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Abstract. Near-memory acceleration strives to tackle the data-to-task
locality issue in MPSoCs in order to obtain higher performance and
lower power consumption. However, it is not easy to determine whether
the advantages arise from the near-memory integration or the hardware
acceleration (versus software execution). We propose X-CEL, a method
to accurately estimate the potential of near-memory acceleration using
an easy-to-integrate near-memory core. We showcase X-CEL’s benefits
with three variants of graph copy mechanisms in a tile-based MPSoC.
Evaluations reveal that the estimated speedup is in good accordance with
the actual speedup achieved by the near-memory accelerator.

Keywords: Data-to-task locality · Near-memory acceleration · Design
space exploration · Graph copy · Tile-based MPSoC

1 Introduction

The performance and power consumption of today’s MPSoCs are dependent on
data-to-task locality more than ever. A significant amount of energy and time is
nowadays spent on data transfers between processor cores and the main memory,
especially for memory-intensive applications, which are dominated by data access
and movement [3,10]. Conventionally, sophisticated cache hierarchies are used
to improve data-to-task locality by bringing data closer to the processor cores,
thus lowering memory access latencies and the energy footprint. However, their
benefit is decreasing due to the emergence of large, irregular and cache-unfriendly
datasets, utilized by today’s and future applications [10]. The locality challenge
becomes worse when shifting towards tile-based manycore architectures, as on
these the distance between physically distributed cores and memory grows.

Many recent approaches therefore leverage in- or near-memory computing
to bridge the widening gap between processors and memory [1,16,22,25,27].
The majority of them use near-memory accelerators (NMAs), which perform
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their task both close to memory, as well as in a dedicated hardware module
(either near the memory or as a specific accelerator layer in a 3D-stacked circuit).
NMAs usually achieve a higher computational density and performance than a
software solution while saving energy and resources at the same time. On the
other hand, they sacrifice the flexibility of general-purpose computing and every
new accelerator requires a significant hardware development effort.

However, it is not always clear which portion of the performance advantage of
the NMA originates from the location (i.e., near-memory integration) or type of
function implementation (i.e. software execution versus hardware acceleration).
The impact of either one of the two effects is highly dependent on the applica-
tion and the underlying system architecture. To determine the optimal design, it
is therefore essential to analyze the influence of both effects on multiple impor-
tant user- and case-specific decision criteria, such as: performance, power consump-
tion, resource usage, design effort, flexibility (general- vs. fixed-purpose), system
or accelerator utilization, etc. The analysis whether 1. a near-memory integration
(near-memory core or near-memory accelerator) is beneficial at all, 2. a dedicated
hardware accelerator can outperform a software-programmable core for the given
task, or 3. whether only the combination of both achieves a speedup, is crucial to
avoid unnecessary and costly development effort. However, it is not trivial to quan-
titatively predict the effect of the individual optimizations before implementing
and measuring them. Further, it has to be determined if a near-memory core or
accelerator can handle the workload which is outsourced to it by many cores.

Therefore, a method for speedup estimation which helps the developer to
make early yet robust design choices would be of much benefit. Conventionally,
a design space exploration (DSE) is mostly performed on a virtual prototype
(i.e. simulation-based) or an FPGA-based prototype [8,19]. Both need at least
an accurate model or an implementation of the NMA, which already requires a
good amount of development effort if the DSE is expected to yield conclusive
results. To avoid this effort, we envision an orthogonal approach that could be
applied to both virtual and FPGA-based prototyping. We therefore

– propose X-CEL, an agile, measurement-based method to estimate the
speedup potential of near-memory accelerators in a tile-based MPSoC,

– showcase X-CEL with a case study of three graph copy mechanisms (two of
them are near-memory),

– and provide an in-depth evaluation of this case study.

This agile development method builds on actual measurements of an intermedi-
ate, easy-to-integrate near-memory core implementation. With the intermediate
stage, we achieve a better estimation of the target design (near-memory acceler-
ator) because in it the near-memory dimension (i.e. location) has been decoupled
from the accelerator dimension (i.e. type of function implementation).

The rest of the paper is organized as follows: Sect. 2 describes the related
work. In Sect. 3, we present X-CEL followed by the case study in Sect. 4. Section 4
is divided into a description of the showcase scenario (Sect. 4.1 and 4.2) and how
we apply X-CEL to it (Sect. 4.3). We further perform an in-depth analysis of the
evaluation results in Sect. 5, before concluding in Sect. 6.
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2 Related Work

Our work is closely related to design space exploration (DSE) of heterogeneous
systems. As Sangiovanni-Venticelli et al. strive to do in their platform-based
design method [23], we place our approach early in the design phase.

