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Abstract

With increasing amounts of data being exchanged and even
generated or stored in XML, a natural question is how to per-
formOLAP on XML data, which can be structurally heterogeneous
(e.g., parse trees) and/or marked-up text documents. A core oper-
ator for OLAP is the data cube. While the relational cube can be
extended in a straightforward way to XML, we argue such an ex-
tension would not address the specific issues posed by XML. While
in a relational warehouse, facts are flat records and dimensions
may have hierarchies, in an XML warehouse, both facts and di-
mensions may be hierarchical. Second, XML is flexible: (a) an
element may have missing or repeated subelements; (b) different
instances of the same element type may have different structure.
We identify the challenges introduced by these features of XML for
cube definition and computation. We propose a definition for cube
adapted for XML data warehouse, including a suitably generalized
specification mechanism. We define a cube lattice over the aggre-
gates so defined. We then identify properties of this cube lattice
that can be leveraged to allow optimized computation of the cube.
Finally, we present the results of an extensive performance eval-
uation experiment gauging the behavior of alternative algorithms
for cube computation.

1 Motivation

Online analytical processing (OLAP) is one of the most
important applications in the relational database world.
As XML becomes widely adopted, its modeling flexibil-
ity makes it a natural for representing data that would be
less convenient to represent in (normalized) relational form.
A natural consequence of this is that XML data finds its
way into data warehouses, leading to the need for OLAP on
XML data.
Consider, for example, a business such as Amazon, stor-

ing data about the books that it sells, and their sales. Fig-
ure 1 shows a very small fragment of the sort of data one
may expect to see in such a warehouse. Note that the flex-
ibility of XML permits the second publication to have two
different values for year and the third publication to have no
publisher. This sort of heterogeneity is common in XML,
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and is to be expected not just in the context of books, but
also in other contexts, such as warehouses of information
based on electronic catalogs, or records of insurance claims.
The central operation in OLAP is the computation of ag-

gregates by group, for a variety of groups of interest. These
computations are frequently combined into the computation
of a data cube, based upon a multidimensional organization
of data. It is usually constructed by aggregating at differ-
ent granularities, groupings of data attributes viewed as di-
mensions. There has been considerable research on efficient
computation of (relational) data cubes [1, 5, 8, 19, 24].
Relational data cubes have certain properties, which are

assumed in cube specification and cube computation algo-
rithms. (1) Data is summarizable, in that a coarser aggregate
can be computed solely from corresponding finer aggre-
gates (e.g., a group-by on product is determined by group-
by on product, location), without access to base data. (This
issue arises regardless of the kind of aggregate functions
employed, which may even be distributive (like sum) or al-
gebraic (like avg)). (2) The number of groups for a group-by
is determined solely by the number of data values (e.g., the
number of product groups is determined by the number of
distinct products).
However, XML, which has a heterogeneous tree struc-

ture, is flexible and thus does not always comply with the
above assumptions. This raises both a computational
challenge and a semantic challenge for (the definition of)
an XML data cube. It is these challenges that this paper sets
out to address. We begin by elaborating on these challenges.

Computational Challenge: The tree structure of XML
allows for diversity in data representation which leads
to the invalidation of summarizability properties [15].
When summarizability does not hold across data to be
aggregated, traditional cube algorithms and optimizations,
which rely on this property, will not produce the correct
results. Specifically, the coarser level aggregates cannot be
computed from aggregating the finer level of aggregation
results (roll-up computation). Figure 1 shows a tree repre-
sentation of a publication database in XML. Element types
and attribute types are nodes. Text type is quoted under
an element node. An edge is a relationship between two
element nodes, a parent and a child. In this example, let us
assume that we want to count the number of publications
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Figure 1. Publication Database in XML.

