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Abstract

Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase

(CHIT1) is one of the two active human chitinases, involved in the innate immune response

and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain

linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the car-

bohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far,

the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian

Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization

strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the

first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1

chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical

of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine resi-

dues forming three disulfide bridges and several exposed aromatic residues that probably

are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed

conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be

involved in electrostatic interactions. Our data highlight the strong structural conservation of

CBM14 family members and uncover the structural similarity between the human

ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure,

determined with an adapted crystallization approach, is one of the few complete bi-modular

chitinase structures available and reveals the structural features of a human CBM14

domain.
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1. Introduction

Carbohydrate-protein interactions and carbohydrate catalysis have attracted significant atten-
tion due to their importance in numerous biological processes, such as cell-cell recognition and
cell adhesion among others. Protein domains involved in such interactions are non-catalytic
modules called carbohydrate-binding modules (CBMs) that can be associated to carbohydrate-
degrading enzymes [1–2] and are thought to promote binding of insoluble carbohydrate poly-
mers, thus increasing the efficiency of the catalytic activity [3–11]. Currently, there are 64 fami-
lies of CBMs classified according to amino acid sequence similarity in the CAZy database [12–
13] but which can be structurally diverse [14].

Chitin consists of a linear β-1,4-linked polymer of N-acetylglucosamine (GlcNAc) and is
highly insoluble. It is the second most abundant natural polysaccharide after cellulose and is a
major component of fungal cell walls, including those of plant and human pathogens [15].
Chitinases [EC 3.2.1.14] are glycoside hydrolases (GH) that catalyze the hydrolytic degradation
of chitin. They are classified in two families, GH18 and GH19, which differ in structure and
mechanism. GH18 chitinases have been identified in a large number of organisms varying
from lower organisms to humans. A large number of GH18 chitinases are multi-modular
meaning that, in addition to their catalytic domains, they contain one or more additional
domains. Among these, we find the chitin binding domains (ChBDs), belonging to different
CBM families and enabling a more efficient substrate hydrolysis [16–18]. ChBDs are most
commonly located at the C-terminus of the catalytic domain linked by a hinge region. Of the
ChBDs that are associated with a chitinase catalytic domain, CBM5 and CBM12 are the most
extensively studied. They are usually found in bacteria. CBM18 almost exclusively includes
ChBDs from plants, with the exception of one CBM18 identified in Streptomyces griseus [19].
On the other hand, CBM14 is commonly present in chitinases from baculoviridae, inverte-
brates, and mammals including humans. CBM14 and CBM18 can be expressed solely as an
individual module or linked to a chitinase catalytic domain.

Chitotriosidase-1 (CHIT1) and acidic mammalian chitinase (AMCase) are the only active
human chitinases. They are composed of a GH18 catalytic domain linked by a hinge to a
CBM14 ChBD. The crystal structures of their catalytic domains have been determined [20–
22]. CHIT1 is involved in the innate immune response against chitin-containing pathogens
[23] and is also produced by macrophages and neutrophils [24–26]. CHIT1 can exist in two
isoforms, a 39 kDa lysosomal isoform (with the catalytic domain only) and the full-length 50
kDa secreted isoform (CHIT1-FL). This last isoform has been detected in Gaucher disease,
where its expression increases between 10–1000 fold. Additionally, CHIT1 is upregulated in
patients suffering from infections, chronic inflammation or degenerative disorders [27–28].
Although CHIT1 has been well-characterized as a clinical marker, its specific function and
effects under normal and pathological conditions remain not fully understood. Interestingly,
recent studies have inferred the interaction of CHIT1 with glycan substrates associated to the
surface of epithelial cells and macrophages [29], and have implicated CHIT1 ChBD
(ChBDCHIT1) in tumor metastasis of osteolytic lesions [30]. Thus, the determination of the
structural characteristics of the CHIT1-FL is essential to get new insights of its mode of action.
Here, we report the crystal structure of CHIT1-FL at 1.95 Å resolution, including its CBM14
domain, determined with an adapted crystallization approach combining cross-seeding and
micro-seeding screening cycles. Our structure is one of the few complete bi-modular chitinase
structures available in addition to ChiA and ChiB from Serratia marcescens [31–32]. Our
structural and evolutionary analysis reveals a high mobility of ChBDCHIT1, mediated by the
flexible linker region, and highlights the importance of the conserved residues in maintaining
the functionality of ChBDCHIT1.
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2. Materials and Methods

