold(coords, (defaultnn , MAX) ,

10 λnn: (ps × in t) . λq. λ qcoord.
11 i f pcoord = qcoord then nn
12 else
13 le t dist = |qcoord − pcoord| in
14 i f dist < snd(nn) then (q, dist)
15 else nn
16))
17 in
18 waps(answers, λ x. fs t (x))
19 in
20 wcopy out

This is the code for generic nearest neighbor application.
The function takes as input a wire bundle mapping each party
to its location, and returns another wire bundle mapping each
party to its nearest neighbor (exact locations are kept secret).

The function consists of two loops: one using waps, and the
other using wfold . The waps loop iterates over the input wire
bundle, and performs a wfold operation for each mapping. The
wfold operation folds over the input wire bundle and updates
the accumulator, which is a record containing the nearest party
name and its location. The location is filtered from the output
using another waps loop at the end. Since this function is written
generically, the returned wire bundle needs to be copied to >
using wcopy. Other examples (second-price auction, etc.) are
availble online: http://bitbucket.org/aseemr/wysteria.

http://bitbucket.org/aseemr/wysteria

Γ ` v : τ (Value typing)

TN-VAR
x : τ ∈ Γ Γ ` τ

Γ ` x : τ

TN-UNIT

Γ ` () : unit

TN-INJ
Γ ` v : τi

j ∈ {1, 2} τj IsFlat Γ ` τj
Γ ` inji v : τ1 + τ2

TN-PROD
Γ ` vi : τi

Γ ` (v1, v2) : τ1 × τ2

TN-PRINC

Γ ` p : ps (ν = {p})

TN-PSONE
Γ ` w : ps (singl(ν))

Γ ` {w} : ps (ν = {w})

TN-PSUNION
Γ ` wi : ps φi

Γ ` w1 ∪ w2 : ps (ν = w1 ∪ w2)

TN-PSVAR
Γ ` x : ps φ

Γ ` x : ps (ν = x)

TN-SUB
Γ ` v : τ ′ Γ ` τ ′ <: τ Γ ` τ

Γ ` v : τ

Fig. 11. Value typing with no place.

Γ `M � ε (Effects delegation)

EFFDEL-EMPTY

Γ `M � ·

EFFDEL-MODE
Γ `M � ε Γ `M �N

Γ `M � ε,N

τ IsFO (First order types)

F-UNIT

unit IsFO

F-SUM
τ1 IsFO τ2 IsFO

τ1 + τ2 IsFO

F-PROD
τ1 IsFO τ2 IsFO

τ1 × τ2 IsFO

F-PRINCS

ps φ IsFO

F-WIRE
τ IsFO

Ww τ IsFO

F-ARRAY
τ IsFO

Array τ IsFO

F-SHARE
τ IsFO

Shw τ IsFO

τ IsSecIn (Valid input types for secure blocks)

SIN-FO
τ IsFO

τ IsSecIn

SIN-ARROW
τi IsSecIn

x :τ1
ε→ τ2 IsSecIn

τ IsFlat (Wire and Share free types)

W-UNIT

unit IsFlat

W-SUM
τ1 IsFlat τ2 IsFlat

τ1 + τ2 IsFlat

W-PROD
τ1 IsFlat τ2 IsFlat

τ1 × τ2 IsFlat

W-ARR
τ1 IsFlat τ2 IsFlat

x :τ1
ε→ τ2 IsFlat

W-PRINCS

ps φ IsFlat

W-ARRAY
τ IsFlat

Array τ IsFlat

Γ ` ε (Well formed effect)

WFEFF-EMPTY

Γ ` ·

WFEFF-MODE
Γ ` ε Γ `M

Γ ` ε,M

Γ ` φ (Well formed refinement)

WFREF-TRUE

Γ ` true

WFREF-SINGL

Γ ` singl(ν)

WFREF-SUB
Γ ` w : ps φ
Γ ` ν ⊆ w

WFREF-EQ
Γ ` w : ps φ
Γ ` ν = w

WFREF-CONJ
Γ ` φi

Γ ` φ1 ∧ φ2

Γ ` τ (Well formed type)

WF-UNIT

Γ ` unit

WF-SUM
Γ ` τi τi IsFlat

Γ ` τ1 + τ2

WF-PROD
Γ ` τi

Γ ` τ1 × τ2

WF-PRINC
Γ ` φ

Γ ` ps φ

WF-ARROW
Γ ` τ1 Γ, x : τ1 ` ε Γ, x : τ1 ` τ2

Γ ` x :τ1
ε→ τ2

WF-WIRE
Γ ` w : ps φ Γ ` τ τ IsFlat

Γ `Ww τ

WF-ARRAY
Γ ` τ

Γ ` Array τ

WF-SHARE
Γ ` w : ps φ

Γ ` τ τ IsFO τ IsFlat

Γ ` Shw τ

Γ `M (Well formed place)

WFPL-TOP

Γ ` >

WFPL-OTHER
Γ ` w : ps φ
Γ ` m(w)

Fig. 12. Auxiliary judgements used in the type system.

ψJv1KΓ
M = v2 (Lookup value)

VL-VAR1
x 7→N v ∈ ψ Γ ` N �M

ψJxKΓ
M = v

VL-VAR2
x 7→ v ∈ ψ
ψJxKΓ

M = v

VL-VAR3
x /∈ dom(ψ)

ψJxKΓ
M = x

VL-UNIT

ψJ()KΓ
M = ()

VL-PROD

ψJ(v1, v2)KΓ
M = (ψJv1KΓ

M , ψJv2KΓ
M)

VL-INJ

ψJinji vKΓ
M = inji (ψJvKΓ

M)

VL-PRINC

ψJpKΓ
M = p

VL-SINGL

ψJ{v}KΓ
M = {ψJvKΓ

M}

VL-UNION

ψJv1 ∪ v2KΓ
M = ψJv1KΓ

M ∪ ψJv2KΓ
M

ψJv1K = v2 (Lookup value)

VLT-VAR1
x 7→ v ∈ ψ
ψJxK = v

VLT-VAR2
x /∈ dom(ψ)

ψJxK = x

VLT-UNIT

ψJ()K = ()

VLT-PROD

ψJ(v1, v2)K = (ψJv1K, ψJv2K)

VLT-INJ

ψJinji vK = inji (ψJvK)

VLT-PRINC

ψJpK = p

VLT-SINGL

ψJ{v}K = {ψJvK}

VLT-UNION

ψJ(v1 ∪ v2)K = (ψJv1K) ∪ (ψJv2K)

ψJτ1K = τ2 (Lookup type)

TL-UNIT

ψJunitK = unit

TL-SUM

ψJ(τ1 + τ2)K = (ψJτ1K) + (ψJτ2K)

TL-PROD

ψJ(τ1 × τ2)K = (ψJτ1K)× (ψJτ2K)

TL-PRINCS

ψJ(ps φ)K = ps ψJφK

TL-WIRE

ψJ(Ww τ)K = W (ψJwK)ψJτK

TL-ARRAY

ψJArray τK = ArrayψJτK

TL-SHARE

ψJShw τK = ShψJwKψJτK

TL-ARROW

ψJx :τ1
ε→ τ2K = x :ψJτ1K

ψJεK→ ψJτ2K

ψJφ1K = φ2 (Lookup refinement)

RL-TRUE

ψJtrueK = true

RL-SINGL

ψJsingl(ν)K = singl(ν)

RL-SUB

ψJν ⊆ wK = ν ⊆ ψJwK

RL-EQ

ψJν = wK = ν = ψJwK

RL-CONJ

ψJ(φ1 ∧ φ2)K = (ψJφ1K) ∧ (ψJφ2K)

ψJM1K = M2 (Lookup place)

PL-TOP

ψJ>K = >

PL-PC

ψJm(w)K = m(ψJwK)

ψJε1K = ε2 (Lookup effect)

EL-EMPTY

ψJ·K = ·

EL-PL

ψJNK = ψJNK

EL-SEQ

ψJ(ε1, ε2)K = (ψJε1K), (ψJε2K)

ψJΓ1K = Γ2 (Lookup type environment)

TEL-EMP

ψJ.K = .

TEL-BND1
ψJΓK = Γ′

ψJΓ, x : τK = Γ′, x : ψJτK

TEL-BND2
ψJΓK = Γ′

ψJΓ, x :M τK = Γ′, x :ψJMK ψJτK

Fig. 13. Environment lookup.

slicep(ψ) ; ψ′ Environment slicing: “Environment ψ sliced for p is ψ′”

SLICEENV-EMP slicep(·) ; ·
SLICEENV-BIND1 slicep(ψ{x 7→p(w) v}) ; ψ′{x 7→p({p}) slicep(v)} when p ∈ w and slicep(ψ) ; ψ′

SLICEENV-BIND2 slicep(ψ{x 7→p(w) v}) ; ψ′ when p 6∈ w and slicep(ψ) ; ψ′

SLICEENV-BIND3 slicep(ψ{x 7→ v}) ; ψ′{x 7→ slicep(v)}
SLICEENV-BIND4 slicep(ψ{x 7→s(w) v}) ; ψ′{x 7→s(w) v ′} when slicep(v) ; v ′ and slicep(ψ) ; ψ′

slicep(κ) ; κ′ Stack slicing: “Stack κ sliced for p is κ′”

SLICESTK-EMP slicep(·) ; ·
SLICESTK-PAR1 slicep(κ :: 〈p({p} ∪ w);ψ; x .e〉) ; κ′ :: 〈ψ′; x .e〉 when slicep(κ) ; κ′ and slicep(ψ) ; ψ′

SLICESTK-PAR2 slicep(κ :: 〈ψ; x .e〉) ; κ′ :: 〈ψ′; x .e〉 when slicep(κ) ; κ′ and slicep(ψ) ; ψ′

slicep(σ) ; σ′ Store slicing: “Store σ sliced for p is σ′”

SLICESTR-EMP slicep(·) ; ·
SLICESTR-PAR1 slicep(σ{` :p(w) v1, .. , vk}) ; σ′{` :p({p}) v ′1, .. , v

′
k} when p ∈ w , slicep(σ) ; σ′ and slicep(vi) = v ′i

SLICESTR-PAR2 slicep(σ{` :p(w) v1, .. , vk}) ; σ′ when p 6∈ w and slicep(σ) ; σ′

slicew (C) ; π Configuration slicing: “Configuration C sliced for w is π”

SLICECFG-EMP slice·(C) ; ε
SLICECFG-UNION slicew1∪w2 (C) ; π1 · π2 when slicew1 (C) ; π1 and slicew2 (C) ; π2

SLICECFG-PAR slice{p}(p(w){σ;κ;ψ; e}) ; p {σ′;κ′;ψ′; e} when p ∈ w , slicep(σ) ; σ′ and slicep(κ) ; κ′

and slicep(ψ) ; ψ′

SLICECFG-ABS1 slice{p}(m(w){σ;κ :: 〈m1(w1);ψ1; x .e1〉 ;ψ; e}) ; p {σ′;κ′;ψ′; e′} when p 6∈ w
and slice{p}(m1(w1){σ;κ;ψ2; e1}) ; p {σ′;κ′;ψ′; e′}
and ψ2 = ψ1{x 7→m1(w) ©}

SLICECFG-ABS2 slice{p}(m(w){σ;κ :: 〈ψ1; x .e1〉 ;ψ; e}) ; p {σ′;κ′;ψ′; e′} when p 6∈ w
and slice{p}(m(w){σ;κ;ψ2; e1}) ; p {σ′;κ′;ψ′; e′}
and ψ2 = ψ1{x 7→ ©}

SLICECFG-SEC slice{p}(s(w){σ;κ :: 〈p(w);ψ1; x .e1〉 :: κ′;ψ; e}) ; π when π = s(ww)
{
◦
w
σw ;κ′; ◦

w
ψw ; e

}
· p {σ′;κ1; ·; wait}

and p ∈ w and slicep(κ :: 〈p(w);ψ1; x .e1〉) ; κ1

and slicep(σ) ; σ′ and κ′smallest

slicep(v1) ; v2 Value slicing: “Value v1 sliced for {p} is v2”

SLICEVAL-UNIT slicep(()) ; ()
SLICEVAL-INJ slicep(inji v) ; inji v ′ when slicep(v) ; v ′

SLICEVAL-PROD slicep((v1, v2)) ; (v ′1, v
′
2) when slicep(vi) ; v ′i

SLICEVAL-PS slicep((w1 ∪ w2)) ; (w1 ∪ w2)
SLICEVAL-WIRE slicep(({p : v} ++ v1)) ; {p : v}
SLICEVAL-WIREABS slicep((v1 ++ v2)) ; · when p 6∈ dom((v1 ++ v2))
SLICEVAL-LOC slicep(`) ; `
SLICEVAL-CLOS slicep(clos (ψ;λx .e)) ; clos (ψ′;λx .e) when slicep(ψ) ; ψ′

SLICEVAL-FIXCLOS slicep(clos (ψ; fix x .λy.e)) ; clos (ψ′; fix x .λy.e) when slicep(ψ) ; ψ′

SLICEVAL-SH slicep(shw v) ; shw v ′ when slicep(v) ; v ′

v1 ◦ v2 ; v3 Value composing: “Value v1 composed with v2 is v3”

COMPVAL-UNIT () ◦ () ; ()
COMPVAL-INJ inji v1 ◦ inji v2 ; inji v ′ when v1 ◦ v2 ; v ′

COMPVAL-PROD (v1, v2) ◦ (v ′1, v
′
2) ; (v ′′1 , v

′′
2) when vi ◦ v ′i ; v ′′i

COMPVAL-PS (w1 ∪ w2) ◦ (w1 ∪ w2) ; (w1 ∪ w2)
COMPVAL-WIRE {p : v} ◦ v1 ; {p : v} ++ v
COMPVAL-LOC ` ◦ `; `
COMPVAL-CLOS clos (ψ1;λx .e) ◦ clos (ψ2;λx .e) ; clos (ψ;λx .e) when ψ1 ◦ ψ2 ; ψ
COMPVAL-FIXCLOS clos (ψ1; fix x .λy.e) ◦ clos (ψ2; fix x .λy.e) ; clos (ψ; fix x .λy.e) when ψ1 ◦ ψ2 ; ψ
COMPVAL-SH shw v1 ◦ shw v2 ; shw v when v1 ◦ v2 ; v

ψ1 ◦ ψ2 ; ψ3 Environment composing: “Environment ψ1 composed with ψ2 is ψ3”

COMPENV-EMP · ◦ ψ ; ψ
COMPENV-BIND1 ψ1{x 7→p({p}) v1} ◦ ψ2{x 7→p(w) v2}; ψ{x 7→p({p}∪w) (v1 ◦ v2)} when ψ1 ◦ ψ2 ; ψ
COMPENV-BIND2 ψ1{x 7→s(w) v1} ◦ ψ2{x 7→s(w) v2}; ψ{x 7→s(w) (v1 ◦ v2)} when ψ1 ◦ ψ2 ; ψ
COMPENV-BIND3 ψ1{x 7→ v1} ◦ ψ2{x 7→ v2}; ψ{x 7→ v1 ◦ v2} when ψ1 ◦ ψ2 ; ψ

σ1 ◦ σ2 ; σ3 Store composing: “Store σ1 composed with σ2 is σ3”

COMPSTR-EMP · ◦ ·; ·
COMPSTR-PAR σ1{` :p({p}) v1, .. , vk} ◦ σ2{` :p(w) v ′1, .. , v

′
k}; σ{` :p({p}∪w) v1 ◦ v ′1, .. , vk ◦ v ′k} when σ1 ◦ σ2 ; σ

Fig. 14. λWy: slicing and composing judgments.