grouped at all granularities (i.e., cube by) of author’s name,
publisher and year (assume that the @id attribute is a
unique identifier and used as the identifier for publications,
authors, and publishers). Summarizability is invalidated
here in two situations.
Firstly, the non-summarizability stems from a missing

association, allowed by an optional sub-element in the un-
derlying schema. In Figure 1, the third publication does not
have a publisher child (it is an online article); therefore, the
group-by year, publisherwill not contain the third publica-
tion. Clearly, if we employ the result of this finer group-by
to determine yearly count, i.e., the coarser group-by year
(the roll-up), we will miss the count of the third publica-
tion because the third publication is not counted in the finer
group-by year, publisher. Lenz et. al. [15] called this in-
completeness of dimension attribute(s) [coverage] relative
to the aggregate measure (in this example, the attribute is
publisher and the measure is publication count). This sit-
uation usually does not happen in the relational database
world, because database users often cope with it at the data
level by patching the missing values by a synthetic value
like ‘other’. In XML, the situation needs attention at the
evaluation and computation level because optional subele-
ments are normal.
Secondly, the non-summarizability stems from a repeat-

able sub-element. The first publication is a member of both
the groups (John, p1, 2003) and (Jane, p1, 2003). Then, the
group (p1, 2003) contains only the first publication and its
count should be one. However, the roll-up from the finer
level groups mentioned each count as one; added up, the
result is two, which is wrong. The roll-up of the group-by
publisher, year to publisher of the second publication ex-
hibits the same phenomenon because this publication has
2 editions. Lenz et. al. [15] called this a non-disjointness
of grouped partition relative to dimension (or group-by) at-
tribute(s) (in this example, the attribute is author; and thus
author’s name). Again, in the relational database world,
the OLAP data is usually modelled as a star or snowflake
schema. Each fact tuple is considered as a unique data item
that is described by a fixed group of attributes and different
instances of a given group-by are disjoint.
Semantic Challenge: In addition to violation of summariz-
ability, in XML, groups are determined not only by values,
being grouped at different granularities, but also by the het-

erogeneity of tree structures. Consequently, specification of
a group-by and indeed of a cube has to take this into ac-
count. We propose specifying the cube using a tree pattern
query. Figure 3(a) shows an example query. Obviously,
the third publication sub-tree in Figure 1 does not exactly
match the query tree (because of the presence of the sub-
element authors), and thus, not in the result set according
to the evaluation perspective alone. However, the group-by
author’s name, publisher and year as specified by the user
should semantically include the third publication. The so-
lution is to relax our query tree to also include the descen-
dant author. The purpose here is to increase the range of
data items at which we are looking. We want to be able
to catch the flexibility of the tree structure since a typical
data analyzer might prefer for relevant data items to appear
in his or her chart. This type of tree relaxation is called a
parent-child to ancestor-descendant generalization, because
the author could not be just a child sub-element but could
be a descendant. As another example, the fourth publica-
tion subtree does not match the query tree as well. One way
of including it in the range of the cube is to “promote” both
publisher and year sub-elements of pubData and delete
the pubData element which is now a leaf. These and other
similar tree relaxations will be discussed in section 2.2.
The main contributions of this paper are as follows:

• We propose a definition of an OLAP cube operator for
XML data that accounts for the great variability in the
tree structure of XML. (Sec. 2).

• We present algorithms for computing the cube ef-
ficiently. Our algorithms allow for the following
two kinds of violation of summarizability: non-
disjointness of grouped partition and incomplete cov-
erage of dimension attributes. (Sec. 3).

• We present a detailed empirical evaluation of our algo-
rithms on a variety of real data sets. (Sec. 4).

2 Query Model

2.1 Grouping Specification

XML data has a tree-structured model, and queries
against XML are often described in terms of tree patterns.
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In TAX [12] and several follow on works, grouping is spec-
ified by means of a grouping tree pattern. This pattern is
matched against the XML database. Whenever a match is
found, it is called a witness tree. TAX even has a structure-
based grouping operator.
Inspired by this, we will specify grouping in XML by

means of a tree pattern and a grouping list. The tree pat-
tern is used to create a set of witness trees. An equality
check is performed on corresponding nodes belonging to
the grouping list in each witness tree, and all witness trees
where these values match are placed into one group. The
witness trees grouped in the returned result sets need not
have the same pattern as the elements used to perform the
grouping.

@id
*

**
*

publication

year

publisher

@idname
author

Figure 2. The most relaxed fully instantiated XML tree
pattern providing results that cover the entire lattice for
Query 1. * designates left outer join.

