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Abstract

We analyzed broadband X-ray and radio data of the magnetar SGRJ1935+2154 taken in the aftermath of its
2014, 2015, and 2016 outbursts. The source soft X-ray spectrum <10 keV is well described with a blackbody
+power-law (BB+PL) or 2BB model during all three outbursts. Nuclear Spectroscopic Telescope Array
observations revealed a hard X-ray tail, with a PL photon index Γ=0.9, extending up to 50 keV, with flux
comparable to the one detected <10 keV. Imaging analysis of Chandra data did not reveal small-scale extended
emission around the source. Following the outbursts, the total 0.5–10 keV flux from SGRJ1935+2154
increased in concordance to its bursting activity, with the flux at activation onset increasing by a factor of ∼7
following its strongest 2016 June outburst. A Swift/X-Ray Telescope observation taken 1.5 days prior to the
onset of this outburst showed a flux level consistent with quiescence. We show that the flux increase is due to the
PL or hot BB component, which increased by a factor of 25 compared to quiescence, while the cold BB
component kT=0.47 keV remained more or less constant. The 2014 and 2015 outbursts decayed quasi-
exponentially with timescales of ∼40 days, while the stronger 2016 May and June outbursts showed a quick
short-term decay with timescales of about four days. Our Arecibo radio observations set the deepest limits on the
radio emission from a magnetar, with a maximum flux density limit of 14 μJy for the 4.6GHz observations and
7 μJy for the 1.4GHz observations. We discuss these results in the framework of the current magnetar
theoretical models.
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1. Introduction

A subset of isolated neutron stars (NSs), dubbed magnetars,
show peculiar rotational properties with low spin periods P in
the range of 2–12 s and large spin-down rates Ṗ of the order of
10 1011 12- -– ss−1 for most sources. Such properties imply
particularly strong surface dipole magnetic fields of the order of
1014–1015 G. About 24 magnetars with these properties are
known in our Galaxy, while one resides in the SMC and
another in the LMC (Olausen & Kaspi 2014). Most magnetars
show high X-ray persistent luminosities, often surpassing their
rotational energy reservoir, hence requiring an extra source of
power. The latter is believed to be of magnetic origin,
associated with their extremely strong outer or inner magnetic
fields.

Magnetars are the most variable sources within the isolated NS
zoo. Almost all have been observed to emit short (∼0.1 s), bright
(E 10 10burst

37 41» – erg), hard X-ray bursts (see Mereghetti
et al. 2015; Turolla et al. 2015, for reviews). Such bursting
episodes can last days to weeks with varying numbers of bursts

emitted by a given source, ranging from tens to hundreds (e.g.,
Israel et al. 2008; Lin et al. 2011; van der Horst et al. 2012). These
bursting episodes are usually accompanied by changes in the
source persistent X-ray emission; an increase by a factor of a few
to ∼100 in flux level is usually observed to follow bursting
episodes, together with a hardening in the X-ray spectrum (e.g.,
Esposito et al. 2011; Ng et al. 2011; Kaspi et al. 2014; Coti Zelati
et al. 2015). Both properties usually relax quasi-exponentially to
preburst levels on timescales of weeks to months (Rea &
Esposito 2011). Their pulse properties also vary following
bursting episodes, with a change in shape and pulse fraction
(e.g., Göǧüş et al. 2002; Woods et al. 2004, see Woods &
Thompson 2006; Mereghetti 2008 for a review). We note that the
magnetar-defining observational characteristics mentioned above
have also been observed recently from NSs not originally
classified as magnetars, like the high-B pulsars PSRJ1846–0258
(Gavriil et al. 2008) and PSRJ1119–6127 (Archibald et al. 2016;
Göğüş et al. 2016), the central compact object in RCW103 (Rea
et al. 2016), and a low-B magnetar, SGRJ0418+5729 (Rea
et al. 2013; see also Scholz et al. 2014; Zhou et al. 2014).
Moreover, a surrounding wind nebula, usually a pulsar-associated
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phenomenon, has now been observed from at least one magnetar,
SwiftJ1834.9–0846 (Younes et al. 2012, 2016; Granot
et al. 2017; Torres 2017).

Some magnetars also show bright, hard X-ray emission
(>10 keV) with total energy occasionally exceeding that of
their soft X-ray emission. This hard emission is nonthermal in
origin, phenomenologically described as a power law (PL)
with a photon index in the range Γ∼1−2 (see, e.g., Kuiper
et al. 2006). The hard and soft component properties may also
differ (e.g., An et al. 2013; Vogel et al. 2014; Tendulkar
et al. 2015). In the context of the magnetar model, the hard
X-ray emission has been explained as resonant Compton
scattering of the soft (surface) emission by plasma in the
magnetosphere (Baring & Harding 2007; Fernández &
Thompson 2007; Beloborodov 2013).

So far, only four magnetars have been detected to show pulsed
radio emission, excluding the high-B pulsar PSRJ1119–6127
that exhibited magnetar-like activity (Weltevrede et al. 2011;
Antonopoulou et al. 2015; Archibald et al. 2016; Göğüş et al.
2016). The radio emission from the four typical magnetars
showed transient behavior, correlated with the X-ray outburst
onset (Camilo et al. 2006, 2007; Levin et al. 2010). Rea et al.
(2012) showed that all radio magnetars have L E 1X <˙ during
quiescence. However, the physical mechanism for the radio
emission in magnetars (as well as why it has only been detected in
a very small number of sources) remains largely unclear (e.g.,
Szary et al. 2015) and could be inhibited if optimal conditions for
the production of pairs are not present (e.g., Baring &
Harding 1998).

SGRJ1935+2154 is a recent addition to the magnetar family,
discovered with the Swift/X-Ray Telescope (XRT) on 2014 July
05 (Stamatikos et al. 2014). Subsequent Swift, Chandra and
XMM-Newton observations taken in 2014 confirmed the source
as a magnetar with a spin period P=3.25 s and P 1.43= ´˙
10 11- ss−1, implying a surface dipole B field of B=2.2×1014

G (Israel et al. 2016b). SGRJ1935+2154 has been quite active
since its discovery with at least three other outbursts: 2015
February 22, 2016 May 14, and 2016 June 18. The source is
close to the geometrical center of the supernova remnant
G57.2+0.8 (Gaensler 2014). The distance to the source is
unknown, so we adopt a nominal distance to the magnetar of
9 kpc for consistency with Israel et al. (2016b).

In this paper, we report on the analysis of all X-ray observations
of SGRJ1935+2154 taken after 2014 May, including a Nuclear
Spectroscopic Telescope Array (NuSTAR) observation made
within days of the 2015 outburst identifying the broadband
X-ray spectrum of the source. We also report on the analysis of
radio observations taken with Arecibo following the 2015 and
2016 June outbursts. X-ray and radio observations and data
reduction are reported in Section 2, and analysis results are shown
in Section 3. Section 4 discusses the results in the context of the
magnetar model, while Section 5 summarizes our findings.

2. Observations and Data Reduction

2.1. Chandra

Chandra observed SGRJ1935+2154 three times during its
2014 outburst and once during its 2016 June outburst. Two of
the 2014 observations were in continuous-clocking (CC) mode,
while the other two were taken in timed-exposure (TE) mode
with one-eighth subarray. We analyzed these observations
using CIAO 4.8.2 and calibration files CALDB version 4.7.2.

For the TE-mode observations, we extracted source events
from a circle with radius 2″, while background events were
extracted from an annulus centered on the source with inner and
outer radii of 4″ and 10″, respectively. Source events from the
CC-mode observations were extracted using a box extraction
region of 4″ length. Background events were extracted from two
box regions with the same length on each side of the source
region. We used the CIAO specextract13 script to extract
source and background spectral files, including response RMF
and ancillary ARF files. Finally, we grouped the spectra to have
only five counts per bin. Table 1 lists the details of the Chandra
observations.

2.2. XMM-Newton

We analyzed all of the 2014 XMM-Newton observations of
SGRJ1935+2154. In all cases, the EPIC-pn (Strüder
et al. 2001) camera was operated in Full Frame mode. The
MOS cameras, on the other hand, were operated in small
window mode. Both cameras used the medium filter. All data
products were obtained from the XMM-Newton Science
Archive (XSA)14 and reduced using the Science Analysis
System (SAS) version 14.0.0.
The PN and MOS data were selected using event patterns

0–4 and 0–12, respectively, and excluding X-ray events at the
edge of the CCD or falling near a hot pixel (“FLAG=0”). We
inspected all observations for intervals of high background,
such as due to solar flares, and excluded those where the
background level was above 5% of the source flux. The source
X-ray flux was never high enough to cause pileup.
Source events for all observations were extracted from a

circle with center and radius obtained by running the task
eregionanalyse on the cleaned event files. This task calculates
the optimum centroid of the count distribution within a given
source region and the radius of a circular extraction region that
maximizes the source signal-to-noise ratio (S/N). The radii of
these extraction regions ranged from 40″ to 50″. Background
events were extracted from a source-free annulus centered at
the source with inner and outer radii of 60″ and 100″,
respectively. We generated response matrix files using the SAS
task rmfgen, while ancillary response files were generated using
the SAS task arfgen. Again, we grouped the spectra to have
only five counts per bin. Table 1 lists the details of the XMM-
Newton observations.

