X-INNER AUTOMORPHISMS OF FILTERED ALGEBRAS

SUSAN MONTGOMERY¹

ABSTRACT. For the enveloping algebra of a finite-dimensional Lie algebra, and for the ring of differential polynomials over a commutative domain, we compute the group of those automorphisms which become inner when extended to the quotient division rings. Both of these results depend on a more general result about the automorphisms of a filtered algebra.

Let A be a prime ring. An X-inner automorphism σ of A is one which becomes inner when extended to the Martindale quotient ring $A_{\mathfrak{F}}$ of A; when A is a prime Goldie ring, this condition is equivalent to σ becoming inner on the classical quotient ring of A [5]. Thus the set of all X-inner automorphisms is a normal subgroup of Aut(A) which contains all the inner automorphisms; this set has proved useful in studying group actions on rings and crossed products. Recently the X-inner automorphisms have been computed for certain group rings [7] and for coproducts of domains [4].

In this note we consider a filtered algebra A such that the associated graded ring \overline{A} is a commutative domain. We show that any X-inner automorphism of A preserves the filtration of A and induces the trivial automorphism on \overline{A} . We then give two applications of this result: we determine the X-inner automorphisms of $U(\mathfrak{g})$, the enveloping algebra of a finite-dimensional Lie algebra \mathfrak{g} , and also of the differential polynomial ring A = R[x; d], where R is a commutative domain with nontrivial derivation d.

We require some definitions. For a prime ring A, the Martindale quotient ring of A is the left quotient ring of A with respect to the filter \mathcal{F} of all nonzero two-sided ideals; that is $A_{\mathcal{F}} = \lim_{I \in \mathcal{F}} \operatorname{Hom}_{A}(_{A}I, A)$. $A_{\mathcal{F}}$ is also a prime ring, containing A, and for any $0 \neq x \in A$, there exists $I \in \mathcal{F}$ so that $0 \neq Ix \subseteq A$ (for details see [3]). Moreover, for any $\sigma \in \operatorname{Aut}(A)$, σ has a unique extension to $A_{\mathcal{F}}$

Now assume that σ is X-inner. That is, for some $a \in A_{\mathfrak{F}}$, $r^{\sigma} = a^{-1}ra$, all $r \in A$. Let $I \in \mathfrak{F}$ be such that $0 \neq Ia \subseteq A$, and choose $b, c \in A$ with $0 \neq ba = c$. Then for any $r \in R$, $c(rb)^{\sigma} = ba(rb)^{\sigma} = b(rb)a = brc$. That is,

(*)
$$brc = cr^{\sigma}b^{\sigma}$$
, all $r \in A$.

Conversely, it is not difficult to show that if for some $\sigma \in Aut(A)$, there exist $0 \neq b, c \in A$ such that $brc = cr^{\sigma}b^{\sigma}$, all $r \in A$, then σ is X-inner [6].

Now let A be a filtered ring, say $A = \bigcup_{n>0} A_n$, where $1 \in A_0$. For any $a \in A$, let f(a) denote the filtration of a; that is, f(a) = n if $a \in A_n$ but $a \notin A_{n-1}$. The

© 1981 American Mathematical Society 0002-9939/81/0000-0459/\$02.50

Received by the editors November 25, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 16A72, 16A05, 16A03, 16A08, 17B35, 17B40.

¹Research supported in part by NSF Grant No. MCS 76-07240.

associated graded ring is $\overline{A} = \sum_{n>0} \bigoplus A_n / A_{n-1}$. We note that \overline{A} is a domain if and only if f(ab) = f(a) + f(b), all $a, b \in A$. When \overline{A} is a domain, so is A, and thus A_{e} is a prime ring.

PROPOSITION 1. Let A be a filtered algebra, as above, such that \overline{A} is a commutative domain. Let σ be an X-inner automorphism of A. Then:

(1) σ preserves the filtration of A (that is, $A_n^{\sigma} = A_n$, all n),

(2) the induced action $\bar{\sigma}$ of σ on \overline{A} is trivial.