For example, a simple tree pattern seeking a year node as
child of a publication node will match the first three pub-
lications in Figure 1, and actually match the second pub-
lication twice. If we now specify the value of year as the
grouping basis (by naming the year element in the grouping
list), then we get three groups. The first, for year 2003, has
the first and third publications in it. The two other groups,
for years 2004 and 2005, respectively, each have the second
publication. The fourth publication did not match the spec-
ified tree pattern (since year is not a direct child of publi-
cation) and hence is not included in any of the groups.

2.2 Tree Pattern Relaxation

Given the heterogeneous nature of XML data, it may
some times be difficult to specify a single grouping tree
pattern that will correctly match all the items that the user
wishes to group. At other times, the user may only have
a rough idea of the schema. Perhaps the slightly different
structure of the fourth publication in the example above is
something that the user wishes to ignore. To address sim-
ilar issues for ordinary (selection) queries, the idea of tree
pattern relaxation has been proposed [2].
We consider three forms of grouping tree pattern relax-

ation here:

1. Parent-Child to Ancestor-Descendant Edge General-
ization (PC-AD): is a relaxation of structural rela-
tionship between two elements from parent-child type

to ancestor-descendant type. For example, a pattern
publication/author will not match the third publica-
tion in Fig. 1 due to the intervening authors element.
However, the relaxed pattern publication//author will
match all four publications.

2. Sub-tree Promotion (SP): as described in [2], SP
moves a subtree rooted at a node n to be a child of
the grandparent of n, using the desc. axis. For exam-
ple, publication[./author/name] can be relaxed to the
tree pattern query publication[./author][.//name].

3. Leaf Node Deletion (LND): permits the tree pattern to
be considered matched even in the absence of a spec-
ified leaf element. For example, a tree pattern that in-
cludes publisher cannot be matched by the third pub-
lication in Fig. 1. But if this publisher node is made
optional, then it could match a tree pattern.

Leaf node deletion alone can be used to reflect the tra-
ditional cubing. To see cubing in operation, consider a tree
pattern with branching, e.g. publication as root with au-
thor and publisher as children. See Fig. 3(j). This pattern
groups publications by author and publisher. Eliminating
the author leaf node results in a grouping of publications
by publisher alone; eliminating the publisher leaf node re-
sults in a group of publications by author alone. Eliminat-
ing both leaf nodes gives us a group by nothing, placing all
publications into a single group.
We have seen that a single tree pattern relaxation, leaf

node deletion, can represent traditional cubing (roll-up and
drill-down). In addition, there are two more structural re-
laxations described above for which there is no relational
counterpart. These represent an additional degree of com-
plexity in semantics and in computation.

2.3 The Definition of Xˆ 3

It turns out that not all relaxations are suitable for every
query tree pattern. For instance, if the publisher element
has a child name, the sub-tree promotion of author’s name
will not return the name of the author, but also the name of
the publisher, which may not be what the user wants.
Furthermore, it could be the case that the user is not in-

terested in the full cube, but only in portions of it. In the
traditional cubing specification, such user requirements are
expressed by explicitly stating which dimensions to cube,
which to roll up, and which to leave alone.
We follow the same idea and augment the XQuery

FLWOR expression to include an Xˆ3 clause that explicitly
identifies the permitted relaxations with each relevant
variable in the grouping tree pattern, and ensure that the
RETURN clause identifies the aggregate function that
needs to be computed. This is illustrated in the following
example Query 1.
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for $b in doc("book.xml")//publication,
$n in $b/author/name,
$p in $b//publisher/@id,
$y in $b/year

Xˆ3 $b/@id by $n (LND, SP, PC-AD),
$p (LND, PC-AD),
$y (LND)

return COUNT($b).

This example is a formal specification from our running
example which simply says that we want a count of the
publication grouped by all relevant tree relaxation patterns
contributed by the author’s name, the publisher’s id and the
year.
The set of results to be produced comprise a lattice. Each

node in this lattice represents a cuboid, which is the set of
aggregates obtained for a particular grouping of the base
data. There is a global top of the lattice, comprising the
finest level of aggregation that is of interest, and a global
bottom comprising a coarsest level aggregation where all
entities are combined into a single group. An edge from a
node in the lattice to a node at a lower level in the lattice
represents a relaxation. (In the case of traditional cubing,
this relaxation is just the removal of a grouping dimension.
In the case of XML, it could be any of the relaxations dis-
cussed above.) Fig. 3 shows the complete cube lattice for
our running example Query 1.

