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Abstract

Mirroring the success of masked language

models, vision-and-language counterparts

like VILBERT, LXMERT and UNITER have

achieved state of the art performance on a

variety of multimodal discriminative tasks

like visual question answering and visual

grounding. Recent work has also successfully

adapted such models towards the generative

task of image captioning. This begs the

question: Can these models go the other way

and generate images from pieces of text?

Our analysis of a popular representative from

this model family – LXMERT – finds that it

is unable to generate rich and semantically

meaningful imagery with its current training

setup. We introduce X-LXMERT, an extension

to LXMERT with training refinements includ-

ing: discretizing visual representations, using

uniform masking with a large range of mask-

ing ratios and aligning the right pre-training

datasets to the right objectives which enables

it to paint. X-LXMERT’s image generation

capabilities rival state of the art generative

models while its question answering and

captioning abilities remains comparable

to LXMERT. Finally, we demonstrate the

generality of these training refinements by

adding image generation capabilities into

UNITER to produce X-UNITER.

1 Introduction

The past year has seen a spate of BERT-style (De-

vlin et al., 2019) transformer-based architectures

(Lu et al., 2019; Chen et al., 2019; Li et al., 2019)

proposed for vision-and-language tasks. These

models are typically pre-trained on large image

captioning corpora, extending ideas from masked

language modeling to mask both the image and

text modalities and produce state of the art results

∗This work was done as part of the Pre-Doctoral Young
Investigator residency program at the Allen Institute for AI.

on a variety of vision and language tasks includ-

ing visual question answering, visual grounding

and image retrieval. These impressive results as

well as recent probing mechanisms (Ilharco et al.,

2020) suggest that these models are able to capture

a variety of semantics in images including objects,

attributes and their relationships and ground these

in natural language.

While these models have been extensively eval-

uated over several discriminative tasks, relatively

little attention has been paid to their generative ca-

pabilities. Bidirectional transformer models like

BERT which exploit context preceding and follow-

ing the current token are not explicitly designed for

generation. Recent work for language-only trans-

formers (Wang and Cho, 2019; Dong et al., 2019;

Liao et al., 2020) adapt these models towards this

capability using sampling procedures. Such tech-

niques have also been adapted successfully for im-

age captioning - inputting an image and sampling

the textual side of the model to generate a relevant

caption (Zhou et al., 2020). This begs the question:

Can we go the other way and sample images from

input pieces of text? i.e. Do vision-and-language

BERT models know how to paint?

In this work, we probe the ability of a powerful

and popular representative from this family of mod-

els - LXMERT (Tan and Bansal, 2019), to produce

high fidelity and semantically meaningful images

conditioned on captions. Interestingly, our analy-

sis leads us to the conclusion that LXMERT in its

current form does not possess the ability to paint -

it produces images that have little resemblance to

natural images. This is a somewhat surprising find-

ing given LXMERT’s masked training objectives

for both modalities and its impressive performance

on tasks that seemingly require a similar skill set.

We find that this is largely due to the regression

training objective used by this family of models to

predict masked features on the visual side. This is

https://prior.allenai.org/projects/x-lxmert
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in contrast with the textual side, where they predict

masked tokens within a large discrete vocabulary

using a classification objective. Regressing features

in high dimensional spaces is challenging to opti-

mize and introduces noise at inference. This gets

compounded when using iterative sampling proce-

dures to predict the entire set of visual features. A

downstream image generator consuming these pre-

dictions isn’t able to recover from this noise even

when fine-tuned on LXMERT’s predictions.

We introduce X-LXMERT that builds upon

LXMERT and enables it to effectively perform dis-

criminative as well as generative tasks. Our key

refinements include: (a) simplifying the visual in-

puts to use grid features instead of object detection

bounding boxes, (b) discretizing visual representa-

tions, (c) using uniform masking with a large range

of masking ratios to enable the model to predict the

entire set of visual clusters at inference time and (d)

aligning the right pre-training datasets to the right

objectives. When coupled with our proposed im-

age generator, X-LXMERT is able to generate rich

imagery that is semantically consistent with the

input captions. Importantly, X-LXMERT’s image

generation capabilities rival state-of-the-art image

generation models (designed only for generation),

while its question answering capabilities show little

degradation compared to LXMERT.

These refinements are not LXMERT-specific.

They are designed to be easily applicable to a wide

variety of multimodal BERT models. We find that

UNITER, a single stream model for vision-and-

language tasks, produces very poor images when

coupled with a generator, but with our extensions,

the resulting X-UNITER produces images of a sim-

ilar quality to X-LXMERT.

In summary, we present X-LXMERT, a unified

multimodal transformer model that can answer

questions, and also generate captions and images.

Our extensions to enable these capabilities are not

tied to LXMERT’s underlying architecture. We ex-

pect that the entire family of multimodal BERT

models can be enhanced with image generative

capabilities using our introduced strategy.

2 Related works

Visual-Language transformer models Recent

multi-modal pre-training models show significant

improvements on a wide range of downstream

tasks, including discriminiative (eg., visual ques-

tion answering) and generation task (eg. image

captioning (Zhou et al., 2020)). Some methods use

a single transformer architecture to jointly encode

text and image (Li et al., 2019; Su et al., 2019; Al-

berti et al., 2019; Rahman et al., 2020; Li et al.,

2020; Chen et al., 2019; Qi et al., 2020; Huang

et al., 2020), while others use two-stream architec-

tures (Lu et al., 2019, 2020; Tan and Bansal, 2019).

These models typically consume object detection

features. We probe this family of models at the

task of image generation and present extensions

that enable them to reliably generate images.

Sequence generation with undirectional trans-

former When generating sequences with conven-

tional transformer language models, it is natural to

sample tokens from left to right. However, since

undirectional transformers (eg. BERT) are not

trained with a specific generation order, a line of

works has investigated different strategies for se-

quence generation with undirected models. Wang

and Cho (2019) use Gibbs sampling from an all-

mask sequence, and Dong et al. (2019); Bao et al.

(2020) use causal attention during training for left-

to-right generation. Liao et al. (2020); Mansimov

et al. (2019); Ghazvininejad et al. (2019) sample

masks from a uniform distribution during training

for arbitrary order or parallel generation. We adapt

these techniques for grid-based image generation.

Text-to-image synthesis Synthesizing images

from text descriptions continues to be challeng-

ing. Since the pioneering work of Reed et al.

(2016), many methods have adopted GANs (Good-

fellow et al., 2014) to generate high-fidelity images.

Nguyen et al. (2017) generate images that maxi-

mizes activation of a pretrained captioning model.

Recent works (Zhang et al., 2017, 2018; Xu et al.,

2018; Li et al., 2019) use multi-stage generation,

where low-resolution images are initially sampled,

then gradually upsampled and improved in later

stages. These models are specialized toward im-

age generation, whereas our model can not just

generate images, but also answer questions and

generate captions. Also, our design is modular in

nature. While we use a compact image genera-

tor with X-LXMERT, one can also replace it with

either of the aforementioned model architectures.