PROOF. Since σ is X-inner, we may choose $b, c \in A$ such that

$$brc = cr^{\sigma}b^{\sigma}$$
, for all $r \in A$. (*)

Since \overline{A} is a domain, $f(b) + f(r) + f(c) = f(c) + f(r^{\sigma}) + f(b^{\sigma})$ for all $r \in A$; thus $f(b) + f(r) = f(r^{\sigma}) + f(b^{\sigma})$. Letting $r = 1 = r^{\sigma}$, $f(r) = f(r^{\sigma}) = 0$, and so $f(b) = f(b^{\sigma})$. It follows that $f(r) = f(r^{\sigma})$, all $r \in A$. That is, σ preserves the filtration.

Now let k = f(b), l = f(c), and let $\overline{b} = b + A_{k-1}$, $\overline{b^{\sigma}} = b^{\sigma} + A_{k-1}$ be the "leading terms" of b and b^{σ} , respectively. We claim that $\overline{b} = \overline{b^{\sigma}}$. For, using r = 1 in (*), $bc = cb^{\sigma}$. Since \overline{A} is commutative, $cb^{\sigma} - b^{\sigma}c \in A_{k+l-1}$, and thus $(b - b^{\sigma})c = cb^{\sigma} - b^{\sigma}c \in A_{k+l-1}$. Since f(c) = l, it follows that $f(b - b^{\sigma}) \leq k - 1$. Thus $b - b^{\sigma} \in A_{k-1}$, so $\overline{b} = \overline{b^{\sigma}}$.

Finally, consider any $x \in A_n$; $bxc = cx^{\sigma}b^{\sigma}$ from (*), and $cx^{\sigma}b^{\sigma} - b^{\sigma}x^{\sigma}c \in A_{k+l+n-1}$ since \overline{A} is commutative. Thus $(bx - b^{\sigma}x^{\sigma})c \in A_{k+l+n-1}$; since f(c) = l, we obtain $f(bx - b^{\sigma}x^{\sigma}) \leq k + n - 1$, and so $bx - b^{\sigma}x^{\sigma} \in A_{k+n-1}$. Using $b - b^{\sigma} \in A_{k-1}$ from above, $(b - b^{\sigma})x^{\sigma} \in A_{k+n-1}$, and so $b(x - x^{\sigma}) = bx - b^{\sigma}x^{\sigma} + b^{\sigma}x^{\sigma} - bx^{\sigma} \in A_{k+n-1}$. As before, as f(b) = k; this forces $x - x^{\sigma} \in A_{n-1}$. Thus $\overline{x} = \overline{x^{\sigma}}$, for any $x \in A_n$. We have proved that the induced automorphism $\overline{\sigma}$ (given by $\overline{x}^{\sigma} = \overline{x^{\sigma}}$) is trivial on \overline{A} . \Box

Our first application of Proposition 1 is to enveloping algebras. Thus, following [1, §4.3], let g denote a finite-dimensional Lie algebra over a field k, with universal enveloping algebra U = U(g). Let K = K(g) denote the division ring of quotients of U. For P a completely prime ideal of U, A = U/P also has a division ring of quotients, which we will denote by Q(A).

Let ε be the adjoint representation of \mathfrak{g} in A; that is if $a \in A$ and i(x) is the image of $x \in \mathfrak{g}$ in A, then $\varepsilon(x)a = [i(x), a]$. For $\lambda \in \mathfrak{g}^*$, let $A_{\lambda} = \{a \in A | \varepsilon(x)a = \lambda(x)a, \text{ all } x \in \mathfrak{g}\}$. We have $A_{\lambda}A_{\mu} \subset A_{\lambda+\mu}$, and the sum of the A_{λ} is direct. The subalgebra $S(A) = \sum_{\lambda \in \mathfrak{g}^*} \bigoplus A_{\lambda}$ is called the *semicentre* of A. More generally, as in 4.9.7 of [1], we may also define $Q(A)_{\lambda}$.

