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X-ray dark-field and phase retrieval without
optics, via the Fokker–Planck equation

Thomas A. Leatham, David M. Paganin, and Kaye S. Morgan

Abstract— Emerging methods of x-ray imaging that cap-
ture phase and dark-field effects are equipping medicine
with complementary sensitivity to conventional radiogra-
phy. These methods are being applied over a wide range
of scales, from virtual histology to clinical chest imaging,
and typically require the introduction of optics such as
gratings. Here, we consider extracting x-ray phase and
dark-field signals from bright-field images collected using
nothing more than a coherent x-ray source and a detector.
Our approach is based on the Fokker–Planck equation for
paraxial imaging, which is the diffusive generalization of
the transport-of-intensity equation. Specifically, we utilize
the Fokker–Planck equation in the context of propagation-
based phase-contrast imaging, where we show that two
intensity images are sufficient for successful retrieval of
both the projected thickness and the dark-field signal as-
sociated with the sample. We show the results of our algo-
rithm using both a simulated dataset and an experimental
dataset. These demonstrate that the x-ray dark-field sig-
nal can be extracted from propagation-based images, and
that sample thickness can be retrieved with better spatial
resolution when dark-field effects are taken into account.
We anticipate the proposed algorithm will be of benefit
in biomedical imaging, industrial settings, and other non-
invasive imaging applications.

Index Terms— x-ray imaging, phase retrieval, dark-field
retrieval, propagation-based imaging, homogeneous sam-
ples, Fokker–Planck equation

I. INTRODUCTION

X-ray imaging has been widely adopted in a range of fields,
including medicine, security, and manufacturing industries,
providing a way to probe the internal structure of a sample in a
non-invasive manner. The traditional x-ray contrast mechanism
is attenuation, where high-density objects reduce the intensity
of the incident x-ray wavefield upon passing through the
sample. In recent decades, phase-contrast imaging has been
developed, where even low density/weakly-attenuating sample
features are made visible, based on their alteration of the phase
of an incident wavefield as it passes through the sample [1],
[2]. Even more recently, sub-pixel features in samples have
been rendered detectable by measuring an x-ray dark-field
signal that results from the diffuse scattering of the incident
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wavefield from these sub-pixel features [3]. The ability to
detect small features with much-larger pixels means dark-
field imaging has a significant dose-saving advantage, and it is
already finding clinical application [4]. Such a dark-field signal
has been primarily captured using analyzer-based imaging [5]–
[7] and grating interferometry [8]. In this paper we exclusively
focus on an x-ray method that has not been widely used for
dark-field imaging, namely propagation-based imaging (PBI)
[9]–[11], and propose a new phase and dark-field retrieval
method.

Conventionally in PBI, dark-field effects have not been
considered or have been assumed to be negligible. In this
context, the transport-of-intensity equation (TIE) [12] can be
used to model the formation of x-ray intensity images at a
detector located downstream of a sample, at a distance z = ∆
along the optical axis. This free-space propagation results in
bright/dark intensity fringes in the images [10], [13], which
highlight changes in sample thickness or material, and which
can be used in phase-retrieval algorithms to quantitatively
recover sample information [14]. The TIE describes coherent
energy transport, i.e. local conservation of the coherent optical
energy flow of the transmitted x-ray beam as it propagates
downstream of the sample. Recent work has shown that by
accounting for the presence of unresolved microstructure (sub-
pixel features) in the sample, PBI can incorporate a dark-field
signal due to local sample-induced diffuse scatter [15]–[18]. In
doing so, the TIE is generalized by the x-ray Fokker–Planck
equation, which for rotationally-invariant position-dependent
small-angle x-ray scattering (SAXS) cones has the finite-
difference form [15], [16]:

I(x, y, z = ∆) ≈I(x, y, z = 0) (1)

−∆

k
∇⊥ · [I(x, y, z)∇⊥φ(x, y, z)]z=0

+∆2∇2
⊥[D(x, y)I(x, y, z)]z=0,

where the paraxial approximation has been assumed. In the
limit of zero diffusion, one recovers the TIE from the x-
ray Fokker-Planck equation above. Here, I(x, y, z = ∆) is
the intensity of the x-ray wavefield recorded at a detector
located at a propagation distance z=∆ downstream of the
sample, I(x, y, z = 0) is the intensity of the wavefield at
the exit-surface (z=0) of the sample, k is the wavenumber
of the wavefield corresponding to a wavelength λ defined
by k = 2π/λ, φ(x, y, z) is the phase of the wavefield,
D(x, y) is the dimensionless diffusion coefficient describing
local sample-induced SAXS and ∇⊥ ≡ (∂/∂x, ∂/∂y) is the
gradient operator with respect to transverse coordinates (x, y).
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The first two terms on the right-hand side of (1) comprise
the finite-difference TIE part of the Fokker–Planck equation,
and describe (i) the local attenuation of the incident wavefield
by the sample being imaged [19] (the I(x, y, z = 0) term),
(ii) the transverse shifting of the wavefield intensity due to
the refractive effects induced by the sample [20], and (iii) the
concentration/rarefaction of the intensity of the wavefield due
to local focusing/defocusing effects [20]. The final term on the
right-hand side of (1) comprises the diffusive part of the x-ray
Fokker–Planck equation, and describes the position-dependent
local blurring of the wavefield intensity due to the presence of
unresolved microstructure within the volume of the sample.
This local blurring of the wavefield intensity may be seen
as a reduction in the visibility of a measured x-ray intensity
distribution when captured at a detector located downstream
of the sample, relative to the intensity that would be seen
in the absence of unresolved microstructure. Accordingly, we
associate the Fokker–Planck diffusion coefficient D(x, y) with
the dark-field signal due to unresolved sample microstructure.
Here, visibility (V) is defined using Michelson’s definition
[21]:

V =
Imax − Imin

Imax + Imin
, (2)

where Imax and Imin are the maximum and minimum intensity
values of the fringes in a given region of the recorded intensity
pattern. Note that by keeping the D(x, y) term inside the
transverse Laplacian in (1), we are not assuming the diffusion
coefficient to be spatially slowly-varying, as was assumed in
[16]. The characterization given for the diffusion coefficient D
here differs to that given in [16], DPaganin, and in [15], DMorgan,
through the relation ∆D(x, y) = DMorgan(x, y, z = ∆) =
FDPaganin(x, y, z = ∆), where F is the fraction of the incident
radiation converted to SAXS [16]. Due to the definition of
the diffusion coefficient given in equation (40) of [16], the
least possible scattering due to SAXS is naturally restricted
to zero, and hence the diffusion coefficient, as specified in
this manuscript, must be manifestly non-negative, in order to
describe a blurring effect rather than a focussing effect.

Consider the experimental setup shown in Fig. 1, where
a sample containing unresolved microstructure is illuminated
with an x-ray source (not shown), allowing for propagation-
based intensity images to be captured at a detector located
at a variable propagation distance z = ∆ downstream of the
sample. In the ray-optics description of this setup, as seen
in Fig. 1(a), incident x-rays can pass outside the sample,
or can interact with a region of the sample which may or
may not contain unresolved microstructure. Rays which do
not interact with the sample, such as the ray passing through
the point (x0, y0) at the exit-surface plane, do not experience
any change in intensity or phase. Hence, the intensity of these
rays measured at the detector plane is the same as that which
would have been measured in the absence of the sample.
Rays which interact with a region of the sample that does
not contain unresolved microstructure, such as the ray passing
through the point (x2, y2), will experience attenuation and
phase effects imparted by the sample, as described by the
TIE part of the x-ray Fokker–Planck equation, i.e. these rays
have reduced intensity and are refracted by the sample. Rays

Fig. 1: Experimental setup to capture both phase and dark-
field signals using propagation-based phase-contrast x-ray
imaging. (a) In the ray picture incident x-rays are attenuated
or transversely shifted by the sample. Additionally, unresolved
microstructure present in the sample causes the emergent x-
rays to be diffusely scattered, resulting in a SAXS cone. (b)
In the wave picture, the incident x-ray wavefield is attenuated
and acquires phase shifts as it passes through the sample. The
phase of the exiting wavefield may be split into (i) a slowly-
varying component associated with spatially resolved sample
structure, giving rise to the propagation-based phase-contrast
signal, and (ii) a rapidly-varying component associated with
unresolved microstructure, giving rise to the dark-field signal.