There is another line of works predicting object lay-

outs from text and generating image based on the

layouts (Hong et al., 2018; Tan et al., 2019). These

models use bounding box annotations to train lay-

out predictors, while X-LXMERT implicitly learns

the layouts only from text and image alignments.
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Grid visual representation Compared to bound-

ing box representations which requires expensive

object detection annotations, grid representations

of images can be naturally obtained from CNNs.

Jiang et al. (2020); Huang et al. (2020) have re-

cently shown that these can be almost as pow-

erful as bounding box representations for VQA.

Grid representation have been widely used in vi-

sion tasks, including self-supervised learning (Oord

et al., 2018; Henaff et al., 2019; Trinh et al., 2019;

Gidaris et al., 2020; Noroozi and Favaro, 2016) and

image generation (van den Oord et al., 2017; Lin

et al., 2019). We leverage grid visual representa-

tions to enable LXMERT to generate images.

3 Background: Revisiting LXMERT

Over the past year, a large number of transformer

based architectures for multimodal data have pro-

duced impressive results across a variety of dis-

criminative tasks. Some of these models have been

shown to perform very well at the generative task of

Image Captioning, but little attention has been paid

to the reverse generative task: generating images

given text. In this work, we first probe one popular

representative from this family - LXMERT (Tan and

Bansal, 2019) - in its ability to paint; and propose

extensions that enable it to paint.

LXMERT is a cross modality transformer with in-

puts: image I and text T . This is represented as the

sequence {v1, . . . , vT ,CLS, w1, . . . , wT ,EOS}
where {vi}

T
i=1

are image region features, {wj}
T
j=1

are word tokens and CLS and EOS are special

tokens. LXMERT outputs embeddings for each

input {hvi}
T
i=1

, {hwj
}Tj=1

and hCLS, hEOS. hCLS
is used as the cross-modality output. Internally,

LXMERT consists of two types of encoders:

single-modality encoders for each modality and

a cross-modality encoder using bi-directional

cross attention to exchange information and align

entities across the modalities.

LXMERT is pretrained on several vision-and-

language datasets with five objectives: Masked

language modeling (MLM), Masked visual fea-

ture regression (MVFR) - reconstructing randomly

masked words and regions given the remaining in-

puts, Masked object classification (MOC) - object

classification on masked image regions, Image-text

matching (ITM) - image-caption alignment pre-

diction and Question answering (QA) - answering

a question given image input. After pretraining,

LXMERT is finetuned for various downstream tasks.

Unless noted, we use the default settings and hy-

perparameters of LXMERT in our experiments.

4 Probing LXMERT’s Ability to Paint

In order to probe LXMERT’s ability to paint, we

first modify its input image representation to a grid

based feature set (Sec. 4.1) and then pass these to

an image generator (Sec. 4.2).

4.1 Grid Image Features

Most popular multimodal BERT models use im-

age features extracted from the output of a Faster

R-CNN (Ren et al., 2015) object detector. The de-

tected objects typically have various locations and

sizes. Passing these features into an image gen-

erator poses some challenges: (1) LXMERT is not

trained to predict locations of given objects (2) it is

not trivial to predict both object classes and their

locations simultaneously (3) object detections do

not cover backgrounds.

We modify LXMERT to use a uniform N × N

grid and use RoI Pooling to extract the grid features.

Note that we use the same detection backbone pre-

trained on the Visual Genome dataset to maintain

parity with the original LXMERT. Our experiments

in Sec 6 show that moving to a grid based input

causes very little degradation to downstream QA

tasks, a finding consistent with Jiang et al. (2020).

Sampling grid features: Given text input, we

sample predicted visual features {hvi}
T
i=1

where

T = N ×N is the number of image regions, using

Gibbs sampling in a manner similar to language

generation using BERT by Wang and Cho (2019).

4.2 Image Generation

We use a compact image generator inspired by re-

cent state of the art image synthesis methods lever-

aging Generative Adversarial Networks (GAN)

(Goodfellow et al., 2014). Its takes as inputs an

N ×N grid of visual features from the pretrained

Faster-RCNN network and generates an image. As

shown in Fig 1, the input grid features are projected

through convolutional layers and then passed to an

image generator, which consists of multiple resid-

ual blocks (Miyato et al., 2018). Each generator

residual block has SPADE layer (Park et al., 2019)

which guides generator to outptut high fidelity im-

ages given semantic grid layouts. In our experi-

ments, we use an image generator which takes 8×8
grid features and outputs an 256× 256 image.
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Figure 1: Top: Overview of the proposed X-LXMERT model. Blocks in blue are the modifications we make to

LXMERT model to enable it to paint. Bottom: Overview of the image generation architecture. The input to the

model is a natural image that is compressed to a quantized latent map of size 8 × 8 by RoI Pooling. We use a

generator consisting of multiple residual blocks with SPADE layer which encodes 8× 8 grid features.

Training the image generator: The generator is

pre-trained using 8× 8 ground truth Faster-RCNN

features, akin to teacher forcing, without any inputs

from LXMERT. We train the generator with the

same loss as Park et al. (2019), but replacing the

segmentation map with a grid feature map.

Fig. 2 (b) shows that our generation architecture

can successfully reconstruct images using ground

truth pre-trained grid features. Note that the gener-

ator still displays some reconstruction errors com-

pared with modern auto-encoders such as VQ-

VAEv2 (Razavi et al., 2019) primarily due to (1)

freezing the encoder backbone in order to match

LXMERT’s training settings (2) restricting grid fea-

tures to have a low (and manageable) dimension.

4.3 Can LXMERT Paint?

Our experiments in Section 6 reveal that LXMERT

is unable to produce visual features that can be con-

verted to a meaningful image by a generator. Fig-

ure 2 shows an example. Recall that the LXMERT

loss function includes a regression loss - MVFR -

that corresponds to regressing target visual features

given the textual and visual context. Unfortunately,

at inference, this loss on the validation set remains

high, causing the predicted visual features to be

fairly noisy. In addition, the Gibbs sampling proce-

dure causes this error to propagate over the entire

set of features. The resulting predictions aren’t suit-

able to be used for downstream image generation.

5 X-LXMERT

In this section, we present X-LXMERT
1 that ex-

tends LXMERT, enabling it to paint, while still

maintaining a high performance on discriminative

tasks. X-LXMERT has three key refinements that

enable it to paint (Sec. 5.1): discretizing visual rep-

resentations, using uniform masking with a large

range of masking ratios, and aligning the right pre-

training datasets to the right objectives. We then

leverage Gibbs sampling to generate visual features

given textual input (Sec. 5.2).