3 Cube Computation

3.1 Background

Cube computation for relational data has been studied
extensively in the literature. The simplest technique is to
have a counter for each group. As each tuple is scanned, all
relevant counters are incremented. If the number of coun-
ters is small enough to fit in memory, this is an efficient,
single-pass algorithm. However, in most real cases, the
number of counters may far exceed the amount of available
memory. In this case, this simple counter algorithm will
thrash horribly as counters are paged in for each tuple in the
scan.
Better techniques have been devised to exploit the fact

that aggregates to be computed are not all independent Bot-
tom Up algorithms successively refine the data set – be-
ginning with a very coarse partitioning. At each stage, we
rely upon the fact that partitioning is hierarchical, that ev-
ery group in a finer partition is completely included in a
corresponding coarser partition. Top Down algorithms be-
gin by computing aggregates at the finest level first. Coarser
aggregates are obtained by summing up the relevant aggre-
gates one level up. The base data is not touched except for
the first time when fine aggregates are computed.

3.2 Xˆ 3 Lattice Properties

Relational cubing algorithms assume summarizability
properties in the data. These properties can specifically be
written as:

• Pairwise disjointness between instances in the cuboid.
A data element should occur in only one group in a
cuboid. E.g. a book with two authors, if grouped
by author, would be placed in two groups, and hence
would violate disjointness.

• Total coverage of a more relaxed cuboid by the union
of its adjacent less relaxed cuboids. If a book has no
author then it may not participate in any group when
grouped by author, and hence would violate coverage.

Each of these properties may independently hold (or not)
at every point in the lattice for an XML data warehouse.
We consider below, in turn, the impact of this property re-
laxation on each of the three families of cube computation
algorithms.

3.3 Counter-based Algorithm

Since each counter is incremented independently,
counter-based algorithms do not depend on the summariz-
ability properties. However, there still is a little bit of work
to do on account of there not being a simple notion of a tuple
in XML. When the sub-tree corresponding to one countable
element is being examined, it may turn out that it has sev-
eral values for some grouping attributes. This results in a
combinatorial number of counters being incremented for a
single sub-tree. E.g. a book may have multiple authors and
multiple editions. We then have to increment counters for
each combination of author and edition, among others.

3.4 Bottom-Up-based Algorithm

Bottom-up algorithms begin with the most relaxed
cuboid, and then gradually compute restrictions of it,
through recursive partitioning. In the absence of the dis-
jointness property, the restrictions may result not in parti-
tions but in overlapping sets. This requires that at each stage
in the recursive refinement, we consider all elements in the
child cuboid for each parent cuboid restriction, including
those that have already satisfied the restrictions for some
other children cuboids.
But there are more fundamental questions to address in

the context of XML – what are the “elements” that should
be in the sets corresponding to each cuboid? If some sub-
tree nodes are not included then the information for further
partitioning may not be available, and may require that the
database be accessed again to determine this information,
completely defeating the whole point of a bottom up cube
computation.
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Figure 3. An excerpt from the XML relaxed-cube lattice of XML cube query 1. Each sub-lattice is an XML query tree pattern.
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We note that groups corresponding to every lattice ele-
ment are defined by means of tree patterns. A typical way
to evaluate a tree pattern is to consider one edge at a time,
and evaluate the corresponding structural join. If we start
from the root node, and instantiate the tree pattern down,
one edge at a time, this is precisely what a bottom-up al-
gorithm requires, except that the intermediate result of the
partial match is also used for grouping and aggregate com-
putation.

The only remaining catch is that this works only for the
LND relaxation, which is the only one applicable to the re-
lational cube. We would also like to include the other types
of relaxations in this process. Towards this end, we de-
fine a most relaxed fully instantiated tree pattern, in which
all specified non-LND relaxations have been applied. The

most relaxed tree fully instantiated tree pattern for Query
1 is shown in Figure 2. Once we have found the set of
matches to this pattern, all other matches are subsets of it.
Therefore, the standard bottom up refinement process can
be used to compute restrictions of this set.
The above ideas can be applied to make suitable modifi-

cations to any bottom up cube computation algorithm. See
[23] to see how this applies to the algorithm in [5].