2.1. Cloning, expression and purification

Human CHIT1-FL cDNA (GenBank: BC105682) of the 50 kDa CHIT1 isoform was used as a
template to generate the C-terminal thrombin site and His-tag by two polymerase chain reac-
tions (PCR) using the following primers (SIGMA): 5’-AATTCAAGCTTGCCACCATGGT
GCGGTCTGTGG-3’ (N-terminal derived sense primer) and two antisense primers 5’-GTG
ATGGTGATGGTGGTGAGAACCGCGTGGCACCAGATTCCAGGTGCAGCATTTG-3’;
5’-ATTATCGCGATACTAGTCTCGAGTCATTAGTGATGGTGATGGTGGTG-3’. The final
PCR product was cloned into the pHL expression vector [33]. CHIT1-FL was transiently
expressed in adherent HEK293T cells grown in roller bottles in the presence of the N-glycosyl-
ation inhibitor kifunensine [34] as previously described [33]. After dialysis against 25 mM
phosphate buffer saline (PBS) pH 8.0 at 4°C, the secreted protein was purified from the media
using an immobilized metal affinity chromatography (IMAC) batch procedure. CHIT1-FL was
further purified by size exclusion chromatography on a Superdex 200 HR 16/60 (GE Health-
care) in 10 mMHEPES, 150 mMNaCl pH 7.5. The protein purity was assessed by SDS–PAGE
(0.1% SDS, 12.5% polyacrylamide) [35] followed by Coomassie Brilliant Blue staining. The
enzyme concentration was determined from the absorption at 280 nm using an UV NanoDrop
1000 Spectrophotometer (Thermo Scientific). The molar extinction coefficient was calculated
using the ProtParam tool on the ExPasy server [36] to be 83935 M-1 cm-1.

2.2. Crystallization, cross-seeding and micro-seeding

A Tecan Temo 96 head robot (Tecan) was used to set up sparse matrix screen containing com-
mercially available crystallization reagents such as the PEGS suite (Qiagen), Classics Lite suites
(Qiagen), Index (Hampton Research) and MPD (Qiagen). The initial crystallization trials of
CHIT1-FL were performed using a Mosquito crystallization robot (TTP LabTech) to set up sit-
ting drops composed of 0.1 μl protein solution mixed with an equal volume of reservoir solu-
tion equilibrated against 40 μL of the reservoir solution. Although hundreds of crystallization
conditions were tested, none of them succeeded. Next, we tried cross-seeding using micro-crys-
tals of the CHIT1 39 kDa catalytic domain (CHIT1-CAT) as previously described by Fadel et al
[21]. CHIT1-CAT crystals were crushed and used for automated high throughput cross-seed-
ing screens. Each sitting drop consisted of 0.1 μl of the screening reservoir solution with 0.07 μl
of the CHIT1-FL solution at 9 mg. . .ml-1 and 0.03 μl of the seeding stock. The drops were
equilibrated against 40 μL of reservoir screen solution at 20°C. The first CHIT1-FL crystals
appeared in the crystallization condition A (15% Polyethylene glycol (PEG) 3350, 0.2 M
sodium sulfate) and had a highly anisotropic X-ray diffraction pattern. Crystals grown in con-
dition A were used as seeds for a new Microseed Matrix Screening (MMS) with the Silver Bul-
lets screen (Hampton Research), using in the reservoir 25% PEG 3350, 0.02 M HEPES pH 6.8.
New CHIT1-FL crystals obtained in the F6 condition of the Silver Bullets screen showed good
diffraction quality and were optimized manually by hanging drop vapor diffusion experiments.
The final improved F6 condition consisted in drops composed of 1 μL of the F6 condition of
the Silver Bullets additive containing 0.2% w/v 2-Methyl-2,4-pentanediol; 0.2% w/v 1,2,3-Hep-
tanetriol; 0.2% w/v Diethylenetriaminepentakis (methylphosphonic acid); 0.2% w/v D-Sorbitol;
0.2% w/v Glycerol; Buffer 0.02 M HEPES pH 6.8 were added to 2 μl of the reservoir solution B
(15% PEG 3350, 0.02 M HEPES pH 6.8), with 1 μL of the CHIT1-FL solution (8 mg �ml-1 in
0.01 M HEPES pH 7.5, 0.15 M NaCl) and 0.5 μL of the micro-seeding stock prepared from the
last screening round. The drops were equilibrated at 17°C against 500 μL of the reservoir con-
taining solution B.
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2.3. Cryo-cooling, data collection and molecular replacement