During a DSE run, the DSE needs to be able to evaluate the performance of
each considered design point. Conventionally, it follows either a simulation-based
or analytical method as defined by Pimentel [19]. When a custom hardware unit
is part of the system, both of these methods need a model of that unit to be
developed beforehand. Reagen et al. [21] and Altaf et al. [2] demonstrate this
approach for the simulation-based and analytical methods, respectively.

There is also the measurement-based evaluation method, but Pimentel asso-
ciates this with a prohibitively high development overhead. This is because
instead of a (simplified) model of the custom hardware, the evaluation now
needs a full prototype.

Our approach, however, is orthogonal to conventional DSE and allows us
to bypass the need to develop a model or prototype beforehand. As we target
near-memory acceleration (NMA), we extrapolate its performance by leverag-
ing measurements of an easy-to-integrate, software-programmable near-memory
core, without the need for the actual accelerator.

Recently, there has been much interest in NMAs for numerical applications
[16,25], graph processing [11], and system software [27]. For dealing with object
graphs, Maas et al. presented an accelerator (albeit not an NMA) to speed up
tracing garbage collection [13]. Rheindt et al. specifically targeted the problem
of copying object graphs with an NMA [22], which is also the focus of our paper.

There are also sophisticated software-only approaches to efficiently copy
object graphs without costly (de)serialization: Mohr et al. [14] presented Pegasus,
which targets embedded MPSoCs, while Skyway by Nguyen et al. [17] optimized
object graph transfers over networks.

3 X-CEL

X-CEL is a measurement-based method to estimate and analyze the speedup
potential of near-memory accelerators in tile-based manycore architectures. To
be able to conquer the complexity of this endeavor, we propose an agile two-
stage approach, which separates the near-memory from the hardware accelerator
dimension. This decoupling of both effects allows us to make a better estimation.

Our method categorizes the activity of a parallel application scenario run-
ning on an MPSoC into three parts: 1. the task of interest (TOI), which would
benefit from near-memory computing and which is often memory-intensive, 2.
all remaining tasks of the application, and 3. idle time of the cores. Figure 2
illustrates this for a parallel application running on Ncpu cores. As depicted and
defined in Fig. 2, ttoi and tother are the accumulated times over all application
cores executing the task of interest and the remaining tasks, respectively. The
TOI can either be given as a design choice to be explored/analyzed or it can
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Fig. 1. X-CEL reduces the
design space exploration com-
plexity by one dimension.

Fig. 2. Example manycore application scenario
including definitions of ttoi, tother, tidle and tapp.

be determined through application profiling, e. g. last-level cache misses indicate
which task(s) have the most DRAM accesses.

The idle times arise from sequential parts of the application, limited paral-
lelism, data dependencies, as well as inter-thread communication and synchro-
nization overhead. If there are several different tasks of interest, X-CEL could
also be individually applied to them to analyze the speedup potential of each. In
the following, we assume one task of interest which is executed multiple times
throughout the application.

The tile-based manycore architecture we consider (an example is depicted in
Fig. 4), contains a main memory, a two level cache hierarchy, many cores and
potentially a software-programmable near-memory core (NMCore) or dedicated
hardware near-memory accelerator (NMA). Thus, we can differentiate between
three implementation variants: 1. baseline (far-from-memory & without accel-
erator): the task of interest (TOI) and all others tasks are executed parallelized
on the far-from-memory cores, 2. NMCore (near-memory, but without accel-
erator): the task of interest is executed near-memory on the near-memory core,
while all others tasks remain on the distributed cores, and 3. NMA (near-
memory & accelerated): similar to NMCore, but the task of interest is offloaded
to the near-memory hardware accelerator.