2.3. Swift

We reduced all 2014, 2015, and 2016 Swift/XRT (Burrows
et al. 2005) data using xrtpipeline version 13.2, and we
performed the analysis using HEASOFT version 6.20. The count
rate for all but two Swift/XRT observations was between 0.01
and 0.05 counts s−1, so as a balance between minimizing the
background and maximizing the S/N, we extracted source
events from a 30″ radius circle centered on the source (Evans
et al. 2007, 2009). For obs IDs 00686761000 (0.057 counts s−1)
and 00701182000 (0.088 counts s−1), we used a circular
extraction region with a 47″ radius (Evans et al. 2007, 2009).
Background events were extracted from an annulus centered at
the same position as the source with inner and outer radii of 80″
and 120″, respectively. Finally, we generated the ancillary files

13 http://cxc.harvard.edu/ciao/ahelp/specextract.html
14 http://xmm.esac.esa.int/xsa/index.shtml
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with xrtmkarf and used the response matrices in CALDB
v014. All spectra and ancillary files are corrected for the point-
spread function (PSF) and exposure map corresponding to each
observation. The log of the XRT observations is listed in
Table 1.
All observations that resulted in a source number of counts>30

were included in the analysis individually. Observations with
source number counts <30 were merged with other observations
that were taken within a two-day interval. Any individual or
merged observation that did not satisfy the 30 source number
counts limit were excluded from the analysis. However, most of
these lost intervals were compensated for with existing quasi-
simultaneous Chandra and XMM-Newton observations.

2.4. NuSTAR

The NuSTAR (Harrison et al. 2013) consists of two similar
focal-plane modules (FPMA and FPMB) operating in the
energy range 3–79 keV. It is the first hard X-ray (>10 keV)
focusing telescope in orbit.
NuSTAR observed SGRJ1935+2154 on 2015 February 27

at 05:16:20 UTC. The net exposure time of the observation is
50.6ks (Table 1). We processed the data using the NuSTAR
Data Analysis Software, nustardas version v1.5.1. We
analyzed the data using the nuproducts task (which allows
for spectral extraction and generation of ancillary and response
files) and HEASOFT version 6.20. We extracted source events
around the source position using a circular region with 40″
radius. Background events were extracted from an annulus
around the source position with inner and outer radii of 80″ and
160″, respectively.

2.5. Arecibo Observations

We observed SGRJ1935+2154 with the 305m William E.
Gordon Telescope at the Arecibo Observatory in Puerto Rico, as
part of Director’s Discretionary Time, to search for radio emission
after its X-ray activation, both in 2015 and in 2016. The source
was observed on 2015 March 5, March 12, and March 27
(henceforth Obs. 1–3) and on 2016 July 5, July 12, and July 27
(Obs. 4–6). Observation durations ranged from ∼1 to 2.5 hr; in
each session (with the exception of Obs. 2 and 5), the observation
time was split between two different observing frequencies. A
short summary of all observations is presented in Table 2.
Observations using the Arecibo C-band receiver were

performed at a central frequency of 4.6 GHz, using the seven
Mock Spectrometers as backends. We used a bandwidth of
∼172MHz per Mock, each of which was split across 32
channels. The 7 Mock data sets were analyzed separately in
order to avoid complications due to scintillation or radio
frequency interference (RFI), which corrupted some bands
much more heavily than others. Together the 7 Mocks spanned
4.1–5.2 GHz, with ∼22MHz overlap between the bands. The
time resolution was 65 μs with 16-bit samples. In every C-band
observation, we used the nearby and bright PSRB1919+21 to
test the instrumental setup.
The Arecibo L-band Wide receiver was used in the

frequency range 0.98–1.78 GHz with a central frequency of
1.38 GHz. As back end, we used the Puerto-Rican Ultimate
Pulsar Processing Instrument (PUPPI). PUPPI provided
800MHz bandwidth (roughly 500MHz usable after removing
RFI and the edges of the receiver band), split across 2048
spectral channels. For our observations, PUPPI was used in

Table 1
Log of X-Ray Observations

Telescope/Obs.ID Date Net Exposure
(MJD) (ks)

2014

Swift-XRT/00603488000 56843.40 3.37
Swift-XRT/00603488001 56843.52 9.90
Swift-XRT/00603488003 56845.25 3.93
Swift-XRT/00603488004 56845.98 9.31
Swift-XRT/00603488006 56846.66 3.67
Swift-XRT/00603488007 56847.60 3.63
Swift-XRT/00603488008a 56851.52 5.33
Swift-XRT/00603488009a 56851.32 2.95

Chandra/15874 56853.59 9.13
Swift-XRT/00603488011 56858.00 2.95

Chandra/15875 56866.03 75.1
Chandra/17314 56900.03 29.0

XMM-Newton/0722412501 56926.95 16.9
XMM-Newton/0722412601 56928.20 17.8
XMM-Newton/0722412701 56934.36 16.1
XMM-Newton/0722412801 56946.11 8.61
XMM-Newton/0722412901 56954.15 6.53
XMM-Newton/0722413001 56957.95 12.4
XMM-Newton/0748390801 56976.16 9.83

2015

Swift-XRT/00632158000 57075.51 7.33
Swift-XRT/00632158001 57075.80 1.80
Swift-XRT/00632158002 57076.52 5.91
Swift-XRT/00033349014 57078.18 3.13
NuSTAR/90001004002 57080.22 50.6
Swift-XRT/00033349015 57080.24 5.94
Swift-XRT/00033349016 57085.31 3.94
Swift-XRT/00033349017 57092.55 3.91
Swift-XRT/00033349018 57102.00 4.37
Swift-XRT/00033349019a 57127.16 1.97
Swift-XRT/00033349020a 57127.77 2.94
Swift-XRT/00033349021a 57128.56 2.66
Swift-XRT/00033349022a 57129.10 0.85
Swift-XRT/00033349023a 57134.35 1.37
Swift-XRT/00033349024 57220.96 1.98
Swift-XRT/00033349025 57377.70 3.94

2016

Swift-XRT/00686761000 57526.38 1.67
Swift-XRT/00686842000a 57527.24 0.84
Swift-XRT/00033349026a 57527.77 2.96
Swift-XRT/00687123000a 57529.84 1.21
Swift-XRT/00687124000a 57529.85 0.81
Swift-XRT/00033349028a 57539.87 2.78
Swift-XRT/00033349029a 57540.54 0.47
Swift-XRT/00033349031 57554.16 2.57
Swift-XRT/00033349032 57561.02 1.58
Swift-XRT/00701182000 57562.81 1.65
Swift-XRT/00701590000 57565.58 1.39
Swift-XRT/00033349033a 57567.18 2.01
Swift-XRT/00033349034a 57569.52 2.38

Chandra/18884 57576.23 18.2
Swift-XRT/00033349035 57576.77 2.78
Swift-XRT/00033349036 57586.20 2.48
Swift-XRT/00033349037 57597.04 2.84

Note.
a Merged Swift exposures.
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Incoherent Search mode. The data were sampled at 40.96 μs
with eight bits per sample. At the start of every L-band
observation, PSRJ1924+1631 was observed to verify the
setup.

3. Results

3.1. X-Ray Imaging

To assess the presence of any extended emission around
SGRJ1935+2154, we relied on the four Chandra observa-
tions, as well as the 2014 XMM-Newton observations.

Two of the Chandra observations, including the one in 2016,
were taken in TE mode, while the other two were taken in CC
mode. For the two TE-mode observations, we simulated a
Chandra PSF at the source position with the spectrum of
SGRJ1935+2154, using the Chandra ray trace (ChaRT15) and
MARX.16 The middle panel of Figure 1 shows the radial
profile, in the energy range 0.8–8 keV, of the 2016 TE-mode
observations, which had an exposure twice as long as the one
taken in 2014. Black dots represent the radial profile of the
actual observation, while the red squares represent the radial
profile of the simulated PSF. There is no evidence for small-
scale extended emission beyond a point source PSF in this
observation. The 2014 observation showed similar results
(G. Israel et al. 2017, private communication).