5.1 From LXMERT to X-LXMERT

Discrete visual representations: We observe that

the visual features regressed by LXMERT are not

suitable for image generation. Instead, akin to

VideoBERT (Sun et al., 2019), we first create a

visual vocabulary using K-mean clustering, approx-

imate the target visual features via a nearest neigh-

bor search, and modify LXMERT to predict the

cluster ID for each masked visual token. A new

Cluster-Centroid Classification objective (CCC) is

used to replace the previous regression objective

with a high cardinality classification objective. Our

experiments show that discretizing visual represen-

tations results helps in predicting better visual fea-

tures, stems the propagation of feature noise over

sampling iterations and generates rich imagery.

1X-LXMERT is an LXMERT with a “display server”
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Figure 2: Top: Image generation from X-LXMERT. Given the text input and all masked visual feature, we first

sample grid features by using Gibbs sampling with multiple iterations. Then the sampled grid features are fed

into the generator to generate the image. Bottom: Sampled images, from left to right (a) Original image (b)

Reconstruction from GT features (c) Sampling from LXMERT + Grid (d) Sampling from X-LXMERT without

uniform masking pretraining (e) Our proposed X-LXMERT (f) Generated image from DM-GAN (Zhu et al., 2019).

Uniform instead of Bernoulli masking: Fol-

lowing BERT, LXMERT uses Bernouli sampling

(with p = 0.15) to determine positions of the

masked tokens on the visual and textual features. In

order to generate an image from captions, all tokens

on the vision side must be masked and predicted.

A low probability Bernoulli sampling procedure

does not prepare the model well for the generation

task, and increasing the probability to very high

values leads to poor pre-training. To resolve this,

we use Uniform masking on the vision modality.

X-LXMERT’s uniform masking first samples the

masking ratio from a uniform prior distribution

([0,1]), and then samples the desired number of

positions randomly. This subjects the model to

a variety of masking ratios, and our experiments

reveal that this greatly benefits image generation.

Updating pre-training data: LXMERT uses a

variety of data to pre-train the model: QA data

from multiple sources, caption data from COCO

and captions from Visual Genome (VG). Since

X-LXMERT uses the CCC loss function, predict-

ing visual features given questions like: “What is

shown in the image?” is very ambiguous and re-

sults in models that cannot predict visual clusters.

Similarly, many captions from VG (e.g., “A bag”

or “Glasses on the hair”) tend to describe small re-

gions of the image and not the whole image, which

makes them unsuited to train the CCC objective.

X-LXMERT drops QA data and the captions from

VG for CCC objective for visual cluster prediction.

5.2 Sampling Strategies for X-LXMERT

Given text input, predicting the entire set of visual

features in one step does not produce good results.

Instead, we employ Gibbs sampling to iteratively

sample features at different spatial locations. In

contrast to text generation, where left-to-right is

considered a natural order, there is no natural order

for generating images. The grid sampling process

starts with N2 grids filled with the MASK special

token. The model then iteratively updates locations

either one-by-one or multiple in parallel. There

are several sampling strategies for sampling loca-

tions on the square grid, primarily falling into two

buckets: auto-regressive and parallel.

Autoregressive sampling In each iteration, a grid

position is sampled, masked and predicted. Then

the corresponding MASK token is replaced with the

predicted one, and the process is repeated until all

locations are updated.

– TL→BR: Positions are sequentially chosen from

top-left to bottom-right, similar to PixelRNN

(van den Oord et al., 2016).

– Random (Liao et al., 2020): Positions are se-

lected in random order. After N2 steps, locations

may be updated more than once.

Non-autoregressive sampling In each iteration,

multiple positions are sampled, masked with MASK,

predicted and then replaced.

– Mask-predict-K (Ghazvininejad et al., 2019):

This requires K sampling steps. In the first iter-

ation, all N2 locations are updated. Then, we

linearly decay the number of tokens updated per

iteration. For example, for a 2× 2 grid whereby

N2 = 4, if K = 4 then (4, 3, 2, 1) positions are

updated in each iteration. Within each iteration,

positions with the lowest confidence are updated.

Our experiments show that Mask-Predict-4 consis-

tently produces good results across a variety of
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generation metrics and we propose using it for

X-LXMERT. Our uniform masking aligns well

with the linear decay of Mask-Predict and makes

the model robust to a varied number of masked

locations.

5.3 Training Details

Generator Following (Park et al., 2019), our

generator and discriminator are jointly trained with

4 losses: (1) hinge adversarial loss (Lim and Ye,

2017; Tran et al., 2017), (2) AC-GAN loss (Odena

et al., 2017), (3) discriminator feature matching

loss (Wang et al., 2018) and (4) perceptual loss

(Johnson et al., 2016). The coefficients for different

loss are (1, 1, 10, 10) respectively. The perceptual

loss is calculated with ResNet-50 (He et al., 2016)

pre-trained on ImageNet (Deng et al., 2009). We

use Adam optimizer (Kingma and Ba, 2015) with

(β1, β2) = (0, 0.999) and two-time update rule

(Heusel et al., 2017) with learning rate of 0.0004

and 0.0001 for generator and discriminator respec-

tively. We train the generator with batch size 96 for

60 epochs. Note that the generator parameters are

fixed after training and not finetuned. Please refer

Sec. D for more details.

Pre-training Following LXMERT (Tan and

Bansal, 2019), we use AdamW optimizer

(Loshchilov and Hutter, 2019) with (β1, β2) =
(0.9, 0.999) and learning rate 1e-5 with 5% lin-

ear warmup schedule. We train X-LXMERT on

with batch size 920 for 20 epochs. Instead of us-

ing all pretraining tasks for each step, we first uni-

formly sample a modality to mask from [image,

text, no-mask] and run corresponding tasks.

Please refer to Sec. C.5 for more details.

Finetuning For each downstream task, a task

head consisting of two fully connected layers is

trained along with pre-trained X-LXMERT. We

used the same parameter setting with LXMERT.

Please refer to Sec. C.6 for more details.

6 Experimental Setup

In this section we present experimental setups to

evaluate image generation, visual question answer-

ing and visual reasoning.

6.1 Evaluating Image Generation

We train and evaluate models using the MS COCO

captioning dataset (Lin et al., 2014). We com-

pare X-LXMERT with LXMERT and state-of-the-

art text-to-image generation methods: StackGAN

(Zhang et al., 2018), PPGN (Nguyen et al., 2017),

AttnGAN (Xu et al., 2018), ControlGAN (Li et al.,

2019), and DM-GAN (Zhu et al., 2019). Image

generation is a particularly difficult task to evalu-

ate, due to the variability in acceptable outputs for

a given caption, as well as the subjective nature of

perceiving image quality. We present a suite of au-

tomated and manual metrics to compare models.