3.5 Top-down-based algorithm

Top-down algorithms compute the cube from a finer
level to a coarser level of aggregation. To be able to com-
pute the coarser level aggregate by merely adding up the
finer level aggregates, we require that there be no overlap
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between finer level aggregates (disjointness) and that the
coverage property hold. Even if the coverage property does
not strictly hold, it can usually be made to hold through
the introduction of a “null value” group in the less relaxed
cuboid. E.g. if there is a grouping of books with no authors,
then such books will be accounted for properly when we
compute the total number of books.
Disjointness is a more serious requirement. If disjoint-

ness does not hold, then it is no longer enough just to add up
the counts of the less relaxed groups. We need to keep track
of the identities of the elements in these groups to make
sure that we do not double-count. But that completely de-
feats the point of a top-down algorithm – we have to touch
as many elements as in the base data, rather than as many
as there are aggregates.
As in the case of bottom up, even in this case, the pres-

ence of various relaxations means that starting with the most
relaxed fully instantiated grouping tree pattern is of use.
The above ideas can be applied to make suitable modifi-
cations to any top down cube computation algorithm. See
[23] to see how this applies to the algorithm in [19].

3.6 Discussion

The above algorithm descriptions assumed that no inter-
mediate result is materialized. In many cases, we may be
better off to materialize some intermediate cube results. The
incompleteness of coverage directly affects the computation
from these intermediate results. The solution is to accom-
pany intermediate results that we will need at a later time
with the attributes to be aggregated (keeping track of fact
items), just as we had to for top down computation.
We saw above that there is a significant impact on com-

putational algorithm, and hence cost, due to the absence of
summarizability properties. We note, that even though we
cannot assume these properties in general, there certainly
are many instances in XML data where these properties
hold. It turns out that the algorithms above can be cus-
tomized, at each point of recursive refinement (or recursive
aggregation), to make local use of summarizability proper-
ties, even if these are not applicable globally. This motivates
the question how can we know when these properties will
hold.

3.7 Inferring Lattice Properties From The
Schema

In many cases, XML data comes with a schema (DTD
or XML Schema). The lattice properties are thus in-
ferrable from the knowledge of schema that is available.
For instance, see Query 1 in Fig. 3 (a). If the schema of
this XML data says that author element is possibly re-
peated, every lattice point that includes author element
does not have the disjointness property because the re-
peated author elements result in different witness trees. If
the schema says that the publisher element can be miss-

ing, total coverage property will not hold between (par-
ent and child) lattice points that include publisher , e.g.
//publication/publisher[./author/name][.year] → //publi-
cation/publisher[./author/name] (applying LND to year).
As another instance, if the schema says that every path
from publication to name goes through author, then
lattice points - //publication/author/name and //publica-
tion//name - (which is obtained after applying SP name and
LND author) have the same coverage.

4 Experimental Evaluation

Rather than implementing cube algorithms in a stan-
dalone mode, we implemented the three cube algorithms
discussed in this paper in C++ on the TIMBER native XML
database [11]. The XML data file was loaded into TIM-
BER, and evaluated using the available structural join algo-
rithms. In this section, we report results from the COUNT
operation only (other distributive and algebraic operators
are expected to produce similar results). TIMBER was
run on a single processor PentiumM 1.6GHz equipped with
1Gbyte of memory, 60GBytes of disk storage and Windows
XP Pro operating system. The buffer pool size was set to
512Mbytes and data page size was configured to 8Kbtyes.
We experimented with two very different datasets. The

first dataset that we used is the TreeBank dataset from UW
Repository [21]. TreeBank has an average depth of 8, and
the maximum depth is 36. When loaded in TIMBER, the
data size is 576 Mbytes including necessary indices, with
two and a half million elements. The second dataset is the
DBLP XML records [6] that has 6 million elements, and
maximum depth of 7. The DBLP data size is 1GByte in-
cluding indices when loaded. Treebank is a highly hetero-
geneous recursive dataset and thus can be used to create
different types of cubing load scenarios based on the spec-
ification. DBLP, on the other hand, is much more regular.
It is not deep at all and has a fixed number of elements that
are missing or repeated as suggested by its DTD.
To measure the time of the cube operator accurately, we

