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The use of strongly bent crystals in spectrometers for pulses of a hard X-ray free-

electron laser is explored theoretically. Diffraction is calculated in both

dynamical and kinematical theories. It is shown that diffraction can be treated

kinematically when the bending radius is small compared with the critical radius

given by the ratio of the Bragg-case extinction length for the actual reflection to

the Darwin width of this reflection. As a result, the spectral resolution is limited

by the crystal thickness, rather than the extinction length, and can become better

than the resolution of a planar dynamically diffracting crystal. As an example, it

is demonstrated that spectra of the 12 keV pulses can be resolved in the 440

reflection from a 20 mm-thick diamond crystal bent to a radius of 10 cm.

1. Introduction

Bent single crystals are commonly used as the X-ray optic

elements for beam conditioning as well as the analysers for

X-ray spectroscopy. The dynamical diffraction from bent

crystals has been a topic of numerous studies over decades

(Penning & Polder, 1961; Kato, 1964; Bonse, 1964;

Chukhovskii & Petrashen’, 1977; Chukhovskii et al., 1978;

Kalman & Weissmann, 1983; Gronkowski & Malgrange,

1984; Chukhovskii & Malgrange, 1989; Gronkowski, 1991;

Honkanen et al., 2018).

Recently, hard X-ray free-electron lasers (XFELs) have

gone into operation around the world (Emma et al., 2010;

Ishikawa et al., 2012; Milne et al., 2017; Kang et al., 2017; Weise

& Decking, 2018). At all of these sources, XFEL pulses

originate from random current fluctuations in the electron

bunch (Saldin et al., 2000), which give rise to an individual

time structure and energy of each pulse. The energy spectra of

single pulses need to be characterized in a non-invasive way,

allowing further use of the same pulses in the experiments.

Two basic requirements for the spectrometers – the accep-

tance range of photon energy and the energy resolution –

follow from the duration of the pulse and the duration of the

spikes in it (Saldin et al., 2000). A spike duration of �s = 0.1 fs

gives rise to an energy range that needs to be covered by the

spectrometer �E ¼ h=�s = 40 eV, where h = 4.13 eV fs is the

Planck constant. When an X-ray beam of a width w is incident

on a crystal bent to a radius R, the range of available Bragg

angles w=R has to exceed the required angular range

�� ¼ ð�E=EÞ tan �B, where �B is the Bragg angle. Taking

tan �B ¼ 1 for simplicity and E = 12 keVas a reference energy,

we find that, for a beam of width w = 500 mm, the curvature

radius should be less than R = 15 cm to cover the whole

spectrum. The bending radii of 5 cm for a 10 mm-thick silicon

crystal (Zhu et al., 2012) and 6 cm for a 20 mm-thick diamond
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(Boesenberg et al., 2017) are reached. The resolution

requirement for a spectrometer follows from the total dura-

tion of a pulse up to �p = 50 fs, which gives �E ¼ h=�p =

0.08 eV.

Different types of spectrometers based on silicon crystals

have been proposed, built and tested for this purpose. They

employ a focusing mirror with a flat diffracting crystal

(Yabashi et al., 2006; Inubushi et al., 2012), a focusing grating

(Karvinen et al., 2012), a bent diffracting crystal (Zhu et al.,

2012) and a flat grating with a bent diffracting crystal (Makita

et al., 2015). A spectrometer based on beam focusing by

compound refractive lenses with a flat diffracting crystal as

dispersive element was proposed and analysed theoretically

(Kohn et al., 2013).

Recently, a spectrometer based on a bent thin diamond

crystal has been designed and tested (Boesenberg et al., 2017;

Samoylova et al., 2019) for high-repetition-rate XFEL sources,

such as the European XFEL and LCLS II. Diamond is the

material of choice for high-repetition-rate XFELs because

only diamond can sustain the enormous peak heat load and

prevent severe vibrations when the thermal stress wave is

excited under repeated heat load in the megahertz range at a

resonant frequency of the thin crystal plate.