The CC-mode observations are not straightforward to perform
imaging analysis with, given their 1D nature. To mitigate this
limitation, we calculated and averaged the total number counts,
detected in the energy range 0.8–8 keV, in each two pixels at
equal distance from the central brightest pixel, up to a distance of
20″ (we also split the central brightest pixel into two, to better
sample the inner 0 5). The background for these observations
was estimated by averaging the number of counts from all pixels
at a distance 25″–50″ from both sides of the central brightest
pixel. The left panel of Figure 1 shows the results of our analysis

on the longest of the two CC-mode observations, obs. ID 15875
(notice the y-axis units of counts arcsec−1). The solid horizontal
line represents the background level, while the dots represent the
1D radial profile of SGRJ1935+2154. The inset is a zoom-in at
the 3″–20″ region. The level of emission beyond ∼5″ from the
central pixel is consistent with the background, so we conclude
that there is no evidence for small-scale extended emission from
the source. We verified our results by converting our 2016 TE-
mode observation into CC mode by collapsing the counts into
1D. We then performed the same analysis on this converted
image as the one done on the CC-mode observations. The results
are shown in the right panel of Figure 1.17

XMM-Newton observations showed a weak extended emis-
sion, in the energy range 0.8–10 keV, after stacking all seven
2014 observations, in accordance with the results reported by
Israel et al. (2016b).

3.2. Timing

3.2.1. X-Ray

We searched the 2015 NuSTAR and 2016 Chandra data for
the pulse period from SGRJ1935+2154. We focused the
search in an interval around the expected pulse period from
the source at the NuSTAR and ChandraMJDs, after extra-
polating the timing solution detected with Chandra and XMM-
Newton during the 2014 outburst (Israel et al. 2016b). We
included the possibility of timing noise or glitches and
searched an interval with P 1.5 10 9d » ´ -˙ ss−1. We
searched for a total of 960 independent frequencies in the
frequency range 0.3030–0.3125Hz. For the FPMA and
FPMB modules, we extracted events from a circle with a
45″ radius around the source position and in the energy range
3–50 keV. We extracted the Chandra events using a 2″ circle
centered at the source in the energy range 1–8 keV. We
barycenter-corrected the photon arrival times to the solar
system barycenter.
We first applied the Z2m test algorithm (Buccheri et al. 1983) at

the NuSTAR data, where m is the number of harmonics. Although
the signal during the 2014 outburst was nearly sinusoidal, we
applied the test using m=1, 2, 3, and 5, considering the
possibility of a change in the pulse shape during the later
outbursts. The highest peak, found in the Z1

2 test in the NuSTAR
data, with a significance of 3.2σ, corrected for trial frequencies
and number of harmonics searched, is located at the period
reported in Younes et al. (2015a) of 3.24729(1)s. This is largely
different from the pulse period of 3.24528(6)s derived by Israel
et al. (2016b) for the 2015 XMM-Newton observation taken a
month later. The change in frequency between the two
observations is about 1.2×10−9 ss−1, too large to correspond
to any timing noise. We also repeated our above analysis for
different energy cuts, namely 3–10 keV and 3–30 keV, and for
different circular extraction regions of 30″ and 37″ radii (to
optimize S/N). We find no other significant peaks in the Z2 power
for any of the above combinations. We, therefore, conclude that
we do not detect the spin period of the source in our 2015
NuSTAR observation. Following the same method, we searched
for the pulse period in the 2016 Chandra observation. Similarly,
we do not detect the pulse period from SGRJ1935+2154.
We estimated upper limits on the rms pulsed fraction (PF) of

a pure sinusoidal modulation by simulating 10,000 light curves

Table 2
Arecibo Observations Summary

Obs. Project ID Obs. Start Date Integration Time (hr)

C-band Observations

G=8 K Jy−1, Tsys=28 K

1 p2976 2015 Mar 05 1.0
2 p2976 2015 Mar 12 1.0
3 p2976 2015 Mar 27 1.3
4 p3100 2016 Jul 05 0.7
5 p3100 2016 Jul 12 1.0
6 p3100 2016 Jul 27 0.3

L-band Observations

G=10 K Jy−1, Tsys=33 K

1 p2976 2015 Mar 05 1.0
2 p2976 2015 Mar 12 L
3 p2976 2015 Mar 27 1.0
4 p3100 2016 Jul 05 0.5
5 p3100 2016 Jul 12 L
6 p3100 2016 Jul 27 0.4

15 http://cxc.harvard.edu/ciao/PSFs/chart2/
16 http://space.mit.edu/CXC/MARX/

17 We note that these results have been confirmed independently by G. Israel
et al. 2017, private communication, and the referee.
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with mean count rate corresponding to the true background-
corrected count rate of the source and pulsed at a given rms PF.
For our 2015 NuSTAR observation, we derive a 3σ (99.73%
confidence) upper limit on the rms PF of 26%, 35%, and 43%
in the energy ranges 3–50 keV, 3–10 keV, and 10–50 keV,
respectively. For our 2016 Chandra observation, we set a 3σ
rms PF upper limit of 8%. These limits are consistent with the
5% rms pulsed fraction derived during the 2015 XMM-Newton
observation in the 0.5–10 keV range (Israel et al. 2016b).

3.2.2. Radio

A consistent method was adopted for both the C-band and
L-band data analyses and was based on tools from the pulsar
search and analysis software PRESTO (Ransom 2001; Ransom
et al. 2002, 2003). To excise RFI, we created a mask using
rfifind. After RFI excision, we used three different techniques
to search for radio pulsations: (1) a blind, Fourier-based
periodicity search, (2) a search based on the known spin
parameters from an X-ray-derived ephemeris (described
below), and (3) a single-pulse search to look for sporadic
pulses from the magnetar.

Blind searches. We conducted coherent pulsation searches
using no a priori assumption about the spin period in order to
allow for a change compared to the ephemeris (e.g., a glitch) or
the serendipitous discovery of a pulsar in the field. Using
prepsubband, we created barycentered and RFI-excised
time series for a DM range of 0–2160 pc cm−3, where the trial
DM spacing was determined using DDplan. We then Fourier
transformed each time series with realfft and conducted
accelsearch-based searches (with a maximum signal drift
of zmax=100 for the C band and zmax=10 for the L band in
the power spectrum) in order to maintain sensitivity to a
possible binary orbit. The most promising candidates from this
search were collated and ranked using ACCEL_sift. We
folded the raw filterbank data for the best 200 candidates
identified with ACCEL_sift and then visually inspected each
candidate signal using parameters such as cumulative S/N,
S/N as a function of DM, pulse profile shape, and broad-
bandedness as deciding factors in judging whether a certain
candidate was plausibly of astrophysical origin or whether it
was likely to be noise or RFI. We found no plausible
astrophysical signals in this analysis.

Ephemeris-based searches. Coherent X-ray pulsations from
SGRJ1935+2154 were detected by Israel et al. (2014) at a

>10σ confidence level. Upon this discovery, SGRJ1935
+2154 was monitored using XMM-Newton and Chandra
observations between 2014 and 2015 (see Israel et al. 2016a).
This campaign resulted in a timing solution as presented in
Table 2 of Israel et al. (2016a). We used the period, period
derivative, and second period derivative from this ephemeris to
extrapolate the source spin period for Obs. 1–3 and Obs. 4–6
(average 3.2452373 s and 3.2453063 s, respectively). We then
folded the raw data from each C-band and L-band observation
with the appropriate spin period using PRESTO’s prepfold.
This folding operation was restricted to only optimize S/N over
a small search range in pulse period and DM and incorporated
the RFI mask. We repeated this folding routine over dispersion
measures (DMs) ranging from 0 to 1000 pc cm−3 in steps of
50 pc cm−3. A similar ephemeris-based folding operation was
carried out over the dedispersed time series generated in the
above “blind search.” Here, our folding operation involved spin
periods computed for each observation, and we prohibited
prepfold from searching over spin-period derivative. We
obtained 46,930 folded candidates for the L band and 6120
candidates for the C band. Inspection of these candidates based
on pulse profile and S/N returned no promising candidates.
Recently, using the intermediate flare from SGRJ1935