which interact with a region of the sample that does contain
unresolved microstructure, such as the ray passing through
the point (x1, y1), will also experience both attenuation and
refraction effects, but in addition, the regions of the images
where such rays land will undergo a visibility reduction (dark-
field effect) due to the unresolved microstructure contained
in the sample. Upon passing through the sample, a fraction
of these rays will be diffusely scattered by the unresolved
microstructure, resulting in a spray of emergent x-rays through
an opening angle θ, taking the shape of a cone, landing at
the detector plane with width proportional to the propagation
distance ∆. It is this spray of emergent x-rays that gives
rise to the local visibility reduction seen in the intensity
pattern recorded at the detector, a characteristic hallmark of
the dark-field signal. We can also explain these effects with
reference to a wave-optics description, as seen in Fig. 1(b).
Upon interacting with the sample and subsequently exiting
the sample, the incident x-ray wavefield acquires a change
in phase. The presence of unresolved microstructure in the
sample causes the phase of the incident wavefield to split into
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two components: a slowly-varying component, corresponding
to smooth (resolvable) sample features, and a rapidly-varying
component, corresponding to fine (unresolved) sample features
[22]. The slowly-varying phase component (unbolded sections
of emergent wavefield – the lower red inset shows these slow
phase variations) is what we retrieve as the phase signal.
The rapidly-varying phase component, along with the self-
interference of the emergent wavefield, causes the diffusion
of the intensity variations of the emergent wavefield as it
propagates to the detector plane (bolded sections of emergent
wavefield – the upper red inset shows these rapid phase
variations), resulting in regions of reduced visibility in the
recorded intensity pattern. This blurring effect, described in
Nesterets et al. [22], is also apparent in biological samples,
for example in images of mice lungs taken with a large
sample-to-detector propagation distance [23]. Hence, it is this
rapidly-varying phase component that gives rise to the dark-
field signal in the wave-optics description. Key to the retrieval
method presented in this paper is the fact that the PBI phase
fringes evolve differently with propagation than the dark-field
diffusive effects, as described by the Fokker–Planck equation
(1), and hence the two can be separated.

The Fokker–Planck equation describes the transverse redis-
tribution of optical energy carried by the incident wavefield,
as it propagates downstream of the sample. On account of
the conservation of energy, if a fraction of the wavefield is
diffusely scattered by the sample, the remaining fraction of
the wavefield must be coherently transported. Hence, there
is a bifurcation of the optical flow of the incident wavefield
into the coherent and diffusive energy channels. The Fokker–
Planck equation may thus be viewed as the natural diffusive
generalization of the TIE, which simultaneously models at-
tenuation, phase and dark-field effects in PBI settings. The
Fokker–Planck equation has been applied to grid/grating-based
imaging in the context of the forward problem as seen in
Morgan & Paganin [15], and has also been used to retrieve
phase and dark-field signals in the context of the inverse
problem applied to x-ray speckle-tracking [24], [25]. Both of
these dark-field imaging techniques, as well as analyzer-based
dark-field imaging, have the disadvantage of requiring extra
hardware in the form of optical elements to extract phase and
dark-field contrast. Through the PBI model provided by the
Fokker–Planck equation, we derive an algorithm to perform
simultaneous x-ray phase and dark-field retrieval without op-
tics. Our method uses virtual-optics software [26] rather than
optical hardware, to extract a dark-field signal from bright-
field data. This software encodes our closed-form analytical
solution to the Fokker–Planck formulation of propagation-
based image formation in the presence of unresolved sample
microstructure. It is the goal of this paper to outline how
this retrieval is possible with homogeneous samples and to
demonstrate the results of our algorithm with both simulated
and experimental datasets. One should keep in mind that when
the phrase ‘no optics’ is referred to within this manuscript,
what is really meant is that no optical elements are used in the
experimental setup apart from the source, sample and detector.

The structure of this paper is as follows. Section II derives
our PBI phase and dark-field retrieval algorithm and provides a

corresponding physical interpretation. Section III demonstrates
the use of our algorithm with a simulated dataset, and section
IV shows the results of applying our algorithm to an experi-
mental dataset. Section V discusses the broader implications
of this work and section VI outlines possible directions for
future research and also provides some concluding remarks.

II. DERIVATION OF THE PBI PHASE AND DARK-FIELD
RETRIEVAL METHOD

Assume that a thin, static, non-crystalline, and non-magnetic
sample is illuminated by quasi-monochromatic z-directed x-
ray plane waves of incident intensity I0. Further assume that
all polarization-sensitive effects can be ignored. Provided the
Fresnel number [27] is much larger than unity, our starting
point is the x-ray Fokker–Planck equation (1). We specialize
to the scenario of a single-material sample located immediately
upstream of the plane z = 0, with a projected thickness
T (x, y) along the z direction, as follows. It should be noted
that we are considering the heterogeneity of the sample to
not be a part of the material. That is, we are allowing the
dimensionless diffusion coefficient to vary independently of
the sample thickness. Invoking the projection approximation
[28], the phase of the wavefield at the exit-surface of the
sample and the exit-surface intensity of the wavefield are given
by:

φ(x, y, z = 0) = −kδT (x, y) (3)

and
I(x, y, z = 0) = I0 exp [−µT (x, y)] (4)

respectively. Here δ is the real decrement of the complex
refractive index of the sample

n(x, y, z) = 1− δ(x, y, z) + iβ(x, y, z) (5)

and the linear attenuation coefficient µ is related to β via

µ = 2kβ. (6)

Inserting (3) and (4) into (1) yields

I(x, y, z = ∆) = I0 exp [−µT (x, y)] (7)

−∆I0
k
∇⊥ · [exp [−µT (x, y)]∇⊥(−kδT (x, y))]

+∆2I0∇2
⊥[D(x, y) exp [−µT (x, y)]].

We now employ the identity [14]

∇⊥ · [exp [−µT (x, y)]∇⊥(−kδT (x, y))] (8)

=
kδ

µ
∇2
⊥ exp [−µT (x, y)]

and make use of the fact that the single-material assumption
implies the ratio δ(x, y, z)/β(x, y, z) to be the same at all
locations within the sample. Hence, (7) becomes:

I(x, y, z = ∆) = I0 exp [−µT (x, y)] (9)

−∆I0δ

µ
∇2
⊥ exp [−µT (x, y)]

+∆2I0∇2
⊥[D(x, y) exp [−µT (x, y)]].
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We note that (9) contains two unknown quantities to solve
for, namely D(x, y) and T (x, y). Two equations or mea-
surements are hence required to find these two quantities.
The simplest variable to change is the propagation distance
∆, although it would also be possible to write (9) for two
different energies, since δ and µ depend on the energy of
the x-ray beam. Note that we are assuming the plane wave
approximation so that what is classified as either resolved or
unresolved does not change with propagation distance. Here
we take the approach of changing the propagation distance,
and so to proceed we write the z = ∆1 and z = ∆2 cases of
(9), eliminating the D(x, y) term:(

1− δ

µ

∆1∆2

∆1 + ∆2
∇2
⊥

)
exp [−µT (x, y)] (10)

=
∆2

2I(x, y, z = ∆1)−∆2
1I(x, y, z = ∆2)

I0(∆2
2 −∆2

1)
.

This has the same form as seen in the derivation of a routinely
used homogeneous-object TIE phase-retrieval algorithm [14],
and can hence be solved using the same Fourier-transform
method. This gives (cf. equation (62) in [16]):

T (x, y) =
−1

µ
× (11)

ln

F−1

 F[∆2
2I(x, y, z = ∆1)−∆2

1I(x, y, z = ∆2)
]

I0

(
∆2

2 −∆2
1 + δ

µ∆1∆2(∆2 −∆1)
(
k2
x + k2

y

))
.

Above, F denotes Fourier transformation with respect to x and
y, the corresponding Fourier-space coordinates are denoted
by (kx, ky), F−1 denotes inverse Fourier transformation with
respect to kx and ky , and we use the Fourier transform
convention found in [14] and [28].