Crystals of CHIT1-FL grown in condition A were cryo-protected by sequential incubation for
30 seconds in two solutions containing increasing concentration of ethylene glycol (15% and
25%) in 20% PEG 3350, 0.2 M sodium sulfate pH 7.2, prior to flash-cooling in liquid nitrogen.
Analogously, crystals of CHIT1-FL grown in optimized condition F6 were cryo-protected by
sequential incubation for 30 seconds in two solutions containing increasing concentration of
glycerol (15% and 25%) in 15% PEG 3350, 0.02 M HEPES pH 6.8, prior to flash-cooling in liq-
uid nitrogen.

Data sets were collected at the Swiss Light Source (SLS) synchrotron on the X06DA (PXIII)
beamline. After the optimization of the procedure, 800 diffraction images were collected using
a Pilatus 2M detector, up to a resolution of 1.95 Å, with an oscillation range of 0.25° and an
exposure time of 0.3 s per frame, with a none attenuated beam of a 1.0 Å X-ray wavelength. All
data sets were integrated, merged and scaled using the programs HKL-2000 [37] and XDS [38].
The structure was solved by molecular replacement (MR) with Phaser [39] using the coordi-
nates of the catalytic domain of the same protein as an initial search model (Protein Data Bank
(PDB) ID 4WJX [21]). The model was improved by alternating cycles of manual model build-
ing using Coot [40] and refined using REFMAC5 [41] and PHENIX [42]. The stereochemical
quality of the final model was assessed with MolProbity [43]. Structural figures were prepared
using PyMOL (http://www.pymol.org). A summary of the data-collection processing and
structure-refinement statistics is given in Table 1.

2.4. Electrospray Ionization Mass Spectrometry

Prior to Electrospray Ionization Mass Spectrometry (ESI-MS) analysis, CHIT1-FL was desalted
on Zeba Spin Desalting Columns (Pierce) in 50 mM ammonium acetate. ESI-MS measure-
ments were performed on an electrospray time-of-flight mass spectrometer (MicroTOF, Bru-
kerDaltonic). Purity of the protein was verified by mass spectrometry (MS) in denaturing
conditions (samples were diluted at 2 pmol μL-1 in a 1:1 water–acetonitrile mixture (v/v) acidi-
fied with 1% formic acid).

2.5. Structural Conservation Analysis

Homologous sequences to ChBDCHIT1 were obtained by BLAST (or PSI-BLAST) with an inclu-
sion threshold of e = 0.0001 in UniRef90 [44–45]. Alignments of sequences were performed
using MAFFT [46]. The amino acid sequences used are given in the supplementary data. The
rate of evolution at each site is calculated using the empirical Bayesian [47]. Structural conser-
vation analysis was performed using the ConSurf server [48–49].