Give A the induced filtration from U, and thus i(g) generates A. When the associated graded ring \overline{A} of A = U/P is a domain, we are now able to completely determine those automorphisms of A which become inner on Q(A); they are precisely those automorphisms which are given by conjugation by an element of some $Q(A)_{\lambda}$.

THEOREM 1. Let A = U(g)/P, for g a finite-dimensional Lie algebra, and assume that \overline{A} is a domain. Let $0 \neq a \in Q(A)$. Then $a^{-1}Aa = A \Leftrightarrow$ there exists $\lambda \in g^*$ such that $a \in Q(A)_{\lambda}$.

PROOF. First assume that $a \in Q(A)_{\lambda}$. Then $[i(x), a] = \lambda(x)a$, all $x \in g$, and so $i(x)a = ai(x) + \lambda(x)a = a(i(x) + \lambda(x))$. Thus $i(g)a \subseteq aA$, and it follows that $Aa \subseteq aA$. Similarly $aA \subseteq aA$, and so aA = Aa. It follows that $a^{-1}Aa = A$.

Conversely, if $a^{-1}Aa = A$, then $\sigma \in Aut(A)$ given by $r^{\sigma} = a^{-1}ra$ is an X-inner automorphism of A. By Proposition 1, $\bar{\sigma}$ is trivial on the associated graded ring A. In particular, for any $i(x) \in i(\mathfrak{g}) \subseteq A_1$, $i(x)^{\sigma} - i(x) \in A_0 = k \cdot 1$. That is, $i(x)^{\sigma} = i(x) + \lambda(x)$, some $\lambda = \lambda(x) \in k$, for each $x \in g$. Clearly $\lambda \in g^*$, and since $i(x)^{\sigma} = a^{-1}i(x)a = i(x) + \lambda(x)$, $[i(x), a] = \lambda(x)a$, all $x \in \mathfrak{g}$. Thus $a \in Q(A)_{\lambda}$. \Box

COROLLARY 1. The subgroup of all X-inner automorphisms of A = U(g)/P, for \overline{A} a domain, is isomorphic to the additive subgroup of g^* consisting of those λ with $Q(A)_{\lambda} \neq 0$.

COROLLARY 2. Consider A = U(g)/P as above, with \overline{A} a domain, and let σ be any automorphism of A. Then

(1) $(Q(A)_{\lambda})^{\sigma} = Q(A)_{\mu}$, for some $\mu \in \mathfrak{g}^*$.

(2) σ stabilizes S(A), the semicentre of A.

PROOF. Choose any $0 \neq a \in Q(A)_{\lambda}$. By Theorem 1, $a^{-1}Aa = A$ and thus $(a^{\sigma})^{-1}A^{\sigma}a^{\sigma} = A^{\sigma}$, or $(a^{\sigma})^{-1}Aa^{\sigma} = A$. Thus, again by Theorem 1, there exists $\mu \in \mathfrak{g}^*$ such that $a^{\sigma} \in Q(A)_{\mu}$. It follows that $Q(A)^{\sigma}_{\lambda} = Q(A)_{\mu}$, since σ preserves the center C of $Q(A)_{\lambda}$ and $Q(A)_{\lambda} = Ca$.

Clearly σ preserves S(A), since $A_{\lambda} = Q(A)_{\lambda} \cap A$.

We now turn to derivations of U(g). The next corollary was pointed out to us by Martha Smith, and we wish to thank her for allowing us to include it.

COROLLARY 3 (M. SMITH). Let d be a derivation of g, a finite-dimensional Lie algebra over a field k of characteristic 0, and extend d to U(g). Then for any $\lambda \in g^*$ such that $U_{\lambda} \neq 0$,

- (1) $d(U_{\lambda}) \subseteq U_{\lambda}$,
- $(2) \lambda(d(g)) = 0.$

PROOF. We first note that by passing to the algebraic closure of k, we may assume that k is algebraically closed. Since d is a locally finite derivation on U, and the semicentre S = S(U) is stable under Aut(U) by Corollary 2, we may apply a result of J. Krempa [2] to conclude that S is also d-stable.