Automated Metrics: Evaluate image quality

We use Inception score (IS) (Salimans et al., 2016)

to measure image diversity and Fréchet Inception

Distance (FID) (Heusel et al., 2017) to measure

authenticity; using Inception v3 (Szegedy et al.,

2016) as a surrogate net.

Automated Metrics: Evaluate semantics We

use two variants of R-precision (Xu et al., 2018),

R-prec-easy and R-prec-hard to evaluate if the im-

age is well conditioned on the input text. Given a

generated image, a positive caption and negatives,

R-precision measures the retrieval rate for the posi-

tive caption using a surrogate multi-modal network.

We use an independent surrogate - ViLBERT-MT

(Lu et al., 2020) for this purpose. R-prec-easy is the

variant of R-precision with easy negatives (sampled

randomly amongst the caption set). R-prec-hard is

the variant with hard negatives (swapping a word

in a caption with another word within the same cat-

egory, e.g., red ⇒ green). We choose words from

one of 4 categories: nouns (80 COCO objects), 64

verbs, 10 colors and 10 numbers.

The above automatic metrics, while cheap and

reproducible, are noisy because they depend on im-

perfect surrogate models. The ultimate measure of

quality and semantics for image generation contin-

ues to be crowd-sourced human studies.

Human Study: Pairwise preferences We con-

duct a human preference evaluations between

X-LXMERT and the best performing model in the

automated metrics—DM-GAN. We measure (1) Se-

mantic preference by showing two image and ask-

ing annotators to select the one that best matches

the source caption. (2) Fidelity preference by show-

ing the two images alone and asking which appears

more realistic. Both evaluations also allow a third

option (Tie) to be selected. For each evaluation,

5000 image pairs were used, and 357 unique crowd-

workers participated in total (median annotations

per worker—17).

Human Study: Our new metric – HUMMUS

The above pairwise test is very useful and widely

used to evaluate generative models, but measur-
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Text-to-Image Generation Visual Question Answering Visual Reasoning

Methods IS↑ FID↓
R-prec

-easy↑

R-prec

-hard↑
HUMMUS

Human pairwise pref VQA GQA NLVR2

Semantics Fidelity test-dev test-std test-std dev test-P

Original Image 36.6 - 89.6 47.6 0.73 - - - - - - -

StackGAN 8.5 - - - - - - - - - - -
PPGN 9.6 - - - - - - - - - - -
AttnGAN 25.9 35.5 - - - - - - - - - -
ControlGAN 24.1 - - - - - - - - - - -

DM-GAN 30.5 32.6 51.8 27.5 0.49 37.0 35.9 - - - - -

X-LXMERT 22.7 37.4 40.8 25.1 0.49 52.0 50.0 68.6 68.7 58.4 72.4 72.4
LXMERT*+Grid 1.6 316.7 0.5 6.6 0.27 71.1 71.2 60.1 74.6 74.0

LXMERT - - - - - - - 72.4 72.5 60.3 74.9 74.5
LXMERT* - - - - - - - 70.9 71.1 59.9 74.9 75.0

Table 1: Comparing X-LXMERT, LXMERT and baselines on image generation, visual question answering and

visual reasoning tasks. The pairwise metric compares LXMERT and DM-GAN; numbers do not sum to 100 due

to the TIE option provided to annotators. Note that X-LXMERT and LXMERT*+Grid are the only models that are

able to produce results for all tasks. *: Our re-implementation of LXMERT.

ing new models becomes challenging, since they

must compare to all old models. To expand hu-

man evaluation, we present a novel metric to test

semantic consistency between the caption and im-

age inspired by masked token modeling, named

- HUmans Measuring seMantics Using maSking

(HUMMUS). To compute HUMMUS, human anno-

tators are shown an image and its caption with a

single word masked out. They are asked to com-

plete the partial caption based on information in

the image, and a match is counted only when a ma-

jority of annotators supply the correct word. The

total score is reported as a ratio of these successful

matches. The task was run on 2800 image-caption

pairs (2289 unique images), with 5 annotators per

pair. A total of 280 unique crowdworkers com-

pleted the task, with a median of 13 images anno-

tated per worker. A high HUMMUS score reveals

that the generated images contain the correspond-

ing semantics, well enough to be recognized. The

masked word is chosen from one of 3 categories:

80 COCO nouns, verbs and colors.

6.2 Evaluating Visual Question Answering

We train and evaluate models for visual question

answering using the VQA2.0 (Goyal et al., 2019)

and GQA (Hudson and Manning, 2019) datasets,

which provide an image and a question and require

the model to generate an answer.

6.3 Evaluating Visual Reasoning

We train and evaluate models for visual reasoning

using the NLVR2 (Suhr et al., 2019) dataset and

report numbers on the dev and test-P splits. The

NLVR2 dataset requires models to look at two im-

ages and determine if an accompanying caption

is True or False. This is a particularly challenging

dataset for present day vision and language models.

7 Experimental Results

We now present a comparison of X-LXMERTwith

several baselines on the generative and discrimina-

tive tasks, along with ablation studies and qualita-

tive results. We also show the generality of our tech-

niques via extending UNITER to create X-UNITER.

7.1 Quantitative Results

Table 1 provides detailed metrics for X-LXMERT

and baselines. It also provides generation metrics

for the original image in the dataset for the cor-

responding input text. Note that X-LXMERT and

LXMERT+Grid are the only models that are able to

produce results for all tasks.

Image Generation As seen, X-LXMERT signifi-

cantly outperforms LXMERT across all generation

metrics. X-LXMERT even outperforms two special-

ized generation models, comparable to AttnGAN

and ControlGAN. Our model is lower compared

to DM-GAN in terms of automated metric (IS and

FID), however, it is competitive with DM-GAN at

semantic metric (R-prec-hard)3.

Note that X-LXMERT’s image generator is much

smaller than the one used by DM-GAN (1.7M vs

22.3M parameters). While the transformer em-

ployed in X-LXMERT is large, it is a unified tex-

2We use coco pre-trained model from https://

github.com/MinfengZhu/DM-GAN
3Note: R-prec and HUMMUS are reported only for DM-

GAN (the strongest of the 5 baselines), since this was the only
model with code and pretrained weights. IS and FID num-
bers are from their respective publications or from Zhu et al.
(2019). The detailed R-prec-hard numbers across categories
are presented in the appendix.

https://github.com/MinfengZhu/DM-GAN
https://github.com/MinfengZhu/DM-GAN
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Two people play 

video games 
while sitting on a 
couch.

Caption Original Ours

A grassy tree 
filled field with a 
lot of kites in the 
air.

A giraffe walking 
on a road with 
two cars 
approaching.

DM-GAN

A large painted 

clock tower in 
the middle of 
town.

Caption Original OursDM-GAN

A woman
attempting to 
ski on a flat hill

A full view of a 
home office with 
many computer 
screens.