+2154 along with a magnetic field estimate from the timing
analysis of Israel et al. (2016a) and Kozlova et al. (2016)
showed that the magnetar is at a distance of <10 kpc. We used
the NE2001 Galactic electron density model and integrated in
the source direction up to 10 kpc to obtain an expected DM.
We obtain a value of 344 pc cm−3 (typical error is 20%
fractional), which lies well within the DM range of our
coherent pulsation searches. These searches found no plausible
radio pulsations from SGRJ1935+2154.
We estimate maximum flux density limits using the radio-

meter equation (see Dewey et al. 1985; Bhattacharya 1998;
Lorimer & Kramer 2012) given by

S
T

G n t f

W

P W
, 1

S

N

p
min

sys

obs 

b
=

-

( )
( )

where Smin is the minimal detectable flux density (mJy), G is
the gain of the telescope (K Jy−1), β is a correction factor that is
∼1 for a large number of bits per sample, Tsys is the system
noise temperature (K), f is the bandwidth (MHz), and tobs is
the integration time (s) for a given source. These parameters for

Figure 1. Left panel: Chandra1D radial profile from the Chandra CC-mode observation 15875. The black horizontal line represents the background level, while
black dots represent the radial profile. No extended emission is obvious beyond 5″ from the central brightest pixel. Middle panel: Chandra2D radial profile from the
2016 TE-mode observation. The black dots represent the data radial profile, while the red squares represent the Chart and MARX PSF simulation. The agreement
between the profile and the PSF simulation indicates the absence of any extended emission around SGRJ1935+2154. Right panel: Chandra1D radial profile after
converting the TE-mode observation 18884 into a 1D CC-mode observation, as a verification of our results for the CC-mode observation 15875. See the text for more
details.
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the observational setup in each band are listed in Table 2. We
assume a pulsar duty cycle (W/P) of 20% and a minimum
detectable S/N of 10 in our search. This yields a maximum
(average) flux density limit of 14 μJy for the C-band
observations and 7 μJy for the L-band observations.

Single-pulse search. The previously described pulsation
searches focused on finding persistent radio pulsations.
However, it is also possible that SGRJ1935+2154 emits
sporadic individual radio pulses. Therefore, we searched for
such pulses using a matched filtering analysis with boxcar
functions of widths 65 μs to∼100 ms (depending somewhat
on the trial DM), as implemented in PRESTO’s single_-
pulse_search.py routine. We inspected the resulting
candidates by looking for events that peaked in signal-to-noise
ratio at specific DMs. All detected signals were consistent with
being due to RFI, including one intrinsically swept-frequency
emitter with harmonically related S/N peaks at DMs ∼250,
500, and 1000 pc cm−3. We thus find no conclusive evidence
for sporadic individual radio pulses from SGRJ1935+2154,
down to a peak flux density limit of ∼10/20 mJy (L-band/
C-band) for a fiducial 10 ms pulse detected at 10σ.

3.3. X-Ray Spectroscopy

We fit our spectra in the energy range 0.8–8 keV for
Chandra, 0.8–10 keV for XMM-Newton and Swift (emission is
background dominated at energies <0.8 keV), and 3–50 keV
for NuSTAR, using XSPEC (Arnaud 1996) version 12.9.0k. We
used the photoelectric cross sections of Verner et al. (1996) and
the abundances of Wilms et al. (2000) to account for absorption
by neutral gas. For all spectral fits using different instruments,
we added a multiplicative constant normalization, frozen to one
for the spectrum with the highest S/N and allowed to vary for
the other instruments. This takes into account any calibration
uncertainties between the different instruments. We find that
this uncertainty is between 2% and 8%. For all spectral fitting,
we used the Cash statistic (C-stat) in XSPEC for model
parameter estimation and error calculation, while the good-
ness command was used for goodness-of-fit estimation. We
note that the C-stat implementation in XSPEC allows for a
background to be read in instead of modeled. Nevertheless, we
verified our results for the XMM-Newton and NuSTAR spectra,
which have a larger background than Chandra and Swift, using
the typical χ2 method after binning the spectra to have an S/N
of 4.5. We find consistent results between the C-stat and χ2

methods. All quoted uncertainties are at the 1σ level, unless
otherwise noted.

3.3.1. The 2014 Outburst

We started our spectral analysis of the 2014 outburst
(Table 1) by focusing on the high S/N spectra derived from
the seven XMM-Newton observations (PN+MOS1+MOS2).
First, we fit these spectra simultaneously with an absorbed
(tbabs in XSPEC) blackbody plus power-law (BB+PL)
model, allowing all spectral model parameters to vary freely,
that is, BB temperature (kT) and emitting area, and PL photon
index (Γ) and normalization, except for the absorption
hydrogen column density, which we linked between all spectra.
This model provides a good fit to the data with a C-stat of
5116.7 for 5196 degrees of freedom (d.o.f.). We find a

hydrogen column density N 2.4 0.1 10H
22=  ´( ) cm−2. The

BB temperatures and PL indices are consistent for all spectra
within the 1σ level. Hence, we linked these parameters and
refit. We find a C-stat of 5131.75 for 5208 d.o.f. To estimate
which model is preferred by the data (here and elsewhere in the
text), we estimate the difference in the Bayesian information
criterion (BIC), where a ΔBIC of 8 is considered significant,
and the model with the lower BIC is preferred (e.g.,
Liddle 2007). Comparing the case of free versus linked kT
and Γ, we find that the case of linked parameters is preferred
with a ΔBIC≈88. This fit resulted in a hydrogen column
density N 2.4 0.1 10H

22=  ´ cm−2, a BB temperature
kT 0.46 0.01 keV=  and area R 1.45 0.03

0.07= -
+ km, and a

photon index 2.0 0.5
0.4G = -

+ .
We then fit the three Chandra spectra simultaneously, linking

the hydrogen column density, while leaving all other fit
parameters free to vary. We find a common hydrogen column
density N 2.9 0.3 10H

22=  ´( ) cm−2. Similar to the case of
the XMM-Newton observations, the BB temperature and the PL
photon index were consistent within the 1σ confidence level
among the three observations. We, therefore, linked the BB
temperature and the PL photon index in the three observations and
found kT=0.46±0.02, R=1.8±0.2 km, and 2.4 0.6

0.4G = -
+ .

Given the consistency in NH, BB temperature, and PL
photon index between the Chandra and XMM-Newton
observations, we then fit the spectra from all 10 observations
simultaneously, first only linking the NH among all observa-
tions. We find a good fit with a C-stat of 5750 for 5845 d.o.f,
with N 2.4 0.1 1022=  ´( ) cm−2. Similar to the above two
cases, we find that the BB temperatures and the PL indices are
consistent within 1σ. Hence, we fit all 10 observations while
linking kT and Γ. We find a C-stat of 5806 for 5863 d.o.f.
Comparing this fit to the above case, we find a ΔBIC=100,
suggesting that the latter fit is preferred over the fit where
parameters were left free to vary. The best-fit spectral
parameters for the BB+PL model are summarized in
Table 3, while the data and best-fit model are shown in
Figure 2.
We also fit all spectra with an absorbed BB+BB model

following the above methodology. We first only link NH among
all spectra while allowing the temperature and emitting area of
the two BBs free to vary. We find that the BB temperature of
the cool component as well as the hot component are consistent
at the 1σ level among all 10 observations and were, therefore,
linked. This alternative fit resulted in a C-stat of 5812 for 5863
d.o.f., similar in goodness to the BB+PL fit. Table 3 gives the
BB+BB best-fit spectral parameters, while the data and best-fit
model are shown in Figure 2.
We analyzed the Swift/XRT observations taken during the

2014 outbursts following the procedure explained in
Section 2.3. We fit all XRT spectra simultaneously with the
BB+PL and BB+BB models. Due to the limited statistics, we
fixed the temperatures and the photon indices to the values
derived with the above XMM-Newton+Chandra fits. We made
sure that the resulting fit was statistically acceptable using the
XSPEC goodness command. In the event of a statistically
bad fit, we allowed the temperatures and the photon indices to
vary within the 3σ uncertainty of the XMM-Newton+Chandra
fits, which did give a statistically acceptable fit in all cases. We
show in Figure 3 the flux evolution of the BB+PL model and
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in Figure 4 the area evolution of the 2BB model. These results
are discussed in Section 4.