pre-evaluated the query tree pattern, and materialized the
results into a file. The file was then read in and the cub-
ing was performed. The results were written into files. All
data partitioning and sorting used the quicksort for an in-
memory sort, and the mergesort for an external sort. All
running times were measured with a cold cache and include
both the I/O time and the CPU time.
The counter-based algorithm is denoted as COUNTER.

The bottom-up algorithms implemented are the non-
collapsing XMLized versions of [5]. There are two versions
of bottom-up algorithms: BUC is the XML-aware relaxed
tree pattern version in which overlapping data is taken care
of, and BUCOPT is the optimized version of BUC which
will exploit the fact that there is no overlap between chil-
dren of a lattice node (disjointness holds). Recall that we
do not have an optimized version when total coverage holds,
because the bottom-up computation is not affected by this
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property. The top-down algorithms are XMLized versions
of the PartitionCube/MemoryCube algorithm in [19]. TD
is the standard (unoptimized) version. TDOPT is the op-
timized version that saves work by exploiting disjointness.
TDOPTALL is the optimized version when both disjointness
and total coverage hold globally. TDOPTALL, in particular,
makes use of the computation from finer level. Note that
it is not possible to get an optimized version of TD when
disjointness does not hold but total coverage holds because
the identifier of the data must be retained (to eliminate du-
plicates), and that would require as much work as going
through all input trees.
Given the heterogeneity of Treebank dataset, we con-

figured each experiment by controlling the behavior of the
matching input trees according to two properties of summa-
rizability: total coverage and disjointness. Treebank is an
encrypted text data from WallStreet journal, so we grouped
a marked-up element by the value of the marked-up text un-
der it, and by the pattern of the marked-up elements.
Our key interest is in the impact of the two summariz-

ability properties. We study three cases. First, we study
the performance when disjointness property holds, but total
coverage does not hold. Second, we study the case when
both summarizability properties hold. Last, we consider the
case when neither summarizability properties holds. We do
not report results for the fourth case, where total coverage
holds but disjointness does not, since no algorithm is able to
benefit from the total coverage property in this case, lead-
ing to performance as if neither summarizability property
holds.
For each of these three cases, we generate data sets that

lead to dense cubes (lots of data points aggregated in each
data cube cell) and those that lead to sparse cubes (many
cube cells have no data points at all)1.
For each of these six settings (three times two), we report

results for all five algorithms. Along the X-axis for each
graph, we plot the number of axes used. (An axis represents
one path binding in the cube specification or one dimension
in relational cube, e.g. $n in $b/author/name. All axes had
the same input cardinalities). Running time in seconds is
plotted on the y-axis.

4.1 Total Coverage does not Hold, Dis-
jointness Holds

We controlled the input to have disjointness of group-
ing data by writing queries against the Treebank dataset
that filter out duplicates within each group data so that BU-
COPT and TDOPT can correctly be applied at every node.
The cube result size ranged from 135 thousand to 19 mil-
lion cells. Fig.5 shows the result of computing cubes using
different algorithms from 105 input trees. Fig.6 shows the
performance in computing cubes that are relatively denser
1The cube is sparse when the product of the cardinalities for group-

by(s) is large relative to the number of tuples that actually appear in the
result. Otherwise, it is called dense. Typically the cube gets more sparse
when the number of dimensions increases. [5].
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Figure 4. Performance in seconds for computing sparse
cubes from Treebank 104 input trees with total coverage
does not hold, disjointness holds.
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Figure 5. Performance in seconds for computing Sparse
Cube, 105 input trees with total coverage does not hold,
disjointness holds.