Γ `M v : τ (Runtime value typing)

T-PS-EMP

Γ `M · : ps (ν = ·)

T-EMP
. ` τ

Γ `M · : W · τ

T-SINGLWIRE
M = m(w1) m = s⇒ N = s(w1)

m = p⇒ N = p({p})
. `N v : τ . ` τ τ IsFlat

Γ′ `M {p : v} : W {p} τ

T-WIRECAT
. `M v1 : Ww1 τ . `M v2 : Ww2 τ

Γ′ `M v1 ++ v2 : W (w1 ∪ w2) τ

T-LOC
Σ(`) = τ . ` τ
Γ′ `M ` : Array τ

T-SH
. `M v : τ

. ` τ τ IsFO τ IsFlat

Γ′ `M shw v : Shw τ

T-CLOS
Σ ` ψ ; Γ

Γ, x : τ1 `M e : τ2; ε . ` (x :τ1
ε→ τ2)

Γ′ `M clos (ψ;λx .e) : x :τ1
ε→ τ2

T-FIXCLOS
Σ ` ψ ; Γ

Γ, f : y:τ1
ε→ τ2 `M λx .e : y:τ1

ε→ τ2; ·
. ` (y:τ1

ε→ τ2)

Γ′ `M clos (ψ; fix f .λx .e) : y:τ1
ε→ τ2

Γ `M e : τ ; ε (Runtime expression typing)

T-SECBLK
Γ ` w : ps (ν = w ′) Γ `s(w) e : τ ; ε

Γ `m(w′) securew (e) : τ ; ε

Σ ` σwf (Store typing)

TSTORE-EMP

Σ ` ·wf

TSTORE-LOC
Σ ` σwf Σ; . `M vi : τ

Σ, ` :M τ ` σ{` :M v1, .. , vk}wf

Σ `M κ : τ1 ↪→ τ2 (Stack typing)

TSTK-EMP
. ` τ w is all parties

Σ `p (w)· : τ ↪→ τ

TSTK-FRAME1
M = _(w) N = m(_) Σ ` ψ ; Γ
Γ ` τ1 Σ; Γ, x :m(w) τ1 `N e : τ2; ε

Σ `N κ : ψJτ2K ↪→ τ3

Σ `M κ :: 〈N ;ψ; x .e〉 : ψJτ1K ↪→ τ3

TSTK-FRAME2
Σ ` ψ ; Γ

Γ ` τ1 Σ; Γ, x : τ1 `M e : τ2; ε
Σ `M κ : ψJτ2K ↪→ τ3

Σ `M κ :: 〈ψ; x .e〉 : ψJτ1K ↪→ τ3

Σ ` ψ ; Γ (Environment typing)

TENV-EMP

Σ ` ·; .

TENV-MAPP
Σ ` ψ ; Γ Σ; . `M v : ψJτK
Σ ` ψ{x 7→M v}; Γ, x :M τ

TENV-MAPP2
Σ ` ψ ; Γ Σ; . ` v : ψJτK

Σ ` ψ{x 7→ v}; Γ, x : τ

TENV-MUNK
Σ ` ψ ; Γ Γ ` τ

Σ ` ψ{x 7→M ©}; Γ, x :M τ

TENV-MUNK2
Σ ` ψ ; Γ Γ ` τ

Σ ` ψ{x 7→ ©}; Γ, x : τ

Σ ` C : τ (Configuration typing)

TCONFIG-CONFIG
Σ ` σwf

. `M Σ `M κ : ψJτ1K ↪→ τ2
Σ ` ψ ; Γ Σ; Γ `M e : τ1; ε

Σ `M{σ;κ;ψ; e} : τ2

C halted (Configuration halt states)

HALTED-ANSWER
w is all parties

p(w){σ; ·;ψ; v} halted

HALTED-ERROR

M{σ;κ;ψ; error} halted

C st (Stack structure invariants)

STOK-SEC
κ = κ′ ::

〈
p(w);ψ′; x .e2

〉
:: κ1

s(w){σ;κ;ψ; e} st

STOK-SECE
κ = κ′ ::

〈
p(w);ψ′; x .e2

〉
p(w){σ;κ;ψ; securew′ (e)} st

STOK-PAR1

p(w){σ; ·;ψ; e} st

STOK-PAR2
w ⊆ w ′ p(w){σ;κ;ψ; e} st

p(w){σ;κ ::
〈
p(w ′);ψ′; x .e′

〉
;ψ; e} st

STOK-PAR3
p(w){σ;κ;ψ; e} st

p(w){σ;κ ::
〈
ψ′; x .e′

〉
;ψ; e} st

Fig. 15. Runtime configuration typing.

Γ `M v : τ (Runtime value typing)

T-PS-EMP

Γ `M · : ps (ν = ·)

T-EMP
. ` τ

Γ `M · : W · τ

T-SINGLWIRE
M = m(w1) m = s⇒ N = s(w1)

m = p⇒ N = p({p})
. `N v : τ . ` τ τ IsFlat

Γ′ `M {p : v} : W {p} τ

T-WIRECAT
. `M v1 : Ww1 τ . `M v2 : Ww2 τ

Γ′ `M v1 ++ v2 : W (w1 ∪ w2) τ

T-LOC
Σ(`) = τ . ` τ
Γ′ `M ` : Array τ

T-SH
. `M v : τ

. ` τ τ IsFO τ IsFlat

Γ′ `M shw v : Shw τ

T-CLOS
Σ ` ψ ; Γ

Γ, x : τ1 `M e : τ2; ε . ` (x :τ1
ε→ τ2)

Γ′ `M clos (ψ;λx .e) : x :τ1
ε→ τ2

T-FIXCLOS
Σ ` ψ ; Γ

Γ, f : y:τ1
ε→ τ2 `M λx .e : y:τ1

ε→ τ2; ·
. ` (y:τ1

ε→ τ2)

Γ′ `M clos (ψ; fix f .λx .e) : y:τ1
ε→ τ2

Γ `M e : τ ; ε (Runtime expression typing)

T-SECBLK
Γ ` w : ps (ν = w ′) Γ `s(w) e : τ ; ε

Γ `m(w′) securew (e) : τ ; ε

Σ ` σwf (Store typing)

TSTORE-EMP

Σ ` ·wf

TSTORE-LOC
Σ ` σwf Σ; . `M vi : τ

Σ, ` :M τ ` σ{` :M v1, .. , vk}wf

Σ `M κ : τ1 ↪→ τ2 (Stack typing)

TSTK-EMP
. ` τ w is all parties

Σ `p (w)· : τ ↪→ τ

TSTK-FRAME1
M = _(w) N = m(_) Σ ` ψ ; Γ
Γ ` τ1 Σ; Γ, x :m(w) τ1 `N e : τ2; ε

Σ `N κ : ψJτ2K ↪→ τ3

Σ `M κ :: 〈N ;ψ; x .e〉 : ψJτ1K ↪→ τ3

TSTK-FRAME2
Σ ` ψ ; Γ

Γ ` τ1 Σ; Γ, x : τ1 `M e : τ2; ε
Σ `M κ : ψJτ2K ↪→ τ3

Σ `M κ :: 〈ψ; x .e〉 : ψJτ1K ↪→ τ3

Σ ` ψ ; Γ (Environment typing)

TENV-EMP

Σ ` ·; .

TENV-MAPP
Σ ` ψ ; Γ Σ; . `M v : ψJτK
Σ ` ψ{x 7→M v}; Γ, x :M τ

TENV-MAPP2
Σ ` ψ ; Γ Σ; . ` v : ψJτK

Σ ` ψ{x 7→ v}; Γ, x : τ

TENV-MUNK
Σ ` ψ ; Γ Γ ` τ

Σ ` ψ{x 7→M ©}; Γ, x :M τ

TENV-MUNK2
Σ ` ψ ; Γ Γ ` τ

Σ ` ψ{x 7→ ©}; Γ, x : τ

Σ ` C : τ (Configuration typing)

TCONFIG-CONFIG
Σ ` σwf

. `M Σ `M κ : ψJτ1K ↪→ τ2
Σ ` ψ ; Γ Σ; Γ `M e : τ1; ε

Σ `M{σ;κ;ψ; e} : τ2

C halted (Configuration halt states)

HALTED-ANSWER
w is all parties

p(w){σ; ·;ψ; v} halted

HALTED-ERROR

M{σ;κ;ψ; error} halted

C st (Stack structure invariants)

STOK-SEC
κ = κ′ ::

〈
p(w);ψ′; x .e2

〉
:: κ1

s(w){σ;κ;ψ; e} st

STOK-SECE
κ = κ′ ::

〈
p(w);ψ′; x .e2

〉
p(w){σ;κ;ψ; securew′ (e)} st

STOK-PAR1

p(w){σ; ·;ψ; e} st

STOK-PAR2
w ⊆ w ′ p(w){σ;κ;ψ; e} st

p(w){σ;κ ::
〈
p(w ′);ψ′; x .e′

〉
;ψ; e} st

STOK-PAR3
p(w){σ;κ;ψ; e} st

p(w){σ;κ ::
〈
ψ′; x .e′

〉
;ψ; e} st

Fig. 16. Runtime configuration typing.

B. Proofs

We first present several auxiliary lemmas. Main theorems are
proved towards the end. This section is best read electronically,
as it has several hyperlinks to aid navigation (such as for
skipping long proofs, etc.).

Lemma A.1: (Weakening of type environment)

Let x /∈ dom(Γ) and Γ1 = Γ, x :M1 τ
′.

1) If Γ `M v : τ , then Γ1 `M v : τ .

2) If Γ ` v : τ , then Γ1 ` v : τ .

3) If Γ ` τ , then Γ1 ` τ .

4) If Γ ` φ, then Γ1 ` φ.

5) If Γ ` τ1 <: τ2, then Γ1 ` τ1 <: τ2.

6) If Γ ` N , then Γ1 ` N .

7) If Γ `M �N , then Γ1 `M �N .

8) If Γ ` ε, then Γ1 ` ε.

Proof: (Skip) By simultaneous induction.

(1.) Induction on derivation of Γ `M v : τ , case analysis
on the last rule used.

Rule T-VAR. We have,

(a) v = y

(b) y :M τ ∈ Γ ∨ y : τ ∈ Γ

(c) Γ ` τ
((b) means y is different from x)

From (b) we have,

(d) y :M τ ∈ Γ1 ∨ y : τ ∈ Γ1

Use I.H. (3.) on (c) to get,

(e) Γ1 ` τ
With (d) and (e), use rule T-VAR to derive Γ1 `M v : τ .

Rule T-UNIT. Use rule T-UNIT with Γ1.

Rule T-INJ. We have,

(a) Γ `M v : τi

(b) τj IsFlat

(c) Γ ` τj
Use I.H. (1.) on (a), I.H. (3.) on (c), and with (b) use

rule T-INJ.

Rule T-PROD. Use I.H. (1.) on premises.

Rule T-PRINC. Use rule T-PRINC with Γ1.

Rule T-PSONE. Use I.H. (1.) on rule premise, and then use
rule T-PSONE.

Rule T-PSUNION. Use I.H. (1.) on rule premises, and then
use rule T-PSUNION.

Rule T-PSVAR. Use I.H. (1.) on rule premise, and then
rule T-PSVAR (note that v = y , different from x).

Rule T-MSUB. Use of I.H. (6.), (1.), and (7.), and then use
rule T-MSUB.

Rule T-SUB. use of I.H. (1.), (5.), and (3.), and then use
rule T-SUB.

Rule T-SINGLWIRE. given premises, use rule T-SINGLWIRE
with Γ1.

Rule T-WIRECAT. given premises, use rule T-WIRECAT with
Γ1.

Rule T-LOC. given premises, use rule T-LOC with Γ1.

Rule T-SH. given premises, use rule T-SH with Γ1.

Rule T-CLOS. given premises, use rule T-CLOS with Γ1.

Rule T-FIXCLOS. given premises, use rule T-FIXCLOS with
Γ1.

(2.) Similar to proof above.

(3.) Induction on derivation of Γ ` τ , case analysis on the
last rule used.

Rule WF-UNIT. use rule WF-UNIT with Γ1.

Rule WF-SUM. use I.H. (3.) on premises, and then use
rule WF-SUM.

Rule WF-PROD. use I.H. (3.) on premises, and then use
rule WF-PROD.

Rule WF-PRINC. use I.H. (4.) on rule premise, and then use
rule WF-PRINC.