3. Results and Discussion

3.1. Crystallization of CHIT1-Full Length (CHIT1-FL)

With the aim to determine the structure of the CHIT1-FL enzyme and after testing a large
number of unsuccessful crystallization conditions, we found a strategy that promoted crystalli-
zation of this enzyme: cross-seeding crystals from the CHIT1-CAT construct to induce the
crystallization of the full length protein (Fig 1). The first crystals of CHIT1-FL construct were
obtained in crystallization condition A. Despite their highly anisotropic diffraction pattern,
datasets from these crystals were obtained at 2.6 Å resolution, in space group P212121,with
unit-cell parameters a = 85.95, b = 108.30, c = 106.05 Å. The structure solved by MR showed
two protein molecules in the asymmetric unit (AU) but displayed electron density correspond-
ing only to the catalytic domain without any clear electron density for the hinge and the ChBD,
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posing the intrinsic difficulty of solving the X-ray structure of such a multi-domain protein.
This prompted us to launch a new cycle of MMS using crystals from crystallization condition
A. As detailed in Materials and Methods, we obtained new crystals in the condition F6 of the
Silver Bullets screen (Hampton Research), which resulted in good diffraction quality in terms
of decreasing anisotropy and mosaicity. Data from the best crystal obtained in this condition
were processed at 1.95 Å resolution in a new space group P21 with unit-cell parameters
a = 51.12, b = 106.66, c = 85.66 Å, α = γ = 90, β = 107.11°. SDS-PAGE analysis of the dissolved
CHIT1-FL crystals confirms that no proteolysis occurred in the drop (S1A Fig). The size-exclu-
sion chromatography and native MS data confirm that the CHIT1-FL is monomeric in solution
(S1B and S1C Fig). This means that the observed CHIT1-FL dimer was due to crystal packing
contacts of the space group P21, which resulted in the stabilization of the ChBDCHIT1.

Our results demonstrate that CHIT1-FL crystallization was a challenging task due to the
flexibility of the hinge region linking the catalytic domain to the ChBD (discussed in the next
paragraph). Remarkably, the crystals obtained by cross-seeding were able to induce the growth
of crystals with a different space group of lower symmetry, thereby improving the packing and

Table 1. Data collection and refinement statistics.

CHIT1-FL

PDB code 5HBF

Synchrotron, beamline SLS, X06DA (PXIII)

Wavelength (Å) 1.0

Resolution range (Å) 44.69–1.95 (2.01–1.95)

Space group P 1 21 1

Unit cell (Å,°) a = 51.14 b = 106.66 c = 85.67α = γ = 90 β = 107.13

Total reflections 242490 (22495)

Unique reflections 62392 (5738)

Multiplicity 3.9 (3.9)

Completeness (%) 96.63 (89.40)

Mean I/sigma(I) 15.06 (1.85)

Wilson B-factor (Å2) 29.66

R-sym 0.057 (0.63)

R-meas 0.077 (0.853)

CC(1/2) 0.998 (0.686)

R-factor 0.2051 (0.3605)

R-free 0.2454 (0.4082)

Total number of atoms 6951

macromolecules 6750

Water 177

Protein residues 849

RMS (bonds, Å) 0.007

RMS (angles,°) 1.10

Ramachandran favored (%) 97

Ramachandran outliers (%) 0

Clashscore 7.79

Average B-factor (Å2) 31.60

macromolecules 31.60

solvent 29.60

Statistics for the highest-resolution shell are shown in parentheses.

doi:10.1371/journal.pone.0154190.t001
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the diffraction pattern. The current case reinforces the notion that an exact match of crystal
unit cells is not required for effective nucleation, as previously discussed by Shaw Stewart et al.
[50]. The application of several cycles of micro-seeding experiments combined with automated
high-throughput crystallization, with each cycle improving the quality of the crystals, allowed
us to solve the so far elusive CHIT1-FL structure at 1.95 Å resolution.

3.2. Analysis of the crystal contacts and packing

The X-ray structure of CHIT1-FL was solved by MR using the CHIT1-CAT (PDB ID 4WJX)
as a search model. Data collection and refinement statistics are presented in Table 1. The final
refined structure has Rwork and Rfree values of 20.51 and 24.54% respectively. Four discon-
nected domains appear in the AU: two differently oriented catalytic domains (Ala22-Leu386)
and two ChBDs (Asn417-Asn466), corresponding to two CHIT1-FL monomers (Fig 2A and
2B and S2 Fig).