than Fig.5. We made the cube dense by grouping only the
first character of the marked-up text and choosing the ele-
ments that has lesser value range. Note that TD, TDOPT
and COUNTER did not finish in a reasonable time (10,000
secs) for 7 axes in Fig. 6. This is why the corresponding
curves stop at 6 axes in the figure.
The counter-based algorithm is as fast as, or faster than

other algorithms when the cube is small and so fit in mem-
ory. The bottom-up algorithm is well-known for its abil-
ity to perform well in computing sparse cubes as we see
here. However, the top-down algorithm cannot outshine in
computing dense cubes because elements in the XML in-
put were possibly missing. Without the benefit to compute
finer level aggregates from coarser level aggregates that are
smaller than base data, TD (as well as TDOPT) is even
worse than the counter-based algorithm due to the exponen-
tial number of (external) sorts required.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 922



0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2 3 4 5 6 7
# of Axes

Ru
nn

in
g 

Ti
m

e (
Se

co
nd

s)

COUNTER BUC BUCOPT
TD TDOPT

Figure 6. Performance in seconds for computing dense
cubes from Treebank 105 input trees with total coverage
does not hold, disjointness holds.

4.2 Total Coverage and Disjointness Hold
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Figure 7. Performance in seconds for computing sparse
cubes from Treebank 105 input trees with total coverage and
disjointness hold

Fig. 7 and Fig. 8 show time to compute sparse and dense
cubes at 105 number of matching input trees. The per-
formance is similar to that shown previously for relational
cubes, i.e. the bottom-up algorithms are good for sparse
cubes, and the top-down algorithms are good for the dense
cubes. Since both summarizability properties hold, we were
able to run the TDOPTALL algorithm rather than merely
TDOPT.
Since the degree of relaxation in this setting is one step

less than the first setting, the average cube size is smaller,
and the computation is faster. The cube result size ranges
from 8 thousand to 6 million, smaller numbers than the first
setting as they have lesser degree of relaxation. Even so,
some of the algorithms failed to finish for the 7 axes case.
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Figure 8. Performance in seconds for computing dense
cubes from Treebank 105 input trees with total coverage
and disjointness hold

4.3 Total Coverage and Disjointness do
not Hold
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Figure 9. Performance in seconds for computing dense
cubes from 105 Treebank input trees with total coverage
and disjointness do not hold.

If summarizability does not hold, BUC and TD (un-
optimized) are the only choices. The results for sparse data
are very close to those shown in Fig. 5, and we omit these.
However, for dense data we see some differences from

the corresponding Fig. 6, and thus show the new results ex-
plicitly in Fig. 9.
Even though optimized versions of the algorithms com-

pute incorrect results, due to the summarizability properties
not holding, we still ran them, just to see what the running
time would be. BUCOPT and TDOPT did not provide much
performance benefit, in spite of computing wrong results!
But TDOPTALL did very well indeed, exploiting the dense
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Figure 10. Performance of computing a cube /article by
/author, /month, /year, and /journal on the DBLP dataset.

cube well. Of course, the results it computed were not cor-
rect, so the performance is moot. COUNTER did compara-
ble to TDOPTALL, at least for low dimensions, but suffered
from the usual exponential meltdown as the dimensionality
grew higher.

4.4 Scaling Experiment

Fig. 4 and Fig. 5 show our scalability experiment of a
sparse cube for input trees size of 104 and 105, respectively,
when total coverage does not hold but disjointness holds.
Reports on scalability test from other settings are omitted as
they exhibit similar trends. (Actually, this is a scale down
experiment, since we reported the full scale numbers for all
the other cases already).
It is no surprise that larger data sizes require proportion-

ately longer running time. What is more interesting is that
the benefits of the optimized versions of the algorithms is
greater at larger scale. Also, the counter-based algorithm
runs out of memory and begins thrashing for a smaller num-
ber of axes (on which the cube size is exponentially depen-
dent) when the input data set size increases.