Rule WF-ARROW. we have,

(a) τ = y :τ1
ε→ τ2

(b) Γ ` τ1
(c) Γ, y : τ1 ` ε
(d) Γ, y : τ1 ` τ2
Use I.H. (3.) on (b), I.H. (8.) on (c), and I.H. (3.) on (d) to

get

(e) Γ1 ` τ1
(f) Γ, y : τ1, x :M1 τ

′ ` ε
(g) Γ, y : τ1, x :M1

τ ′ ` τ2
Use type environment permutation lemma on (f) and (g)

and then use rule WF-ARROW with (e) to get the derivation.

Rule WF-WIRE. use I.H. (2.) and (3.), and then use rule WF-
WIRE.

Rule WF-ARRAY. use I.H. (3.), and then use rule WF-ARRAY.

Rule WF-SHARE. use I.H. (2.) and (3.), and then use rule WF-
SHARE.

(4.) Induction on derivation of Γ ` φ, case analysis on the
last rule used.

Rule WFREF-TRUE. use rule WFREF-TRUE with Γ1.

Rule WFREF-SINGL. use rule WFREF-SINGL with Γ1.

Rule WFREF-SUB. use I.H. (2.) on the premise, and then
use rule WFREF-SUB.

Rule WFREF-EQ. use I.H. (2.) on the premise, and then use
rule WFREF-EQ.

Rule WFREF-CONJ. use I.H. (4.) on the premises, and then
use rule WFREF-CONJ.

(5.) Induction on derivation of Γ ` τ1 <: τ2, case analysis
on the last rule used.

Rule S-REFL. use rule S-REFL with Γ1.

Rule S-TRANS. use I.H. (5.) on premises, and then use
rule S-TRANS.

Rule S-SUM. use I.H. (5.) on premises, and then use rule S-
SUM.

Rule S-PROD. use I.H. (5.) on premises, and then use rule S-
PROD.

Rule S-PRINCS. we have,

(a) JΓK � φ1 ⇒ φ2

We can derive

(b) JΓ1K � φ1 ⇒ φ2

Use rule S-PRINCS again.

Rule S-WIRE. use I.H. (2.) and (5.) on premises, and then
use rule S-WIRE.

Rule S-ARRAY. use I.H. (5.) on premises, and then use
rule S-ARRAY.

Rule S-SHARE. use I.H. (2.) and (5.) on premises, and then
use rule S-SHARE.

Rule S-ARROW. use I.H. (5.) on premises, permutation
lemma, and then use rule S-ARROW.

(6.) Induction on derivation of Γ ` N , case analysis on the
last rule used.

Rule WFPL-TOP. use rule WFPL-TOP with Γ1.

Rule WFPL-OTHER. use I.H. (2.) on premise, and then use
rule WFPL-OTHER.

(7.) Induction on derivation of Γ `M �N , case analysis
on the last rule used.

Rule D-REFL. use I.H. (2.) on premise, and then use rule D-
REFL.

Rule D-TOP. use I.H. (2.) on premise, and then use rule D-
TOP.

Rule D-PAR. use I.H. (2.) on premise, and then use rule D-
PAR.

Rule D-SEC. use I.H. (2.) on premise, and then use rule D-
SEC.

(8.) Induction on derivation of Γ ` ε, case analysis on the
last rule used.

Rule WFEFF-EMPTY. use rule WFEFF-EMPTY with Γ1.

Rule WFEFF-MODE. use I.H. (8.) and I.H. (6.) on premises,
and then use rule WFEFF-MODE.

Lemma A.2: (Weakening of type environment)

Let x /∈ dom(Γ) and Γ1 = Γ, x : τ ′.

1) If Γ `M v : τ , then Γ1 `M v : τ .

2) If Γ ` v : τ , then Γ1 ` v : τ .

3) If Γ ` τ , then Γ1 ` τ .

4) If Γ ` φ, then Γ1 ` φ.

5) If Γ ` τ1 <: τ2, then Γ1 ` τ1 <: τ2.

6) If Γ ` N , then Γ1 ` N .

7) If Γ `M �N , then Γ1 `M �N .

8) If Γ ` ε, then Γ1 ` ε.

Proof: Similar to the proof of Lemma A.1.

Lemma A.3: (Weakening of type environment under
subtyping)

Let Γ ` τ ′ <: τ and Γ ` τ ′. Let Γ1 = Γ, x :M τ . For
Γ2 = Γ, x :M τ ′,

1) If Γ1 `N v : τ , then Γ2 `N v : τ .

2) If Γ1 ` v : τ , then Γ2 ` v : τ .

3) If Γ1 ` τ1 <: τ2, then Γ2 ` τ1 <: τ2.

4) If Γ1 ` τ , then Γ2 ` τ .

5) If Γ1 ` φ, then Γ2 ` φ.

6) If Γ1 ` N �M1, then Γ2 ` N �M1.

7) If Γ1 `M1, then Γ2 `M1.

8) If Γ1 ` ε, then Γ2 ` ε.
9) If Γ1 `N e : τ ; ε, then Γ2 `N e : τ ; ε.

Proof: (Skip)

By simultaneous induction.

(1.) Induction on derivation of Γ1 `N v : τ , case analysis
on the last rule used.

Rule T-VAR. We have,

(a) v = y

(b) y :N τ ∈ Γ1 ∨ y : τ ∈ Γ1

(b’) Γ1 ` τ
We have two cases now,

(i) y = x

This means,

(c) M = N

With lemma premise Γ ` τ ′, use Lemma A.1 to get,

(d) Γ1 ` τ ′

Use I.H. (4.) on (d) to get,

(e) Γ2 ` τ ′

With (d), use rule T-VAR on Γ2 to get,

(f) Γ2 `M x : τ ′

With Γ ` τ ′ <: τ , use Lemma A.1 to get

(g) Γ2 ` τ ′ <: τ

Use I.H. (4.) on (b’) to get,

(h) Γ2 ` τ (M = N)

With (f), (g) and (h), use rule T-SUB.

(ii) y is different from x , in which case rule T-VAR still
holds on Γ2 (with use of I.H. (4.)).

Rule T-UNIT. Use rule T-UNIT with Γ2.

Rule T-INJ. Use I.H. (1.) and (4.) on premises, and then
use rule T-INJ.

Rule T-PROD. Use I.H. (1.) on premises, and then use rule T-
PROD.

Rule T-PRINC. Use rule T-PRINC with Γ2.

Rules T-PSONE, T-PSUNION, and T-PSVAR. Use I.H. (1.)
on premises, and then use respective rule again.

Rule T-MSUB. We have,

(a) v = y

(b) Γ1 `M1

(c) Γ1 `M1 y : τ

(d) Γ1 `M1 �N

Use I.H. (7.) on (b),

(f) Γ2 `M1

Use I.H. (1.) on (c)

(g) Γ2 `M1 y : τ

Use I.H. (6.) on (d)

(h) Γ2 `M1 �N

With (f), (g), (h), use rule T-MSUB (the fact about
τ IsSecIn carries)

Rule T-SUB. Use I.H. (1.), (3.), and (4.) on premises, and
then use rule T-SUB.

Runtime value typing rules are similar to proof of
Lemma A.1 (they don’t depend on Γ).

(2.) Induction on derivation of Γ ` v : τ , case analysis on
the last rule used.

Rule TN-VAR. We have,

(a) v = y

(b) y : τ ∈ Γ1

(c) Γ1 ` τ

From (b) it follows that y is different from x , and so,

(d) y : τ ∈ Γ2

Use I.H. (4.) on (c) and with (b), use rule TN-VAR.

Other cases are similar to (1.).

(3.) Induction on derivation of Γ1 ` τ1 <: τ2, case analysis
on the last rule used.

Rule S-REFL. Use rule S-REFL with Γ2.

Rules S-TRANS, S-SUM, and S-PROD. Use I.H. (3.) on
premises, and the use respective rule.

Rule S-PRINCS. We have,

(a) JΓ1K � φ1 ⇒ φ2

We need to prove JΓ2K � φ1 ⇒ φ2. Informally, only
principal types in Γ matter when deciding logical implications.
And, a more precise type in the typing environment means
stronger assumption.

Rule S-WIRE. Use I.H. (2.) and I.H. (3.) on premises, and
then use rule S-WIRE.

Rule S-ARRAY. Use I.H. (3.) on premises, and then use
rule S-ARRAY.

Rule S-SHARE. Use I.H. (2.) and I.H. (3.) on premises, and
then use rule S-SHARE.

Rule S-ARROW. Use I.H. (3.) on premises with permutation
lemma for second premise, and then use rule S-ARROW.

(4.) Induction on derivation of Γ1 ` τ , case analysis on the
last rule used.

Rule WF-UNIT. Use rule WF-UNIT with Γ2.

Rule WF-SUM. Use I.H. (4.) on premises, and then use
rule WF-SUM.

Rule WF-PROD. Use I.H. (4.) on premises, and then use
rule WF-PROD.

Rule WF-PRINC. Use I.H. (5.) on premise, and then use
rule WF-PRINC.

Rule WF-ARROW. Use I.H. (4.) and (8.) with permutation
lemma on typing environment, and then use rule WF-ARROW.

Rule WF-WIRE. Use I.H. (2.) and (3.) on premises, and then
ise rule WF-WIRE.

Rule WF-ARRAY. Use I.H. (4.) on premise, and then use
rule WF-ARRAY.

Rule WF-SHARE. Use I.H. (2.) and (4.) on premises, and
then use rule WF-SHARE.

(5.) Induction on derivation of Γ1 ` φ, case analysis on the
last rule used.

Rule WFREF-TRUE. Use rule WFREF-TRUE with Γ2.

Rule WFREF-SINGL. Use rule WFREF-SINGL with Γ2.

Rules WFREF-SUB and WFREF-EQ. Use I.H. on premises,
and then use respective rule.

Rule WFREF-CONJ. Use I.H. on premises, and then use
rule WFREF-CONJ.

(6.) Induction on derivation of Γ1 ` N �M1, case analysis
on the last rule used.

Rule D-REFL. Use I.H. on premise, and then use rule D-
REFL.

Rule D-TOP. Use I.H. on premise, and then use rule D-TOP.

Rules D-PAR and D-SEC. Similar use of I.H. and then
respective rule.

(7.) Induction on derivation of Γ1 `M1, case analysis on
the last rule used.

Rule WFPL-TOP. Use rule WFPL-TOP with Γ2.

Rule WFPL-OTHER. Use I.H. on premise, and then use
rule WFPL-OTHER.

(8.) Induction on derivation of Γ1 ` ε, case analysis on the
last rule used.

Rule WFEFF-EMPTY. Use rule WFEFF-EMPTY with Γ2.

Rule WFEFF-MODE. Use I.H. on premises, and then use
rule WFEFF-MODE.

(9.) Proof by induction on derivation of Γ1 `N e : τ ; ε.

Lemma A.4: (Can derive self equality in refinements)

If Γ ` v : ps φ, then Γ ` v : ps (ν = v).

Proof: Structural induction on v .

v = x . We have,

(a) Γ ` x : ps φ

With (a) use rule TN-PSVAR to get Γ ` x : ps (ν = x).

v = p. Use rule TN-PRINC.

v = {w}. Use rule TN-PSONE.

v = w1 ∪ w2. Use rule TN-PSUNION.

No other form of v is possible.

Lemma A.5: (Can derive self subset in refinements)

If Γ ` v : ps φ, then Γ ` v : ps (ν ⊆ v).

Proof:

Using Lemma A.4, we have

(a) Γ ` v : ps (ν = v)

Also,

(b) JΓK � (ν = v)⇒ (ν ⊆ v)

With (b) use rule S-PRINCS to get

(c) Γ ` ps (ν = v) <: ps (ν ⊆ v)

With lemma premise Γ ` v : ps φ, we can use rule WFREF-
SUB and rule WF-PRINC to get,

(d) Γ ` ps (ν ⊆ v)

With (a), (c), and (d), use rule T-SUB.

Lemma A.6: (Transitivity of Delegation)

If Γ `M �M1, and Γ `M1 �M2, then Γ `M �M2.

Lemma A.7: (Secure place can only delegate to self)

If Γ ` s(w1) �m(w2), then

1) m = s

2) Γ ` w2 : ps (ν = w1)

3) Γ ` p(w1) �m(w2)

Proof: Γ ` s(w1) � m(w2) can only be derived using
rule D-REFL, which immediately gives us (1.) and (2.). For
(3.), use rule D-SEC and then Lemma A.6.

Lemma A.8: (Delegation implies well-formedness)

If Γ `M , Γ `M �N , then Γ ` N .

Proof:

Proof by induction on derivation of Γ ` M � N , case
analysis on the last rule used.

Rule D-REFL. We have,

(a) M = m(w1)

(b) N = m(w2)

(c) Γ ` w2 : ps (ν = w1)

With (c), use rule WFPL-OTHER on m(w2).

Rule D-TOP. We have,

(a) M = >

(b) N = m(w)

(c) Γ `> w : ps φ

With (c), use rule WFPL-OTHER to get Γ ` m(w).

Rules D-PAR and D-SEC. Similar to rule D-TOP.

Lemma A.9: (Effect delegation implies well-
formedness)

If Γ `M , Γ `M � ε, then Γ ` ε.

Proof: Straightforward extension of Lemma A.8.

Lemma A.10: (Typing results in well-formed types)

Let Γ `M .

1) If Γ `M v : τ , then Γ ` τ .

2) If Γ ` v : τ , then Γ ` τ .

3) If Γ `M e : τ ; ε, then Γ ` τ and Γ `M � ε.

Proof: (Skip)

Proof by induction on derivation of Γ `M v : τ , case
analysis on the last rule used.

Rule T-VAR. Follows from rule premise.

Rule T-UNIT. Use rule WF-UNIT.

Rule T-INJ. With rule premises, use rule WF-SUM.

Rule T-PROD. Use I.H. on rule premises, and then rule WF-
PROD.

Rule T-PRINC. We have

(a) Γ `M p : ps (ν = {p})
With (a), use rule WFREF-EQ and rule WF-PRINC.