Beginning with the existing baseline variant, X-CEL introduces and leverages
an agile development step via the NMCore variant. The near-memory core serves
well as an intermediate step in the two-stage estimation since it has negligible
development effort compared to the near-memory accelerator: The existing soft-
ware algorithm of the TOI just needs to be executed on an additionally instan-
tiated core. This offloading needs to be properly synchronized with the rest of
the system. As depicted in Fig. 1, X-CEL decouples the near-memory from the
hardware acceleration dimension. In contrast, an estimation of the NMA using
the baseline measurements would incorporate a change of both dimensions at
the same time. This would be a difficult endeavor in such a complex system
with many superposed effects of MPSoCs and parallel programming. Therefore,
a refined estimation based on the NMCore variant is more promising because
the near-memory dimension is fixed due to the same location of the NMCore
and the NMA in the architecture.
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Fig. 3. Flowchart showing the steps of X-CEL

Our proposed X-CEL method thus follows the steps depicted in Fig. 3:

Step 1. Identify the task of interest (TOI) of the application scenario that
could benefit from near-memory acceleration. In case of more than one TOI,
apply X-CEL either individually or in a combined manner to them.
Step 2.1. Execute the baseline variant and measure the accumulated CPU time
of all application cores taken by the task of interest tbasetoi , all other parts of the
program tbaseother, as well as the overall runtime tbaseapp .
Step 2.2. Determine a first speedup estimate S 1

est of the NMA variant using the
baseline measurements. Given that only the TOI is accelerated, while the rest
of the application remains untouched, an upper bound estimate is given by:

S 1
est =

tbaseother + tbasetoi

tbaseother

(1)

Step 3. If S 1
est ≈ 1, the TOI has a negligible fraction of the total execution

time. There is thus no speedup potential through near-memory computing and
the baseline variant can be used. If, however, S 1

est > 1+εsat, where εsat expresses
a user-defined satisfying margin, we consider it worthwhile to speedup the TOI
with near-memory computing. However, the confidence of this first stage esti-
mate S 1

est is not very high, as the estimation for the near-memory accelerator
is based on the baseline variant which is neither near-memory integrated nor
accelerated. Therefore, we refine the estimation in the next steps.
Step 4.1. Integrate the near-memory core (NMCore) variant.
Step 4.2. Execute this variant and measure the respective times of the different
tasks tnmc

toi , tnmc
other, as well as the overall runtime tnmc

app .
Step 4.3. Determine the actual speedup of the NMCore variant relative to the
baseline implementation:

Snmc
act =

tbaseapp

tnmc
app

(2)

Step 4.4. Analyze whether the near-memory core becomes a bottleneck by
monitoring its utilization. If tnmc

toi ≈ tnmc
app , meaning the NMCore is utilized almost
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during the whole execution time of the application, the use of a second near-
memory core might be an option. However, as commonly known, interleaved
accesses of several cores to the same DRAM memory bank can even deteriorate
the performance due to row conflicts. We experienced this behavior and hence
employ only one near-memory core.
Step 4.5. Based on the NMCore measurements, refine the speedup estimate for
the NMA compared to the baseline variant:

S 2
est =

tnmc
other + tnmc

toi

tnmc
other

· Snmc
act (3)

As the NMCore and the NMA are located in the same position in the architec-
ture, this second stage estimate is invariant to the near-memory dimension. It
therefore promises a higher confidence.
Step 5. Compare the actual speedup achieved by the NMCore variant Snmc

act

(Step 4.3) with S 2
est (Step 4.5), which is the refined estimation for the NMA

speedup potential. Both are relative to the baseline variant and thus directly
comparable. If S 2

est ≈ Snmc
act , there is no remaining speedup potential for the

hardware accelerator and the near-memory core is sufficient. If S 2
est > Snmc

act +
εrem, where εrem expresses a big enough remaining speedup margin, the near-
memory accelerator should be considered. However, the development effort and
the required hardware resources of the NMA should not be neglected in this
decision.
Step 6. Develop and implement the near-memory accelerator.
Step 7. Finally, measure the NMA variant and perform an analysis of how close
both estimates S 1

est and S 2
est approach the NMA variant.

4 X-CEL Case Study

This section presents a case study of X-CEL applied to near-memory graph copy.
We first motivate the choice of near-memory graph copy as a showcase scenario
(Sect. 4.1) and describe the prototype and benchmark setup of our case study
(Sect. 4.2), before applying X-CEL to it (Sect. 4.3).