The studies of XFEL pulses using diffraction on bent

crystals (Zhu et al., 2012; Makita et al., 2015; Boesenberg et al.,

2017; Rehanek et al., 2017) treated diffraction purely geome-

trically, as a mirror reflection of a geometric ray at a point

where it meets the crystal surface. The process of diffraction in

the crystal has not been taken into account, despite crystal

thicknesses of 10 to 20 mm, which exceed the extinction

lengths of dynamical diffraction for respective reflections (see

estimates in the next section).

The studies of dynamical diffraction on bent crystals cited

above considered the bending of thick crystals to radii varying

from hundreds of metres to single metres. The curvature

radius of some hundreds of metres already provides detect-

able broadening of the Darwin rocking curve, while bending to

a radius of 1 m strongly modifies it. The results of these studies

are not applicable to the case under consideration, where the

crystal is thin and the bending radius is much smaller.

In the present paper, we consider X-ray diffraction on

crystals bent to a radius of 10 cm or less. In the case of such

strong bending, the incident X-ray wave remains at diffraction

conditions (i.e. within the Darwin width of the actual reflec-

tion) only when propagating through distances that are small

compared with the extinction length. As a result, back-

scattering of the diffracted wave to the transmitted one is

minor and diffraction is kinematical. We calculate diffraction

from a bent crystal in both dynamical and kinematical theories

and establish the applicability criterion for the approximation

of kinematical diffraction.

We obtain a displacement field in the bent crystal by

considering cylindrical bending of an elastically anisotropic

rectangular thin plate by two momenta applied to its ortho-

gonal edges. We show that, for a 110-oriented diamond plate,

the elastic constants of diamond give rise to a very small strain

variation along the plate normal because the Poisson effect on

bending is almost completely compensated by the effect of

anisotropy. As a result, the resolution of a bent crystal spec-

trometer is limited by the crystal thickness and can be better

than the resolution of a non-bent crystal, limited by the

extinction length.

We simulate XFEL spectra after diffraction on a bent

crystal and show that an energy resolution of 3� 10�6, or

0.04 eV for the X-ray energy of 12 keV, can be reached on

diffraction on a 20 mm-thick diamond crystal bent to a radius

of 10 cm.We also take into account the free-space propagation

of the waves diffracted by the bent crystal to the detector

(Fresnel diffraction) and describe modifications of the spectra

due to a finite distance to the detector.

2. Dynamical versus kinematical diffracted intensities

For numerical estimates in this section, we consider, as a

reference example, the symmetric Bragg reflection 440 of

X-rays with energy E = 12 keV (wavelength � = 1.03 Å) from a

D = 20 mm-thick diamond crystal bent to a radius R = 10 cm.

When the crystal is not bent and oriented to satisfy the

exact Bragg condition in symmetric reflection geometry,

penetration of an X-ray wave in it is governed by the extinc-

tion length�, defined as a depth at which the amplitude of the

wave decreases by a factor of e (correspondingly, intensity

decreases e2 times). The extinction length is equal to � =

� sin �B=�ðj�h� �hhjÞ
1=2
, where �h and � �hh are the Fourier

components of crystal susceptibility. For our example, the

extinction length amounts to (Stepanov, 2004, 2019) � =

13.6 mm. The crystal thickness in our reference example is

larger than the extinction length, and hence diffraction in a

non-bent crystal should be calculated in the framework of

dynamical diffraction theory.

Dynamical diffraction (strong coupling between the trans-

mitted and the diffracted waves) takes place as long as the

lattice distortions (the lattice spacing and the orientation of

lattice planes) do not change on the distance �, or the change

is much less than the width of the Darwin curve ��B =

2ðj�h� �hhjÞ
1=2
= sin 2�B, which in our case is ��B = 4.2 mrad

(Stepanov, 2004, 2019). For a bent crystal of radius R, the

gradient of distortions is 1=R and its change on the distance of

the extinction length is �=R. If the crystal is so strongly bent

that this change is much larger than ��B, dynamical diffrac-

tion effects become negligible, since the path of the trans-

mitted wave under diffraction conditions is much less than the

extinction length. Such an estimate is similar to the treatment

of the interbranch scattering in the vicinity of crystal lattice

defects by Authier & Balibar (1970) and Authier et al. (1970)

and predicts that the dynamical diffraction effects can be

neglected for bending radii R � Rc, where

Rc ¼ �=��B ¼ �
2Q=4

� �

cot �B ð1Þ

is a critical radius. Here Q ¼ ð4�=�Þ sin �B is the diffraction

vector. For our example, Rc = 3.2 m.