The hinge region, consisting of 31 residues is a Proline-rich region (9 Proline residues
among 31) linking the catalytic domain to the ChBD, could not be modeled due to a lack of
interpretable electron density. We thus wondered how the two ChBDs in the AU (with RMSD
value of 0.24 Å) are paired to diverging catalytic domains to form two CHIT1-FL monomers.
First, we noticed that the non-cleaved thrombin-site showed a distinct conformation at the C-
terminus of the ChBD in chains A and B. Second, the electron density corresponding to four
histidines from the His-tag was observed only on chain A. These two differences allowed us to

Fig 1. CHIT1-FL crystallogenesis strategy. (A) CHIT1-CAT crystals crushed and used for initial automated cross-seeding. (B) CHIT1-FL crystals obtained
after the first cross-seeding round in crystallization condition A. (C) CHIT1-FL crystals obtained after optimization through manual hanging drop. (D)
CHIT1-FL crystals from condition A crushed and used for another cycle of automated micro-seeding leading to crystallization condition F6. (E) CHIT1-FL
crystals obtained after optimizing F6 condition.

doi:10.1371/journal.pone.0154190.g001
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distinguish each ChBD in the AU (Fig 2B) and to infer that the two ChBDs correspond to
CHIT1-CAT monomers within the AU, instead of symmetry related copies. Then, based on
the locations of CHIT1-CAT domain C-terminal / ChBD domain N-terminal residues, we ana-
lyzed the different CHIT1-CAT—ChBDCHIT1 pairing possibilities in the AU by calculating the
free energy change (ΔG) of the interdomain contact (ΔGint) with PISA (http://www.ebi.ac.uk/
msd-srv/pisa/cgi-bin/piserver?qa=4lyz). The most energetically favorable configuration (ΔGint

= -12.2 kcal mol-1 with a buried surface of 1063.4 Å2, see S3 Fig) is shown in Fig 2A and 2B.
Indeed, the second next possible CHIT1-FL domain configuration shows two pseudo anti-par-
allel monomers with 813.5 Å2 of buried surface with a ΔGint value of -1.7 kcal mol-1, rendering
it energetically unfavorable in comparison to the first one.

Fig 2. 3D structure of CHIT1-FL. (A) Left, surface representation of two CHIT1-FL molecules in the unit cell (chain A and B). The position of the active site of
each monomer show that they are not in the same direction. Right, surface representation of 4 CHIT1-FL monomers crystal packing. (B) Surface and ribbon
representation of chain A and chain B comprising the catalytic and ChBD domains. Thrombin-site (yellow), His-tag (light violet) and hinge region (dotted line).

doi:10.1371/journal.pone.0154190.g002

The Structure of the Full Length Chitotriosidase Reveals Features of Its Chitin Binding Domain

PLOS ONE | DOI:10.1371/journal.pone.0154190 April 25, 2016 7 / 15

http://www.ebi.ac.uk/msd-srv/pisa/cgi-bin/piserver?qa=4lyz
http://www.ebi.ac.uk/msd-srv/pisa/cgi-bin/piserver?qa=4lyz