4.1 Motivation for Near-Memory Graph Copy

As mentioned in Sect. 1, data-to-task locality and the reduction of data move-
ment is especially challenging on tile-based manycore architectures. Although
parallel applications and operating systems help to exploit the increased scala-
bility, they often impose significant overhead for inter-tile communication, data
transport and thread synchronization. Common communication patterns of par-
allel applications, libraries, and operating systems require the transfer of arbi-
trary data to remote tiles and its subsequent processing there. As tile-based
architectures often omit hardware support for inter-tile cache coherence and
consistency [4,5,12], inter-tile communication (data transfer and thread synchro-
nization) has to be handled explicitly via e. g. message passing (e. g. MPI [15])
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Fig. 4. Tile-based architecture.

or partitioned global address space (PGAS) programming (e. g. X10 [24] or
Chapel [7]). These models have in common that they require data transfers
between the memory partitions associated with each processor. These architec-
tures therefore normally provide direct memory access (DMA) engines to support
efficient transfer of data.

However, if object oriented programming (e. g. Java, X10, Chapel) is used,
the data to be copied will be object graphs consisting of objects pointing to
each other. These pointered data structures cannot be directly copied by a
DMA engine since all copied pointers would become invalid. Since it is crucial
for the performance of object-oriented applications on such architectures, many
approaches optimize the transfer or handling of object graphs [13,14,17,22].

As one of them (Pegasus [14]) uses neither near-memory integration, nor
hardware acceleration, it serves well as a baseline implementation in the case
study. Another state-of-the art implementation of the same mechanism (NE-
MESYS [22]) on the other hand leverages full near-memory acceleration. Both
approaches target a MPSoC architecture as well.

4.2 Prototype and Benchmark Setup of the Case Study

We use a tile-based manycore architecture synthesized on a multi-FPGA system
consisting of four Xilinx Virtex-7 2000T FPGAs [20]. The 4 × 4 tile MPSoC
prototype design consists of up to 15 compute tiles and one memory tile, which
is located at grid position (1,1). Figure 4 depicts the top-left-most 2 × 2 part of
the whole design.

Each compute tile contains 4 cores (Gaisler SPARC V8 LEON 3 [6,26] pro-
cessors) with private L1 caches. They are configured in write-through mode
and kept intra-tile coherent by a classical bus snooping coherence scheme. The
LEON 3 cores further use branch prediction and a floating-point unit. Each
compute tile is further equipped with an L2 cache, which caches accesses to the
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Table 1. Cache and memory parameters.

Parameter Value Parameter Value

L1-I cache sets 2 LEON 3 freq. 50 MHz

L1-I cache set size 16 kByte L1 & L2 cache freq. 50 MHz

L1-I cache line size 32 Byte TLM freq. 50 MHz

L1-D cache sets 2 MEM ctrl freq. 100 MHz

L1-D cache set size 16 kByte NMCore freq. 50 MHz

L1-D cache line size 16 Byte NMA freq. 100 MHz

L2 cache sets 4 Local-DMA freq. 100 MHz

L2 cache set size 128 kByte L1 cache policy Write-through

L2 cache line size 32 Byte L1 hit time 1 cycle

L2 cache policy Write-back L2 hit time 20 cycles

Tile-local memory (TLM) 8 MByte L2 miss time 90 cycles

Main MEM 2 GByte TLM acc. time 20 cycles

remote main memory, and a tile-local memory (TLM), which holds the program
text, OS data, and temporary user data.

The memory tile is additionally connected to the off-chip DDR-3 main mem-
ory and also contains the near-memory core (LEON 3 core with L1 cache) or
accelerator (NMA) if present.

A network adapter (NA) connects the tiles to the NoC routers and carries out
the remote load-store operations received from the L2 cache back-end. Besides
that, the NA can forward remote task invocations and trigger commands to
the NMA. Table 1 gives an overview of the core, cache, accelerator and memory
configuration parameters.

A distributed operating system [18] which is able to exploit the described
hardware features runs on the FPGA prototype. We use the X10 IMSuite bench-
marks [9] – a collection of distributed parallel kernels using the PGAS model –
in the same configuration as [22].

4.3 X-CEL Applied to Near-Memory Graph Copy

To demonstrate X-CEL, we now apply it to the above-mentioned graph copy
problem on this tile-based manycore architecture. In this section, we pick one
(MinimumSpanningTree, MST) out of the twelve IMSuite benchmarks and run it
on 15 compute tiles (MST-15) to showcase the different steps of the framework.
For a complete study of all twelve benchmarks and different number of compute
tiles, refer to the evaluation in Sect. 5.