Rules T-PSONE, T-PSUNION, and T-PSVAR. Use rule premise
in rule WFREF-EQ and rule WF-PRINC.

Rule T-MSUB. We have,

(a) Γ `N x : τ

(b) Γ ` N �M

Use I.H. on (a) to get Γ ` τ
Rule T-SUB. Follows from rule premise.

Rule T-SINGLWIRE. We have,

(a) v = {p : v ′}
(c) τ = W {p} τ
(d) . ` τ
(d’) τ IsFlat

Use rule TN-PRINC to get,

(e) . ` p : ps (ν = {p})
With (e), use rule T-PSONE to get,

(f) . ` {p} : ps (ν = {p})
Use weakening on (d) and (f), and then with (d’) use

rule WF-WIRE.

Rule T-WIRECAT. We have,

(a) v = v1 ++ v2

(b) τ = W (w1 ∪ w2) τ

(c) . `M v1 : Ww1 τ

(d) . `M v2 : Ww2 τ

Use I.H. on (c) and (d) to get,

(e) . `Ww1 τ

(f) . `Ww2 τ

Invert rule WF-WIRE on (e) and (f) to get,

(g) . ` τ
(h) . ` wi : ps φi
Use weakening on (g) and (h) (with Γ), and then use rule WF-

WIRE.

Rule T-LOC. Follows from the premise.

Rule T-SH. We have,

(a) . `M
(b) M = _(w)

(c) . ` τ
With (a) and (b), invert rule WFPL-OTHER to get,

(d) . ` w : ps φ

Use weakening on (c) and (d), and then use rule WF-SH.

Rules T-CLOS and T-FIXCLOS. Follows from the premises
(with weakening).

(2.) Induction on derivation of Γ `M e : τ ; ε, case analysis
on the last rule used.

Rule T-FST. We have,

(a) e = fst (v)

(b) ε = ·

(c) Γ `M v : τ1 × τ2 (rule premise)

(d) τ = τ1

With (c), use I.H. to get

(e) Γ ` τ1 × τ2
With (e), invert rule rule WF-PROD to get,

(f) Γ ` τ1
With (f), and rule EFFDEL-EMPTY, we have the proof.

Rule T-SND. Similar to rule T-FST.

Rule T-CASE. Follows from the premises.

Rule T-APP.

Rules T-LET1, T-LET2, and T-FIX. Follows directly from
rule premises.

Rule T-ARRAY. We have,

(a) e = array(v1, v2)

(b) τ = Array τ2
(c) Γ `M v2 : τ2 (rule premise)

With (c), use Lemma A.10, to get

(d) Γ ` τ2
With (d), use rule WF-ARRAY to get Γ ` Array τ2. Γ `

M � · follows from rule EFFDEL-EMPTY.

Rule T-SELECT. Use inversion on Γ ` Array τ (from rule
premise and I.H.).

Rule T-UPDATE. Use rule WF-UNIT and rule EFFDEL-
EMPTY.

Rule T-WIRE. We have,

(a) Γ ` w1 : ps (ν ⊆ w2)

(b) Γ `N v : τ

Use I.H. on (b) and then with (a) use rule WF-WIRE.

Rule T-WPROJ. Use I.H. on premise Γ `m(w1) v : Ww2 τ ,
and then invert rule WF-WIRE.

Rule T-WIREUN. Use I.H. on premises and then rule WF-
WIRE.

Rule T-WFOLD. Follows from rule premise Γ `M v2 : τ2.

Rule T-WAPP. We have,

(a) e = wappw (v1, v2)

(b) τ = Ww τ2

(c) M = p(_)

(d) Γ `M v1 : Ww τ1

(e) Γ `M v2 : Ww (τ1
·→ τ2)

With (d) and (e), use I.H., to get,

(f) Γ `Ww (τ1
·→ τ2)

(g) Γ ` w : ps φ

Inverting rule WF-WIRE on (f),

(h) Γ ` τ1
·→ τ2

(i) τ1
·→ τ2 IsFlat

Inverting rule WF-ARROW on (h) to get

(j) Γ ` τ2
Inverting rule W-ARR on (i),

(k) τ2 IsFlat

With (g), (j), (k), use rule WF-WIRE to get Γ `Ww τ2.

Rule T-WAPS. We have,

(a) e = wapsw (v1, v2)

(b) M = s(_)

(c) τ2 IsFlat

(d) Γ `M v1 : Ww τ1

(e) Γ `M λx .e : τ1
·→ τ2; ·

Invert rule WF-WIRE on (d) to get,

(f) Γ ` w : ps φ

Invert rule WF-ARR on (e) to get,

(g) Γ ` τ2
With (b), (f), (g), (c), use rule WF-WIRE, to get Γ `Ww τ2.

Rule W-COPY. Use I.H. on premise.

Rule T-MAKESH. Invert rule WFPL-OTHER with lemma
premise Γ `M , use I.H. on Γ `M v : τ , and then use rule WF-
SH.

Rule T-COMBSH. Invert rule WF-SHARE on rule premise.

Lemma A.11: (Subtyping inversion)

1) If Γ ` τ <: unit, then τ = unit.

2) If Γ ` τ <: τ1 × τ2, then τ = τ3 × τ4 s.t. Γ ` τ3 <: τ1
and Γ ` τ4 <: τ2.

3) If Γ ` τ <: τ1 + τ2, then τ = τ3 + τ4 s.t. Γ ` τ3 <: τ1
and Γ ` τ4 <: τ2.

4) If Γ ` τ <: ps φ, then τ = ps φ2 s.t. JΓK � φ2 ⇒ φ.

5) If Γ ` τ <: Ww2 τ2 and Γ ` w2 : ps φ, then τ = Ww1 τ1
s.t. Γ ` w2 : ps (ν ⊆ w1) and Γ ` τ1 <: τ2.

6) If Γ ` τ <: Array τ2, then τ = Array τ1 s.t. Γ ` τ1 <: τ2
and Γ ` τ2 <: τ1.

7) If Γ ` Shw2 τ2 and Γ ` w2 : ps φ, then τ = Shw1 τ1 s.t.
Γ ` w1 : ps (ν = w2), Γ ` τ1 <: τ2, and Γ ` τ2 <: τ1.

8) If Γ ` τ <: x :τ1
ε→ τ2, then τ = x :τ3

ε→ τ4 s.t. Γ ` τ1 <:
τ3 and Γ, x : τ1 ` τ4 <: τ2.

Proof: (Skip)

(1.) Only possible last rules in derivation of Γ ` τ <: unit
are rule S-REFL (immediate) and rule S-TRANS (Use I.H. twice)

(2.) Induction on derivation of Γ ` τ <: τ1 × τ2, case
analysis on the last rule used.

Rule S-REFL. We get τ = τ1 × τ2, use rule S-REFL on τ1
and τ2 to complete the proof.

Rule S-TRANS. We have,

(a) Γ ` τ <: τ ′

(b) Γ ` τ ′ <: τ1 × τ2
Use I.H. on (b) to get,

(c) τ ′ = τ ′1 × τ ′2
(d) Γ ` τ ′1 <: τ1

(e) Γ ` τ ′2 <: τ2

Substitute τ ′ from (c) in (a), and then use I.H. on (a) to
get,

(f) τ = τ3 × τ4
(g) Γ ` τ3 <: τ ′1

(h) Γ ` τ4 <: τ ′2

Use rule S-TRANS on (g) and (d), and then (h) and (e),
with (f) this completes the proof.

Rule S-PROD. Read from the rule.

(3.) Similar to (2.)

(4.) Induction on derivation of Γ ` τ <: ps φ, case analysis
on the last rule used.

Rule S-REFL. τ = ps φ, and JΓK � φ⇒ φ is trivially true.

Rule S-TRANS. We have,

(a) Γ ` τ <: τ1

(b) Γ ` τ1 <: ps φ

Use I.H. on (b), we get

(c) τ1 = ps φ1

(d) JΓK � φ1 ⇒ φ

Substitute (c) in (a) to get

(e) Γ ` τ <: ps φ1

Use I.H. on (e), we get

(f) τ = ps φ2

(g) JΓK � φ2 ⇒ φ1

From (f) and transitivity of implication on (g) and (d), we
have the proof.

Rule S-PRINCS. Read from the rule.

(5.) Proof by induction on derivation of Γ ` τ <: Ww2 τ2,
case analysis on the last rule used.

Rule S-REFL. We have τ = Ww2 τ2, thus τ1 = τ2 and
w1 = w2. To prove Γ ` τ1 <: τ2, use rule S-REFL. To prove
Γ `M w2 : ps (ν ⊆ w2), use Lemma A.5 (we have Γ ` w2 :
ps φ from premise.)

Rule S-TRANS. We have,

(a) Γ ` τ <: τ ′

(b) Γ ` τ ′ <: Ww2 τ2

Using I.H. (6.) on (b) to get,

(c) τ ′ = Ww3 τ3

(d) Γ ` w2 : ps (ν ⊆ w3)

(e) Γ ` τ3 <: τ2

Using Lemma A.10 on (d), we get

(f) Γ ` ps (ν ⊆ w3)

Inverting rule WF-PRINC on (f),

(g) Γ ` ν ⊆ w3

Inverting rule WF-SUB, we get

(h) Γ ` w3 : ps φ

Use I.H. on (a) (now that we have (h)) (substitute τ ′ from
(c))

(i) τ = Ww1 τ1

(j) Γ ` w3 : ps (ν ⊆ w1)

(k) Γ ` τ3 <: τ1

From (j), we can use rule S-PRINCS to derive:

(l) Γ ` ps (ν ⊆ w3) <: ps (ν ⊆ w1)

From (j), use Lemma A.10 and inversions on rule WF-PRINC
and rule WF-SUB to get

(m) Γ ` w1 : ps φ

With (d), (l), and (m), use rule T-SUB to derive

(n) Γ ` w2 : ps (ν ⊆ w1)

With (e) and (k), use rule S-TRANS to complete the proof.

Rule S-WIRE. Read from the rule.

(6.) Straightforward using I.H.

(7.) Similar to (5.)

(8.) Interesting case is rule S-TRANS. We have,

(a) Γ ` τ <: τ ′

(b) Γ ` τ ′ <: x :τ1
ε→ τ2

Using I.H. (9.) on (b),

(c) τ ′ = x :τ ′1
ε→ τ ′2

(d) Γ ` τ1 <: τ ′1

(e) Γ, x : τ1 ` τ ′2 <: τ2

Using I.H. on (a) now (with (c))

(f) τ = x :τ3
ε→ τ4

(g) Γ ` τ ′1 <: τ3

(h) Γ, x : τ ′1 ` τ4 <: τ ′2

With (d), (h), use Lemma A.3, to get

(i) Γ, x : τ1 ` τ4 <: τ ′2

Use rule S-TRANS on (d) and (g), and then on (i) and (e)
to complete the proof.

Lemma A.12: (Canonical forms)

1) If . `M v : unit, then v = ().

2) If . `M v : τ1 × τ2, then v = (v1, v2) s.t. . `M v1 : τ1
and . `M v2 : τ2.

3) If . `M v : τ1 + τ2, then v = inji v ′ s.t. . `M v ′ : τi .

4) If . `M v : ps φ, then v = w1∪w2 s.t. J.K � φ[w1∪w2/ν].

5) If . `p(w ′) v : Ww τ , then v = v1 ++ v2 s.t. w ⊆
dom(v1 ++ v2) and for all p ∈ dom(v1 ++ v2), . `p({p})
v [p] : τ .

6) If . `s(w1) v : Ww τ , then v = v1 ++ v2 s.t. w ⊆
dom(v1 ++ v2) and for all p ∈ dom(v1 ++ v2), . `s(w1)

v [p] : τ .

7) If . `M v : Array τ , then v = ` s.t. Σ(`) = τ1, . ` τ1 <:
τ , and . ` τ <: τ1.

8) If . `M v : Shw τ , then v = shw v ′ s.t. . `M v ′ : τ .

9) If . `M v : x :τ1
ε→ τ2, then either v = clos (ψ;λx .e)

s.t. Σ ` ψ ; Γ and Γ, x : τ1 `M e : τ2; ε, or v =
clos (ψ; fix f .λx .e) s.t. Σ ` ψ ; Γ and Γ, f : y :τ1

ε→
τ2 `M λx .e : y :τ1

ε→ τ2; ·.

10) If . ` N , then N = > or N = m(w1 ∪ w2).

Proof: (Skip) By simultaneous induction.

(1.) Proof by induction on derivation of . `M v : unit, case
analysis on the last rule used.

Rule T-UNIT. Follows from the rule.

Rule T-SUB. We have,

(a) . `M v : τ

(b) . ` τ <: unit

With (b), use Lemma A.11 to get

(c) τ = unit

Use I.H. on (a).

(2.) Proof by induction on derivation of . `M v : τ1 × τ2,
case analysis on the last rule used.

Rule T-PROD. We have,

(a) v = (v1, v2)

(b) . `M vi : τi

Proof follows.

Rule T-SUB. We have,

(a) . `M v : τ

(b) . ` τ <: τ1 × τ2
(c) . ` τ1 × τ2
With (b), use Lemma A.11 to get,

(d) τ = τ3 × τ4
(e) . ` τ3 <: τ1

(f) . ` τ4 <: τ2

Use I.H. on (a) (subtituting from (d)) to get,

(g) v = (v1, v2)

(h) . ` v1 : τ3

(i) . ` v2 : τ4

Inverting rule WF-PROD on (c),

(k) . ` τ1
(l) . ` τ2
Use rule T-SUB on (h), (e) and (k), and then (i), (f), and (l)

to get rest of the proof.

(3.) Similar to rule T-PROD.

(4.) Induction on derivation of . `M v : ps φ, case analysis
on the last rule used.

Rule T-PRINC. We have,

(a) v = p

(b) φ = (ν = {p})

Choose w1 = {p}, w2 = ·, and J.K � (ν = {p})[{p}/ν].