The observation of remarkably high B-factors for ChBDCHIT1 (from 26 Å2 to ~80 Å2) in
comparison to the B-factors for CHIT1-CAT domain (~30 Å2, S4 Fig) reinforces the idea of
the high ChBD mobility mediated by the flexible hinge. This is an important difference when
compared to other crystal structures of full length bacterial chitinases such as ChiA and ChiB
from Serratia marcescens (S4 Fig), which display the CBM situated in a clearly defined orienta-
tion relative to the catalytic domain. For instance, ChiB has a C-terminal ChBD similar to
CHIT1, but its hinge region is not flexible (average B-factor of 24.8 Å2) [32]. The low flexibility
of the hinge in ChiB causes that its ChBD is located towards the C-terminus [32, 51]. On the
other hand, ChiA has a N-terminal CBM extending to the substrate binding cleft. In addition,
the two enzymes degrade the chitin polymer from different ends: ChiA acts from the reducing
end while ChiB does it from the non-reducing end [32], [51]. Interestingly, Small Angle X-ray
Scattering (SAXS) experiments on the cellulase endoglucanase D (EngD) showed that the posi-
tions of the CBM relative to the catalytic domain are quite variable in solution with no domi-
nating conformation [52]. Thus, one could suggest that, as in the case of EngD, ChBDCHIT1 is
not aligned with the catalytic domain but rather moves randomly affecting in turn the orienta-
tion of the catalytic domain. This is consistent with Abott et al. suggestion that linker regions
devoid of secondary structure confer a random positioning (i.e. conformational flexibility) of
the CBM with respect to the catalytic domain, facilitating coordinated substrate binding well-
suited for structurally complex glycan environments, such as plant cell wall or mammalian
mucosa [53]. Taken together, our data lead us to hypothesize that ChBDCHIT1 behaves as a
probe inspecting the environment for the presence of substrate in a possible step-wise mecha-
nism at the basis of CHIT1-FL action. When the ChBDCHIT1 locates the presence of chitin in
the environment, it binds to it and then guides the catalytic domain to the substrate location.
Once bound to chitin, the ChBDCHIT1 disrupts its crystalline structure making it accessible to
be hydrolyzed by CHIT1-CAT.

3.3. Overall structure of ChBDCHIT1

The crystal structure of ChBDCHIT1 comprises the last 49 C-terminal amino acids of the pro-
tein (417–466). In agreement with our ChBDCHIT1 structure, functional analysis defined those
49 residues as the minimal sequence required for chitin binding activity in CHIT1 [54]. The
structure of the catalytic domain, which adopts the conserved (α/β)8 TIM barrel fold found in
all GH18 family, is essentially the same as the already described CHIT1-CAT [20–21]. The
structure of ChBDCHIT1 reveals an elongated conformation (dimensions 60 x 17 x 14 Å), which
is different from the globular and compact conformation of ChBDs from bacteria and plants
belonging to CBM5/12 and CBM18 respectively [4, 55]. The ChBDCHIT1 fold consists of a dis-
torted β-sandwich composed of two β-sheets containing three N-terminal anti-parallel β-
strands (β1, β2, β3; residues 427–428, 436–440, 445–449) and two C-terminal anti-parallel β-
strands (β4, β5; 455–457, 460–464) (Fig 3A and 3B). By sequence similarity, ChBDCHIT1 has
been attributed to the CBM14 family, which also exists in invertebrates e.g. insects and nema-
todes [56]. According to CAZy database[13], so far only three CBM14 structures from inverte-
brate organisms have been solved, two by NMR corresponding to tachycitin and the allergen
Blo t 12 CBD (PDB IDs: 1DQC (Fig 3B) [57] and 2MFK), while the structure of allergen Der p
23 was solved by X-ray crystallography (PDB ID: 4ZCE) [58]. These three CBM14 exist as a
single domain and are not linked to a chitinase enzyme. The sequence identity between
ChBDCHIT1 with tachycitin, Blo t 12 and Der p 23 is 28%, 22.5% and 20.83% respectively.
Structural comparison between the human ChBDCHIT1 and these three CBM14 structures
reveals that they share the same distorted β-sandwich fold (Fig 3A, 3B and 3C), highlighting
the conservation of the CBM14 folding from invertebrates to vertebrates.

The Structure of the Full Length Chitotriosidase Reveals Features of Its Chitin Binding Domain

PLOS ONE | DOI:10.1371/journal.pone.0154190 April 25, 2016 8 / 15



Fig 3. Structural and evolutionary features of ChBDCHIT1. (A) Solvent accessible surface of ChBDCHIT1 is shown in two orientations comprising its
backbone represented as violet ribbons which illustrates the distorted β-sheet sandwich. The aromatic residues are labeled and represented as green sticks.
The six cysteines forming disulfide bonds are represented as sticks where the sulfur atoms are colored in yellow. (B) Structural comparison with tachycitin.
Ribbon representation of the tachycitin 3D structure with a distorted β-sheet sandwich fold. The conserved cysteins residues forming disulfide bonds are
represented in sticks with the sulfur atom colored in yellow. Conserved Trp55 is shown as red stick. (C) Sequence conservation of ChBDCHIT1 is represented
as ribbons and lines. Color-codes depend on the residue conservation degree (conserved, magenta to variable, cyan). Relevant conserved residues are
represented in lines, labeled and indicated with arrows. (D) Representation of the electrostatic potential at the surface of ChBDCHIT1 in two orientations. The
protein is shown as solvent-accessible surface colored by electrostatic potential at ± 5 kT/e. Color-codes depend on the electrostatic potential (red: negative
charge; blue, positive charge; and white: neutral charge).