InStep 1 of the framework, we identify the memory-intensive graph copy oper-
ation as the task of interest (TOI). This task is part of the inter-tile communication
routine of the runtime systemand therefore occurs during the execution of any kind
of parallel application on our system. As outlined in Sect. 3, our goal is to decide
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whether to perform this graph copy operation on a core in the receiving compute
tile, on the near-memory core, or on a near-memory accelerator (see Fig. 4).

In every variant, the sending processor first needs to ensure that the latest
version of the object graph G is in main memory. Since our architecture does
not provide inter-tile cache coherence, the processor traverses G and explicitly
writes back all necessary cache lines. After the write back on sender side and
the invalidation on destination side, both the receiving processor and any near-
memory processing elements now have a consistent view of G, and the copying
operation can begin.

In the baseline variant, the receiving processor itself does the graph copying
[14]. Here, the complete object graph needs to be cloned remotely via the cache
hierarchy and the NoC from the source memory partition S to the processor and
back to the destination memory partition D. The operation is indicated in Fig. 4
with the beige arrow. This limits performance and pollutes the receiver’s caches
with the source graph. On the other hand, this approach requires no additional
hardware and the newly copied data is available in the receiver’s cache right
away.
Steps 2.1–2.2. We execute the baseline variant, which yields the following
measurements:

tbasetoi tbaseother tbaseapp S 1
est

MST-15 32.66 s 27.16 s 14.32 s 2.20×

Note, that ttoi and tother are accumulated times over all cores, as defined in
Fig. 2, while tapp is not.
Step 3. As the speedup potential S 1

est = 2.20× > 1 + εsat is satisfyingly large,
we go on to analyze the near-memory core variant.
Step 4.1. We implement the NMCore variant, where the memory-intensive
graph copy is outsourced to the near-memory core. The near-memory core per-
forms the same software graph copy algorithm as the baseline variant. A negligi-
ble effort is required to integrate the near-memory core in the system, schedule
the existing graph copy software algorithm on it and maintain consistency with
it. The near-memory core is assisted by a state-of-the-art DMA engine for copy-
ing larger amounts of consecutive, non-pointered data, if existent. Figure 4 shows
the existing system architecture including the near-memory core in green.
Steps 4.2–4.4. The execution and measurement of the NMCore variant yielded
the following times:

tnmc
toi tnmc

other tnmc
app Snmc

act S 2
est

MST-15 3.09 s 23.00 s 8.94 s 1.60× 1.82×

The actual speedup of the this variant was measured as Snmc
act = 1.60×. How-

ever, since the NMCore is only utilized during roughly one third (tnmc
toi = 3.09 s)
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of the total application runtime (tnmc
app = 8.94 s), it is far from becoming the

bottleneck.
Step 4.5. Based on the measurement results of Step 4.2, we can now do a
better estimation of the NMA variant. According to the numbers depicted above,
the speedup estimate for the NMA variant compared to the baseline can be
calculated to S 2

est = 1.82×.
Step 5. As S 2

est = 1.82× > 1.60× = Snmc
act , we still see potential to achieve

a higher speedup by using the near-memory accelerator. However, before this
decision is made, all different benchmarks and application scenarios should be
evaluated, which is done in Sect. 5. Also the development effort and the required
hardware resources (compared to the NMCore) should be considered in this
decision.
Step 6. Develop a graph copy NMA as proposed by Rheindt et al. [22]. This
implementation uses a near-memory accelerator to perform the graph copy oper-
ation which executes the same graph copy functionality as the processor core
using a slightly different algorithm that can be performed by a hardware module
[22]. The NMA is indicated in purple in Fig. 4. This speeds up the copy oper-
ation itself and leaves the processors free for other tasks. However, it requires
a tremendous development effort, as well as additional hardware resources of
approximately the size of one core. Furthermore, the functionality of the NMA
is limited to the graph copy task.
Step 7. The execution and measurement of the NMA variant brought these final
results:

tNMA
toi tNMA

other tNMA
app SNMA

act

MST-15 1.65 s 21.38 s 7.69 s 1.86×

The actual measured speedup of the NMA SNMA
act = 1.86× is very close

and even slightly larger than the estimate S 2
est = 1.82×. Under the assumption

that tother is not effected by the NMA implementation, S 2
est was defined as an

upper bound. However, tother decreased to tNMA
other = 21.38 s compared to the

baseline implementation’s tbaseother = 27.16 s, which helps to explain the additional
improvement compared to the estimate.

5 Evaluation

This section presents the full case study and in-depth analysis for all twelve
IMSuite benchmarks and a varying number of compute tiles between one
and 15.