Let $0 \neq a \in U_{\lambda}$, some $\lambda \in g^*$. Then $d(a) \in S$, and so $d(a) = \sum_{\mu} b_{\mu}$, where $b_{\mu} \in U_{\mu}$. Applying d to the equation $[x, a] = \lambda(x)a$, any $x \in g$, we see that $[x, d(a)] = -\lambda(d(x))a + \lambda(x)d(a)$. Now

$$\sum_{\mu} \mu(x) b_{\mu} = \sum_{\mu} \left[x, b_{\mu} \right] = \left[x, d(a) \right] = -\lambda(d(x))a + \lambda(x) \sum_{\mu} b_{\mu}$$

and so

$$\sum_{\mu} (\mu(x) - \lambda(x))b_{\mu} = -\lambda(d(x))a. \tag{**}$$

For each $u \neq \lambda$, this gives $(\mu(x) - \lambda(x))b_{\mu} = 0$, all $x \in \mathfrak{g}$. Since $\lambda(x_0) \neq \mu(x_0)$ for some $x_0 \in \mathfrak{g}$, it follows that $b_{\mu} = 0$, all $\mu \neq \lambda$. That is, $d(a) = b_{\lambda} \in U_{\lambda}$, proving

(1). Again using (**), it follows that $0 = -\lambda(d(x))a$. Thus $\lambda(d(x)) = 0$, all $x \in g$, proving (2).

We also give an application to crossed products. For any k-algebra A, any subgroup $G \subseteq \operatorname{Aut}_k(A)$, and any factor set $t: G \times G \to k$, we may form the crossed product algebra $A *_t G$.

COROLLARY 4. Let g be a finite-dimensional Lie algebra over a field k of characteristic 0, and let A = U(g)/p as above, such that \overline{A} is a domain. Let G be any subgroup of $\operatorname{Aut}_k(A)$. Then any crossed product $A *_t G$ is a prime ring.

PROOF. Let $G_{inn} = \{g \in G | g \text{ is } X \text{-inner}\}$. By Corollary 1, G_{inn} is isomorphic to a subgroup of the dual space g^* , which is torsion-free when k has characteristic 0. Thus the crossed product is prime by [6, Theorem 2.8]. \Box

Our second application of Proposition 1 is to certain differential polynomial rings. Let R be a commutative domain with 1 with a nontrivial derivation d, and let A = R[x;d], the differential polynomial ring, in which xr = rx + d(r), for all $r \in R$. A is a filtered algebra, using $A_n = \{\text{all polynomials of degree } \leq n\}$, and the associated graded ring $\overline{A} \cong R[x]$, the ordinary polynomial ring over R. We let F = Q(R), the quotient field of R, and let D = Q(A), the division ring of quotients of A. We are now able to determine all X-inner automorphisms of A.

THEOREM 2. Let A = R[x; d], where d is a nontrivial derivation of the commutative domain R, and let $\sigma \in Aut(A)$. Then σ becomes inner on $D = Q(A) \Leftrightarrow \sigma$ is conjugation by some $q \in F$ such that $q^{-1}d(q) \in R$.

PROOF. First assume that σ is conjugation by some such q. Clearly $R^{\sigma} = R$, and $x^{\sigma} = q^{-1}xq = q^{-1}(qx + d(q)) = x + q^{-1}d(q) \in A$. Thus σ is an X-inner automorphism of A.

Conversely, assume that σ becomes inner on D; say that σ is induced by $b(x)a(x)^{-1}$, where $a(x) = a_m x^m + \cdots + a_1 x + a_0$ and $b(x) = b_n x^n + \cdots + b_0$, $a_i, b_i \in \mathbb{R}$. We will show that σ is also induced by $q = b_n a_m^{-1} \in F$ (the fact that $q^{-1}d(q) \in \mathbb{R}$ follows from the fact that $\sigma \in \operatorname{Aut}(A)$).