doi:10.1371/journal.pone.0154190.g003
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Moreover, ChBDCHIT1 contains 6 cysteine residues [54] forming three disulfide bonds, as
confirmed by our electron density map. The one between Cys420 and Cys440 connects the β-
strand 2 (β2) to the beginning of the first loop (L1). The second disulfide bond is in the C-termi-
nal region of ChBDCHIT1 (Cys450-Cys463) and links the last β5 with the L4 (Fig 3C). These two
disulfide bonds exist in equivalent locations in tachycitin, Der p 23 and Blo t 12 CBD, suggesting
that they are essential for the structural conservation of the overall CBM14 ChBD folding (Fig 3B
and 3C). The remaining disulfide bond is established between two cysteine residues
(Cys460-Cys462) linking and stabilizing the hairpin to the β5 (Fig 3A and 3C). Although these
two latter cysteines do not exist in tachycitin, Der p 23 and Blo t 12 (solely ChBD), the evolution-
ary analysis performed by the Consurf server reveals that they are fully conserved in at least 150
ChBDs linked to chitinase catalytic domains and chitinase-like proteins in invertebrates and ver-
tebrates (Fig 3C, S5 and S6 Figs). Interestingly, site-directed mutagenesis of these cysteine resi-
dues on CHIT1-FL have shown that each of them is critical for the binding activity to chitin [54].
This underlines the structural conserved role of the six cysteine residues to maintain the integrity
of the ChBD in a functional folded conformation in chitinases containing the CBM14 domain.

3.4. Analysis of the ChBDCHIT1 aromatic residues and its electrostatic
molecular potential surfaces

It is believed that the interaction of carbohydrate crystalline substrates, like chitin and cellulose,
with their respective binding domains (ChBDs and cellulose binding domains (CBDs)) occurs
via exposed aromatic residues [55, 59]. Although ChBDCHIT1 is a small module, it contains 7
aromatic residues among which 6 of them are exposed (Fig 3A and 3B). Indeed, within the
core of the domain, there are 4 exposed aromatic residues: i) Phe437 and Phe446, located on β2
and β3 respectively and oriented to the same face of the domain (Fig 3A, left side); ii) Tyr428
and Tyr438, directed to the opposite face of ChBDCHIT1 (Fig 3A, right side). In this last region,
Pro429 and Pro431 are facing each other, which could make this side an aromatic rich “canal-
like” interface suitable for chitinous substrates binding. Moreover, the ChBDCHIT1 is flanked
by two additional aromatic residues (Phe419 and Trp465), on loops L1 and L6, respectively
(Fig 3A). Trp465 is a highly conserved aromatic residue across invertebrates and vertebrates in
the CBM14 family (Fig 3C, S5 and S6 Figs), and adopts a surface-solvent exposed conformation
closely similar to the conformation detected in the binding interface of many known structures
of CBMs [55, 57, 60–62] (Fig 3A). Even though the CBM14 family is classified as a type C
CBM, with lectin-like properties that optimally bind to mono-, di-, or tri-saccharides [63–64],
ChBDCHIT1 displays a high affinity to crystalline chitin as demonstrated in in vitro experiments
[65]. This property belongs to CBM type A and is characterized by the presence of a “flat plat-
form” which interacts with the planar polycrystalline chitin [63]. Importantly, a construct of
ChBDCHIT1 lacking Trp465 and Asn466 completely loses the binding activity towards chitin
[66]. Taken together, we propose that Trp465 plays a key role in the binding of the ChBDCHIT1

to the chitinous crystalline surface probably assisted by the presence of other aromatic residues
in the core of ChBDCHIT1 that increase the overall hydrophobic character of this domain thus
increasing the affinity for the crystalline chitin.