To verify the applicability of the approximation of kine-

matical diffraction, we perform calculations of Bragg

diffraction from a bent crystal plate in both dynamical and
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kinematical diffraction theories. In the calculations, the

Fourier component of susceptibility �h can be varied arbi-

trarily. The kinematical scattering amplitude is proportional to

�h (and hence intensity is proportional to j�hj
2) for any fixed

bending radius, while the dynamical scattering amplitude

depends on both �h and R in a complicated way. Hence, the

applicability of the kinematical theory can be established in

the framework of dynamical diffraction, by studying the

dependence of the diffracted intensity on �h. This is done in

the present section. In the next section, we directly compare

the kinematical and the dynamical scattering intensities.

Dynamical diffraction is calculated by numerical solution of

the Takagi–Taupin equations (Takagi, 1962, 1969; Taupin,

1964):

@E0

@s0
¼

i�� �hh

�
expðiQ � uÞEh;

@Eh

@sh
¼

i��h

�
expð�iQ � uÞE0: ð2Þ

Here E0 and Eh are the amplitudes of the transmitted and the

diffracted waves, respectively, s0 and sh are the coordinates in

the propagation directions of these waves, Q is the scattering

vector and uðrÞ is the displacement vector. It describes the

displacement of atoms from their positions in a reference non-

bent crystal. The displacement uðrÞ changes the susceptibility

�ðrÞ of the reference crystal to �½r� uðrÞ�, and Fourier

expansion of the susceptibility over reciprocal-lattice vectors

Q gives rise to the terms exp½�iQ � uðrÞ� in equations (2). The

algorithm of numerical solution of equations (2) was proposed

by Authier et al. (1968) and revisited later by Gronkowski

(1991) and Shabalin et al. (2017). To proceed to numerical

solution of the Takagi–Taupin equations, we specify first the

diffraction geometry and the displacement field uðrÞ entering

these equations.

Fig. 1 sketches symmetric Bragg diffraction from a bent

crystal plate. The scattering plane is the xz plane and the

crystal is bent about the y axis. An ultrashort XFEL pulse,

represented by its energy spectrum, is a coherent super-

position of the waves with the same propagation direction and

different wavelengths. We take a reference wavelength in the

middle of the pulse spectrum and choose the origin

ðx ¼ 0; z ¼ 0Þ at a point in the middle plane of the crystal

plate where the incident and the diffracted waves of the

reference wavelength make the same angle �B with the lattice

planes.

The incident beam is restricted by a width w. The width of

the wavefront of an XFEL pulse at the experiment is about

1 mm, much larger than the crystal thickness, but it can be

focused to tens of microns, comparable with the crystal

thickness. The estimate below shows that, if the beam is not

focused, its width is much larger than the width of the

diffracting region of the strongly bent crystal. The outer parts

of the beam occur out of Bragg diffraction, and hence the

beam width does not restrict diffraction.

Besides a focused incident beam, the width of the incident

beam becomes essential when the bent crystal is rotated to

measure its rocking curve (Samoylova et al., 2019). The

diffracted intensity decreases when the crystal is rotated such

that the region of the crystal oriented at the Bragg angle to the

incident beam goes out of the illuminated region of the crystal.

This is reached for the angular deviations from the Bragg

angle �� 	 w=R. Hence, the width of the rocking curve of a

bent crystal is given by the width of the incident beam. In all

other situations, i.e. if the incident beam is not focused to a few

tens of microns at the crystal and the angular deviation of the

crystal is small compared with its rocking-curve width, the

width of the incident beam is irrelevant. In the practical case,

we take w = 500 mm in the calculations below and ensure that

the diffracted intensity does not change with a further increase

of the beam width.