Now by Proposition 1, we know that σ preserves the filtration on A and that $\overline{\sigma}$ is trivial on \overline{A} . In particular, $r^{\sigma} = r$, all $r \in R$, and $x^{\sigma} = x + \alpha$, for some $\alpha \in R$.

To simplify the argument, note that $b(x) = b_1(x)b_n$, so $b(x)a(x)^{-1} = b_1(x)(b_n^{-1}a(x))^{-1}$; that is, we may assume b(x) is monic. Moreover, since for any $f(x) \in A$, $f(x)^{\sigma} = a(x)b(x)^{-1}f(x)b(x)a(x)^{-1}$, replacing f by b(x)f, it follows that $a(x)f(x)b(x) = b(x)^{\sigma}f(x)^{\sigma}a(x)$, all $f(x) \in A$. Again since $\overline{\sigma}$ is trivial on \overline{A} , $b(x)^{\sigma} - b(x)$ has degree < n; that is, $b(x)^{\sigma}$ is also monic of degree n, say $b(x)^{\sigma} = c(x) = x^n + \cdots + c_0$. Thus

$$a(x)f(x)b(x) = c(x)f(x)^{\sigma}a(x), \quad \text{all } f \in A.$$

$$(+)$$

We first evaluate (+) for $f = r = r^{\sigma}$, $r \in R$:

$$(a_m x^m + a_{m-1} x^{m-1} + \cdots + a_0) r(x^n + b_{n-1} x^{n-1} + \cdots + b_0)$$

= $(x^n + \cdots + c_0) r(a_m x^m + \cdots + a_0),$

so

$$a_m r x^{m+n} + a_m m d(r) x^{m+n-1} + a_{m-1} r x^{m+n-1} + a_m r b_{n-1} x^{m+n-1} + \cdots$$

= $r a_m x^{m+n} + n d(r a_m) x^{n+m-1} + c_{n-1} r a_m x^{m+n-1} + r a_{m-1} x^{n+m-1} + \cdots$.

Equating coefficients of x^{n+m-1} , we see

 $ma_m d(r) + a_{m-1}r + a_m rb_{n-1} = nd(r)a_m + nrd(a_m) + c_{n-1}ra_m + ra_{m-1}$. Cancelling and letting r = 1,

$$nd(a_m) = a_m(b_{n-1} - c_{n-1}).$$
 (++)

We also evaluate (+) for f(x) = x, $x^{\sigma} = x + \alpha$:

$$(a_m x^m + \dots + a_0) x(x^n + \dots + b_0)$$

= $(x^n + \dots + c_0)(x + \alpha)(a_m x^m + \dots + a_0),$
 $a_m x^{m+n+1} + a_m b_{n-1} x^{m+n} + a_{m-1} x^{m+n} + \dots$
= $a_m x^{n+m+1} + (n+1)d(a_m) x^{n+m}$
 $+ c_{n-1} a_m x^{n+m} + a_{m-1} x^{n+m} + \alpha a_m x^{n+m} + \dots$

Equating coefficients of x^{n+m} , we see

$$a_m b_{n-1} + a_{m-1} = (n+1)d(a_m) + c_{n-1}a_m + a_{m-1} + \alpha a_m$$

and thus

$$a_m(b_{n-1} - c_{n-1}) = (n+1)d(a_m) + \alpha a_m$$

Substituting (++),

$$nd(a_m) = (n+1)d(a_m) + \alpha a_m$$

Thus $\alpha a_m = -d(a_m)$, and so $\alpha = -a_m^{-1}d(a_m) = a_m d(a_m^{-1})$. Using $q = a_m^{-1}$, we have proved that

$$x^{\sigma} = x + \alpha = x + q^{-1}d(q) = q^{-1}xq$$

Since σ is determined by its action on x, the theorem is proved. \Box

We illustrate Theorems 1 and 2 with several examples.