Rule T-PSONE. We have,

(a) v = {w}

(b) φ = (ν = {w})

Choose w1 = {w}, w2 = ·, and then similar to rule T-
PRINC.

Rule T-PSUNION. Follows similarly.

Rule T-SUB. We have,

(a) . `M v : τ

(b) . ` τ <: ps φ

With (b), use Lemma A.11 to get,

(c) τ = ps φ1

(d) J.K � φ1 ⇒ φ

Use I.H. on (a) (substituting from (c)),

(e) v = w1 ∪ w2

(f) φ1[v/ν]

With (e), (d), and (f), we have the proof.

(5.) Induction on derivation of . `p(w ′) v : Ww τ , case
analysis on the last rule used.

Rule T-SINGLWIRE. We have,

(a) v = {p : v ′}

(b) w = {p}

Choose v1 = {p : v ′}, v2 = ·, clearly w ⊆ dom(v1 ∪ v2).
We need to show . `p({p}) v

′ : τ , it follows from premise of
the rule.

Rule T-WIRECAT. We have,

(a) v = v1 ++ v2

(b) w = w1 ∪ w2

(c) . `p(w ′) v1 : Ww1 τ

(d) . `p(w ′) v2 : Ww2 τ

Use I.H. on (c) to get,

(e) w1 ⊆ dom(v1)

(f) for all p ∈ dom(v1), . `p({p}) v1[p] : τ

Use I.H. on (d) to get,

(g) w2 ⊆ dom(v2)

(h) for all p ∈ dom(v2), . `p({p}) v2[p] : τ

From (e) and (g), we get

(g) w1 ∪ w2 ⊆ dom(v1 ++ v2)

From (f) and (h), we get

(i) for all p ∈ dom(v1 ++ v2), . `p({p}) (v1 ++ v2)[p] : τ

From (a), (g), and (i), we have the proof.

Rule T-SUB. We have,

(a) . `p(w ′) v : τ ′

(b) . ` τ ′ <: Ww τ

(c) . `Ww τ

Invert rule WF-WIRE on (c) to get,

(c’) . ` τ

(d) . ` w : ps φ

With (b) and (d) use Lemma A.11 to get,

(e) τ ′ = Ww1 τ1

(f) . ` w : ps (ν ⊆ w1)

(g) . ` τ1 <: τ

Use I.H. (5.) on (a) (substituting τ from (c)) to get,

(h) v = v1 ++ v2

(i) w1 ⊆ dom(v1 ++ v2)

(j) for all p ∈ dom(v1 ++ v2), . `p({p}) v [p] : τ1

Use I.H. (f) to get,

(k) J.K � (ν ⊆ w1)[w/ν]

From (i) and (k) we get,

(l) w ⊆ dom(v1 ++ v2)

Use rule T-SUB with (j), (g) and (c’), we have the proof.

(6.) Induction on derivation of . `s(w1) v : Ww τ , case
analysis on the last rule.

Rule T-SINGLWIRE. We have,

(a) v = {p : v ′}
(b) w = {p}
(c) . `s(w1) v

′ : τ

Choose v1 = {p : v ′}, v2 = ·. We have w ⊆ dom(v1 ++
v2), and (c) completes rest of the proof.

Rule T-WIRECAT. We have,

(a) v = v1 ++ v2

(b) . `s(w1) v1 : Ww ′1 τ

(c) . `s(w1) v2 : Ww ′2 τ

(d) w = w1 ∪ w2

Use I.H. (6.) on (b), and on (c) to get,

(e) w ′1 ⊆ dom(v1)

(f) w ′2 ⊆ dom(v2)

(g) for all p ∈ dom(v1), . `s(w1) v1[p] : τ .

(h) for all p ∈ dom(v2), . `s(w1) v2[p] : τ .

Using (d), (e), and (f), we get,

(i) w ⊆ dom(v1 ++ v2)

(g), and (h) complete rest of the proof.

Rule T-SUB. We have,

(a) . `s(w1) v : τ ′′

(b) . ` τ ′′ <: Ww τ

(c) . `Ww τ

With (b), use Lemma A.11 to get,

(d) τ ′′ = Ww ′ τ ′

(e) . ` w : ps (ν ⊆ w ′)

(f) . ` τ ′ <: τ

Use I.H. (6.) on (a) (substituting (d) in (a)),

(g) v = v1 ++ v2

(h) w ′ ⊆ dom(v1 ++ v2)

(i) for all p ∈ dom(v1 ++ v2), . `s(w1) v [p] : τ ′.

Use I.H. on (e) to get,

(j) J.K � (ν ⊆ w ′)[w/ν]

Use (h) and (j) to get,

(k) w ⊆ dom(v1 ++ v2)

Invert rule WF-WIRE on (c) to get,

(l) . ` τ

With (i), (f), and (l), use rule T-SUB to complete rest of the
proof.

(7.) Induction on derivation of . `M v : Array τ , case
analysis on the last rule.

Rule T-LOC. Read from the rule, use rule S-REFL.

Rule T-SUB. We have,

(a) . `M v : τ ′

(b) . ` τ ′ <: Array τ

(c) . ` Array τ

With (b) use Lemma A.11 to get,

(d) τ ′ = Array τ ′′

(e) . ` τ ′′ <: τ

(f) . ` τ <: τ ′′

Use I.H. (7.) on (a) (substituting τ ′ from (d)),

(g) v = `

(h) Σ(`) = τ1

(i) . ` τ1 <: τ ′′

(j) . ` τ ′′ <: τ1

Use rule S-TRANS on (i) and (e), and then (f) and (j) to
complete the proof.

(8.) Induction on derivation of . `M v : Shw τ , case
analysis on the last rule used.

Rule T-SH. Read from the rule.

Rule T-SUB. We have,

(a) . `M v : τ ′

(b) . ` τ ′ <: Shw τ

(c) . ` Shw τ

With (b), use Lemma A.11 to get,

(d) τ ′ = Shw2 τ2

(e) . ` w2 : ps (ν = w)

(f) . ` τ2 <: τ

(g) . ` τ <: τ2

Use I.H. (8.) on (a) (substituting τ ′ from (d)),

(h) v = shw v ′

(j) . `M v ′ : τ2

Invert rule WF-SH on (c) to get,

(l) . ` τ

With (j), (f), and (l), use rule S-TRANS to complete rest of
the proof.

(9.) Induction on derivation of . `M v : x :τ1
ε→ τ2, case

analysis on the last rule used.

Rule T-CLOS. Read from the rule.

Rule T-FIXCLOS. Read from the rule.

Rule T-SUB. We have,

(a) . `M v : τ ′

(b) . ` τ ′ <: x :τ1
ε→ τ2

(c) . ` (x :τ1
ε→ τ2)

With (b), use Lemma A.11 to get,

(d) τ ′ = x :τ ′1
ε→ τ ′2

(e) . ` τ1 <: τ ′1

(f) ., x : τ1 ` τ ′2 <: τ2

Use I.H. on (a) (substituting τ ′ from (d)), we have 2 cases,

(i) v = clos (ψ;λx .e)

(g) Σ ` ψ ; Γ

(h) Γ, x : τ ′1 `M e : τ ′2; ε

Use weakening and permutation of type environment on (f)
and (e) to get,

(i) Γ, x : τ1 ` τ ′2 <: τ2

(j) Γ ` τ1 <: τ ′1

With (h) and (j), use Lemma A.3 to get (well-formedness
of τ1 follows from Lemma A.10 applied on typing of v).

(k) Γ, x : τ1 `M e : τ ′2; ε

With (k) and (i), use rule T-SUBE to complete the proof.

Second case is,

(ii) v = clos (ψ; fix f .λx .e)

(g) Σ ` ψ ; Γ

(h) Γ, f : y :τ ′1
ε→ τ ′2 `M λx .e : y :τ ′1

ε→ τ ′2; ·.

Use weakening of type environment on (b) to get,

(i) Γ ` y :τ ′1
ε→ τ ′2 <: x :τ1

ε→ τ2

With (h) and (i), use Lemma A.3, and then rule T-SUBE to
complete the proof (similar to above).

(10.) Induction on derivation of . ` N , case analysis on the
last rule used.

Rule WFPL-GLOBAL. Follows.

Rule WFPL-PC. Use I.H. on premise.

Lemma A.13: (Delegation among closed places)

Let w be a closed principal set. Let . ` m(w) �N . Then,
N = m1(w1) s.t. one of the following holds:

1) m1 = m and w1 = w .

2) m = p, m1 = p, and w1 ⊆ w .

3) m = p, m1 = s, and w1 = w .

Proof: Induction on derivation of . ` m(w) � N , case
analysis on the last rule used, using Lemma A.12.

Lemma A.14: (Environment lookup same across dele-
gation)

If Γ `M �N , then ψJxKΓ
N = ψJxKΓ

M .

Proof: Case analysis on ψJxKΓ
M .

Rule VL-VAR1. We have,

(a) ψJxKΓ
M = v

(b) x 7→M1
v ∈ ψ

(c) Γ `M1 �M

With (c) use Lemma A.6 to get,

(d) Γ `M1 �N

With (b) and (d), we get ψJxKΓ
N = v

Rule VL-VAR2. Use rule VL-VAR2 again with N .

Rule VL-VAR3. Use rule VL-VAR3 again with N .

Lemma A.15: (Well-formedness of runtime environ-
ment)

Let Σ ` ψ ; Γ and Γ,Γ′ ` M . Also, let dom(Γ) ∩
dom(Γ′) = φ.

1) If Γ,Γ′ `M v : τ , then ψJΓ′K `ψJMK ψJvKψJΓ′K
ψJMK : ψJτK.

2) If Γ,Γ′ ` v : τ , then ψJΓ′K ` ψJvK : ψJτK.

3) If Γ,Γ′ ` τ1 <: τ2, then ψJΓ′K ` ψJτ1K <: ψJτ2K.

4) If Γ,Γ′ ` τ , then ψJΓ′K ` ψJτK.

5) If Γ,Γ′ ` φ, then ψJΓ′K ` ψJφK.

6) If Γ,Γ′ ` N , then ψJΓ′K ` ψJNK.

7) If Γ,Γ′ ` ε, then ψJΓ′K ` ψJεK.

8) If Γ,Γ′ ` N1 �N2, then ψJΓ′K ` ψJN1K � ψJN2K.

Proof: (Skip) By simultaneous induction.

(1.) By induction on derivation of Γ,Γ′ `M v : τ , case
analysis on the last rule used.

Rule T-VAR. We have two cases here,

(a) x :M τ ∈ Γ,Γ′

(b) Γ,Γ′ ` τ
If x :M τ ∈ Γ, then using rule TENV-MAPP,

(c) x 7→M v ∈ ψ
(d) . `M v : τ

(e) M is closed.

Since M is closed,

(f) ψJMK = M

(g) ψJΓ′K `M �M

Use Lemma A.10 on (e),

(h) . ` τ

Since τ is closed,

(i) ψJτK = τ

With (c) and (g) use rule VL-VAR1 to get,

(j) ψJxKψJΓ′K
M = v

We want to prove,

(k) ψJΓ′K `ψJMK ψJxKψJΓ′K
ψJMK : ψJτK.

i.e. (substitute using (f)),

(l) ψJΓ′K `M ψJxKψJΓ′K
M : ψJτK.

i.e. (substitute using (j) and (i)),

(m) ψJΓ′K `M v : τ .

which is true by weakening (d).

If x :M τ ∈ Γ′, then

(c) x :ψJMK ψJτK ∈ ψJΓ′K

Using I.H. on (b), we get,

(d) ψJΓ′K ` ψJτK

Since dom(Γ) ∩ dom(Γ′) = φ, we have

(e) x /∈ dom(ψ)

And so,

(f) ψJxKψJΓ′K
ψJMK = x

We want to prove,

(g) ψJΓ′K `ψJMK ψJxKψJΓ′K
ψJMK : ψJτK

Substitute (f), we want

(h) ψJΓ′K `ψJMK x : ψJτK

Derive using rule T-VAR on (c) and (d).

The second case is,

(a) x : τ ∈ Γ,Γ′

(b) Γ ` τ

Split on two cases Γ and Γ′ as above.

Rule T-UNIT. We have,

(a) v = ()

(b) τ = unit

Using rule VL-UNIT and rule TL-UNIT,

(c) ψJ()KψJΓ′K
ψJMK = ()

(d) ψJunitK = unit

So, now we need to prove ψJΓ′K `ψJMK () : unit.

Follows from rule T-UNIT.

Rules T-INJ and T-PROD. Use I.H. on premises and then
correponding typing rule.

Rule T-PRINC. Similar to rule T-UNIT.

Rules T-PSONE, T-PSUNION, and T-PSVAR. Use I.H. on
premises and then corresponding typing rule.

Rule T-MSUB. We have,

(a) Γ,Γ′ ` N
(b) Γ,Γ′ ` N �M

(c) Γ,Γ′ `N x : τ

Use I.H. on (a) and (c) to get,

(d) ψJΓ′K `ψJNK ψJxKψJΓ′K
ψJNK : ψJτK.

Use I.H. on (b),

(e) ψJΓ′K ` ψJNK � ψJMK

Use I.H. on (a),

(f) ψJΓ′K ` ψJNK

With (d), (e), and (f), use rule T-MSUB to get,

(g) ψJΓ′K `ψJMK ψJxKψJΓ′K
ψJNK : ψJτK

With (e), use Lemma A.14 to get,

(h) ψJxKψJΓ′K
ψJMK = ψJxKψJΓ′K

ψJMK

Substitute in (g) to get the proof.

(2.) Similar to proof of (1.)

(3.) Induction on derivation of Γ,Γ′ ` τ1 <: τ2, case
analysis on the last rule.

Rule S-REFL. Use Rule S-REFL on ψJτK

Rule S-TRANS. Use I.H. on premises, and then rule S-
TRANS.

Rule S-SUM. Use I.H. on premises, and then rule S-SUM.

Rule S-PROD. Use I.H. on premises, and then rule S-PROD.

Rule S-PRINCS.

Rules S-WIRE, S-ARRAY, and S-SHARE. Use I.H. on
premises and then corresponding rule.