In symmetric Bragg-case diffraction considered here, the

diffraction vector Q is in the negative direction of the z axis

and Q � u ¼ �Quz, so that only the z component of the

displacement vector in the bent crystal is of interest. It is

calculated in Appendix A taking into account the elastic

anisotropy of a crystal with cubic symmetry. The displacement

field in a crystal cylindrically bent to a radius R can be written

as [cf. equation (29)]

uz ¼ ðx2 þ �z2Þ=2R; ð3Þ

where the constant � depends on the elastic moduli and the

crystal orientation [see equation (30)]. The elastic moduli of

diamond give rise to exceptionally small values of �: we find �

= 0.02 for a 110-oriented plate bent about the 001 axis and � =

0.047 for a 111-oriented plate bent about the 11�22 axis. For

comparison, the elastic moduli of silicon result in � = 0.18 and

0.22 for these two orientations, respectively.

Fig. 2(a) shows by the black line the intensity distribution of

the dynamically diffracted wave at the crystal surface for our

example case. The spatial width of the diffracted wave is much

smaller than the width of the incident wave and is determined

by the crystal thickness projected to the surface at the Bragg

angle. The amplitude of the incident wave is taken equal to 1.

The amplitude of the diffracted wave is small compared with

it, which points to kinematical diffraction.

Kinematical diffraction at the bent crystal simplifies theo-

retical analysis below. It is advantageous also from the

experimental point of view, since it reduces a distortion of the

X-ray pulse passing through the bent crystal spectrometer and

intended to be used further in an experiment.

To verify the kinematical nature of diffraction further, we

perform the same calculation but, instead of the susceptibility

�h, use the value �h=2 without changing any other parameter.

When the approximation of kinematical diffraction is
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Geometry of symmetric Bragg diffraction from a bent crystal.



applicable, the diffracted amplitude is expected to be

proportional to �h, so that the intensity is proportional to

j�hj
2. Hence, we multiply the calculated intensity by a factor of

4 (blue line) and compare with the former calculation with the

initial value �h (black line). The curves practically coincide,

which further shows the kinematical nature of diffraction.

Thus, Fig. 2(a) demonstrates, by means of the calculations

made in the framework of dynamical theory, the applicability

of the approximation of kinematical diffraction for curvature

radii small compared with the critical radius (1).

In Fig. 2(b), we calculate dynamical diffraction intensity in

the same reflection but with the susceptibility �h increased by

factors 2 and 4, with the aim of establishing the applicability

limits of the approximation of kinematical diffraction. Since

the critical radius Rc in equation (1) is proportional to j�hj
2,

the increase of �h by a factor of 2 reduces the critical radius

from 3.2 m to 80 cm, still large compared with the bending

radius of 10 cm. The calculated curve [grey line in Fig. 2(b)]

deviates from the reference curve (black line) mostly by a

scale factor. When the susceptibility �h is increased by a factor

of 4, and hence the critical radius reduced to 20 cm, the

calculated diffraction intensity (red curve) notably differs

from the reference black curve not only in scale but also in the

shape of fringes. Thus, approaching the critical radius (1)

results in a strong modification of the diffracted intensity.

Fig. 2(c) collects similar calculations for the C*(220)

reflection under the same conditions. For this reflection of

12 keV X-rays, the Bragg-case extinction length and the

Darwin width are (Stepanov, 2004, 2019)� = 4.17 mm and��B
= 8.63 mrad, so that the critical radius Rc ¼ �=��B = 48 cm,

and the bending radius of 10 cm occurs closer to the critical

radius. Calculations with the susceptibility �h for this reflec-

tion (black line) and for two times smaller susceptibility (blue

line) differ slightly by a scale factor, so that the approximation

of kinematical diffraction is applicable but close to its

applicability border. When the susceptibility is increased by a

factor of 2 (grey line), the critical radius becomes 12 cm, close

to the bending radius. The calculated diffraction intensity

notably differs from the reference black curve. When the

susceptibility is increased by a factor of 4 and the critical

radius becomes as small as 3 cm, the fringes of the calculated

intensity (red curve) do not follow the reference curve, again

confirming that, for radii smaller than the critical radius (1),

the use of dynamical theory is necessary.