4.5 DBLP Experiment

The DBLP dataset has better defined structure, and
richer semantics, than the Treebank dataset. We used this
dataset for an experiment involving customized optimiza-
tion. Rather than globally requiring summarizability prop-
erties to hold, we developed new versions of the bottom
up and top down algorithms, called BUCCUST and TD-
CUST, respectively, which locally exploited summarizabil-
ity properties at nodes where these held, but ran the full
(unoptimized) algorithm at other nodes. Thus, these algo-
rithms were able to obtain the benefits of optimization with-
out computing incorrect results.
In Fig. 10 we show results from running one represen-

tative query: cube articles by /author, /month, /year, and

/journal. The number of input trees is 220 thousand. For the
DTD of DBLP, we know that author is possibly repeated
and missing, year and journal are mandatory and unique,
and month is possibly missing.
The DBLP cube is dense, and the dimension number is

low (4), so it is not a surprise the COUNTERwins. More in-
teresting, we find that BUCCUST has performance signifi-
cantly better than BUC, while still producing correct results,
which the even faster BUCOPT does not. Similarly, TD-
CUST does a little better than TD, but not as well TDOPT,
let alone TDOPTALL, neither of which computes the cor-
rect result.

4.6 Performance Summary

Overall, the graphs show the following points. The
counter-based algorithm is always optimal when the cube
(our counters) is small enough to fit in memory, which is the
case when the number of axes is small. When the cube is
large, the counter-based algorithm will start to thrash, and
even not be able to finish in one pass (because we ran in
Windows OS, and so, a process cannot allocate more than
2GBytes)(e.g. in Fig. 5, at 6 axes, we had to do 2 passes,
at 7 axes we needed 5 passes). The top-down based algo-
rithm incurs more overheads when the total coverage does
not hold, because the efficiency of the algorithm relies heav-
ily on the computation of a coarser aggregate from finer ag-
gregate without keeping individuals around. For sparse data
cubes, BUC is a clear winner, as in the relational case. But
when the summarizability properties do not hold, particu-
larly for dense cubes, we may have no choice but to use
COUNTER.
In summary, summarizability together with cube charac-

teristics determine the choice of the algorithm. The bottom-
up algorithm is best in average for a high dimensional cube.
The counter-based is best for a low dimensional cube. Only
if the cube is dense and total coverage is known to hold that
we can efficiently use the top-down algorithm. Knowing
that disjointness holds does also improve the performance
for both the top-down and the bottom-up algorithms. Hav-
ing the knowledge of the schema enables us to take ad-
vantage of the summarizability that holds at certain lattice
points.

5 Related Work

The cube operator was introduced in [9] and has since
been studied extensively in the literature. Many algorithms
have been proposed for fast cube computation, including
[1, 5, 8, 19, 24].
The need to allow flexibility in the dimension axes of

data warehouses was elucidated in [13]. Considering over-
lapped data and missing data as uncertainty and imprecision
problems in the database, D. Burdick et. al. [3] incorpo-
rated statistical criterion into the OLAP data model. The
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aggregation operators were modified to produce results that
correspond to the statistical measures.
Grouping in XML was first discussed in [18], and has

since been carefully worked out in [7]. OLAP cube spec-
ification for XML that embeds into XQuery and the ag-
gregation operator were defined in [22]. Beyer et. al. [4]
proposed an XQuery extension of explicit group-by clauses
to accommodate advanced analytic queries. Issues of ag-
gregate computation have been studied in [10, 15]. They
identified conditions for summarizability to characterize the
OLAP and statistical data. Having complex summarizabil-
ity involved, [10] extended the multidimensional model to
support data heterogeneity.
Structural relaxation for XML querying has been studied

by several authors [2, 14, 16, 17, 20].

6 Conclusion And Future Work

As XML becomes the data interchange standard, it is a
natural candidate for storing heterogeneous data in a ware-
house. The use of XML in this context raises both seman-
tic and computational challenges, due to the flexible tree-
structuring of XML. We address these challenges in this pa-
per, with focus on the computation of a data cube. We de-
veloped a conceptual model of aggregate relaxation that is
appropriate for XML data cube computation. We identified
the summarizability properties crucial to efficient computa-
tion of such relaxation. We developed variants of standard
data cube computation algorithms that could compute the
correct results even without the benefit of summarizability.
We showed that certain families of cube computation algo-
rithms required certain summarizability properties for ef-
ficiency, so that the choice of algorithm should be dictated,
unlike in the relational context, by the semantics of the cube
being computed. Automated determination of lattice prop-
erties from available schemas that helps choosing and op-
timizing cube computation algorithms is a natural direction
for future exploration.
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