Rule S-ARROW. We have,

(a) Γ,Γ′ ` τ ′1 <: τ1

(b) Γ,Γ′, x : τ ′1 ` τ2 <: τ ′2

Use I.H. on (a),

(c) ψJΓ′K ` ψJτ ′1K <: ψJτ1K

Use I.H. on (b),

(d) ψJΓ′K, x : ψJτ ′1K ` ψJτ2K <: ψJτ ′2K

With (c) and (d), use rule S-ARROW.

(4.) By induction on derivation of Γ,Γ′ ` τ , case analysis
on the last rule used.

Rule WF-UNIT. Since ψJunitK = unit, use rule WF-UNIT.

Rule WF-SUM. Use I.H. on the premises, and then use
rule WF-SUM.

Rule WF-PROD. Use I.H. on the premises, and then use
rule WF-PROD.

Rule WF-PRINC. Use I.H. on the premise, and then use
rule WF-PRINC.

Rule WF-ARROW. We have,

(a) τ = x :τ1
ε→ τ2

(b) Γ,Γ′ ` τ1
(c) Γ,Γ′, x : τ1 ` ε

(d) Γ,Γ′, x : τ1 ` τ2
Using I.H. on (b), (c), and (d), we get,

(e) ψJΓ′K ` ψJτ1K

(f) ψJΓ′K, x : ψJτ1K ` ψJεK

(g) ψJΓ′K, x : ψJτ1K ` ψJτ2K

Use rule WF-ARROW on (e), (f), and (g).

Rule WF-WIRE. Use I.H. on the premises, and then use
rule WF-WIRE.

Rule WF-ARRAY. Use I.H. on the premise, and then use
rule WF-ARRAY.

Rule WF-SHARE. Similar to rule WF-WIRE.

(5.), (6.), (7.), (8.): Induction on respective derivations.

Lemma A.16: (Well-formedness of runtime environ-
ment)

Let Σ ` ψ ; Γ and Γ `M .

1) If Γ `M v : τ , then . `ψJMK ψJvK.ψJMK : ψJτK.

2) If Γ ` v : τ , then . ` ψJvK : ψJτK.

3) If Γ ` τ1 <: τ2, then . ` ψJτ1K <: ψJτ2K.

4) If Γ ` τ , then . ` ψJτK.

5) If Γ ` φ, then . ` ψJφK.

6) If Γ ` N , then . ` ψJNK.

7) If Γ ` ε, then . ` ψJεK.

8) If Γ ` N1 �N2, then . ` ψJN1K � ψJN2K.

Proof: Corollary of Lemma A.15 with Γ′ = .

Lemma A.17: (Subset of environment) If ψ1 ⊆ ψ2,
Σ1 ` ψ1 ; Γ1, Σ1 ` ψ2 ; Γ2, Γ1 ` τ , and Γ2 ` τ , then
ψ1JτK = ψ2JτK.

Lemma A.18: (Value and Environment Slicing Always
Exists)

For all v and ψ, slicep(v) ; v ′ and slicep(ψ) ; ψ′.

Proof: Structural induction on v and ψ.

Lemma A.19: (Going up the stack for slicing retains
config well-typedness)

1) If Σ ` m(w){σ;κ :: 〈m1(w1);ψ1; x .e1〉 ;ψ; e} : τ , then
Σ ` m1(w1){σ;κ;ψ1{x 7→m1(w) ©}; e1} : τ

2) If Σ ` m(w){σ;κ :: 〈ψ1; x .e1〉 ;ψ; e} : τ , then Σ `
m(w){σ;κ;ψ1{x 7→ ©}; e1} : τ

Lemma A.20: (Existence of Slice)

If Σ ` C : τ and C st, then slicew (C) ; π.

Proof: Let C = M{σ;κ;ψ; e}. We consider slice{p}(C).
If M = p(w) s.t. p ∈ w , then use SLICECFG-PAR with
rules STOK-PAR1, STOK-PAR2, and STOK-PAR3. If M = s(w)
s.t. p ∈ w , then use SLICECFG-SEC with rule STOK-SEC(we
have C st. When p 6∈ w , stack cannot be empty (empty stack
is well typed only in a context when all parties are present,
rule TSTK-EMP). Then, use SLICECFG-ABS1 or SLICECFG-
ABS2 with Lemma A.19 for well-typedness of inductive
configurations.

Lemma A.21: (Lookup in sliced environment)

1) If ψJvKp(w) = v ′, p ∈ w , slicep(ψ) ; ψ′, and
slicep(v ′) ; v ′′, then ψ′JvKp({p}) = v ′′.

2) If ψJvKs(w) = v ′, ∀ p ∈ w slicep(ψ) ; ψp ,
slicep(v ′) ; vp , then ◦

p
ψpJvKs(w) = ◦

p
vp .

Lemma A.22: (Unique local transitions)

If p {σ;κ;ψ; e} −→ p {σ′;κ′;ψ′; e ′}, then there exists no
other rule by which p {σ;κ;ψ; e} can step (and σ′, κ′, ψ′ are
unique).

Proof:

Proof sketch: By structural induction on e, and verifying
that every syntactic form corresponds to one semantics rule.
Moreover the unique rule is also algorithmic: the input
configuration uniquely determines the output configuration,
including the rule STPL-ARRAY, where the fresh location is
chosen by the function nextM (σ).

Theorem A.1: (Progress)

If Σ ` C : τ , then either C halted or C −→ C′. Moreover if
C st, then C′ st.

Proof: (Skip) We have C = M{σ;κ;ψ; e}, Σ ` σwf,
. `M , Σ `M κ : τ1 ↪→ τ2, Σ ` ψ ; Γ, and Σ; Γ `M e : τ1; ε.
We proceed by induction on derivation of Σ; Γ `M e : τ1; ε,
case analysis on the last rule used.

Since . `M , ψJMK = M .

Rule T-FST. We have,

(a) e = fst (v)

(b) Γ `M v : τ1 × τ2
With (b), use Lemma A.16 to get,

(c) . `M ψJvK.M : (ψJτ1K)× (ψJτ2K)

With (c), use Lemma A.12 to get,

(d) ψJvK.M = (v1, v2)

C can now take step using STPC-LOCAL and STPL-FST to
M{σ;κ;ψ; v1}.

Rule T-SND. Similar to rule T-FST.

Rule T-CASE. We have,

(a) e = case (v , x1.e2, x2.e2)

(b) Γ `M v : τ1 + τ2

(c) Γ, xi : τi `M ei : τ ; εi

(d) Γ ` τ
(e) Γ `M � εi

With (b), use Lemma A.16 to get,

(d) . `M ψJvK.M : (ψJτ1K) + (ψJτ2K)

With (d), use Lemma A.12 to get,

(e) ψJvK.M = inji v ′

C can now take a step using STPC-LOCAL and STPL-CASE
to M{σ;κ;ψ{xi 7→ v ′}; ei}.

Rule T-LAM. We have,

(a) e = λx .e

C can take a step using STPC-LOCAL and STPL-LAMBDA.

Rule T-APP. We have,

(a) e = v1 v2

(b) Γ `M v1 : x :τ1
ε→ τ2

(c) Γ ` v2 : τ1

With (b) and (c) use Lemma A.16 to get,

(d) . `M ψJv1K.M : x :ψJτ1K
ψJεK→ ψJτ2K

(e) . ` ψJv2K : ψJτ1K

With (d) use Lemma A.12 to get,

Case 1: ψJv1K.M = clos (ψ;λx .e)

C can take a step using STPC-LOCAL and STPL-APPLY.

Case 1: ψJv1K.M = clos (ψ; fix x .λy .e)

C can take a step using STPC-LOCAL and STPL-FIXAPPLY.

Rule T-LET1. We have,

(a) e = let x N
= e1 in e2

(b) M = m(_)

(c) N = _(w)

(d) Γ `M �N

(e) Γ `N e1 : τ1; ε1

(f) Γ, x :m(w) τ1 `M e2 : τ2; ε2

(g) Γ ` τ2
(h) Γ `M � ε2

With (d), use Lemma A.8 to get,

(i) Γ ` N

With (i), use Lemma A.16 to get,

(j) . ` ψJNK

With (d), use Lemma A.16 to get,

(k) . `M � ψJNK

With (k), use Lemma A.13 to get,

Either

(l) M = p(w), N = p(w1), and w1 ⊆ w

In this case, C can take a step using STPC-DELPAR to
p(w1){σ;κ :: 〈p(w);ψ; x .e2〉 ;ψ; e1}

Or

(l) M = p(w) and N = s(w).

In this case, C can take a step using STPC-DELSSEC to
p(w){σ;κ :: 〈p(w);ψ; x .e2〉 ;ψ; securew (e1)}

Or

(l) M = m(w) and N = m(w).

Depending on m, one of the above applies.

Rule T-LET2. We have,

(a) e = let x = e1 in e2

(b) Γ `M e1 : τ1; ε1

(c) Γ, x : τ1 `M e2 : τ2; ε2

(d) Γ ` τ2
(e) Γ `M � ε2

C can take a step using STPC-LOCAL to M{σ;κ ::
〈ψ; x .e2〉 ;ψ; e1}.

Rule T-FIX. C can take a step using STPC-LOCAL and STPL-
FIX.

Rule T-ARRAY. We have,

(a) e = array(v1, v2)

(b) Γ `M v1 : nat

(c) Γ `M v2 : τ

With (b) and (c), use Lemma A.16 to get,

(d) . `M ψJv1K.M : nat

(e) . `M ψJv2K.M : (ψJτK)

C can take a step using STPC-LOCAL and STPL-ARRAY to
M{σ{` :M { ¯ψJv2K.M}k};κ;ψ; `}.

Rule T-SELECT. We have,

(a) e = select(v1, v2)

(b) Γ `M v1 : Array τ

(c) Γ `M v2 : nat

With (b) and (c), use Lemma A.16 to get,

(d) . `M ψJv1K.M : ArrayψJτK

(e) . `M ψJv2K.M : nat

With (d) use Lemma A.12 to get,

(f) ψJv1K.M = `

(g) Σ(`) = ψJτK

Since Σ ` σwf, ` ∈ dom(σ)

C can take a step using STPC-LOCAL with STPL-SELECT
or STPL-SEL-ERR.

Rule T-UPDATE. Similar to rule T-SELECT.

Rule T-WIRE. We have,

(a) e = wirew1
(v)

(b) M = m(w2)

(c) Γ ` w1 : ps (ν ⊆ w2)

(d) m = s⇒ N = M and m = p⇒ N = p(w1)

(e) Γ `N v : τ

With (c), use Lemma A.16 to get,

(f) . ` ψJw1K : ps (ν ⊆ w2)

Case 1: m = s⇒ N = s(w2)

With (e), use Lemma A.16 to get,

(g) . `M ψJvK.M : ψJτK

C can now take step using STPC-LOCAL and STPL-WIRE
to M{σ;κ;ψ; {|(ψJvKN)|}wires

ψJw1K}.

Case 2: m = p⇒ N = p(w1)

With (e), use Lemma A.16 to get,

(g) . `p(ψJw1K) ψJvK.p(ψJw1K) : (ψJτK)

C can now take step using STPC-LOCAL and STPL-WIRE
to M{σ;κ;ψ; {|(ψJvKN)|}wires

ψJw1K}.

Rule T-WPROJ. We have,

(a) e = v [w2]

(b) M = m(w1)

(c) m = p⇒ φ = ν = w1 and m = s⇒ φ = ν ⊆ w1

(d) Γ `M v : Ww2 τ

(e) Γ ` w2 : ps (φ ∧ singl(ν))

Case 1: m = p⇒ φ = ν = w1

With (e), use Lemma A.16 to get,

(f) . ` (ψJw2K) : ps ((ψJ(ν = w1)K) ∧ (singl(ν)))

With (f), use Lemma A.12 to get,

(g) ψJw2K = p, w1 = p, and M = p({p})

With (d), use Lemma A.16 to get,

(h) . `M ψJvK.M : WψJw2KψJτK

With (h), use Lemma A.12 to get,

(i) ψJvK.M = v1 ++ v2 and p ∈ dom(v1 ++ v2).

C can now take a step using STPC-LOCAL and STPL-
PARPROJ.

Case 2: m = s⇒ φ = ν ⊆ w1

With (e), use Lemma A.16 to get,

(f) . ` (ψJw2K) : ps ((ψJ(ν ⊆ w1)K) ∧ (singl(ν)))

With (f), use Lemma A.12 to get,

(g) ψJw2K = p, w1 = p ∪ w ′′, and M = s({p ∪ w ′′})

With (d), use Lemma A.16 to get,

(h) . `M ψJvK.M : WψJw2KψJτK

With (h), use Lemma A.12 to get,

(i) ψJvK.M = v1 ++ v2 and p ∈ dom(v1 ++ v2).

C can now take a step using STPC-LOCAL and STPL-
PARPROJ.

Rule T-WIREUN. We have,

(a) e = v1 ++ v2

(b) Γ `M v1 : Ww1 τ

(c) Γ `M v2 : Ww2 τ

With (b) and (c) use Lemma A.16, and then Lemma A.12,
and then C can take a step using STPC-LOCAL and STPC-
WIREUN.

Rule T-WFOLD. We have,

(a) e = wfoldw (v1, v2, v3)

(b) M = s(_)

(c) φ = ν ⊆ w ∧ singl(ν)

(d) Γ `M v1 : Ww τ

(e) Γ `M v2 : τ2

(f) Γ `M v3 : τ2
·→ ps φ ·→ τ

·→ τ2

With (d) use Lemma A.10 to get,

(g) Γ `Ww τ

With (g) invert rule WF-WIRE to get,

(h) Γ ` w : ps φ

With (h) use Lemma A.16 to get,

(i) . ` ψJwK : ps (ψJφK)

With (i) use Lemma A.12 to get,

(j) ψJwK = w1 ∪ w2

C can take a step using STPC-LOCAL and either STPL-
WFOLD1 or STPL-WFOLD2.