With T (x, y) given by (11), the z = ∆1 version of (9) can
be rearranged into the form:

∇2
⊥[D(x, y) exp [−µT (x, y)]] (12)

=
I(x, y, z = ∆1)

I0∆2
1

−
(

1

∆2
1

− δ

µ∆1
∇2
⊥

)
exp [−µT (x, y)].

Solving this Poisson equation for the dark-field signal, we
obtain

D(x, y) = exp [µT (x, y)]× (13)

∇−2
⊥

[
I(x, y, z = ∆1)

I0∆2
1

−
(

1

∆2
1

− δ

µ∆1
∇2
⊥

)
exp [−µT (x, y)]

]
,

where the inverse Laplacian is defined as a pseudo-differential
operator by [29]

∇−2
⊥ = −F−1 1

k2
x + k2

y

F . (14)

We note that the previous expression for the inverse Laplacian
is singular when (kx, ky) = (0, 0), so to avoid this singularity
in computations we make the replacement

1

k2
x + k2

y

→ 1

k2
x + k2

y + ε
(15)

where ε > 0 is small compared to k2
x + k2

y (except for the
vicinity of the origin of Fourier space). The replacement (15)

regularizes the inverse transfer function H(kx, ky) = 1/(k2
x+

k2
y) by replacing the blow-up at the origin of Fourier space

with a finite non-zero DC term 1/ε, for fixed ε.
To apply the retrieval method derived in this section, we

need to first capture two intensity images at two different
propagation distances, and insert these intensity images and
the relevant parameters into (11) to retrieve the thickness of the
sample. We then need to use the retrieved thickness image and
one of the intensity images to reconstruct the dark-field signal
according to (13), where the inverse Laplacian is computed
according to (14) and (15). It is also worth noting that we
can reconstruct the dark-field signal using a third intensity
image taken at a propagation distance that is different from
the two distances used to reconstruct the projected thickness
of the sample, provided that this reconstruction of the projected
thickness is relatively stable with respect to the propagation
distances used to perform the reconstruction. In fact, so long
as we obey the simple rule of thumb that longer propagation
distances are beneficial to render dark-field effects visible and
shorter propagation distances are beneficial to achieve high-
spatial-resolution phase effects and hence thickness retrieval,
the reconstruction process for both the projected thickness
and dark-field signals will work well. An example showing
the visible increase in dark-field effects with distance can
be found in the movie in the Supplementary Materials II,
where a sequence of propagation-based images captured at
distances ranging from 0.5 m to 7 m of a small plastic tube
filled with agarose powder, attached to the centre of a green
seed pod from a Liquidambar styraciflua tree using Kapton
tape (see Appendix IV). The dark-field-associated-blurring in
the center of the images, due to the powder, becomes first
most visible at a distance of 3 m, indicating that distances
around this value are beneficial for both phase and dark-field
retrieval for this sample. This rule of thumb indicates that there
is an inherent trade-off between visualizing phase and dark-
field effects in the Fokker–Planck description; the propagation
distances chosen should be large enough to clearly render
dark-field effects, but should not be so large that phase effects
are hard to visualize and detail is lost. The method is designed
for the case that all propagation distances are chosen are such
that the near-field condition is satisfied, i.e. the Fresnel number
[27] should be much greater than unity for the spatially-
resolved projected sample structure. More specifically, this
condition can be formulated as

NF =
a2

λ∆
� 1, (16)

where NF denotes the Fresnel number, a is the smallest
spatially-resolved feature size present, λ is the x-ray wave-
length and ∆ is the propagation distance. One should note
that the value of a cannot be smaller than twice the detector
pixel size [30]. Hence, a lower bound for the Fresnel number
for a given x-ray energy and given propagation distance is

NF,min =
4d2

λ∆
, (17)

where d is the detector pixel size.
In closing this section, we provide an interpretation of

(12) in terms of attenuation and PBI phase contrast intensity
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Fig. 2: Attenuation and PBI phase-contrast profiles of a sample
for the projected thickness of the sample and each term in the
bottom line of (12), where profiles in black correspond to zero
dark-field and profiles in red correspond to a non-zero dark-
field. When the profiles for each term on the bottom line of
(12) are added together, we obtain the contributions sourced
from local blurring of attenuation and phase contrast to the
∇2
⊥[D(x, y) exp [−µT (x, y)]] term. Note that the orange ‘-’

and ‘=’ signs give column-wise relationships while the blue
‘+’ and ‘=’ signs give row-wise relationships.

profiles for both the absence and presence of a dark-field
signal, as shown in Fig. 2. In terms within the Fokker-Planck
solution (13), the retrieved thickness is effectively used to
predict both attenuation and phase effects in the absence of
any dark-field signal. This prediction is then compared to the
observed intensity image, where any differences are interpreted
as resulting from dark-field effects. To illustrate this, we
consider the case of imaging a cylinder as shown in Fig. 2,
taking a thickness profile across the cylinder, such as the blue
line, resulting in trace ‘A’. The profiles for the exponential
term in the final line of (12) take a similar shape, describing
attenuation expected by the sample, and the Laplacian term
predicts phase effects for a sample of this given thickness.
The profile for the scaled intensity image in the bottom line
of (12) can have different shapes corresponding to the cases
of zero dark-field (black profiles) and a non-zero dark-field
signal (red profiles). When the dark-field signal is exactly zero
(i.e. no unresolved microstructure or edge-scattering effects),
we would expect to see a profile such as trace ‘D’ for
the scaled intensity image, which can be broken into the
attenuation profile trace ‘B’ and phase-contrast profile trace
‘C’. In this case of zero dark-field, the attenuation profile (trace
‘B’) is identical to that of the exponential term (trace ‘H’),
and the phase-contrast profile (trace ‘C’) is identical to that
of the Laplacian term (trace ‘I’). We emphasize that we must
be in the near-field regime to match the Laplacian and phase-
contrast edge effects, and the propagation distance should be
chosen to satisfy this condition, as per (16) and (17). For a
non-zero dark-field signal, we would expect to see a profile
such as trace ‘G’ for the scaled intensity image. Trace ‘G’ can

be broken into the attenuation (trace ‘E’) and phase contrast
profiles (trace ‘F’), which are locally blurred or diffused
versions of traces ‘B’ and ‘C’, respectively. The subtraction of
the profiles for the three terms in the final line of (12), which
will be equal to the first line, ∇2

⊥[D(x, y) exp [−µT (x, y)]],
is shown as traces ‘J’ and ‘K’ for the case of zero dark-
field, and traces ‘M’ and ‘N’ for the case of non-zero dark-
field. For zero dark-field, the attenuation and phase contrast
contributions to this term sum together with the observed
image to give zeros everywhere (trace ‘L’), resulting in a
recovered dark-field signal that is identically zero everywhere.
In the case of a non-zero dark-field signal, traces ‘M’ and
‘N’ sum together to give trace ‘O’, which is not flat. Hence,
when the inverse Laplacian is applied and the exp [−µT (x, y)]
term is divided out, the dark-field signal recovered will not be
zero. This observation indicates that the dark-field signal will
be seen from a blurring of local intensity oscillations at the
detector, whether those intensity oscillations are created by
sample attenuation or sample-induced phase shifts, described
by each of the terms in the final line of (12). We may also
think of the dark-field signal as an obstruction which measures
the extent to which the intensity measured at a detector fails
to be described by the transport-of-intensity equation [17].

III. SIMULATED PBI DATA

We now test the retrieval method using a simulated sample
of three overlapping ‘squircles’, each of dimensions 400 pixels
× 400 pixels (4.6 mm × 4.6 mm), embedded in an array
of size 700 pixels × 700 pixels (8.05 mm × 8.05 mm)
with a sandpaper thickness image (retrieved by TIE from
experimental data) providing more natural thickness variations
across the entire array than seen with the perfectly-smooth
squircles alone (see Fig. 3(a) for the resulting thickness map).
We set the squircles to be made from PMMA and the energy
of the x-ray beam to be 25 keV. The delta and beta values
for PMMA at this energy are δ = 4.27× 10−7 and β =
7.00× 10−11 [31], and we set the pixel size to be 11.5 µm. A
completely independent dark-field signal was simulated using
a combination of larger spheres of radius 100 pixels and
smaller spheres of radius 50 pixels, with the dark-field signal
strength specified in terms of a blurring width, with this blur
width proportional to the thickness of the dark-field spheres.
The thickness distribution of these dark-field spheres was also
smoothed using a two-dimensional Gaussian function of 20
pixels in standard deviation, to soften the edges of the spheres,
thereby simulating a more realistic dark-field signal which
would be seen in experiment (see Fig. 3(b) for the resulting
dark-field map). No attenuation or phase effects are associated
with these spheres, to be confident the recovered dark-field
signal is sourced from dark-field effects alone.