The analysis in the next sections shows that the applicability

of the approximation of kinematical diffraction not only

simplifies calculation of the intensity diffracted by the bent

crystal but leads to a resolution better than that given by the

58 Vladimir M. Kaganer et al. � Diffraction from strongly bent crystals Acta Cryst. (2020). A76, 55–69

research papers

Figure 2
Dynamical and kinematical intensities of a diffracted wave at the crystal
surface in symmetric Bragg reflections (a), (b) 440 and (c) 220 from a
20 mm-thick diamond crystal bent to a radius of 10 cm. The X-ray energy
is 12 keV. Dynamical diffraction calculations for the X-ray susceptibilities
�h of the respective reflections (black lines) are repeated taking
susceptibility smaller by a factor of 2, with the intensity multiplied by a
factor of 4 (blue lines). Dynamical diffraction calculations are also
performed with the susceptibilities �h multiplied by factors 2 and 4, and
with the respective intensities divided by factors 4 and 16 (grey and red
lines). The kinematical intensities calculated by equation (7) are shown
by green lines.

Figure 3
The X-ray energy dependence of the critical radii given by equation (1)
for several reflections of diamond and silicon. The point at each curve
marks an energy such that, for a crystal thickness 20 mm and distance to
detector 1 m, the width of the beam diffracted from the bent crystal is
equal to the width of the first Fresnel zone. The Fraunhofer approxima-
tion is applicable, under these conditions, for energies smaller than the
marked energy (see Section 5 for details).



Darwin width of dynamical diffraction. Therefore, the critical

radii for different reflections are of interest. Fig. 3 presents

critical radii for symmetric Bragg reflections from diamond

and silicon crystals as a function of the X-ray energy. Since the

energy range presented in Fig. 3 is far from the absorption

edges of carbon or silicon, the susceptibilities �h are propor-

tional to �2. Then, the extinction length does not depend on �

and, as follows from the second equality in equation (1), the

energy dependence of the critical radius is simply given by the

factor cot �B.

Thus, in this section, we have verified, entirely by means of

calculations performed in the framework of dynamical theory,

the criterion (1) for applicability of the approximation of

kinematical diffraction. In the next section, we calculate the

kinematical amplitude and compare it with the calculations of

dynamical diffraction.

3. Kinematical diffraction amplitude at the crystal
surface and in the far field

3.1. Amplitude at the crystal surface

The kinematical diffraction amplitude at the crystal surface

Ekin
h ðxÞ can be obtained by neglecting the influence of the

diffracted wave EhðrÞ on the transmitted wave E0ðrÞ in the first

Takagi–Taupin equation (2). Then the amplitude of the

transmitted wave in the crystal is given by the first equation

shortened to @E0=@s0 ¼ 0, which gives E0ðrÞ ¼ 1. The

diffracted wave is determined by the solution of the second

equation, which becomes now

@Eh

@sh
¼

i��h

�
expð�iQ � uÞ; ð4Þ

with the boundary condition Eh ¼ 0 at the bottom surface of

the crystal z ¼ D=2. To simplify calculations, we restrict

ourselves in this section to the case of a 110-oriented diamond

crystal with its very small value of �, and take � ¼ 0 in

equation (3). The general form of the kinematical integral is

introduced and studied in Section 4. The amplitude of the

diffracted wave at the top surface z ¼ �D=2 is

Ekin
h ðxÞ ¼ i

��h

� cos �B

Z

x

x�D cot �B

exp i
Qx02

2R

� �

dx0: ð5Þ

The integration range in equation (5) corresponds to the

integration along the direction of the diffracted wave, making

an angle �B with the x axis, from the bottom to the top surface

of the crystal. Since the integrand in equation (5) does not

depend on z, the integration along sh is replaced with the

integration over x0 by dsh ¼ dx0= cos �B.

The integral (5) can also be written, by substituting

x0 ¼ x� z cot �B, as an integral over crystal thickness,

Ekin
h ðxÞ ¼ i

��h

� sin �B

Z

D

0

exp i
Qðx� z cot �BÞ

2

2R

� �

dz: ð6Þ

Calculation of the integral is straightforward,

Ekin
h ðxÞ ¼ i

��h

� cos �B
s Fðx=sÞ � F½ðx�D cot �BÞ=s�
� 	

; ð7Þ

where s2 ¼ �jRj=Q, and it is denoted

FðxÞ ¼ CðxÞ þ i	SðxÞ: ð8Þ

Here CðxÞ and SðxÞ are cosine and sine Fresnel integrals,

	 ¼ þ1 for R> 0 (convex surface of the bent crystal, as shown

in Fig. 1) and 	 ¼ �1 for R< 0 (concave crystal surface).