Finally, we note that during the 2015 outburst, which will be
discussed in Section 3.3.2, NuSTAR reveals a hard X-ray
component dominating the spectrum at energies >10 keV and
with a nonnegligible contribution at energies 5–10 keV. In
order to understand the effect of such a hard component on the
spectral shape below 10 keV (if it indeed exists during the 2014
outburst), we added a hard PL component to the two above
models (i.e., BB+PL and 2BB) while fitting the seven XMM-
Newton observations. We fixed its index and normalization to
the result of a PL fit to the NuSTAR data from 10 to 50 keV.18

As one would expect, we find that the addition of this extra
hard PL results in a softening of the <10 keV PL and hot BB
components. On average, we find a photon index for the soft
PL Γ=2.7±0.3. For the 2BB model, we find a temperature
for the hot BB kT=0.8±0.2 with a radius for the emitting
area R≈210±30 m. Moreover, we find the fluxes of the low-
energy PL or the hot BB to be a factor of ∼3 lower; however,
the total 0.5–10 keV flux is similar to the above two models
when we did not include a contribution from a hard PL. We
cannot, unfortunately, add a hard PL component to the XRT

spectra and still extract meaningful flux values from the two
other components <10 keV, due to very limited statistics. A
complete statistical analysis, invoking many spectral simula-
tions, aiming at understanding the exact effect of a hard PL
component on the spectral curvature <10 keV, is beyond the
scope of this paper. In all our discussions in Section 4,
however, we made sure to avoid making any conclusions that
could be affected by such a shortcoming of the data as we are
considering here.

3.3.2. The 2015 Outburst

For the 2015 outburst, we first concentrated on the analysis
of the simultaneous NuSTAR and Swift/XRT observations
(Table 1) taken on February 27, five days following the
outburst onset. This provided the first look at the broadband
X-ray spectrum of the source. SGRJ1935+2154 is clearly
detected in the two NuSTAR modules with a background-
corrected number of counts of ∼800 (3–50 keV). We find a
background-corrected number of counts in the 3–10 keV and
10–50 keV ranges of about 500 and 300 counts, respectively.
The simultaneous XRT observation provided about 130
background-corrected counts in the energy range 0.5–10 keV.
We then fit the spectra simultaneously to an absorbed

BB+PL model. We find a good fit with a C-stat of 444 for
452 d.o.f., with an N 2.0 10H 0.7

0.8 22= ´-
+( ) cm−2. We find a

Table 3
Best-fit XMM-Newton and Chandra X-Ray Spectral Parameters

Obs. ID NH kTcool Rcool
a

Γ/kThot Rhot
a

FkT cool‐ FPL kT hot‐
1022 cm−2 (keV) (km) (/keV) (10−3 km) (10−12, erg s−1 cm−2) (10−12, erg s−1 cm−2)

2014 Outburst–BB+PL–Goodness 54%

15874 2.46±0.08 0.47±0.01 1.7±0.08 2.0±0.2 K 1.78±0.16 1.31±0.33
15875 (L) (L) 1.8±0.05 (L) K 2.01±0.09 1.27±0.27
17314 (L) (L) 1.8±0.06 (L) K 1.96±0.08 0.75±0.19
0722412501 (L) (L) 1.6±0.05 (L) K 1.50±0.06 0.69±0.17
0722412601 (L) (L) 1.6±0.05 (L) K 1.49±0.06 0.62±0.15
0722412701 (L) (L) 1.6±0.05 (L) K 1.56±0.06 0.64±0.16
0722412801 (L) (L) 1.6±0.06 (L) K 1.57±0.07 0.69±0.17
0722412901 (L) (L) 1.6±0.06 (L) K 1.50±0.08 0.65±0.17
0722413001 (L) (L) 1.5±0.05 (L) K 1.42±0.07 0.66±0.17
0748390801 (L) (L) 1.5±0.05 (L) K 1.38±0.09 0.90±0.21

2016 Outburst–Goodness 61%

18884 2.7±0.3 0.42±0.04 2.3±0.5 1.3 0.7
0.9

-
+ K 2.0±0.3 1.1±0.6

2014 Outburst–BB+BB–Goodness 47%

15874 2.30±0.04 0.48±0.01 1.8±0.6 1.6±0.1 80±9 2.12±0.09 0.53±0.08
15875 (L) (L) 1.9±0.6 (L) 79±9 2.34±0.05 0.52±0.03
17314 (L) (L) 1.8±0.6 (L) 61±8 2.10±0.06 0.31±0.04
0722412501 (L) (L) 1.6±0.5 (L) 57±7 1.66±0.04 0.27±0.02
0722412601 (L) (L) 1.5±0.6 (L) 54±7 1.62±0.04 0.25±0.02
0722412701 (L) (L) 1.6±0.5 (L) 55±7 1.70±0.04 0.25±0.02
0722412801 (L) (L) 1.6±0.5 (L) 57±7 1.72±0.05 0.28±0.03
0722412901 (L) (L) 1.6±0.6 (L) 55±8 1.65±0.05 0.26±0.03
0722413001 (L) (L) 1.5±0.6 (L) 56±7 1.57±0.04 0.26±0.03
0748390801 (L) (L) 1.5±0.6 (L) 65±8 1.62±0.05 0.36±0.03

2016 Outburst–Goodness 55%

18884 2.7±0.3 0.43±0.02 2.3±0.4 2.0 0.5
1.3

-
+ 52 26

36
-
+ 2.5±0.3 0.45 0.06

0.07
-
-

Note. Fluxes are derived in the energy range 0.5–10 keV. All fluxes are corrected for absorption. (L) represents a linked parameter between the different spectra.
a Assuming a distance of 9 kpc.

18 We used a simultaneous Swift/XRT observation to properly normalize the
flux of this hard PL component to the 2014 XMM-Newton ones, assuming that
the PL flux below and above 10 keV varies in tandem.
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BB temperature kT 0.51 0.04=  , a BB emitting area radius
R 1.4 0.3

0.5= -
+ km, and a PL photon index Γ=0.9±0.1. This

spectral fit results in 0.5–10 keV and 10–50 keV absorption-
corrected fluxes of (2.6±0.4)×10−12 erg s−1 cm−2 and
(2.2±0.2)×10−12 erg s−1 cm−2, respectively. Table 4
summarizes the best-fit model parameters, while Figure 5
shows the data and best-fit model components in ν Fν space
(upper panel) and the residuals in terms of σ (lower panel).

Since the Chandra and XMM-Newton 2014 spectra were best
fit with a two-component model below 10 keV, we added a
third component to the Swift+NuSTAR data, a BB or a PL.
Such a three-component modelis required for many bright
magnetars to fit the broadband 0.5–79 keV spectra (e.g.,
Hascoët et al. 2014). For SGRJ1935+2154, the addition of
either component does not significantly improve the quality of
the fit, both resulting in a C-stat of 441 for 450 d.o.f. To
understand whether our Swift+NuSTAR data are of high
enough S/N to exclude the possibility of a three-component
model, we simulated 10,000 Swift-XRT and NuSTAR spectra
with their true exposure times, based on the 2014 0.5–10 keV
spectrum and including a hard PL component as measured
above. We find that we cannot retrieve all three components at
the 3σ level; most of these simulated spectra are best fit with a
two-component model, namely an absorbed PL+BB.

To study the spectral evolution of the source during its 2015
outburst, we fit the Swift/XRT spectra of observations taken
after 2015 February 22 (Table 1) with an absorbed BB+PL and

a 2BB model. We fixed the absorption column density,
temperatures, and the photon index to the values derived with
the 2014 XMM-Newton+Chandra fits, but allowed for them to
vary within their 3σ uncertainties in the case of a statistically
bad fit. We show in Figure 3 the flux evolution of the BB+PL
model and in Figure 4 the area evolution of the 2BB model.
These results are discussed in Section 4.

3.3.3. The 2016 Outburst

We started our spectral analysis of the 2016 outburst with the
Chandra observation taken on July 07. Similar to the high-S/N
spectra from the 2014 and 2015 outbursts, an absorbed BB or
PL spectral model fails to describe the data adequately. Hence,
we fit an absorbed BB+PL and a 2BB model to the data. Both
models result in equally good fits with a C-stat of 289 for 302
d.o.f. The best-fit model parameters are shown in Table 3,
while the models in ν Fν space and deviations of the data from
the model in terms of σ are shown in Figure 5. These spectral
parameters are within 1σ uncertainty from the parameters
derived during the 2014 and 2015 outbursts.
SGRJ1935+2154 was observed regularly after the May

outburst of 2016 with Swift. These observations also covered its
2016 June outburst. We analyzed all XRT observations taken
during this period and fit all spectra with an absorbed BB+PL
and a 2BB model. We froze the absorption hydrogen column
density NH, Γ, and kT to the best-fit values as derived during

Figure 2. Upper panels: BB+PL (left) and BB+BB (right) fits to the Chandra and XMM-Newton spectra from the 2014 outburst. Lower panels: BB+PL (left) and
BB+BB (right) fits to the Chandra spectrum from the 2016 outburst. The best-fit spectral components are shown in ν Fν space, while residuals are shown in terms of
χ. See the text and Table 3 for details.
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the 2014 outburst. The evolution of the flux for the BB+PL
model and the emitting area radius of the 2BB model are shown
in Figures 3 and 4, respectively.