We examine the performance predictions of X-CEL in more detail. To this
end, we use all benchmarks from the X10-IMSuite, and run them each on differ-
ently sized systems (1, 2, 3, 4, 8, 12, and 15 compute tiles). We then compare
the two stages of performance predictions made by X-CEL with the actual per-
formance achieved by the NMA.
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Fig. 5. Individual benchmark speedups of the NMA ( ) normalized to the baseline
for varying number of compute tiles, including S 1

est( ), S 2
est( ): x-axis: number

of computes tiles with four cores each, y-axis: relative speedup.

Figure 5 shows the speedups achieved by the NMA in each benchmark with
varying system size, relative to the baseline variant of the same system size. The
solid line shows the actual speedups, whereas the dashed lines and
depict S 1

est and S 2
est, respectively.

For the systems with 3 and 15 compute tiles, we also show the run-times of
each variant (Baseline, NMCore, and NMA) in Fig. 6. The dashed lines in these
charts represent the run-times predicted by S 1

est and S 2
est.

The validity of X-CEL rests on two conditions: First, that S 1
est gives an

indication whether near-memory computing could accelerate the given program
at all, and second that S 2

est gives an accurate prediction of the run-time achieved
by an NMA. We will now examine these two conditions in turn.

We first observe that S 1
est usually gives an upper bound on the achievable

speedup. That is to say, if S 1
est is close to 1, the application will certainly not

benefit from near-memory computing.
S 1
est only under-estimates the speedup in the DR and DS benchmarks. A

closer analysis of the graph copy tasks performed shows a difference to the other
benchmarks: DR and DS have many very small graph copy tasks to perform
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Fig. 6. Runtime measurements of the IMSuite benchmarks with three (Top) and 15
compute tiles (Bottom), respectively.

(e. g., DS transfers a single object of 24 bytes 17 856 times [22]). Thus, the
offloading and synchronization overheads come to play a larger role, which our
model does not handle as well. Still, we see that S 1

est fulfills its function well in
most cases.

When examining S 2
est, we observe that S 2

est approximates the actual speedup
well, with a root mean square error of 0.23. Out of all the 84 configurations we
evaluated (12 benchmarks × 7 system sizes), in 60 configurations S 2

est deviated
by less than 5% from the actual speedup.

The other 24 configurations warrant a closer analysis, because too low
speedup estimates have a different impact from too high ones: X-CEL uses S 2

est

as an indication of whether to develop a dedicated hardware accelerator (see
Step 5 in Sect. 3). If S 2

est turns out to under-estimate the NMA’s speedup, this
is hardly a problem, because the NMA performs better than expected. On the
other hand, if S 2

est over-estimates the speedup, the effort spent developing the
NMA may have been wasted.

Out of the 24 configuration where S 2
est deviates by more than 5 %, it under-

estimates the speedup in 14 cases, and over-estimates it in 10. The under-
estimates are relatively large in places (up to 32.9 % for DR on 15 compute
tiles), but as we have explained, this is not problematic. On the other hand, the
over-estimates are at most 10.2 % (HS on 8 compute tiles), and indeed only 5 of
the 10 over-estimates are larger than 6 %.

Considering that X-CEL does not need any information about the actual
algorithm, the estimates it provides are quite accurate in most cases. Morevoer,
if they deviate from the speedup achievable by the NMA, they usually err on
the safe side from the developer’s point of view.
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6 Conclusion

We presented X-CEL, a measurement-based method to estimate the potential
of near-memory acceleration. It helps to perform an early yet robust estima-
tion whether the development effort of a near-memory accelerator is worthwhile.
The two-stage method is based on measurements of an easy-to-integrate near-
memory core (near-memory, but no accelerator) variant, which is closer to the
target design than the existing baseline implementation (neither near-memory,
nor hardware-accelerated). We showcased X-CEL with a (near-memory) graph
copy problem in a tile-based MPSoC with a set of distributed graph algorithm
kernels. An in-depth analysis revealed that the second stage estimate is within
5 % of the actual speedup in 70 % of the configurations. Moreover, it has 36 %
higher accuracy than the original estimate.

Future work could refine the estimation model, as well as extend the frame-
work to more case studies.

All in all, we envision X-CEL to become an x-cel-lent tool in the hand of
developers to make sophisticated predictions on the near-memory acceleration
potential and thereby avoid unnecessary development effort.
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