To perform our simulation we first calculated the wavefield
at the exit-surface of the sample using the projection approx-
imation and Beer’s law to calculate the phase and intensity,
respectively. We then propagated over the simulated sample-
to-detector distances of 30 cm, 50 cm and 65 cm, using the
two-Fourier-transform representation of the Fresnel propagator
[28], to provide three simulated propagation-based intensity
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images. We then used the simulated dark-field signal to
determine how much to locally blur these intensity images,
by locally spreading the intensity at each detector pixel to the
surrounding pixels, with a Gaussian full-width half-maximum
(FWHM) of position-dependent width proportional to the
strength of the simulated dark-field signal at that transverse
(x, y) location within the sample. A two-dimensional Gaussian
function of position-independent standard deviation equal to
2 pixels in both the x and y directions was then used to
further blur the intensity images, simulating blurring by a
point-spread function (PSF) associated with a typical detector.
A mathematical description of our simulation model can be
found in Appendix I. These images were then taken as inputs
to our retrieval method, and the projected thickness and dark-
field signal were recovered according to (11) and (13). One
should be aware that the method described in this paragraph
is not the only method available for incorporating the effect
of local scattering. For example, one could use a scalar wave
equation [32] or complex transmission function formalism [17]
to incorporate such scattering.

The sample projected thickness, recovered using (11) and
given in Fig. 3(e), and the dark-field signal, recovered using
(13) and shown in Fig. 3(i), are consistent with the simulated
sample. While the projected thicknesses recovered using the
single-image method of Paganin et al. (Fig. 3(d)) and the
dual-image Fokker–Planck method (Fig. 3(e)) appear identical,
there is in fact a qualitative and quantitative difference between
these images. This difference is due to the fact that the
Fokker–Planck method explicitly takes into account the dark-
field signal present in the simulated intensity image shown
in Fig. 3(c). This difference is highlighted in Fig. 3(f), which
shows the result of subtracting Fig. 3(d) from Fig. 3(e). As can
be seen from Fig. 3(f), the difference between the projected
thicknesses using the two different methods is related to the
strength of the dark-field signal present in the reconstruction
process. In regions where this dark-field signal is zero, i.e. out-
side the dark-field-generating spheres, the difference between
the projected thicknesses is smallest, while this difference is
strongest in regions where the dark-field signal is strongest
or where the dark-field signal changes quickly (see Fig. 4 of
Morgan et al. [15]), besides the effects seen at the borders of
the image. See Appendix II for quantitative measures of the
accuracy of the thickness reconstructions provided by both
the TIE method of [14] and our Fokker-Planck method for the
various possible propagation distances listed in this section.

The other key result of this section is the ability of our
method to reconstruct the dark-field signal present in the
simulated data, as can be seen by comparing Fig. 3(i) to
Fig. 3(b). Our reconstruction method detects both those objects
that generate a strong dark-field (the three larger overlapping
spheres), and those that generate a weak dark-field (the smaller
isolated spheres). Due to the detector point-spread function
blurring, the simulated and retrieved dark-field signals have
slightly different numerical values. Quantitative measures of
the various reconstructed dark-field signals at the different
propagation distances used in our simulations can be found
in Appendix II. Additionally, the effect of noise in our sim-
ulations in terms of the qualitative and quantitative nature of

Fig. 3: All images here are shown with a linear grayscale,
where a is the minimum value and b is the maximum value:
(a) Simulated sample thickness image T (x, y) of PMMA
squircles with a piece of sandpaper providing background
thickness variations (a = 8× 10−5 m, b = 120× 10−5 m).
(b) Simulated dark-field image D(x, y) of heavily smoothed
PMMA spheres (a = 0, b = 3 × 10−11). (c) Scaled intensity
image corresponding to the I(x, y, z = ∆1)/(I0∆2

1) term of
(12) at a propagation distance of 65 cm (a = 2.31 m−2,
b = 2.38 m−2). (d) Retrieved sample thickness using the
TIE-based method of [14] with the 30 cm intensity image
(a = 8× 10−5 m, b = 120× 10−5 m). (e) Retrieved sample
thickness using (11) in this paper with the 30 cm and 50 cm
intensity images (a = 8× 10−5 m, b = 120× 10−5 m). (f)
Difference between panels d) and e) (a = −159× 10−7 m,
b = 128× 10−7 m). (g) Difference between the exponential
and Laplacian terms given in the latter half of the second
line of (12) during dark-field retrieval (a = 2.31 m−2, b =
2.38 m−2). (h) Difference of c) and g), corresponding to
∇2
⊥[D(x, y) exp [−µT (x, y)]] in the dark-field retrieval via

equation (12) (a = −688× 10−5 m−2, b = 477× 10−5 m−2).
(i) Retrieved dark-field signal using (13) with the 65 cm
intensity image (a = 0, b = 13× 10−10).

the reconstruction process is discussed in Appendix III.

IV. EXPERIMENTAL PBI DATA

Encouraged by the results of our simulation, we turn to
demonstrating how this approach can be applied to experimen-
tal data. To do this, we collected propagation-based intensity
images at the Australian Synchrotron on the Imaging and
Medical Beamline (IMBL) in Hutch 3B. The sample consisted
of polystyrene microspheres, 1 µm in diameter, contained in
a sample tube made from PMMA. The sample was placed
on a dedicated table located approximately 130 m from the
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source, where x-ray photons of energy 30 keV were produced
by synchrotron radiation from a 2 T dipole bending magnet. At
this energy, PMMA has δ = 2.96× 10−7 and µ = 36.1 m−1,
and we used these values to represent the complex refractive
index of the sample. Using the PMMA values to represent
the whole sample here is a good approximation since there is
a relatively small difference between the δ and µ values for
PMMA and polystyrene at an energy of 30 keV (approximately
11.9% for the δ values and approximately 25.3% for the µ
values [31]). The detector used to image the sample had an
effective pixel size of 18 µm, and by placing the detector at
distances of 1 m, 2 m, and 3 m downstream of the sample,
we captured propagation-based intensity images exhibiting
both phase and dark-field effects at each of these propagation
distances. The exposure time for each image was 1 s. Thirty
exposures were captured at each propagation distance, and
averaged before flat-field and dark-field correction. The flat-
field and dark-field corrected images were then resized to
account for slight magnification differences using the source-
to-sample distance and finally translated and registered to each
other to sub-pixel accuracy in order to mitigate alignment
artifacts. All image processing and data analysis was done
using Python3 code on a desktop machine. In particular, the
translation and registration of the images was achieved using
the ‘phase cross correlation’ function from the registration
module of the freely accessible scikit-image library [33], with
an upsampling factor of 1000 as the input to this function.
Furthermore, any apparent truncation of the sample was han-
dled by mirroring the relevant images whenever using Fourier
transforms in order to enforce the necessary periodicity con-
ditions and hence avoid cross-talk between opposite borders
of the images.

See the movie in Supplementary Materials I for the full
sequence of the propagation-based images collected, noting
a reduction in local contrast with increasing propagation dis-
tance in the center of the image, where the greatest number of
polystyrene microspheres are seen in projection. Fig. 4 shows
the results of using the 1 m and 2 m (Fig. 4(a)) propagation-
based intensity images to recover the projected thickness and
dark-field images of the sample. These propagation distances
were used as they provided a balanced trade-off between
visualizing phase and dark-field effects, i.e. the projected
thickness and dark-field signal can be recovered accurately
using this pair of propagation distances. As with our simu-
lations in section III, we see subtle differences between the
sample thickness retrieved using our Fokker-Planck approach
(Fig. 4(d)), and the TIE approach of [14] (Fig. 4(c)), reflected
in the difference image, Fig. 4(e). In particular, the Laplacian-
type character of this difference map is a signature of the
higher-resolution projected thickness reconstruction associated
with the Fokker–Planck analysis [34]. This difference orig-
inates from the fact that the reconstruction using our new
Fokker-Planck method properly separates phase from dark-
field effects, while the TIE-based method interprets decreased-
visibility phase contrast fringes as more-slowly-changing sam-
ple thickness. This higher spatial resolution associated with the
Fokker-Planck analysis is more clearly seen with the seed pod
sample presented in Appendix IV.