To gain more insight into ChBDCHIT1 mode of action, we have also investigated its electro-
static surface properties. Interestingly, the ChBDCHIT1 domain reveals two different charged
faces. One face is mostly neutral with a negatively charged spot spanning two residues (Ser439,
Asp425), while the second face is highly positively charged mainly due to the presence of four
basic residues (Arg444, Arg434, Lys423 and Lys461) (Fig 3D). These residues could potentially
form hydrogen bonds with the hydroxyl groups and N-acetyl group of the bound chitin chain,
strengthening the interaction. This issue will be subject of further studies.
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4. Conclusion

In this study, we report an original crystallization approach for obtaining the full length struc-
ture of the human chitinase, CHIT1. The lack of electron density corresponding to the hinge
region linking the catalytic domain to the ChBD prompts us to suggest a high flexibility of this
region resulting in a random positioning of the entire ChBD. The structure of ChBDCHIT1

reveals a distorted β-sandwich fold which appears to be conserved within the CBM14 family
across invertebrates and humans. Indeed, our data draw attention to the structural similarity
between the human ChBDCHIT1, tachycitin and house dust mite allergen proteins. In these
ChDB modules, the highly conserved cysteine residues have an essential role in maintaining
the functional conformation of the domain by forming disulfide bridges. The investigation of
the aromatic ring pattern of ChBDCHIT1 reveals that the binding interface contains a conserved
aromatic residue (Trp465) adopting a surface-exposed conformation, that might enable effi-
cient binding to sugar moieties. Furthermore, the ChBDCHIT1 presents a positively charged sur-
face which could be involved in electrostatic interaction. Finally, we believe that our developed
crystallization methodology could be used for co-crystallization or soaking experiments with
different ChBD substrates or for solving the still elusive 3D structure of AMCase-FL and other
CAZyme-CBM proteins. In conclusion, our results have revealed novel structural aspects of
human ChBDs which give new insights into their characteristics.

Supporting Information

S1 Fig. CHIT1-FL sample analysis. (A) 12% SDS of the protein sample after migraion and
stained by Coomassie Brillant Blue. Lane a–contains molecular weight standards, lane b–puri-
fied CHIT1-FL sample and lane C—dissolved CHIT1-FL crystals from condition F6. (B) A
chromatogram shows the elution peak during purification of the CHIT1-FL by size-exclusion
chromatography. (D) Negative-ion mode ESI-MS spectrum of the native CHIT1-FL. The nega-
tive ion peaks with m/z ratios of 50800 Da correlate with the monomer form of CHIT1-FL
which has a molecular weight of 51051.3 Da.
(TIF)

S2 Fig. Model of CHIT1-FL and electron density maps (1σ cutoff) in the asymmetric unit

(2Fo-Fcmap—grey, Fo-Fc map—green).

(TIF)

S3 Fig. Data after submitting the structure coordinates in PDBe server PISA (Protein

Interfaces, Surfaces and Assemblies).

(TIF)

S4 Fig. Representation of the thermal parameter distribution shown as B-factor `putty' as

implemented in PyMOL (http://www.pymol.org). A) CHIT1-FL with a zoom on the
ChBDCHIT1. B) ChiB from Serratia marcescens with a zoom on the hinge and the ChBDChiB.
The Calpha-atom B-factors are depicted on the structure in dark blue (lowest B-factor) through
to red (highest B-factor), with the radius of the ribbon increasing from low to high B-factor.
(TIF)

S5 Fig. Sequence alignment and conservation of ChBD homologues of ChBDCHIT1. Color-
codes depend on the residue conservation degree (conserved, magenta to variable, cyan).
(TIF)

S6 Fig. Sequence alignment and conservation of ChBD homologues of ChBDCHIT1. Color-
codes depend on the residue conservation degree (conserved, magenta to variable, cyan).
(TIF)
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