Rule T-WAPP. We have,

(a) e = wappw (v1, v2)

(b) M = p(_)

(c) Γ `M v1 : Ww τ1

(d) Γ `M v2 : Ww (τ1
·→ τ2)

Similar to rule T-WFOLD now.

Rule T-WAPS. Similart to rule T-WFOLD.

Rule T-WCOPY. C can take a step using STPC-LOCAL with
STPL-WCOPY.

Rule T-MAKESH. We have,

(a) e = makesh(v)

(b) M = s(w)

(c) Γ `M v : τ

With (c) use Lemma A.16 we get,

(d . `M ψJvK.M : ψJτK

C can take a step using STPC-LOCAL with STPL-MAKESH.

Rule T-COMBSH. We have,

(a) e = combsh(v)

(b) M = s(w) (therefore w is closed)

(c) Γ `M v : Shw τ

With (c) use Lemma A.16 we get,

(d) . `M ψJvK.M : Shw ψJτK

With (d) use Lemma A.12 we get,

(e) ψJvK.M = shw v ′

C can take a step using STPC-LOCAL with STPL-COMBSH.

Rule T-SECBLK. We have,

(a) e = securew (e)

(b) M = m(w ′)

(c) Γ ` w : ps (ν = w ′)

Use Lemma A.16 and then Lemma A.12 on (c). C can take
a step using STPC-SECENTER.

Rule T-VALUE. We consider case when

(a) e = v

(b) Γ `M v : τ

If κ is empty then by rule HALTED-ANSWER C is empty.

If κ is not empty, then depending on top frame, C can take
a step using STPC-POPSTK1 or STPC-POPSTK2.

(After applying Lemma A.16 and then Lemma A.12 on
(b).)

Theorem A.2: (Preservation) If Σ1 ` C1 : τ and C1 −→
C2, then there exists Σ2 ⊇ Σ1 s.t. Σ2 ` C2 : τ .

Proof: (Skip) Case analysis on C1 −→ C2.

STPL-CASE. We have,

(a) C1 = M{σ;κ;ψ; case (v , x1.e1, x2.e2)}

(b) C2 = M{σ;κ;ψ{xi 7→ v ′}; ei}

(c) ψJvK.M = inji v ′

(d) Σ1 ` σwf

(e) . `M
(f) Σ1 `M κ : τ1 ↪→ τ

(g) Σ1 ` ψ ; Γ

(h) Σ1; Γ `M case (v , x1.e1, x2.e2) : τ1; ε

(i) Γ `M � ε

Inverting rule T-CASE on (h), we get,

(j) Γ `M v : τ ′1 + τ ′2

(k) Γ, xi : τ ′i `M ei : τ1; εi

(l) Γ ` τ
(m’) ε = ε, ε1, ε2

(m) Γ `M � εi

With (j) use Lemma A.16 to get,

(n) . `M ψJvK.M : (ψJτ ′1K) + (ψJτ ′2K)

Substitute (c) in (n) to get,

(o) . `M inji v ′ : (ψJτ ′1K) + (ψJτ ′2K)

Inverting rule T-INJ on (o) we get,

(p) . `M v ′ : ψJτ ′i K

With (p) and (g), use rule TENV-MAPP2 to get,

(q) Σ1 ` ψ{xi 7→ v ′}; Γ, xi : τ ′i

Choose Σ2 = Σ1

With (d), (e), (f), (q), (k), (m), use rule TCONFIG-CONFIG
to get

Σ2 `M{σ;κ;ψ{xi 7→ vi}; ei} : τ

STPL-FST. We have, (a) C1 = M{σ;κ;ψ; fst (v)}
(b) C2 = M{σ;κ;ψ; v1}
(c) ψJvK.M = (v1, v2)

(d) Σ1 ` σwf

(e) . `M
(f) Σ1 `M κ : ψJτ1K ↪→ τ

(g) Σ1 ` ψ ; Γ

(h) Σ1; Γ `M fst (v) : τ1; ·
(i) Γ `M � ε

Invert rule T-FST on (h) to get,

(j) Γ `M v : τ1 × τ2
With (j) and (c) use Lemma A.16 to get,

(k) . `M v1 : ψJτ1K

Choose Σ2 = Σ1

With (d), (e), (f), (g), (k) (after weakening), we get,

Σ2 `M{σ;κ;ψ; v1} : τ

STPL-SND. Similar to STPL-FST.

STPL-LAMBDA. There is no change in the stack andenvi-
ronment, and the closure has same type as lambda.

STPL-APPLY. We have, (a) C1 = M{σ;κ;ψ1; v1 v2}

(b) C2 = M{σ;κ;ψ2{x 7→ v ′}; e}

(c) ψ1Jv1K.M = clos (ψ2;λx .e)

(d) ψ1Jv2K.M = v ′

(e) Σ `M κ : ψJτ1K ↪→ τ

(f) Γ `M v1 v2 : τ1; ε

(g) Γ `M � ε

Invert rule T-APP on (f) to get,

(h) Γ `M v1 : τ2
ε1→ τ1

(i) Γ `M v2 : τ2

(j) Γ `M � ε1[v2/x]

(k) ε = ε1[v2/x]

With (h) and (c) use Lemma A.16 to get,

(l) . `M clos (ψ2;λx .e) : (ψJτ2K)
(ψJε1K)→ (ψJτ1K)

Invert rule T-CLOS on (l) to get,

(m) Σ1 ` ψ2 ; Γ2

(n) Γ2, x : ψJτ2K `M e : ψJτ1K;ψJε1K

With (i) and (d) use Lemma A.16 to get,

(o) . `M v ′ : ψJτ2K

i.e.

(p) . `M v ′ : ψ2J(ψJτ2K)K

From (m) and (o), use rule TENV-MAPP2 to derive,

(q) Σ1 ` ψ2{x 7→ v ′}; Γ2, x : ψJτ2K

(e) can also be written as,

(r) Σ `M κ : ψ2J(ψJτ1K)K ↪→ τ

With (q), (n), (r), we get Σ1 `M{σ;κ;ψ2{x 7→ v ′}; e} : τ
(effect delegation comes from Lemma A.16 on (j).)

STPL-FIX. Similar to STPL-LAMBDA.

STPL-FIXAPPLY. Similar to STPL-APPLY.

STPL-ARRAY. Standard proof, choose Σ2 as Σ1 with new
`. Other array cases are also standard.

STPL-MAKESH. We have, (a) C1 =
s(w){σ;κ;ψ; makesh(v)}

(b) C2 = s(w){σ;κ;ψ; shw v ′}

(c) ψJvK.s(w) = v ′

(d) Σ1 `s (w)κ : ψJτ1K ↪→ τ2

(e) Σ1 ` ψ ; Γ

(f) Γ `s(w) makesh(v) : τ1; ε

Invert rule T-MAKESH on (f) to get,

(g) τ1 = Shw τ2

(g’) Γ `s(w) v : τ2

Use Lemma A.16 on (g’) and (c) to get,

(h) . `s(w) v
′ : ψJτ2K

Use rule T-SH on (h) to get,

(i) . `s(w) shw v ′ : Shw ψJτ2K

Observe that ψJ(Shw ψJτ2K)K = ψJ(Shw τ2)K

Therefore, stack typing (d) still holds, and new configuration
is well-typed.

STPL-COMBSH. Similar to STPL-MAKESH.

STPL-WIRE. We have, (a) C1 = M{σ;κ;ψ; wirew (v)}

(b) C2 = M{σ;κ;ψ; {|v ′|}wires
w ′ }

(c) ψJwK = w ′

(d) ψJvK.N = v ′

(e) M = m(w1)

(f) m = p⇒ N = p(w ′) and m = s⇒ N = M

(g) Σ1 `M κ : ψJτ1K ↪→ τ

(e) Σ1 ` ψ ; Γ

(f) Γ `M wirew (v) : Ww τ2; ·

(g) τ1 = Ww τ2

Invert rule T-WIRE on (f) to get,

(h) Γ ` w : ps (ν ⊆ w1)

(i) m = p⇒ N1 = p(w) and m = s⇒ N1 = M

(j) Γ `N1
v : τ2

Case 1: m = p

Use Lemma A.16 on (j) to get,

(k) . `p(w ′) v
′ : ψJτ2K

Using rule T-SINGLWIRE and rule T-WIRECAT, we can
derive:

(l) . `p(w1) {|v ′|}wires
w ′ : Ww ′ (ψJτ2K)

Observe that ψJWw ′ (ψJτ2K)K = ψJτ1K.

Hence, stack typing (g) still holds, therefore C2 is well-
typed.

Case 2: m = s

Use Lemma A.16 on (j) to get,

(k) . `M v ′ : ψJτ2K

Using rule T-SINGLWIRE and rule T-WIRECAT, we can
derive:

Observe that ψJWw ′ (ψJτ2K)K = ψJτ1K.

Hence, stack typing (g) still holds, therefore C2 is well-
typed.

(l) . `M {|v ′|}wires
w ′ : Ww ′ (ψJτ2K)

STPL-PARPROJ. We have, (a’) M = p({p})
(a) C1 = M{σ;κ;ψ; v1[v2]}
(b) C2 = M{σ;κ;ψ; v ′}
(c) ψJv1K.M = {p : v ′} ++ w ′

(d) ψJv2K.M = p

(e) Σ1 `M κ : ψJτ1K ↪→ τ

(f) Γ `M v1[v2] : τ1; ε

Inverting rule T-WPROJ with M = p(_) we get,

(g) Γ `M v1 : W v2 τ1

(h) Γ ` v2 : ps (ν = {p} ∧ singl(ν))

Applying Lemma A.16 on (h) we get,

(i) ψJv2K = {p}
Applying Lemma A.16 on (g) we get,

(j) . `M {p : v ′} ++ w ′ : W {p}ψJτ1K

Inverting rule T-WIRECAT and rule T-SINGLWIRE on (j) we
get,

(k) . `M v ′ : ψJτ1K

Observe that ψJ(ψJτ1K)K = ψJτ1K

Hence, stack typing (e) still holds and C2 is well-typed.

STPL-SECPROJ. We have, (a’) M = s({p} ∪ w)

(a) C1 = M{σ;κ;ψ; v1[v2]}
(b) C2 = M{σ;κ;ψ; v ′}
(c) ψJv1K.M = {p : v ′} ++ w ′

(d) ψJv2K.M = p

(e) Σ1 `M κ : ψJτ1K ↪→ τ

(f) Γ `M v1[v2] : τ1; ε

Similar to STPL-PARPROJ.

STPL-WIREUN. We have, (a) C1 = M{σ;κ;ψ; v1 ++ v2}
(b) C2 = M{σ;κ;ψ; v ′1 ++ v ′2}
(c) ψJv1K.M = v ′1

(d) ψJv2K.M = v ′2

(e) Σ1 `M κ : ψJτ1K ↪→ τ

(f) Γ `M v1 ++ v2 : τ1; ε

Inverting rule T-WIREUN on (f), we get,

(g) τ1 = W (w1 ∪ w2) τ2

(h) Γ `M v1 : Ww1 τ2

(i) Γ `M v2 : Ww2 τ2

Applying Lemma A.16 on (h) and (i), we get,

(j) . `M v ′1 : WψJw1KψJτ2K

(k) . `M v ′2 : WψJw2KψJτ2K

Using rule T-WIRECAT with (j) and (k) we get,

(l) . `M v ′1 ++ v ′2 : W (ψJw1K) ∪ (ψJw2K)ψJτ2K

Proof now follows by showing that stack typing holds.

STPL-WAPP1. We have, (a) C1 =
M{σ;κ;ψ; wappw (v1, v2)}

(b) C2 = M{σ;κ;ψ; ·}
(c) ψJwK = ·
(d) Γ `M wappw (v1, v2) : Ww τ2; ·
(e) Σ1 `M κ : ψJ(Ww τ2)K ↪→ τ

Rewriting (e),

(f) Σ1 `M κ : W · (ψJτ2K) ↪→ τ

We have,

(g) Γ `M · : W · (ψJτ2K)

Also,

(h) ψJ(W · (ψJτ2K))K = W · (ψJτ2K)

With (h) and (f), we can derive stack typing in C2.

STPL-WAPP2. We have, (a) C1 =
M{σ;κ;ψ; wappw (v1, v2)}

(b) C2 = M{σ;κ;ψ; e}
(b’) M = p(({p} ∪ w ′) ∪ w1)

(c) ψJwK = {p} ∪ w ′

(d) ψJv1K.M = v ′1

(e) ψJv2K.M = v ′2

(f) e = let z1
p({p})

= let z2 = v ′1[p] in let z3 =
v ′2[p] in z2 z3 in let z4 = wappw ′(v ′1, v

′
2) in (wire{p}(z1 ++ z4))

(g) Γ `M wappw (v1, v2) : Ww τ2; ·
(h) Γ `M v1 : Ww τ1

(i) Γ `M v2 : τ1
·→ τ2

(j) Σ1 `M κ : ψJ(Ww τ2)K ↪→ τ

Using Lemma A.16 on (h) and (i) we get,

(k) . `M v ′1 : W {p} ∪ w ′ ψJτ1K

(l) . `M v ′2 : W ({p} ∪ w ′) ((ψJτ1K)
·→ (ψJτ2K))

We now consider typing of e from (f).

Using rule T-WPROJ we get,

(m) . `p({p}) v
′
1[p] : ψJτ1K; ·

(n) . `p({p}) v
′
2[p] : ((ψJτ1K)

·→ (ψJτ2K)); ·
Using rule T-APP we get,

(o) . `p({p}) z2 z3 : ψJτ2K; ·
Using rule T-WIRE we get,

(p) . `M wire{p}(z1) : W {p}ψJτ2K; ·
Using rule T-WAPP we get,

(q) . `M wappw ′(v ′1, v
′
2) : Ww ′ ψJτ2K; ·

Using rule T-WIREUN we get,

(r) . `M (wire{p}(z1 ++ z4)) : W ({p} ∪ w ′)ψJτ2K; ·

We also have,

(s) ψJ(W ({p} ∪ w ′)ψJτ2K)K = ψJ(Ww τ2)K

and hence stack typing from (j) holds for C2 as well.