EXAMPLE 1. Let g be the 3-dimensional completely solvable Lie algebra over k with basis $\{x, y, z\}$ such that [x, y] = y, [x, z] = z, and [y, z] = 0. Since $[g, g] = \langle y, z \rangle$, and any $\lambda \in g^*$ such that $K_{\lambda} \neq 0$ must annihilate $[g, g], \lambda(y) = 0 = \lambda(z)$. Thus λ is determined by $\lambda(x) = \alpha \in k$. We claim that $\alpha \in \mathbb{Z}$, an integer. For, if $0 \neq a \in K_{\lambda}, [y, a] = 0 = [z, a]$ and $[x, a] = \alpha a$. Using $U(g) \cong k[y, z][x; d]$, where d(y) = y, d(z) = z, we may assume $a = pq^{-1}$, where p and q are both polynomials in y and z. Since for a monomial m in y and z of degree l, $d(m) = lm, d(a) = \alpha a$ implies $d(p)q - pd(q) = \alpha pq$; it follows that $\alpha \in \mathbb{Z}$. When $\alpha = 1$, so $\lambda(x) = 1$, both $y, z \in U_{\lambda}$, and induce the X-inner automorphism $\sigma \in Aut(U)$ given by $x^{\sigma} = x + 1, y^{\sigma} = y, z^{\sigma} = z$. Thus the group of X-inners of U(g) is $\langle \alpha \rangle$, the infinite cyclic group generated by σ .

EXAMPLE 2. Consider the Weyl algebra $A_1 = k[x, y]$, xy - yx = 1, where k has characteristic 0. Now $A_1 = k[y][x; d]$ where d(y) = 1, the usual derivative. Then A_1 has no nontrivial X-inner automorphisms. For by Theorem 2, if σ is X-inner, it

is induced by some $p(y)/q(y) \in k(y)$ such that $(q(y)/p(y))d(p(y)/q(y)) \in R = k[y]$. Thus, (q'p - qp')/pq must be a polynomial; this is impossible, as

degree(pq) > degree(q'p - qp').

However, enlarging A_1 slightly to $B = k[y]_{(y)}[x; d]$, the localization of A_1 at the powers of y, the group of X-inners of B is $\langle \sigma \rangle$, the infinite cyclic group generated by σ which is given by conjugation by y. For, by Theorem 2, any X-inner automorphism τ is induced by $py^k/q \in k(y)$, where $p, q \in k[y]$ are relatively prime, $y \nmid p, y \nmid q$, and $k \in \mathbb{Z}$. Since conjugation by y^k is easily seen to be X-inner (it preserves $k[y]_{(y)}$) and the X-inner automorphisms form a subgroup, $\tau_1 = \tau \sigma^{-k}$ is X-inner and is induced by p/q. As before, $(q/p)d(p/q) = (q'p - qp')/pq \in k[y]_{(y)}$, and this is impossible as $y \nmid pq$, unless q' = p' = 0, so $p/q = \alpha \in k$. Thus, τ is induced by y^k .

Finally, if we consider C = k(y)[x; d], then conjugation by any nonzero element of F = k(y) is an X-inner automorphism of C, and $p, q \in F$ induce the same automorphism $\Leftrightarrow p = \alpha q, \ \alpha \in k$. Thus the group of X-inners is isomorphic to $k(y)^{\circ}/k^{\circ}$, where K° denotes the multiplicative group.

References

1. J. Dixmier, Enveloping algebras, North-Holland Math. Library, Vol. 14, Amsterdam, 1977.

2. J. Krempa, On invariant subspaces of locally finite derivations, Bull. London Math. Soc. 12 (1980), 374-376.

3. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.

4. W. S. Martindale and S. Montgomery, *The normal closure of coproducts of domains*, J. Algebra (to appear).

5. S. Montgomery, Outer automorphisms of semiprime rings, J. London Math. Soc. 18 (1978), 209-221.

6. S. Montgomery and D. S. Passman, Crossed products over prime rings, Israel J. Math. 31 (1978), 224-256.

7. ____, X-inner automorphisms of group rings, Houston J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CALIFORNIA 90007