Figure 3: Images generated by DM-GAN2(Zhu et al., 2019) and images generated by our proposed X-LXMERT.

tual and visual encoder used for multiple tasks

and is not finetuned for image generation. We ex-

pect X-LXMERT’s image quality to improve further

when coupled with a larger image generator such

as the one by DM-GAN.

Table 1 also presents HUMMUS scores. Here we

see that the semantics generated by X-LXMERT is

on par with DM-GAN and still significantly better

than LXMERT. All models are still a distance away

from the original image. HUMMUS matches on the

lemmatized forms of masked words to allow for

lexical variation, but it misses synonyms and other

valid descriptors. This causes the score for the

original image to drop to its reported value. See the

appendix for R-prec-hard and HUMMUS broken

down into categories.

Finally we present human pairwise preference

scores between X-LXMERT and DM-GAN (its

closest competitor). Here we see that human anno-

tators clearly prefer X-LXMERT to DM-GAN for

semantics as well as fidelity.

In summary, X-LXMERT’s generation capabil-

ities rival state of the art specialized generation

models. In fact, our human studies demonstrate

that X-LXMERT produces better results than even

DM-GAN, its closest competitor. Our analysis also

shows the limitations of current automatic evalua-

tion metric for text-to-image synthesis.

Visual Question Answering Table 1 compares

models on the VQA2.0 and GQA datasets. Convert-

ing LXMERT to use grid inputs causes a slight or no

drop, consistent with findings by Jiang et al. (2020),

but hugely simplifies the pipeline. X-LXMERT

shows 1.5 - 2.5% drop on these datasets but note

that its numbers are still very competitive.

Visual Reasoning Table 1 compares models on

NLVR2 dataset. Consistent with VQA, grid inputs

cause a slight drop. X-LXMERT shows a roughly

2% drop but retains most of the massive jumps

obtained by LXMERT on NLVR2 compared to the

previous generation of models.

Our implementation of X-LXMERT uses a small

8×8 grid. Increasing the grid size will likely shrink

gaps in VQA2.0, GQA and NLVR2 datasets as per

the recent findings by Jiang et al. (2020).

7.2 From X-LXMERT to X-UNITER

The proposed refinements (Sec. 5.1) to enable

image generation capabilities are not LXMERT-

specific. We apply these changes to UNITER (Chen

et al., 2019), a single stream multi-modal trans-

former architecture. Instead of following (Chen

et al., 2019) Table 2 shows that UNITER + Grid pro-

duces very poor images, but X-UNITER obtains im-

age generation scores comparable to X-LXMERT–

showing the generality of our extensions.

IS↑ FID↓

UNITER + Grid 2.4 253.5
X-UNITER 20.1 51.4

LXMERT + Grid 1.6 316.7
X-LXMERT 22.7 37.4

Table 2: Adding image generation capabilities to

LXMERT and UNITER.

7.3 Qualitative Results

Fig 3 shows qualitative examples by X-LXMERT

compared to DM-GAN (Zhu et al., 2019). While

the images lack fine details, they do a reasonable

job at preserving high level semantics, as revealed

by the metrics. For complex scene, our model is

able to preserve better semantics (e.g. ‘two peo-

ple’, ‘clock tower‘ and ‘home office’) compared to

DM-GAN. We do not show images produced by

LXMERT since they tend to be incomprehensible.
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A man dances on 
top of picnic tables 
while it snows.

A giraffe walking on 
a road with two cars 
approaching.

A full view of a home 
office with many 
computer screens.

A large painted clock 
tower in the middle 
of town.

caption #1 #10 #20 #30 #40 #50 #60 #70 #100 #140#5 #15 #25 #35

Figure 4: Intermediate images generated by X-LXMERT at during 140 steps of random position sampling. Images

are gradually improved as sampling steps proceed.

A kite flying in the air with water 

in the background.

The woman is wearing a red 
jacket.

Where was the picture taken, the 

beach or the harbor?

What is the main color of the kite 
in front of the person that is 
standing on the?

What is the color of the jacket the 
person with the kite is wearing?

What is the color of the 
chair?

What food is on the 
plate?

A young boy sitting in a 
chair with a birthday cake 
for his birthday.

The piece of cake in the 
little blonde girl's mouth.

Where is the chair, on the 
right or on the left?

Is the bowl to the right of 
the spoon red and round?

A cake on a red tray sitting 

on top of a table.

What is the name of the 

food that is on the plate?

The handle of the spoon is 
on the side of the bowl.

Where is the food that is 

on top of the table sitting?

Figure 5: Captions generated by X-LXMERT using Gibbs sampling. We control the samples by providing different

prefix word into the model. Those prefix words are common starting word such as ‘A’, ‘The’, ‘What’, ‘Where’.

Ablations IS↑ FID↓

LXMERT + Grid 1.6 316.7
X-LXMERT 22.7 37.4

w/o discrete visual representations 1.5 304.4
w/o uniform masking 2.1 227.9
w/o updating pre-training data 21.6 46.1

Table 3: An ablation study for the three refinements.

To better understand the image generation pro-

cess, We show intermediate images generate by

X-LXMERTin Fig 4. We use random autoregres-

sive sampling with 140 steps. Interestingly, the

model first coarsely generates salient objects (ex.

giraffe, monitors) in the caption followed by details

and background.

Our model is able to generate captions given

image. For each image, we sample text from

X-LXMERT using Gibbs sampling as shown in

Fig 5. We control the samples by providing dif-

ferent prefix word into the model. Those prefix

words are common starting word such as ‘A’, ‘The’,

‘What’, ‘Where’. X-LXMERT can produce long

meaningful captions as well as questions (like the

ones in VQA datasets).

7.4 Ablation Studies

We examine the effects of our proposed refinements

and our sampling strategies to the image generation

quality. Table 3 shows that two of the proposed

IS↑/FID↓ R-prec↑ HUMMUS ↑

easy/hard Noun / Verb / Color / Avg.

Mask-Pred-4 22.7/37.4 40.8/25.1 0.55 / 0.42 / 0.50 / 0.49
TL→BR 19.8/48.5 26.9/18.9 0.45 / 0.42 / 0.41 / 0.43
Random 22.6/35.9 39.5/24.7 0.52 / 0.42 / 0.51 / 0.48
Mask-Pred-1 19.5/51.4 36.8/21.4 0.48 / 0.40 / 0.54 / 0.47

Table 4: Image quality across sampling strategies.

refinements to LXMERT (moving to discrete visual

representations and using uniform masking) are

critical to produce high quality images. The third

refinement – updating pre-training data for the CCC

objective – is less critical, but useful nonetheless.

Table 4 shows that X-LXMERT is fairly robust

to sampling strategy, particularly for image seman-

tics, with the exception of TL→BR which tends to

produce worse results. This is interesting in that

TL→BR is typically the default strategy used by

practitioners (van den Oord et al., 2016, 2017).