STPL-WAPS1. Similar to STPL-WAPP1.

STPL-WAPS2. We have,

(a) C1 = M{σ;κ;ψ; wapsw (v1, v2)}

(b) C2 = M{σ;κ;ψ; e}

(b’) e = let z1 = v ′1[p] in let z2 = v ′2 z1 in let z3 =
wapsw ′(v ′1, v

′
2) in (wire{p}(z2 ++ z3))

(c) M = s(({p} ∪ w ′) ∪ w1)

(d) ψJwK = {p} ∪ w ′

(e) ψJv1K.M = v ′1

(f) ψJv2K.M = v ′2

(g) Γ `M wapsw (v1, v2) : Ww τ2; ·

(h) Σ1 `M κ : ψJ(Ww τ2)K ↪→ τ

Inverting rule T-WAPS on (g) we get,

(i) Γ `M v1 : Ww τ1

(j) Γ `M v2 : τ1
·→ τ2

Using Lemma A.16 on (i) and (j),

(k) . `M v ′1 : W ({p} ∪ w ′) (ψJτ1K)

(l) . `M v ′2 : (ψJτ1K)
·→ (ψJτ2K)

We now consider typing of e from (b’)

Using rule T-WPROJ we get,

(m) . `M v ′1[p] : ψJτ1K; ·

Using rule T-APP we get,

(n) . `M v ′2 z1 : ψJτ2K; ·

Using rule T-WIRE we get,

(o) . `M wire{p}(z2) : W {p} (ψJτ2K); ·

Using rule T-WAPS we get,

(p) . `M wapsw ′(v ′1, v
′
2) : Ww ′ (ψJτ2K); ·

Using rule T-WIREUN we get,

(q) . `M (wire{p}(z2 ++ z3)) : W ({p} ∪ w ′) (ψJτ2K); ·

Also,

(r) ψJ(W ({p} ∪ w ′) (ψJτ2K))K = ψJ(Ww τ2)K

and hence stack typing (h) holds for C2 also.

STPL-WFOLD1. Immediate from typing of wfold an-
dLemma A.16.

STPL-WFOLD2. We have, (a) C1 =
M{σ;κ;ψ; wfoldw (v1, v2, v3)}

(b) C2 = M{σ;κ;ψ; e}

(c) ψJwK = {p} ∪ w ′

(d) M = s(({p} ∪ w ′) ∪ w1)

(e) ψJv1K.M = v ′1

(f) ψJv2K.M = v ′2

(g) ψJv3K.M = v ′3

(h) e = let z1 = v ′1[p] in let z2 =
v ′3 v

′
2 p z1 in wfoldw ′(v ′1, z2, v

′
3)

(i) Γ `M wfoldw (v1, v2, v3) : τ2; ·

(j) Σ1 `M κ : ψJτ2K ↪→ τ

Inverting rule T-WFOLD on (i) we get,

(k) Γ `M v1 : Ww τ

(l) Γ `M v2 : τ2

(m) Γ `M v3 : τ2
·→ ps (ν ⊆ w ∧ singl(ν))

·→ τ
·→ τ2

Using Lemma A.16 on (k), (l), and (m), we get,

(n) . `M v ′1 : W ({p} ∪ w ′) (ψJτK)

(o) . `M v ′2 : ψJτ2K

(p) . `M v ′3 : (ψJτ2K)
·→ ps (ν ⊆ ({p}∪w ′)∧singl(ν))

·→
(ψJτK) ·→ (ψJτ2K)

We now consider typing of e from (h).

Using rule T-WPROJ, we get,

(q) . `M v ′1[p] : ψJτK; ·

Using rule T-APP we get,

(r) . `M v ′3 v
′
2 p z1 : ψJτ2K; ·

Using rule T-WFOLD we get,

(s) . `M wfoldw ′(v ′1, z2, v
′
3) : ψJτ2K; ·

And,

(t) ψJ(ψJτ2K)K = ψJτ2K

and hence stack typing (j) remains valid for C2.

STPC-LET. We have, (a) C1 = M{σ;κ;ψ; let x = e1 in e2}

(b) C2 = M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1}

(c) Σ1 ` σwf

(d) . `M

(e) Σ1 `M κ : ψJτ1K ↪→ τ

(f) Σ1 ` ψ ; Γ

(g) Σ1; Γ `M let x = e1 in e2 : τ1; ε

Invert rule T-LET on (g) to get,

(h) Γ `M e1 : τ ′1; ε1

(i) Γ, x : τ ′1 `M e2 : τ1; ε2

(j) ε = ε1, ε2

To prove Σ2 `M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1} : τ ,

we need to prove

(e) Σ2 `M κ :: 〈ψ; x .e2〉 : ψJτ ′1K ↪→ τ

i.e. (from rule rule TSTK-FRAME2) we need to prove,

(f) Γ, x : τ ′1 `M e : τ1; ε2

and

(g) Σ2 `M κ : ψJτ1K ↪→ τ

Choose Σ2 = Σ1, then (f) is same as (i) and (g) is same
as (e)

Thus (e) holds.

With (c), (d), (e), (f), (h) (effect delegation follows from
Lemma A.10 on (h)), we have

Σ2 `M{σ;κ :: 〈ψ; x .e2〉 ;ψ; e1} : τ

STPC-DELPAR. We have, (a’) M = p(w1 ∪ w2)

(a) C1 = M{σ;κ;ψ; let x
p(w ′)

= e1 in e2}

(b) C2 = p(w2){σ;κ :: 〈M ;ψ; x .e2〉 ;ψ; e1}

(c) ψJw ′K = w2

(d) Σ1 `M κ : ψJτ1K ↪→ τ

(e) Γ `M let x
p(w ′)

= e1 in e2 : τ1; ε

(f) Γ `M � ε

Inverting rule T-LET1 on (e) we get,

(g) Γ `p(w2) e1 : τ2; ε1

(h) Γ, x :p(w2) τ2 `M e2 : τ1; ε2

(i) ε = p(w2), ε2

(j) Γ ` p(w1 ∪ w2) � ε2

To prove C2 is well-typed, we need to prove:

(k) Γ `p(w2) e1 : τ2; ε1

(l) Σ1 `p (w2)κ :: 〈M ;ψ; x .e2〉 : ψJτ2K ↪→ τ

(k) follows from (g)

To prove (l), we need to prove:

(m’) Γ ` τ2 (follows from Lemma A.10 on (g).

(m) Γ, x :p(w2) τ2 `M e2 : τ1; ε

(n) Σ1 `M κ : ψJτ1K ↪→ τ

(m) follows from (h), (n) follows from (d).

STPC-DELSSEC. We have, (a) C1 =

m(w){σ;κ;ψ; let x
s(w ′)
= e1 in e2}

(b) C2 = m(w){σ;κ :: 〈m(w);ψ; x .e2〉 ;ψ; securew ′(e1)}

(c) Σ1 `m (w)κ : ψJτ1K ↪→ τ

(d) Γ `m(w) let x
s(w ′)
= e1 in e2 : τ1; ε

(d’) Γ ` m(w) � s(w ′)

Inverting rule T-LET1 on (d) we get,

(e) Γ `s(w ′) e1 : τ2; ε1

(f) Γ, x :m(w ′) τ2 `m(w) e2 : τ1; ε2

(g) ε = s(w ′), ε2

Inverting rule D-REFL or rule D-SEC on (d’) we get,

(h) Γ ` w ′ : ps (ν = w)

Using rule T-SECBLK on (h) and (e) we get,

(i) Γ `m(w) securew ′(e) : τ2; ε1

To prove C2 is well-typed, we need to prove,

(j) Σ1 `m (w)κ :: 〈m(w);ψ; x .e2〉 : ψJτ2K ↪→ τ

i.e.

(l) Γ, x :m(w) τ2 `m(w) e2 : τ1; ε2

and

(m) Σ1 `m (w)κ : ψJτ1K ↪→ τ

(l) follows from (f) and (h), (m) follows from (c).

STPC-SECENTER. We have, (a) C1 =
m(w){σ;κ;ψ; securew ′(e)}

(b) C2 = s(w){σ;κ;ψ; e}
(c) ψJw ′K = w

(d) Γ `m(w) securew ′(e) : τ1; ε

(e) Σ1 `m (w)κ : ψJτ1K ↪→ τ

Inverting rule T-SECBLK on (d) we get,

(f) Γ ` w ′ : ps (ν = w)

(g) Γ `s(w ′) e : τ1; ε

Proof now follows from (g), (f), and (e).

STPC-POPSTK1. We have, (a) C1 = N{σ;κ ::
〈M ;ψ1; x .e〉 ;ψ2; v}

(b) C2 = M{σ;κ;ψ1{x 7→m(w) v
′}; e}

(c) N = _(w)

(d) M = m(_)

(e) ψ2JvK.N = v ′

(f) Σ1 `N κ :: 〈M ;ψ1; x .e〉 : ψ2Jτ1K ↪→ τ

(g) Γ2 `N v : τ1

Inverting rule TSTK-FRAME1 on (f) we get,

(h’) Γ1 ` τ1
(h) Γ1, x :m(w) τ1 `M e : τ2; ε

(i) Σ1 `M κ : ψ2Jτ2K ↪→ τ

Using Lemma A.16 on (g) to get,

(j) . `N v ′ : ψ2Jτ1K

Using Lemma A.17,

(j’) . `N v ′ : ψ1Jτ1K

Use rule TENV-MAPP2 with (j’) to get,

(k) Σ1 ` ψ1{x 7→m(w) v
′}; Γ1, x :m(w) τ1

With (k), (h), and (i), we have the proof.

STPC-POPSTK2. Similar to STPC-POPSTK1.

Theorem A.3: (Sound simulation)

Let Σ ` C : τ , C1 −→ C2, C st, and slicew (C1) ; π1,
where w is the set of all parties. Then, there exists π2 s.t.
π1 −→∗ π2 and slicew (C2) −→ π2.

Proof: Case analysis on C1 −→ C2.

STPC-DELPAR. We have,

(a) C1 = p(w1 ∪ w2){σ;κ;ψ; let x
p(w ′)

= e1 in e2}
(b) C2 = p(w2){σ;κ :: 〈p(w1 ∪ w2);ψ; x .e2〉 ;ψ; e1}
(c) ψJw ′K = w2

(d) slicep(C1) ; p

{
σ′;κ′;ψ′; let x

p(w ′)
= e1 in e2

}
,

where slicep(σ) ; σ′, slicep(κ) ; κ′, and slicep(ψ) ; ψ′

when p ∈ w1 ∪ w2

(e) slicep(C1) ; slicep(m(w){σ;κ′;ψ′{x 7→m(w1∪w2)

©}; e ′}) when κ = κ′ :: 〈m(w);ψ′; x .e ′〉 or slicep(C1) ;

slicep(p(w1 ∪ w2){σ;κ′;ψ′{x 7→ ©}; e ′}) when κ = κ′ ::
〈ψ′; x .e ′〉

Consider p ∈ w1 ∪ w2. By Lemma A.21,

(f) ψ′JwK = w2

Case 1. p ∈ w2

Then it can take step using STPP-PRESENT to
p {σ′;κ′ :: 〈p({p});ψ′; x .e2〉 ;ψ′; e1} which is slice of
C2.

Case 2. {p} not in w2

Then it takes step using STPP-ABSENT to p {σ′;κ′;ψ′; e2}
which is slice of C2 using SLICECFG-ABS1.

Consider {p} not in w1 ∪ w2. These parties do not take a
step, and their slice remains same via SLICECFG-ABS1.

STPC-DELSSEC. In the protocol only secure agent takes
a step per rule STPP-SECSTEP and STPC-DELSSEC. All other
parties remain as is.

STPC-SECENTER. We have,

(a) C1 = p(w){σ;κ;ψ; securew ′(e)}
(b) C2 = s(w){σ;κ;ψ; e}
(c) ψJw ′K = w

(d) slicep(C1) ; p {σ′;κ′;ψ′; securew ′(e)} when p ∈ w

(e) For {p} not in w slice is by SLICECFG-ABS1 or
SLICECFG-ABS2.

For parties not in w , they do not take any step and easy to
see that their slice holds in C2 as well.

For parties in w , we first note that κ = κ1 :: 〈p(w);ψ′; x .e ′〉
(rule STOK-SECE).

Their slice in C2 is p {σ′;κ1; ·; wait}, where slicep(κ) ;
κ1.

The execution goes as: STPP-BEGIN, followed by STPP-
SECENTER for each p ∈ w .

STPC-POPSTK1. We have,

(a) C1 = N{σ;κ :: 〈M ;ψ1; x .e〉 ;ψ2; v}
(b) C2 = M{σ;κ;ψ1{x 7→m(w) ψJvKN}; e}
(c) M = m(_)

(d) N = _(w)

If p ∈ w , slicing in C2 follows easily (since parties in N
must be there in M , parties remain same or grow up the stack).

If {p} not in w .

Depending on whether {p} in M or not, we can prove the
slicing relation on C2 (if {p} in M but not in N , it cannot be
the case that either M or N is secure).

STPC-LET, STPC-LOCAL, STPC-DELPSEC. Similar to STPC-
DELPAR. In protocol, parties in w take same step, while others
do not.

Theorem A.4: (Confluence)

Suppose that π1 −→ π2 and π1 −→ π3, then there exists
π4 such that π2 −→ π4 and π3 −→ π4.

Proof:

Proof sketch: From Lemma A.22, if same agent (a party
or secure agent) takes step in π1 −→ π2 and π1 −→ π3, then
π2 = π3.

If different agents take step, then they can take correspond-
ing steps in π2 and π3 to reach π4.

A complete formal proof can be derived using case analysis
on π1 −→ π2 and π1 −→ π3.

	Introduction
	Overview of Wysteria
	Formal language
	Type system
	Operational semantics
	Single-threaded semantics
	Multi-threaded semantics

	Meta theory
	Implementation
	Experiments
	Related Work
	Conclusion
	References
	Appendix