With the thickness reconstruction using our method in hand,
we calculate the last two terms in the dark-field retrieval,
representing the estimated intensity image in the absence of
dark-field, shown in Fig. 4(f). The visibility reduction effects
described in Fig. 2 can be seen in the experimental data in
Fig. 4(i). This shows the profiles taken across the observed
image (blue, Fig. 4(b), first term on the second line of (12)) and
the image that would be expected in the absence of dark-field
(red, Fig. 4(f), second term on the second line of (12)), with
a difference in visibility in the profiles in regions where there
is a strong dark-field signal, but a closer match between the
profiles in regions where there is a weaker dark-field signal. By
taking the difference between Fig. 4(b) and (f), according to
the bottom line of (12), we obtain panel (g), which highlights
these differences in visibility between the blue and red profiles.
Taking the inverse Laplacian, we obtain panel (h) which shows
the recovered dark-field signal as described by (13). It is
evident from panel (h) that there is virtually no scattering from
the region outside the polystyrene microspheres, as expected.
Of particular interest are the regions where the liquid which the
microspheres came in had not fully evaporated and as a result,
the microspheres are clumped together in a wet mass and
hence there are fewer air/plastic interfaces than the surround-
ing regions, and hence weaker dark-field. These regions within
the sample are seen as regions of increased thickness in the
retrieved thickness image (panel (d)) and regions of reduced
scattering in the recovered dark-field signal (panel (h)). These
observations help to demonstrate the complementary nature
of the sample thickness/phase and dark-field in terms of the
sample information these signals provide.

V. DISCUSSION

This paper presents a novel algorithm for thickness and
dark-field retrieval from multiple-distance propagation-based
x-ray imaging, via the Fokker–Planck equation. The simulation
results show that this algorithm can extract dark-field effects
that are independent of the sample phase and attenuation
effects. The successful application of our approach to ex-
perimental data was also shown. To our knowledge, the use
of propagation-based phase-contrast imaging to extract dark-
field signals has only been demonstrated in one other paper,
by Gureyev et al. [17], where an alternative approach was
taken, based on linearizing the Fresnel integral in the near-field
regime. The method presented there has the advantage of only
needing one intensity image to reconstruct both the projected
thickness and dark-field signal of a homogeneous sample. As
such, there is no potential complication due to misalignment
between images taken at different propagation distances. How-
ever, we speculate that this use of a solitary intensity image
may come at some cost, for example limiting how quantitative
the reconstruction can be. Additionally, a two-image approach
such as our method may help with separating phase and dark-
field effects with high signal-to-noise ratio (SNR) and high
spatial resolution – at small propagation distances, a single-
image approach may be less sensitive to dark-field, while at
high propagation distances, dark-field blurring may reduce
the spatial resolution of the resulting images retrieved with
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Fig. 4: (a) Propagation-based intensity image of the polystyrene microspheres contained in the PMMA sample tube captured
at a propagation distance of 1 m (a = 0.36, b = 0.96). (b) Scaled propagation-based intensity image (first term in the
last line of (12)) of the polystyrene microspheres taken at a propagation distance of 2 m (a = 0.08 m−2, b = 0.25 m−2). (c)
Retrieved thickness using TIE method with intensity image taken at 1 m propagation (a = 40× 10−4 m, b = 258× 10−4 m). (d)
Retrieved thickness using our Fokker–Planck method with intensity images taken at 1 m and 2 m propagation (a = 40× 10−4 m,
b = 258× 10−4 m). (e) Difference between (c) and (d) (a = −5× 10−4 m, b = 5× 10−4 m). (f) Dark-field-free intensity
estimation at 2 m according to the second term in the bottom line of (12) (a = 0.08 m−2, b = 0.25 m−2). (g) The Laplacian
of the product of the dark-field signal and the exp[−µT (x, y)] term, corresponding to (12) (a = −0.06 m−2, b = 0.04 m−2).
(h) Dark-field signal found using (13) (a = 0, b = 11× 10−10). (i) Profiles taken along blue and red dashed lines in (b) and
(f), showing differences in visibility between the two terms on the last line of (12).

a single-image approach, as phase effects will be blurred out
and it will not be clear whether the sample is slowly-varying or
is producing a strong dark-field signal. A two-image approach
avoids both issues. Our method extracts the dark-field signal as
defined by the x-ray Fokker–Planck equation, so our method is
sensitive to any local blurring, whether that be bulk scattering
from unresolved microstructure or edge scattering.

Upon taking the D(x, y)→ 0 limit of the dark-field retrieval
equation, (13), we recover the homogeneous phase retrieval
method of Paganin et al. [14], which is based on the TIE. This
result is not unexpected, since the Fokker–Planck equation,
upon which our method is based, is the natural diffusive gener-
alization of the TIE and hence, in the limit of a vanishing dark-
field signal, the Fokker–Planck equation reduces to the TIE (as
can be seen from (1)). While the TIE phase retrieval method of
[14], requires only one image, the method presented here uses
this second measurement to extract the dark-field signal, which
contains complementary information about the sample relative

to its projected thickness. This separation of the projected
thickness and dark-field signals serves the additional purpose
of ensuring that the presence of dark-field effects does not
result in inaccuracies in the projected thickness reconstruction.
The difference between our method and the TIE-based method
of Paganin et al. may be summarized as follows. In the latter
method, the projected thickness is retrieved from contrast
generated by attenuation, phase, and dark-field effects, while
in our method the projected thickness is ideally only sourced
from attenuation and phase effects, since the dark-field effects
have been disentangled, with the added advantage of obtaining
a complementary dark-field signal. This recovered dark-field
signal can be useful for qualitative inspection and visualiz-
ing/discerning various features. The recovered dark-field signal
may also be converted into other useful quantities, such as the
divergence angle of the SAXS cone, the blur width associated
with the SAXS cone and the characteristic transverse length
scale of the rapid spatial wave-front fluctuations induced by the
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unresolved microstructure present in the sample (see Fig. 3 in
[16] for details). Note that wavefield discontinuities introduced
by sharp edges present in the sample may also contribute to
the recovered dark-field signal, since an edge can create a
boundary wave that reduces local contrast (e.g. see Fig. 2(b)
in Groenendijk et al. [35]) and can also create a propagation-
based fringe that increases local contrast [15].

In using the method presented here, it is advisable to include
a small propagation distance that satisfies the near-field condi-
tion when performing the phase retrieval, so that high-spatial-
frequency sample features can be resolved, since these features
can be blurred out by dark-field effects at larger propagation
distances (see the video included as Supplementary Materials
II). It is then advisable to include a longer propagation
distance, where dark-field effects are visually apparent, for
the dark-field retrieval, noting these should still satisfy the
near-field condition (16). The optimal propagation distances
for our method are highly sample-dependent, so optimization
may be best achieved by looking for some visible blurring
in the captured experimental propagation-based images, then
choosing distances approaching this. It is also beneficial for
there to be contrast across the whole field of view in the
experimental images captured for analysis with our retrieval
method, since an area of no local contrast would not be able
to reveal any local blurring effects due to dark-field. As shown
in Fig. 2, this can be either attenuation or phase contrast.
In terms of spatial coherence, our algorithm requires that the
characteristic length scale of source-size blurring, wsource, be
less than the characteristic length scale of diffusive contrast
due to SAXS, wSAXS, so that the SAXS-associated blurring by
the sample can be detected. That is, wsource < wSAXS, which
can be written as s < Rθ, where s is the source size, R is the
source-to-sample distance, and θ is the opening angle of the
SAXS cone.