8 Conclusion

We develop a probing mechanism and find that

LXMERT, a powerful vision-and-language trans-

former model, is not able to generate meaning-

ful images conditioned on text. We present

X-LXMERT, a unified model for image generation,

captioning, QA and visual reasoning, and show

that our extensions can easily be applied to other

vision-and-language transformer models.
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A Qualitative samples

More qualitative samples In Fig 6, we show

more qualitative examples of images generated by

DM-GAN, reconstruction from ground truth clus-

ters, LXMERT, our proposed X-LXMERT with dif-

ferent sampling strategies. Fig 7 shows images

generated by X-LXMERT with the same subject

placed in a variety of contexts.

B Source code

Please refer to the project page for more de-

tails about this research, at https://prior.

allenai.org/projects/x-lxmert. This in-

cludes an animation of the iterative image gen-

eration process, a demo of X-LXMERT accessi-

ble at https://vision-explorer.allenai.org/

text_to_image_generation and code available

at https://github.com/allenai/x-lxmert.

C LXMERT / X-LXMERT details

For a fair comparison, we re-implement LXMERT

and LXMERT with grid features. Our models have

226.5M trainable parameters, slightly smaller than

228M of original LXMERT implementation due to

weight sharing of MVFR head and MOC head. We

use PyTorch (Paszke et al., 2017) and Hugging-

face Transformers (Wolf et al., 2019) libraries for

implementation.

C.1 LXMERT Architecture

LXMERT architecture consists of text embedder,

object embedder, transformer backbone, and task-

specific heads.

Text embedder A text input is tokenized by

WordPiece Tokenizer (Wu et al., 2016) and

special tokens CLS and EOS are concatenated:

{CLS, w1, . . . , wT ,EOS}. We use the same vocab-

ulary used in BERT4 and LXMERT with size 30522.

Text is truncated with maximum token length of

20, including two special tokens. 768-dimensional

embedding is learned for each token and position.

Final text embedding is obtained by sum of token

embedding and positional embedding.

Object embedder An input image is resized

within minimum length 800 and maximum length

1333 while preserving aspect ratio. We use Faster

R-CNN trained on Visual Genome to extract 36

4bert-base-uncased

bounding boxes from each image5. We take fc6

feature, which is between RoI-Pool layer and

final object classification head and has 2048 di-

mension. This is encoded into 768 dimensional

vector followed by layer norm (Ba et al., 2016).

Four bounding box coordinates (x0, x1, y0, y1) are

[0, 1]-normalized by width and height. Then they

are also encoded into 768 dimensional vectors with

fully connected layer followed by layer norm. Fi-

nal object embedding is obtained by element-wise

average of object and positional feature.

Transformer backbone Transformer backbone

of LXMERT consists of object relation encoder, lan-

guage encoder and cross modality encoder, which

are composed of 9 self-attention layer (Vaswani

et al., 2017), 5 self-attention layer, and 5 cross-

attention layer respectively. The self-attention lay-

ers are same as the ones used in BERT and the

dimension of the layers is 768.

Task-specific heads LXMERT is pretrained with

five objectives6 (MLM, MVFR, MOC, ITM, QA)

as explained in Sec. 3. For MLM, MVFR, ITM,

QA task, a task head consisting of two fully con-

nected layers with GeLU activation (Hendrycks

and Gimpel, 2016) and layer norm is trained. For

MOC task, a fully connected layer is applied on

ouput of MVFR head, similar to original object de-

tection pipeline7. For MLM, MVFR, MOC tasks,

task heads are applied on cross-modal encoder out-

puts corresponding to masked tokens. For ITM,

QA tasks, tasks heads are applied on CLS token.

C.2 X-LXMERT Architecture

X-LXMERT shares most components with

LXMERT, except for minor modifications below.

Object embedder → Grid embedder We ex-

tract 8 × 8 grid features of fc6 layer of Faster

R-CNN, by giving positional information of 8× 8
grids into RoI-Pool layer. Then we quantize

these features with nearest neighborhood search

from 10,000 cluster centroids. Remaining are same

with object embedder of LXMERT.

5We use PyTorch version (https://gitlab.
com/vedanuj/vqa-maskrcnn-benchmark), in-
stead of Caffe version (https://github.com/
peteanderson80/bottom-up-attention) used in
original implementation.

6We do not use 400 object attributes predicted from Faster
R-CNN, which were used by original implementation.

7Original implementation trains separate head for MOC
task.

https://prior.allenai.org/projects/x-lxmert
https://prior.allenai.org/projects/x-lxmert
https://vision-explorer.allenai.org/text_to_image_generation
https://vision-explorer.allenai.org/text_to_image_generation
https://github.com/allenai/x-lxmert
https://gitlab.com/vedanuj/vqa-maskrcnn-benchmark
https://gitlab.com/vedanuj/vqa-maskrcnn-benchmark
https://github.com/peteanderson80/bottom-up-attention
https://github.com/peteanderson80/bottom-up-attention
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A man dances 
on top of picnic 
tables while it 
snows.

Caption Original LXMERT Random Easy First Mask PredictReconstruction
Top Left -> 

Bottom Right

A full view of a 
home office with 
many computer 
screens.

A giraffe walking 
on a road with 
two cars 
approaching.

A large painted 
clock tower in 
the middle of 
town.

DM-GAN

Figure 6: More qualitative examples of images generated by X-LXMERT.

A giraffe walking in the field A giraffe walking near a car A giraffe eating leaves

Children playing soccer Children playing ice hockey Children chasing each other

A giraffe next to zebras

Children playing a video game

Figure 7: Images generated by X-LXMERT demonstrating its ability to place objects within varied contexts.

MOC, MVFR tasks → CCC task We replace

MOC, MVFR tasks with CCC task (see Sec. 5.1)

for X-LXMERT. For CCC head, we simply modify

the output dimension of fully connected layer used

in MOC task to the number of clusters (1600 →
10000).

C.3 Datasets

For pretraining, we use same datasets used in

LXMERT. We use vision-and-language datasets

whose images come from MS COCO (Lin et al.,

2014) or Visual Genome (Krishna et al., 2016).

Besides the two original captioning datasets, we

also aggregate three large image question answer-

ing (image QA) datasets: VQA v2.0 (Goyal et al.,

2019), GQA balanced version (Hudson and Man-

ning, 2019), and VG-QA (Zhu et al., 2016). Ta-

ble 5 shows statistics of the datasets. Note that

X-LXMERT only uses COCO captions for CCC

task.