3.4. Outburst Comparison and Evolution

We first concentrate on the 2014 outburst, which has the best
observational coverage compared to the rest. The outburst
decay is best fit with an exponential function F t =( )
Ke Ft

q+t- , where K is a normalization factor, while
F 2.1 10q

12= ´ - erg s−1 cm−2 is the assumed quiescent flux
level as derived with the XMM-Newton observations (Figure 6).
This fit results in a characteristic decay timescale 29 414t = 
days (Table 5). Integrating over 200 days, we find a total
energy in the outburst, corrected for the quiescent flux level, of
E 4.1 0.7 1014

40=  ´( ) erg. We find a flux at outburst onset
F 4.3 0.7 10on 14

12=  ´ -( )‐ erg s−1 cm−2 and a ratio to the
quiescent flux level R14≈2.0. Following the same recipe for
the 2015 outburst, we find a characteristic decay timescale

4315 8
12t = -

+ days and a total energy in the outburst, corrected
for the quiescent flux level, E 6.1 1.1 1015

40=  ´( ) erg.
The flux at outburst onset is F 4.7 0.08on 15 =  ´( )‐
10 12- erg s−1 cm−2, and its ratio to the quiescent flux level
R15=2.2.

A similar analysis for the 2016 May and June outbursts was
difficult to perform because of the lack of observations
∼30 days beyond the start of each outburst (Figure 6) and
the poor constraints on the fluxes (due to the short XRT
exposures) derived a few days after the outburst onset. These
fluxes are consistent with Fq and the slightly brighter flux level
seen in the 2014 and 2015 outbursts between a few days after
outburst onset and the quiescence reached ∼70 days later.
Hence, we cannot derive the long-term decay shape of the light
curve during the last two outbursts from SGRJ1935+2154.

However, an exponential-decay fit to the 2016 outbursts results
in short-term characteristic timescales 4May 16 June 16t t» »‐ ‐ days,

indicating a quick initial decay that might have been followed by a
longer one similar to what was observed in 2014 and 2015. To
enable a comparison between all outbursts, we derive the total
energy emitted within 10 days of each outburst. These are reported
in Table 5. The 2016 outburst onset to quiescence flux ratios are
RMay16=4.0 and RJune16=6.7. Table 5 also includes the total
energy in the bursts during the first day of each of the outbursts
(L. Lin et al. 2017, in preparation).
The decay timescales and total energies in the outbursts are

derived assuming a quiescent flux level consistent with the late
XMM-Newton observations. If, however, the true quiescent flux
level of SGRJ1935+2154 is lower (e.g., Israel et al. 2016b),
this would increase the decay timescale and the total energy
corrected for the energy released in the persistent emission. In
such case, the light curve decay shape would probably be more
complicated than a simple exponential function. Continued
monitoring of the source is important to alleviate these
systematic uncertainties on the source outburst properties.
Finally, we note that the last observation during the 2016

May outburst was taken 1.5 days prior to the start of the June
outburst (last green dot and first red square in Figure 6). The
total fluxes from the two observations differ at the 5σ level.
These results are discussed in Section 4.2.

4. Discussion

4.1. Broadband X-Ray Properties

Using high-S/N observations, we have established that the
SGRJ1935+2154 soft X-ray spectrum, with photon energies
<10 keV, is well described with the phenomenological BB
+PL or 2BB model. NuSTAR observations, on the other hand,
were crucial in providing the first look at this magnetar at
energies >10 keV, revealing a hard X-ray tail extending up to
50 keV. We note that this NuSTAR observation was taken
five days after the 2015 outburst. The Swift fit revealed a

Figure 3. SGRJ1935+2154 BB+PL spectral evolution during the 2014, 2015, and 2016 May and June outbursts. Panel (a) shows the number of bursts detected by
the Inter Planetary Network (IPN) since the source discovery and up to 2016 August. Panels (b1), (c1), and (d1) represent the evolution of the BB (stars), PL
(diamonds), and total fluxes (squares) from outburst onset and up to 200 days. Panels (b2), (c2), and (d2) represent the evolution of the F FPL BB ratio. Colors represent
fluxes derived from different instruments (black:Swift, blue:Chandra, red:XMM-Newton). See the text for details.
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0.5–10 keV flux ∼40% larger than the quiescent flux, which we
assume to be at the 2014 XMM-Newton level of 2.2×10−12

ergs−1 cm−2. The spectra below 10 keV did not show
significant spectral variability during any of the outbursts
(Section 4.2), except for the relative brightness. Accordingly,
one can conjecture that SGRJ1935+2154 has a similar high-
energy tail during quiescence, though proof of such requires
further dedicated monitoring of the source with NuSTAR or
INTEGRAL.

The presence of hard X-ray tails, such as exhibited by
SGRJ1935+2154, is clearly seen in about one-third of all
known magnetars (e.g., Kuiper et al. 2006; Esposito et al. 2007;
den Hartog et al. 2008b; Enoto et al. 2010), but may indeed be
universal to them. Spectral details differ across the population.
For instance, the hard X-ray tail photon index we measure,
ΓH≈0.9, is quite similar to some measured for AXPs (e.g.,
den Hartog et al. 2008a; An et al. 2013; Vogel et al. 2014;

Tendulkar et al. 2015), but somewhat harder than for other
sources (e.g., Esposito et al. 2007; Yang et al. 2016). More-
over, the flux in the hard PL tail is 1.5 times larger than the flux
in the soft components. This flux ratio varies by about two
orders of magnitude among the magnetar population (Enoto
et al. 2010).
Kaspi & Boydstun (2010, see also Marsden & White 2001;

Enoto et al. 2010) searched for correlations between the
observed X-ray parameters and the intrinsic parameters for
magnetars. They found an anticorrelation between the index
differential S HG G– and the strength of the magnetic field B. For

Figure 4. SGRJ1935+2154 BB+BB spectral evolution during the 2014, 2015, and 2016 May and June outbursts. Panel (a) shows the number of bursts detected by
the Inter Planetary Network (IPN) since the discovery and up to 2016 August. Panels (b1), (c1), and (d1) represent the evolution of the hot BB area from outburst onset
and up to 200 days. Panels (b2), (c2), and (d2) represent the evolution of the cool BB area. Colors represent values derived from different instruments (black:Swift,
blue:Chandra, red:XMM-Newton). See the text for more details.

Table 4
Best-fit Spectral Parameters to the 2015 Simultaneous

Swift-XTR and NuSTAR Spectra

BB+PL

NH (1022 cm−2) 2 0.7
0.8

-
+

kT (keV) 0.51±0.04
Rcool

a (km) 1.4 0.3
0.5

-
+

FBB (10−12 erg s−1 cm−2) 1.6 0.4
0.5

-
+

Γ 0.9±0.1
FPL (10−12 erg s−1 cm−2) 2.3 0.3

0.5
-
+

F0.5 10 keV- (10−12 erg s−1 cm−2) 2.6±0.4
F10 50 keV- (10−12 erg s−1 cm−2) 2.2 0.1

0.2
-
+

L0.5 50 keV-
a (1034 erg s−1) 4.1±0.3

Note.
a Assuming a distance of 9 kpc. Figure 5. Upper panel: simultaneous broadband NuSTAR and Swift-XRT

spectra of SGRJ1935+2154 taken on 2015 February 27, five days after the
2015 outburst onset. Dots, squares, and diamonds are the NuSTAR FPMA,
FPMB, and Swift-XRT spectra, respectively. The solid lines represent the
absorbed BB+PL best-fit model in ν Fν space, while the dashed and dotted
lines represent the BB and PL components, respectively. Lower panel:
residuals of the best fit are shown in terms of standard deviation.
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SGRJ1935+2154, with its spin-down field strength of
B=2.2×1014 G (Israel et al. 2016b), the determination here
of 1.0 2.0S HG G »– – nicely fits the Kaspi & Boydstun (2010)
correlation. Moreover, Enoto et al. (2010) noted a strong
correlation between the hardness ratio, defined as F FH S for the
hard and soft energy bands, respectively, and the characteristic
age τ. Following the same definition for the energy bands as in
Enoto et al. (2010), we find F F 1.4H S » , which falls very
close to this correlation line given the SGRJ1935+2154 spin-
down age τ=3.6 Kyr (Israel et al. 2016b). Since the electric
field for a neutron star E along its last open field line is
nominally inversely proportional to the characteristic spin-
down age E RB 1 2t= W µ - , Enoto et al. (2010) argued that a
younger magnetar will be able to sustain a larger current,
accelerating more particles into the magnetosphere and causing
a stronger hard X-ray emission in the tail. This scenario is
predicated on the conventional picture of powerful, young
rotation-powered pulsars like the Crab.