Compared to existing methods for extracting x-ray dark-
field signals, such as analyzer-based imaging or grating in-
terferometry, the method presented here does not require the
careful alignment and stability that comes with using spe-
cialized optics. Additionally, since propagation-based phase-
contrast imaging has been shown to be robust with respect to
the use of polychromatic radiation [11] and can account for
finite source sizes [36], we expect that our method will also be
robust to the use of polychromatic radiation and transferable
to lower coherence sources, such as medical or laboratory
settings, pending future investigation. Note that the effects
of polychromatic radiation could potentially be incorporated
by multiplying (1) with a wavelength-dependent weighting
factor that describes the polychromatic x-ray spectrum and
then integrating over the wavelength. However, since dark-
field effects must be visualized directly, smaller pixels will
likely be required in order to use our retrieval method with
samples which scatter weakly. As a consequence, this may
affect the size of samples that can be imaged on a given
detector. Interestingly, when comparing the dark-field signal
obtained in section IV using our Fokker-Planck retrieval
method (Fig. 4(h)), to the dark-field signal/scattering angle
of a very similar sample obtained using single-grid imaging,
as shown in Fig. 4 of [37], it appears that our method

provides a dark-field reconstruction with less high frequency
noise. In addition, our method is also computationally fast and
deterministic compared to the cross-correlation method used
in [37]. However, only a single sample exposure is required
in the single-grid imaging technique, meaning the sample
receives a lower radiation dose if a single exposure is used,
compared to our Fokker-Planck method, which requires two
sample exposures to extract the sample thickness and dark-
field signal. Additionally, due to the division-by-zero error at
the origin of Fourier space in (14) and the subsequent use
of (15), our method may potentially give rise to more low
frequency artifacts.

In addition to the advantages stated above, some limitations
of our method which we can foresee include the following.
Firstly, the use of two intensity images taken at different prop-
agation distances comes with the potential for misalignment
artifacts. Such artifacts, however, can be mitigated with the use
of translation and registration software prior to the application
of our method (as mentioned in section IV). Secondly, our
method requires a slightly increased radiation dose to be
delivered to the sample relative to conventional PBI phase
retrieval [14] or single-exposure PBI dark-field [17] as a result
of using two intensity images compared to one. This increased
radiation dose is balanced by the benefit of quantitatively
extracting the sample thickness free from dark-field effects,
as well as the dark-field signal, providing increased sample
structure information. Note also that grating and crystal-based
methods require sufficient exposures (e.g. seven) to sample a
stepping or rocking curve in order to extract a dark-field image.
Lastly, our method also requires there to be contrast across the
whole field of view, as areas of no local contrast in a captured
intensity image are unable to reveal any local blurring effects
due to sample dark-field effects. Note that if the sample alone
is so smooth as to not produce much local contrast, contrast
could be introduced via means of a reference pattern without
the need for alignment, for example with a patterned sample
holder or with a textured garment for a patient to wear.

This introduction of contrast leads to a point of comparison
between (i) the method developed in the present paper and (ii)
imaging approaches that employ an optical element to extract
x-ray dark-field signals. Consider, for example, the methods
of x-ray speckle tracking [38]–[40] or single-grid x-ray imag-
ing [41], [42]. In these methods, a spatially-random speckle
membrane (e.g. a piece of sandpaper) or a phase-shifting or
attenuating grid is introduced to create a spatially rapidly-
varying intensity reference pattern. Information regarding the
absorption, phase shift, and dark-field signal associated with a
sample can be inferred by looking at sample-induced changes
in the local intensity, the transverse position of the reference
features, and the visibility of those features, respectively, in
these contexts. In the method developed in our paper, the
object is self-referencing. The sample itself is considered to
create the reference pattern that is subsequently diffused upon
free-space propagation, thereby enabling the dark-field signal
to be quantitatively extracted from bright-field data. Stated
differently, the sample plays two roles in our method, namely
the obvious role as an unknown object whose structure is to
be retrieved, and additionally, the role of a highly-structured
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mask employed to elucidate certain properties regarding the
sample. The sample contains its own mask—creating its own
reference speckle pattern, so to speak—since the resolved
Fourier components of the sample microstructure constitute an
‘internal speckle grating’ whose post-sample diffusion allows
information regarding the spatially-unresolved microstructure
to be extracted. In our method, no separate ‘reference’ grid-
only or speckle-only image is required, since the sample is the
reference.

VI. AVENUES FOR FUTURE RESEARCH

We provide three possible directions for future research,
which build directly off the work presented in this paper, and
will be the subject of future papers. The first of these directions
is a generalization of our retrieval method to multi-material
samples, where there are three key quantities to be recon-
structed separately; the attenuation, the phase shift induced by
the sample, and the dark-field signal. A reconstruction of these
quantities could be achieved in a manner similar to that shown
in this paper, but using three different propagation distances,
where the exit-surface intensity and exit-surface phase of the
x-ray wavefield do not need to be coupled, as compared to the
case of a homogeneous sample [13]. The use of three distinct
propagation distances would allow one to decouple the phase
and diffusion terms in (1), and hence solve for the phase,
attenuation, and dark-field signal.

The second possible direction for future research is an
extension of our retrieval method presented in this paper
to computed tomography (CT), thereby providing a method
to perform dark-field CT using a propagation-based imaging
setup. This could be achieved simply by acquiring a set of
experimental projections, taken at different angles around the
sample, at a minimum of two different propagation distances,
so that our method described in this paper can be used to
reconstruct the sample thickness and dark-field signal for each
projection. These retrieved thickness and dark-field projections
could then be combined into a 3D mapping of both sample
density and the dark-field signal by utilizing standard CT
reconstruction methods, such as filtered-back projection.

In addition to the two directions outlined above, our algo-
rithm could also be extended to the case of ‘directional dark-
field’, where the transverse cross-section of the local SAXS
cone is considered to be elliptical rather than rotationally
symmetric. In such scenarios, the single diffusion coefficient
D(x, y) may be replaced by a symmetric rank-two diffusion
tensor [16]:

D(x, y) →
[
Dxx(x, y)

1
2Dxy(x, y)

1
2Dxy(x, y) Dyy(x, y)

]
. (18)

With this modification, (1) becomes:

I(x, y, z = ∆) = I(x, y, z = 0) (19)

−∆

k
∇⊥ · [I(x, y, z)∇⊥φ(x, y, z)]z=0

+∆2 ∂
2

∂x2
[Dxx(x, y)I(x, y, z)]z=0

+∆2 ∂2

∂x∂y
[Dxy(x, y)I(x, y, z)]z=0

+∆2 ∂
2

∂y2
[Dyy(x, y)I(x, y, z)]z=0.

In closing, this manuscript describes a retrieval method
which can quantitatively recover x-ray phase and dark-field
signals without using optics. The method provided generalizes
the TIE single-material phase retrieval algorithm of Paganin et
al. [14], which has been widely adopted throughout the x-ray
imaging community. Hence, we hope that our method may also
be of use in a range of imaging problems. Our algorithm could
also be retrospectively applied to existing multiple-distance
data. Potential applications of our dark-field method include
quantitative measurements of the air-sacs in the lungs [4], [43]
or capturing industrial processes involving microstructure [44].

APPENDIX I - COMPUTATIONAL RECIPE FOR THE
SIMULATED DATASET

Here we provide a computational recipe to simulate
propagation-based images that include dark-field effects, taken
within the manuscript as inputs to our phase and dark-field
retrieval algorithm in Section III. Given the complex refractive
index of a homogeneous sample, where δ and β are taken to
be constant, and given the simulated thickness of the sample
Tsim(x, y), we create the exit-surface wavefield

ψ(x, y, z = 0) = exp [−k(β + iδ)Tsim(x, y)]. (20)

We then calculate the propagated wavefield by using the
Fresnel propagator, D(F)

∆ [28]:

ψ(x, y, z = ∆) ≈ D(F)
∆ ψ(x, y, z = 0). (21)

The intensity of the propagated wavefield, IP(x, y, z = ∆), is

IP(x, y, z = ∆) = |ψ(x, y, z = ∆)|2, (22)

resulting in propagation-based images that would be seen if
dark-field effects were not present. In order to incorporate
dark-field effects, the simulated blur width as described in
Section III, w(x, y), is used to blur these propagation-based
images through a position-dependent blurring kernel, which
we take to be a two-dimensional Gaussian function with
standard deviation σ(x, y) =

√
2w(x, y)∆ (cf. (9) in [15]):

IB(x, y, z = ∆) =

∫ ∞
−∞

∫ ∞
−∞

IP(x′, y′, z = ∆) (23)

×e
− (x−x′)2+(y−y′)2

2σ2(x′,y′)

2πσ2(x′, y′)
dx′ dy′.