8799

Image Split Images
Sentences (or Questions)

COCO-Cap VG-Cap VQA GQA VG-QA All

MS COCO - VG 72K 361K - 387K - - 0.75M

MS COCO ∩ VG 51K 256K 2.54M 271K 515K 724K 4.30M

VG - MS COCO 57K - 2.85M - 556K 718K 4.13M

All 180K 617K 5.39M 658K 1.07M 1.44M 9.18M

Table 5: Dataset statistics used in pretraining. Each image has multiple sentences/questions. ‘Cap’ is caption. ‘VG’

is Visual Genome. Since MS COCO and VG share 51K images, we list it separately to ensure disjoint image splits.

This table is from LXMERT (Tan and Bansal, 2019).

C.4 Visual vocabulary clustering

To create visual vocabularies, we run K-means clus-

tering on Faster R-CNN grid features of COCO

train2014 images. train2014 has 82783 im-

ages, resulting 8 x 8 x 82783 = 5.3M grid features.

We use FAISS (Johnson et al., 2017) library for

clustering. We sample 2.6M features in training

data and run 20 iteration, which takes 2 hours.

C.5 Training

We train LXMERT and X-LXMERT for 20 epochs

with mixed precision using Apex8 (opt-level O1).

We use AdamW optimizer (Loshchilov and Hutter,

2019) with (β1, β2) = (0.9, 0.999) and learning

rate 1e-5 with 5% linear warmup schedule. We

use gradient clipping with maximum norm 1.

Instead of using all pretraining tasks for each

step, we first uniformly sample a modality to

mask from [image, text, no-mask] and

run corresponding tasks similar to (Chen et al.,

2019; Lu et al., 2020). When image is selected,

we use MVFR, MOC for LXMERT and CCC for

X-LXMERT. When text is selected, we use

MLM. When no-mask is selected, we replace

given text with a random sentence from training

data with 0.5 probability. If the text is replaced, we

use ITM. If not, we use ITM and QA.

Training LXMERT takes 60 hours with batch size

1280, and training X-LXMERT takes 40 hours with

batch size 920. We use 4 Titan RTX GPUs (4 ×
24GB) for training both models.

C.6 Finetuning

During finetuning on VQA/GQA/NLVR2, a task

head consisting of two fully connected layers with

GeLU activation and layer norm is trained along

with pre-trained LXMERT and X-LXMERT. For

VQA/GQA, the parameters are initialized from

8https://github.com/NVIDIA/apex

pretrained QA head. We use AdamW optimizer

with learning rate 5e-4. We train LXMERT and

X-LXMERT for 10 epochs for each task. For

VQA/GQA/NLVR2, finetuning takes 3/5/1 hours

respectively on 4 Titan RTX GPUs (4× 24GB).

D Generator details

Our image generation system adopts GAN (Good-

fellow et al., 2014) framework and has two net-

works trained: generator and discriminator.

D.1 Generator Architecture

Our generator consists of multiple residual blocks

following SNGAN (Miyato and Koyama, 2018).

The generator takes (quantized) 8× 8 grid features

of Faster R-CNN as input and outputs 256 × 256
RGB images. We use a generator with 5 residual

blocks, where each block bilinearly-upsamples fea-

ture map by 2. We use 32 channels of 3x3 kernel for

every convolution layer in residual blocks. Note

that many existing generator architectures (Miy-

ato and Koyama, 2018; Wang et al., 2018; Karras

et al., 2019, 2020) have residual blocks starting

from higher dimensions (eg. 512, 1024) in low-

resolution then gradually decrease the dimension

as feature maps are spatial upsampled. However,

we found that using fixed-sized small dimension

for all residual blocks makes training more stable.

Each residual block has spatially adaptive instance

norm (SPADE) (Park et al., 2019; Huang and Be-

longie, 2017) that guides the residual block using

spatial information of 8 × 8 grid features. After

each spatially adaptive instance norm, we multi-

ply spatial gaussian noise on feature maps to make

model less focus on local texture following Style-

GAN (Karras et al., 2019). We use spectral normal-

ization (Miyato et al., 2018) after each convolution

layer in generator. Following StyleGAN-v2 (Kar-

ras et al., 2020), we use skip connection for each

https://github.com/NVIDIA/apex
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residual block to generate final output. Our gener-

ator has 1.7M trainable parameters. The detailed

architecture of our generator is illustrated at Fig. 8.

D.2 Discriminator Architecture

Discriminator also consists of multiple residual

blocks. We use a discriminator with 5 residual

blocks, where each residual block downsamples

feature map by 2. We use 64 channels of 3x3 ker-

nel for every convolution layer in residual blocks.

We use spectral normalization after each convolu-

tion layer in discriminator. In contrasts to genera-

tor, discriminator (1) uses instance norm (Ulyanov

et al., 2016) instead of adaptive instance norm, (2)

does not gaussian noise multiplication and (3) does

not use skip connection. Output of the 5 residual

blocks are 8 × 8 feature map. Our discriminator

have two heads taking these feature maps: (1) ad-

versarial head spatially averaging 8×8 feature map

and predicting whether input image is from origi-

nal image domain or not and (2) classification head

predicting cluster ids of 8× 8 spatial layouts from

input image. Our discriminator has 0.5M train-

able parameters. The detailed architecture of our

discriminator is illustrated at Fig. 9.

D.3 Dataset

We train our model on COCO train2014 split,

which consits of 82783 images.

D.4 Training

Our generator and discrminator are trained with

4 losses: (1) hinge adversarial loss (Lim and Ye,

2017; Tran et al., 2017), (2) AC-GAN loss (Odena

et al., 2017), (3) discriminator feature match loss

(Wang et al., 2018) and (4) perceptual loss (Johnson

et al., 2016) following (Park et al., 2019). Follow-

ing pix2pixHD (Wang et al., 2018), coefficients for

the losses are (1, 1, 10, 10) respectively. Adversar-

ial loss guides generator to output images close to

original images. The rest of the losses guide gener-

ator to output images close to specific target images

using spatial layout inputs. We use ResNet-50 (He

et al., 2016) for perceptual loss. Detail of losses

are explained in Sec. D.5.

We use Adam optimizer (Kingma and Ba, 2015)

with (β1, β2) = (0, 0.999) and two-time update

rule (Heusel et al., 2017) with learning rate of

0.0004 and 0.0001 for generator and discriminator

respectively. We train the image generator for 60

epochs with batch size 96. Training takes 15 hours

on 8 NVIDIA Titan V GPUs (8× 12GB).

D.5 Losses

In below equations, X̂ and X refer to generated

image and target image respectively.

Adversarial loss

LG
adv = −Dadv(X̂) (1)

LD
adv = max(1−Dadv(X̂), 0)

+max(1−Dadv(X), 0)
(2)

where DAdv is discriminator adversarial head.

AC-GAN loss

LACGAN = −
1

N2

∑

h,w

logP (Dcls
h,w(X̂))

−
1

N2

∑

h,w

logP (Dcls
h,w(X))

(3)

where Dcls is discriminator classification head.