The most discussed model for generating a hard X-ray tail in
magnetar spectra is resonant Compton up-scattering of soft
thermal photons by highly relativistic electrons with Lorentz
factors ∼10–104 in the stellar magnetosphere (e.g., Baring &
Harding 2007; Fernández & Thompson 2007; Beloborodov
2013). The emission locale is believed to be at distances
∼10–100 RNS where R 10NS = km is the NS radius. There the
intense soft X-ray photon field seeds the inverse Compton
mechanism, and the collisions are prolific because of scattering
resonances at the cyclotron frequency and its harmonics in the
rest frame of an electron. Magnetar conditions guarantee that
electrons accelerated by voltages in the inner magnetosphere
will cool rapidly down to Lorentz factors γ∼10–102 (Baring
et al. 2011) due to the resonant scatterings. Along each field
line, the up-scattered spectra are extremely flat, with indices

0.5 0.0hG ~ - – (Baring & Harding 2007; see also Wadiasingh
et al. 2017), though the convolution of contributions from
extended regions is necessarily steeper and more commensu-
rate with the observed hard tail spectra (Beloborodov 2013).
While the inverse Compton emission can also extend out to
gamma-ray energies, the prolific action of attenuation mechan-
isms such as magnetic pair creation e eg  + - and photon
splitting g gg (Baring & Harding 2001) limits emergent

signals to energies below a few megaelectronvolts in magnetars
(Story & Baring 2014), and probably even below 500 keV.
Beloborodov (2013, see also Chen & Beloborodov 2017)

developed a coronal outflow model based on the above picture,
using the twisted magnetosphere scenario (Thompson
et al. 2002; Beloborodov 2009). Twists in closed magnetic
field loops (dubbed J-bundles) extending high into the
magnetosphere can accelerate particles to high Lorentz factors,
which will decelerate and lose energy via resonant Compton
up-scattering. If pairs are created in profusion, they then
annihilate at the top of a field loop. Another one of the J-bundle
model predictions is a hot spot on the surface formed when
return currents hit the surface at the footprint of the twisted
magnetic field lines. The physics in this model is mostly
governed by the field line twist amplitude ψ (Thompson
et al. 2002), the voltage Φj in the bundle, and its half-opening
angle to the magnetic axis θj (Beloborodov 2013; Hascoët
et al. 2014).
The temperatures expected for the hot spots are of the

order of ∼1 keV, while areas depend on the geometry of the
bundle and the angle θj. For a dipole geometry, Aj ~

A A1 4 0.02 0.3j
2

ns j
2

nsq q»( ) ( ) , where A R4ns
2p=  is the NS

surface area (Hascoët et al. 2014). Assuming that the hot BB
in our model discussed in the last paragraph of Section 3.3.1
represents the footprints of the J-bundle, for which we find a
temperature kT=0.8 keV, we estimate its surface area A≈
0.6 km2. Assuming that A≈Aj, we estimate θj≈0.05.
The above calculation assumes that the J-bundle is

axisymmetric extending all around the NS. The hot spot,
hence, is a ring around the polar cap rim. The smaller area that
we derive may suggest that the J-bundle is not axisymmetric
and extends only around part of the NS, implying that the twist
could have been imparted onto local magnetic field lines.
The total power dissipated by the J-bundle in the twisted

magnetosphere model can be expressed as L 2j » ´
R1035

10 32 10 j,0.3
4y m qF erg s−1 (Equation (3), Hascoët et al.

2014), where Φ10 is the voltage in units of 1010V, μ32 is the
magnetic moment in units of 1032Gcm3, R10 is the NS radius
in units of 10km, and 0.3j,0.3 jq q= . Given the magnetic
moment of SGRJ1935+2154, for choices of f10=1, ψ=1,
R10=1, and 0.2j,0.3q » , we estimate L 7 10j

32= ´ erg s−1.
This luminosity is a factor of ∼17 smaller than the hard tail PL
luminosity, L 1.1 10PL

34= ´ erg s−1, we derive with the
NuSTAR data, after normalizing it to the 2014 XMM-Newton
flux level.19 This might imply a larger voltage across the
twisted field lines than the choice of f10=1, which
corresponds to only ∼3×10−6 times the open field line
pole-to-equator voltage R B Pc2 2.8 10pNS

2 16p » ´( ) V for
SGRJ1935+2154. Another possibility is that the hard PL tail
could be much fainter during quiescence, which might indicate
a different decay trend for the high-energy tail compared to the
0.5–10 keV spectrum. A deep XMM-Newton+NuSTAR obser-
vation of SGRJ1935+2154 during quiescence would help
reveal the exact shape and power of the hard PL tail, inform on
how activation relates to heat transfer to and from the stellar
surface layers, and help refine the twisted magnetosphere
model.

Figure 6. Total 0.5–10 keV flux evolution with time for all four outbursts
detected from SGRJ1935+2154. The flux level reached the highest at outburst
onset during the latest outburst of 2016 June, during which the largest number
of bursts have been detected from the source. Solid lines represent an
exponential-decay fit. See the text for details.

19 The NuSTAR observation was taken five days after the outburst when the
simultaneous XRT observation showed an increase in the PL flux a factor of 2
above the quiescent XMM-Newton level of 2014. We normalized the hard PL
luminosity from Table 4 by the same factor. See also footnote17.
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4.2. Outbursts

Since its discovery in 2014 June, SGRJ1935+2154 has
shown four major bursting episodes, which culminated with the
strongest one to date in 2016 June. Similar to most other
magnetars, SGRJ1935+2154 bursting activity was accompa-
nied by a persistent emission outburst, showing an increase in
the flux level at, or shortly after, the onset of the bursting
activity that decayed quasi-exponentially back to quiescence
(e.g., Woods et al. 2004; Göğüş et al. 2010; Rea & Esposito
2011; Kargaltsev et al. 2012; Scholz et al. 2012; Coti Zelati
et al. 2015; Younes et al. 2015b).

The rise time of magnetar outbursts is a challenging
observational property to identify and quantify due to the
randomness of the process. Magnetars are usually observed by
pointed XRTs after they have entered a bursting episode.
Hence, it is unclear whether magnetars show any persistent flux
enhancement prior to the bursting activity, or whether the two
happen (quasi-)simultaneously. CXOUJ164710.2−455216
was observed with XMM-Newton five days prior to bursting
activity (Israel et al. 2007), as part of a monitoring program.
The flux of this observation was consistent with quiescence,
while the following observation, which took place less than a
day after the bursts, showed an increase by a factor of ∼300. A
serendipitous Chandra observation of SGR1627−41, 20 hr
before its 2008 bursting episode, set an upper limit that,
although larger than its true quiescent level, was a factor of a
few lower than the flux measured shortly after outburst onset.
This indicates that most of the energy in the outburst was
indeed emitted in concordance with the bursting activity
(Esposito et al. 2008). SGRJ1935+2154 was observed
∼1.5 days prior to its strongest bursting activity in 2016 June
while being monitored for its 2016 May activation. The latter
observation showed a flux level close to quiescence and was 5σ
away from the flux measured at the start of the 2016 June
outburst (Section 3.4). Hence, the behavior of SGRJ1935
+2154, along with the other mentioned magnetars, implies that
any instability invoked to explain the outbursts in magnetars
has to develop on very short timescales (2 days, e.g., Li
et al. 2016).