This produces propagation-based images that are locally
blurred by the presence of dark-field effects. These are then
further blurred by a two-dimensional Gaussian PSF of α = 2
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pixel standard deviation to describe detector and source-size
blurring:

IPSF(x, y, z = ∆) =

∫ ∞
−∞

∫ ∞
−∞

IB(x′, y′, z = ∆) (24)

×e
− (x−x′)2+(y−y′)2

2α2

2πα2
dx′ dy′.

The intensity images calculated at various propagation dis-
tances according to (24) were taken as inputs to the simulta-
neous phase and dark-field retrieval algorithm presented in the
manuscript, as shown in Fig. 3(c). Additionally, the simulated
dark-field signal shown in Fig. 3(b) is obtained from the
standard deviation of the Gaussian used in (23) as follows
(cf. Fig 3(d) in [16]):

Dsim(x, y) =
σ2(x, y)

∆2
= 2w(x, y). (25)

Note that although the model given here is tailored to the
context of a homogeneous sample and a rotationally invariant
SAXS cone, this model may be readily adapted to simulate a
multi-material sample and/or a directional SAXS cone.

APPENDIX II - QUANTITATIVE ACCURACY WITH
PROPAGATION DISTANCE

Here we provide a metric for our simulated dataset, shown
in Section III, which quantifies the accuracy of the TIE method
[14] and our Fokker-Planck method, across multiple propa-
gation distances. This metric, along with the reconstructed
images, demonstrates the consistency and robustness of our
retrieval method when using different propagation distances
to reconstruct the sample thickness and dark-field signal.

Define the following root-mean-square error (RMSE) metric
to quantify the accuracy of the thickness reconstructions:

TRMSE =

√∫∫
|Tretrieved − Tsimulated|2dxdy∫∫

|Tsimulated|2dxdy
, (26)

where the integrals are taken over the entire area of the images.
Here, Tretrieved is the retrieved sample thickness using either the
method of [14] or our Fokker-Planck method, and Tsimulated
is the simulated thickness shown in Fig. 3(a). From Fig. 5
below, it is evident that regardless of which pair of propagation
distances we use (from those listed in section III) to reconstruct
the sample thickness according to (11), we obtain an accurate
reconstruction of the simulated thickness. Furthermore, based
on the values given by (26) (listed in the caption of Fig. 5), the
thickness reconstructions obtained using our Fokker-Planck
method are consistently better than or at least as good as
the corresponding TIE thickness reconstruction. Analogous to
(26), we can define a metric which quantifies the accuracy of
the dark-field reconstructions using our method compared to
the simulated dark-field signal shown in Fig. 3(b), which we
call DFRMSE:

DFRMSE =

√∫∫
|Dretrieved −Dsimulated|2dxdy∫∫

|Dsimulated|2dxdy
. (27)

Here, Dretrieved is the reconstructed dark-field signal according
to (13), Dsimulated is the simulated dark-field signal, and the

Fig. 5: Top row: Fokker-Planck thickness reconstructions
using propagation distances of (a) 30 cm and 50 cm (TRMSE =
0.016), (b) 50 cm and 65 cm (TRMSE = 0.017), and (c) 30 cm
and 65 cm (TRMSE = 0.015). Bottom row: TIE thickness
reconstructions [14] using propagation distances of (d) 30 cm
(TRMSE = 0.016), (e) 50 cm (RMSE = 0.019), and (f) 65 cm
(TRMSE = 0.023), corresponding to the bolded distances.

integrals are taken over the whole area of the images, as above.
We have scaled the simulated dark-field signal (see Fig. 3(b))
to match the range of values present in the retrieved dark-
field signal, i.e. to span the grayscale bar shown in Fig. 6. As
can be seen from Fig. 6, there is no discernible difference
between the reconstructed dark-field signals using different
propagation distances, and each reconstruction provides an
accurate representation of the simulated dark-field signal.

APPENDIX III - THE EFFECTS OF NOISE ON
RETRIEVAL

To perform a preliminary investigation into the effects of
noise on the retrieval process described in this paper, we
incorporate noise into our simulations from section III, as
shown in Fig. 7 below. Here, noise has been incorporated in
the form of Poisson noise with a signal-to-noise ratio (SNR)
given by

√
N , where N is the average number of x-ray photons

arriving at the detector per pixel. The simulated intensity data
at a propagation distance of 65 cm, along with the retrieved
sample thickness using both the TIE [14] and our Fokker-
Planck method, as well as the recovered dark-field signal
are shown in Fig. 7 as a function of SNR ranging from a
value of 1000 down to a value of 70, with a higher SNR
indicating a lower relative noise level and hence a less noisy
reconstruction of the sample thickness and dark-field signal.
It is worth noting here that the sensitivity of the retrieval and
robustness to noise will likely depend upon the visibility of the
intensity oscillations in the collected images and the strength
of the dark-field signal. For example, an SNR value of 70 will
not necessarily mean a retrieved sample thickness and dark-
field signal as seen in the last column of Fig. 7 above. Hence,
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Fig. 6: Various dark-field reconstructions at the different
propagation distances of 30 cm, 50 cm and 65 cm, along with
the corresponding Fokker-Planck thickness reconstructions de-
picted in the top row of Fig. 5. (a) DFRMSE = 0.147, (b)
DFRMSE = 0.147, (c) DFRMSE = 0.148, (d) DFRMSE = 0.150,
(e) DFRMSE = 0.153, (f) DFRMSE = 0.153, (g) DFRMSE =
0.149, (h) DFRMSE = 0.149, (i) DFRMSE = 0.149.

the SNR values quoted above should not be taken as defining
values.

Two main observations can be drawn from Fig. 7. The first
of these is that the reconstruction process is successful, at
least qualitatively in the case of the dark-field signal, for SNR
values of 1000, 316 and 223. The second observation to be
made is that the sample thickness retrieved using our Fokker-
Planck method is not as robust to the presence of noise as the
TIE method of Paganin et al. [14], noting that this method is
well-known for strong noise-suppressing properties [45]. This
is due to the use of two intensity images as compared to one
in TIE phase retrieval, meaning there are two terms affected
by the presence of noise in our new retrieval method. In
particular, at SNR values of 100 and 70, the breakdown of the
retrieved sample thickness using our Fokker-Planck method
is evident compared to the corresponding TIE thickness re-
constructions. This breakdown in the Fokker-Planck retrieved
sample thickness is correlated with a significant degradation
in the quality of the recovered dark-field signal, as can be seen
from the bottom row of Fig. 7. Hence, while the relative lack
of robustness to noise in the thickness portion of our retrieval
method as compared to TIE phase retrieval is a limitation of
our method, one needs to keep in mind that the main benefit of
our method is the ability to obtain a map of both the sample
thickness and dark-field signal corresponding to SAXS. At
low SNR values, the recovered dark-field signal is poor and
so the use of our method is of little to no value at such

SNR levels. Conversely, at moderate and high SNR levels, the
reconstruction of the sample thickness and dark-field signal
provided by our method is accurate (and improves with higher
SNR), and so at these types of SNR levels, our method has
substantial benefit over TIE phase retrieval, as described at
length in this paper. In practice, the amount of noise present in
the retrieval process can be reduced by increasing the exposure
time, by capturing multiple exposures at each propagation
distance and then averaging the captured exposures or by pre-
filtering of the images to remove high-frequency noise.