Discriminator feature match loss

LG
FM =

∑

k

1

HkW kCk

∑

h,w,c

ℓhuber|D
k(X̂)−Dk(X)|

(4)

where

ℓhuber(x) =

{

0.5 ∗ x2, if |x| ≤ 1

|x| − 0.5, otherwise

and Dk is discriminator’s k-th resblock.

Perceptual loss

LG
FM−E =

∑

k

1

HkW kCk

∑

h,w,c

ℓhuber|E
k(X̂)−Ek(X)|

(5)

where Ek is ResNet-50 (He et al., 2016)’s

k-th resblock (conv2 x, conv3 x, conv4 x,

conv5 x).

Total loss

LG = λadv ∗ L
G
adv

+ λACGAN ∗ LACGAN

+ λFM ∗ LG
FM

+ λFM−E ∗ LG
FM−E

(6)

LD = λadv ∗ L
D
adv

+ λACGAN ∗ LACGAN

(7)

where (λGAN , λACGAN , λFM , λFM−E) =
(1, 1, 10, 10).
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Visual features

2048 x 8 x 8

⊕

⊕

⊕

⊕

3x3 Conv

2x Upsample
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condition

C x H x W

32x8x8

Spatial

condition

SPADE

Noise

LeakyReLU(0.2)

2x Upsample

3x3 Conv

SPADE

Noise

LeakyReLU(0.2)

3x3 Conv

⊕

1) Generator Architecture 2) Generator Resblock

C x 2H x 2W

Generated image

3 x 256 x 256

32x8x8

⊕ : Element-wise Addition

Resblock

Resblock

Resblock

Resblock

Resblock

3x3 Conv

1x1 Conv

3x3 Conv

32x16x16

32x32x32

32x64x64

32x128x128
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2x Upsample

1x1 Conv2x Upsample

2x Upsample

2x Upsample

Skip connection

3x3 Conv

3x3 Conv

3x3 Conv
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Figure 8: Generator architecture that takes 8x8 grid visual features and generates 256x256 images.
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⊕

1) Discriminator Architecture 2) Discriminator Resblock
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32x16x16
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½ AvgPool

1x1 Conv

Input image

3 x 256 x 256

3x3 Conv

Global AvgPool
3x3 Conv

Real / Fake

Adversarial head Classification head

Figure 9: Discriminator architecture that takes 256x256 images.
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E Evaluation details

E.1 Image metrics

To calculate image metrics, we follow Xu et al.

(2018) and randomly sample 30000 images from

MS COCO val2014 split and sample a caption

for each image. Then we generate images from

those 30000 captions for each method. We use

subset of these 30000 captions for automatic image

evaluation.

Inception Score (IS) Following Zhu et al.

(2019), we use all 30000 generated images. We use

OpenAI implementation9 to calculate IS.

Fréchet Inception Distance (FID) Following

Zhu et al. (2019), we use all 30000 generated im-

ages. We use PyTorch port of official implementa-

tion10 to calculate FID.

R-precision-easy We use all 30000 generated

images. For R-precision-easy, we sample 99 nega-

tive captions for each caption, where all negative

captions correspond to different val2014 images.

R-precision-hard For each R-precision-hard cat-

egory (noun/verb/color/number), we use 1000 ran-

domly sampled caption that contains a category

word. Then we generate 9 negative captions by

swapping the detected category word with another

word with same category. We use POS-tagging

with spaCy11 to find category words from a caption.

We present per-category score of R-precision-hard

at table 6.

E.2 Human evaluation

We use Amazon Mechanical Turk12 for human eval-

uation.

HUMMUS score For each HUMMUS category

(noun/verb/color), we use 100 randomly sampled

images. Then we mask out words in the same

fashion as in R-precision-hard metric. A total of

280 unique crowdworkers completed the task, with

a median of 13 images annotated per worker. We

present per-category score of HUMMUS score at

table 7. Fig 10 shows screenshot of HUMMUS

score (noun category) evaluation task.

9https://github.com/openai/

improved-gan/tree/master/inception_score
10https://github.com/

mseitzer/pytorch-fid/tree/

802da3963113b5b5f8154e0e27580ee4c97460ab
11https://spacy.io/
12https://www.mturk.com/

Pairwise preference For Semantic preference

task, we ask annotators (1) ‘Which image best

matches the caption?’ with caption. For Fidelity

preference task, we ask annotators ‘Which image

looks more realistic?’ without providing the cap-

tion. A total of 357 unique crowdworkers com-

pleted the task, with a median of 17 annotations

performed per worker.

Fig 11 shows screenshot of Semantic preference

evaluation task, and Fig 12 shows screenshot of

Fidelity preference evaluation task.

https://github.com/openai/improved-gan/tree/master/inception_score
https://github.com/openai/improved-gan/tree/master/inception_score
https://github.com/mseitzer/pytorch-fid/tree/802da3963113b5b5f8154e0e27580ee4c97460ab
https://github.com/mseitzer/pytorch-fid/tree/802da3963113b5b5f8154e0e27580ee4c97460ab
https://github.com/mseitzer/pytorch-fid/tree/802da3963113b5b5f8154e0e27580ee4c97460ab
https://spacy.io/
https://www.mturk.com/


8803

R-precision-hard↑ R-precision-hard categories ↑

Noun Verb Color Number

Original Image 47.6 80.4 25.3 53.4 31.4

DM-GAN (Zhu et al., 2019) 27.5 48.9 9.5 35.8 15.7
LXMERT 6.6 5.6 1.7 10.2 8.7
X-LXMERT 25.1 41.4 9.8 30.7 18.5

X-LXMERT sampling variations:
Autoregressive

TL→BR 18.9 31.6 7.3 21.0 15.5
Random 24.7 41.2 10.1 28.8 18.7
Random-200 23.3 41.2 10.1 26.5 16.5
Easy-First 22.0 35.6 8.1 25.3 18.9

Parallel
Mask-Predict-1 21.4 35.2 7.7 29.8 12.7
Mask-Predict-4 25.1 41.4 9.8 30.7 18.5

= X-LXMERT

Mask-Predict-10 22.6 37.3 10.0 26.1 16.9

Table 6: R-precision-hard per-category scores

HUMMUS↑ HUMMUS Categories↑
Noun Verb Color

Original Image 0.73 0.79 0.52 0.89

DM-GAN 0.49 0.42 0.45 0.60
LXMERT 0.27 0.16 0.43 0.21
X-LXMERT 0.49 0.55 0.42 0.50

X-LXMERT sampling variations:
TL→BR 0.43 0.45 0.42 0.41
Random 0.48 0.52 0.42 0.51
Mask-Predict-1 0.47 0.48 0.40 0.54

Table 7: Evaluating semantics with HUMMUS.
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Figure 10: Screenshot of HUMMUS score evaluation system

Figure 11: Screenshot of Semantic preference evaluation system
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Figure 12: Screenshot of Fidelity preference evaluation system