The 0.5–10 keV persistent flux level of SGRJ1935+2154 at
or shortly after the onset of the bursting activity varied in
concordance with the bursting level from the source (see also,
e.g., 1E 1547.0-5408, Ng et al. 2011). The source flux reached
its highest level at the start of the 2016 June outburst, a factor
of 7 of the quiescent level (Figure 6). At the same time, the flux

of the PL or the hot BB components (Figures 3 and 4)
increased by a factor of ∼25 compared to quiescence. The cold
BB, on the other hand, with a temperature of kT=0.48 keV
and radius R=1.8 km, remained more or less constant
throughout all four outbursts. Such a cold BB could be the
result of internal heating of a large fraction of the magnetar
surface (Thompson & Duncan 1996; Beloborodov & Li 2016).
The 2014 and 2015 flux decays followed a simple exponential

trend with timescales of ∼30–40 days. The brighter 2016
outbursts, however, exhibited a quick decay trend on timescales
of about four days. Such a fast initial drop in flux is seen at the
outburst onset of a number of magnetars (e.g., SGR J1627−41,
An et al. 2012; Swift J1834.9−0846, Kargaltsev et al. 2012;
Swift J1822.3−1606, Scholz et al. 2012).
A similar amount of energy was emitted in the 2014 and 2015

outbursts (within 2σ), E∼5×1040 erg s−1. We were only able
to quantify the total energy emitted during the first 10 days of the
2016 May and June outbursts, E=2×1040 erg s−1 and
E=3.6×1040 ergs−1, respectively. The energetics in these
outbursts are at the lower end compared to the bulk of magnetar
outbursts (Rea & Esposito 2011). We note that the energy in the
bursts for the four outbursts varied by more than two orders of
magnitude (Table 5, L. Lin et al. 2017, in preparation); a much
larger increase than the energy emitted in the outbursts. For
instance, the 2014 and 2015 ratios of total energy in the
outbursts to total energy in bursts decreased from 50 to 8.
Two models have been discussed in the context of magnetar

outbursts. The first invoked an instability (external or internal)
that rapidly (within a few days) deposits energy, of the order of
1040–1042 ergs−1, at the crust level of the NS (e.g., Lyubarsky
et al. 2002; Brown & Cumming 2009; Pons & Rea 2012). The
depth at which the heat is deposited governs the outburst decay
timescale, which can range from weeks to months, as the crust
cools back to its preoutburst level. This timescale may also
reflect the magnetic colatitude of the energy dissipation locale,
as heat conductivity across strong fields is suppressed, so that
vertical transport of energy is easier in polar activation zones.
This picture fits the observed properties of the 2014 and 2015
outbursts of SGRJ1935+2154. It is, however, difficult to
reconcile the initial quick decay of a few days observed in the
2016 outbursts, and in a number of other magnetars, with this
model.
In the second theoretical picture, magnetar outbursts are

believed to be triggered when stresses on the crust build up to a
critical level due to Hall wave propagation caused by magnetic

Table 5
Outburst Properties

Outburst τ K E10
a E200

b Fpeak Eburst
c

(days) (10−12) (1040 erg) (1040 erg) (10−12 erg s−1 cm−2) (1038 erg s−1)

2014 29±4 1.7±0.2 1.2±0.3 4.1±0.7 4.3±0.7 8±2
2015 43 8

12
-
+ 1.6 0.3

0.4
-
+ 1.2±0.2 6.1±1.1 4.7±0.8 83±3

2016 Mayd 3.7±1.0 6.8 0.5
0.7

-
+ 2.0±0.3 NA 8.5±0.6 411±3

2016 Juned 4.3±1.0 10.8 2.5
3.2

-
+ 3.6±0.4 NA 14±1 1020±8

Notes. All energies are derived assuming a distance of 9 kpc.
a Integrated total energy within 10 days from outburst onset.
b Integrated total energy within 200 days from outburst onset.
c Total energy in the bursts for the day of the outburst onset, i.e., 2014 July 05, 2015 February 22, 2016 May 18, 2016 June 23 (L. Lin et al. 2017, in preparation).
d Long-term outburst behavior during 2016 cannot be explored due to a lack of high-S/N observations beyond a few days of outburst onset. See the text for details.

12

The Astrophysical Journal, 847:85 (15pp), 2017 October 1 Younes et al.



field evolution inside the NS (e.g., Thompson & Duncan 1996;
Pons & Rea 2012; Li et al. 2016). These stresses twist a bundle
of external magnetic field lines anchored to the surface,
accelerating particles off the surface of the star, while returning
currents deposit heat at the footprints of these lines (hot spot;
Thompson et al. 2002; Beloborodov 2009). This instability
develops on a timescale of days to weeks(Li et al. 2016), with
decay timescales ranging from weeks to years and primarily
depending on the strength of the twist imparted onto the B-field
bundle. These properties match the outburst properties that we
observe for SGRJ1935+2154. Another prediction of this
model is a shrinking hot spot at the surface, which we do
observe when we fit the 0.5–10 keV spectra with the 2BB
model20 (Figure 7). However, similar to the crust heating
model, it is not trivial to explain the initial quick decay
observed in the 2016 outbursts with the twisted magnetosphere
model.

4.3. Radio Comparison to Other Magnetars

The upper limits on the radio counterpart that we have
obtained are the deepest radio limits for SGRJ1935+2154 thus
far (i.e., Surnis et al. 2016). In fact, our Arecibo observations
represent the deepest radio observations that were carried out
quickly after the X-ray outburst of a magnetar (e.g., Crawford
et al. 2007; Lazarus et al. 2012). Currently it is not clear what is
the best epoch to search for magnetar radio emission. The
sample of magnetars with radio detections is small, and
although some were detected close in time to their X-ray
activation (e.g., Anderson et al. 2012; Scholz et al. 2017), there
does not seem to be a clear correlation between magnetar X-ray
and radio activity, with the latter sometimes switching on and
off during an outburst (Burgay et al. 2009). We note in this
context that the SGRJ1935+2154 spin-down luminosity of
1.7×1034 erg s−1 and X-ray luminosity in quiescence of
2.1×1034 erg s−1 (0.5–10 keV) put SGRJ1935+2154 in the
area of magnetars that are not expected to display radio
emission in the fundamental plane of Rea et al. (2012). The
latter needs to be tested further with deep radio searches, like

those presented in this paper, both when magnetars are X-ray
active and when they are in their quiescent state.

5. Conclusions

In the following we summarize the main findings of our
analyses of the broadband X-ray and radio data of the magnetar
SGRJ1935+2154 taken in the aftermath of its 2014, 2015, and
2016 outbursts:

1. Chandra data did not reveal any small-scale extended
emission around SGRJ1935+2154.

2. No pulsations are detected from SGRJ1935+2154 in the
days following the 2015 and 2016 outbursts. We derive
an upper limit of 25% and 8% in the energy range
3–50 keV during 2015 and 1–8 keV during 2016 with
NuSTAR and Chandra, respectively. These upper limits
are consistent with the pulsed fractions derived in Israel
et al. (2016b).

3. No persistent radio pulsations or sporadic single pulses
are detected with Arecibo from SGRJ1935+2154
following the 2015 and 2016 outbursts. We set the
deepest limits on the radio emission from a magnetar,
with a maximum flux density limit of 14 μJy for the
4.6GHz observations and 7 μJy for the 1.4 GHz
observations.

4. The soft X-ray spectrum <10 keV is well described with
a BB+PL or 2BB model during all three outbursts.

5. NuSTAR observations five days after the 2015 outburst
onset revealed a hard X-ray tail, Γ=0.9, extending up to
79 keV, with a flux similar to the one detected <10 keV.

6. Following the outbursts, the 0.5–10 keV flux from
SGRJ1935+2154 increased in concordance to its bursting
activity. At the onset of the 2016 June bursting episode, the
strongest one to date, the 0.5–10 keV reached maximum,
increasing by a factor of ∼7 above its quiescent level.

7. The 0.5–10 keV flux increase during the outbursts is due
to the PL or hot BB component, which increased by a
maximum factor of 25 compared to quiescence. The cold
BB component, kT=0.47 keV, remained more or less
constant.

8. The 2014 and 2015 outbursts decayed quasi-exponen-
tially with timescales of ∼40 days. The stronger 2016
May and June outbursts showed a quick short-term decay
with timescales of about four days; their long-term decay
trends were not possible to derive.

9. The last Swift/XRT observation of the 2016 May
outburst, taken 1.5 days prior to the onset of the 2016
June outburst, showed a flux level close to quiescence
and was dimmer at the 5σ level compared to the flux
measured at the start of the 2016 June outburst.

10. The total energy emitted by the bursts increased by two
orders of magnitude between the 2014 and the 2016 June
outbursts (Table 5, L. Lin et al. 2017, in preparation).
This is a much larger increase compared to the energy
emitted by the star through the increase of its X-ray
persistent emission.

We thank NuSTAR PI Fiona Harrison and Belinda Wilkes
for granting NuSTAR and Chandra DDT observations of
SGRJ1935+2154 during the 2015 and 2016 outbursts,
respectively. We also thank the Swift team for performing
the monitoring of the source during all of its outbursts. G.Y.

Figure 7. Total 0.5–10 keV flux versus hot BB area from all outbursts of
SGRJ1935+2154. See also Figure 4.

20 We do not attempt to quantitatively compare the flux-versus-area relation
we observe here to the prediction of Beloborodov (2009), due to uncertainties
in the parameter estimates of the 2BB model discussed in Section 3.3.1.
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