APPENDIX IV - RETRIEVAL FROM MORE
COMPLICATED SAMPLES

Here we test the limits of our retrieval method by consid-
ering a sample for which the δ/µ ratio is not well known
and which violates the assumption of azimuthally isotropic
scattering. The purpose of doing this is to demonstrate that
our new retrieval method can still be applied to samples
that seemingly exceed the original domain of validity of our
method, much in the same way the TIE retrieval method of
[14] has been extended past its original domain of validity.
To this end, we captured propagation-based intensity images
of a small plastic tube filled with agarose powder, attached to
a green seed pod from a Liquidambar styraciflua tree using
Kapton tape, on IMBL at the Australian Synchrotron using
25 keV x-rays. By approximating the sample to have the re-
fractive properties of PMMA, we estimated δ = 4.27× 10−7.
Further, by measuring the attenuation relative to the sample
thickness, we estimated the linear attenuation coefficient of
the sample to be µ = 107 m−1. The detector pixel size was
10 µm and the images were captured at propagation distances
of 0.5 m, 1 m, 2 m, 3 m, 4 m, 5 m, 6 m and 7 m. The retrieval
results using the images taken at 2 m and 3 m are shown
in Fig. 8 below. The full sequence of collected images can
be found in Supplementary Material II, where the reduction
in local contrast across the tube of agarose powder, with
increasing propagation distance, should be noted. Prior to
applying our retrieval algorithm, all images were aligned and
demagnified as outlined in section IV. As can be seen from
the retrieved thickness maps shown in Fig. 8(b) and (c), using
the TIE approach and our new Fokker-Planck method respec-
tively, there is a clearly discernible higher spatial resolution
associated with the projected thickness reconstruction using
a Fokker-Planck analysis, with this higher spatial resolution
being particularly evident in the zoomed-in regions shown
in Fig. 8(d). This observation is further reinforced by the
Laplacian-type character seen in the difference between the
TIE and Fokker-Planck reconstructions shown in Fig. 8(e), as
the observed Laplacian-type character of the difference map
is a a signature of the higher spatial resolution associated
to the Fokker-Planck analysis [34]. This difference can be
attributed to the fact that the Fokker-Planck analysis properly
separates phase from dark-field effects, and that the TIE
method interprets decreased-visibility phase contrast fringes
as more slowly-changing sample thickness.

Using the reconstructed Fokker-Planck thickness, the last
two terms in the dark-field retrieval step can be calculated,
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Fig. 7: Reconstructed sample thickness and dark-field signal using our method outlined in section II in simulation as a
function of signal-to-noise ratio (SNR), with the SNR decreasing from left to right. Top row: Simulated intensity data at
65 cm, Second row: Reconstructed sample thickness using the TIE based method of [14], Third row: Reconstructed sample
thickness according to (11) using our Fokker-Planck method, Bottom row: Recovered dark-field signal according to (13). From
left to right, MAX= 8.9× 10−10, 9.2× 10−10, 9.4× 10−10, 9.8× 10−10, 6.8× 10−10.

representing the estimated intensity image in the absence of
any dark-field effects, shown in Fig. 8(f). For this dataset,
instead of calculating the latter two terms in (12), we opted
to use the Fresnel propagator to propagate the exit-surface
wavefield, calculated from the retrieved Fokker-Planck thick-
ness, to a distance of 3 m, to more accurately describe the
PBI fringes from a range of sample feature sizes and hence
a range of Fresnel numbers. This replacement is valid since
the Fresnel propagator reduces to the latter two terms of (12)
(up to scaling factors of the propagation distance) in the TIE
regime limit (see pp. 324–326 of [28] for details). Taking
the profiles along the blue and red dashed lines in Fig. 8(a)
and (f) respectively, we obtain Fig. 8(i), from which it can
be seen that there is a difference in visibility in the profiles
in regions in which there is a strong dark-field signal, while
there is a closer match between the profiles in regions where
there is a weaker dark-field signal. The next step in the dark-
field retrieval process would be to take the difference between
Fig. 8(a) and (f). Based on the profiles in Fig. 8(i), if we were
to do this for this sample, where the dark-field is relatively
weak, then we would see both regions where the experimental
image has reduced local visibility, and occasionally regions

where the experimental image has increased local visibility
(e.g. see the strong PBI fringes around 170 pixels into the
profile). By simply taking the difference between panel (a) and
(f), we would lose information about where the experimental
image has higher or lower visibility than we would expect
for the given sample thickness in the absence of dark-field.
However, since the dark-field signal is naturally restricted to
be non-negative (see section I), any increase in local visibil-
ity of the experimental image is nonphysical (as this leads
to a negative diffusion coefficient), with any such apparent
increases in visibility being due to the presence of noise or
slight mismatches in visibility from numerical modeling, and
so we seek to isolate the non-negative dark-field signal here. To
evaluate which profile has higher visibility, we measured the
average curvature of the intensity oscillations in each direction
by means of the absolute value of the second derivative of
the intensity, which should oscillate between the value of the
maximum curvature (e.g. peak/trough) and zero. To measure
this average curvature in the presence of noise, we first utilized
a two-dimensional Savitzky-Golay filter [46] to compute the
Laplacian of the relevant images (Fig. 8(a) and (f)), a method
that avoids noise amplification. We then took the absolute
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Fig. 8: (a) Scaled propagation-based intensity image (first term in the last line of (12)) of a Liquidambar styraciflua seed
pod with a plastic tube of agarose powder attached, taken with 3 m propagation from sample to detector (a = 0.02 m−2,
b = 0.15 m−2). (b) Retrieved thickness using TIE method with image taken at 2 m propagation (a = 0 m, b = 0.015 m). (c)
Retrieved thickness using our Fokker–Planck method with images taken at 2 m and 3 m propagation (a = 0 m, b = 0.015 m).
(d) Color-coded magnified regions of the thickness maps in (b) and (c) respectively. (e) Difference between (b) and (c)
(a = −3× 10−4 m, b = 5.4× 10−4 m). (f) Dark-field-free intensity estimation at 3 m using Fresnel propagation – a more
accurate model of the second term in the bottom line of (12) (a = 0.02 m−2, b = 0.15 m−2). (g) The Laplacian of the
product of the dark-field signal and the exp[−µT (x, y)] term, corresponding to (12), showing only those values where the
dark-field coefficient is non-negative (i.e. visibility of panel (f) is greater than or equal to that of panel (a)) (a = −0.05 m−2,
b = 0.03 m−2). (h) Dark-field signal found using (13) (a = 0, b = 1.4× 10−9). The yellow arrow indicates the level to which
the powder reaches within the tube. (i) Profiles taken along blue and red dashed lines in (a) and (f), showing differences in
visibility between the two terms on the last line of (12).

value of each of these Laplacian images and smoothed with
a 2D Gaussian kernel of five pixel standard deviation in each
direction to remove zeros. In image regions where there was an
apparent increase in visibility (i.e. the blue profile had higher
visibility than the red), Fig. 8(g) was set to zero. Finally,
the dark-field signal was retrieved using (13) and is shown
in Fig. 8(h). One can see that the agarose powder in the
tube is more visible in Fig. 8(h), compared to the thickness
reconstructions in (b) and (c), for instance by looking at the
tip of the tube and the level to which the microstructures fill
up the tube, indicated by the yellow arrow in panel (h). The
internal wood-like structure of the seed pod also generates a
strong dark-field signal, which is not seen in the thickness

reconstructions. Note also that although the dark-field signal
generated here by the seed pod is likely to be directional,
the described dark-field retrieval algorithm is still able to
reconstruct the dark-field image. In this case, we could expect
the strength of the retrieved dark-field signal to correspond to
the root mean square of the major and minor axis of directional
dark-field.

As a final point, we discuss the reason for using the
additional filtering steps outlined in the previous paragraph
when retrieving the dark-field signal from this sample as
compared to the sample presented in section IV. As can be seen
from Fig. 4(i), there are very few locations in which the blue
profile, corresponding to the scaled intensity image, is more
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visible than the red profile, which corresponds to the dark-
field free intensity estimation. More importantly, the difference
between the profiles in regions where this occurs (e.g. near
the label ‘weak dark-field’) is much smaller in magnitude
than the difference in regions where the red profile has a
higher visibility than the blue (‘strong dark-field’ regions).
By contrast, it can be observed from Fig. 8(i) that there
are significantly more regions in which the blue profile has
high visibility than the red profile, and in these regions, the
difference between the blue and red profiles is comparable to
the difference seen between the profiles in regions where the
red profile has a higher visibility than the blue profile. It is
precisely when these differences in magnitude become com-
parable where we would lose information about which profile
has higher visibility by simply taking the difference between
the profiles, and hence the additional steps in the dark-field
retrieval process, described in the previous paragraph, become
important.
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