Green lines in Figs. 2(a) and 2(c) show kinematical intensity

jEkin
h ðxÞj2 calculated with the same values of all parameters as

in the corresponding dynamical diffraction calculations. The

kinematical intensity almost coincides with the dynamical one,

thus providing a final proof for the applicability of the

approximation of kinematical diffraction for curvature radii

that are small compared with the critical radius. We note that

the coincidence of the curves is reached on the absolute scale,

without adjusting intensities.

3.2. Fraunhofer diffraction

The diffracted wave at the crystal surface EhðxÞ transforms

during further propagation of the wave in free space to a

detector. At large enough distances from the diffracting

crystal (Fraunhofer diffraction), the X-ray wavefield is

described by the Fourier transform of EhðxÞ. Let us consider

the field distribution at such distances, assuming that the field

transformation in the y direction normal to the scattering

plane is still not involved. Transformation of the wave

diffracted by the bent crystal on propagation in free space

over finite distances (Fresnel diffraction) is considered in

Section 5.

To obtain the Fourier spectrum of the kinematical diffrac-

tion amplitude (5), we represent it as a convolution integral,

Ekin
h ðxÞ ¼ i

��h

� cos �B

Z

1

�1

exp i
Qx02

2R

� �

�ðx� x0Þ dx0; ð9Þ

where the function �ð
Þ is defined as � ¼ 1 for

0<
<D cot �B and � ¼ 0 out of this interval. Making the

Fourier transformation of the two terms under the integral, we

get

Ekin
h ðxÞ ¼

R

1

�1

EFraunhoferðqxÞ expðiqxxÞ dqx; ð10Þ

where

EFraunhoferðqxÞ ¼ sincðqzD=2Þ exp �i
Rq2x

2Q
� iqzD=2

� �

; ð11Þ

sincðxÞ ¼ sinðxÞ=x, qz ¼ qx cot �B, and a constant prefactor is

omitted in equation (11) to simplify expressions. Intensity

in the far field (Fraunhofer diffraction) is given simply

by sinc2ðqzD=2Þ, which provides a resolution inversely

proportional to the thickness D. Under conditions of kine-

matical diffraction, it can be better than the resolution of

dynamical diffraction, which is limited by the extinction

length. This resolution is studied further in the next section.
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4. Spectral resolution

Equations in the previous section do not include an angular

deviation of the incident wave from the Bragg condition and

are restricted with the limit � ¼ 0. To avoid these restrictions

and also allow a coherent superposition of waves with

different wavelengths, we use a more general expression for

the kinematical diffraction amplitude as an integral over the

scattering plane of the crystal,

Aðqx; qzÞ ¼

Z

1

�1

dx

Z

D=2

�D=2

dz

� exp �iqxx� iqzzþ i
Qðx2 þ �z2Þ

2R

� �

: ð12Þ

We restrict ourselves in this section to the Fraunhofer

diffraction. The wavevector q ¼ Kout � Kin �Q is the devia-

tion of the scattering vector Kout � Kin from the reciprocal-

lattice vector Q. We have q ¼ 0 for the wave of the reference

wavelength incident on the crystal exactly at the Bragg angle

�B corresponding to that wavelength and reflected at the

Bragg angle. The components of the scattering vector

q ¼ ðqx; qzÞ depend on the angular deviations ��; ��0 of both

incident and scattered waves, and on the deviation �k of the

length of the wavevector in the incident spectrum from the

reference wavevector k0 (since scattering is elastic, the lengths

of the wavevectors of the incident and the scattered waves

coincide). Explicit expressions for qx and qz are derived in

AppendixB. It is convenient, for the purpose of comparison of

the incident and the diffracted spectra of an XFEL pulse, to

represent the diffracted intensity in an energy spectrum by

considering the scattering angle 2�B þ �� þ ��0 as a Bragg

angle for the respective wavevector k0 þ �k0. The components

qx; qz of the scattering vector expressed through the angular

deviation of the incident beam �� and the wavevector devia-

tions �k; �k0 are given by equation (40). In particular, an

XFEL pulse can be described as a coherent superposition of

plane waves with different wavelengths propagating in the

same direction. With the crystal oriented at the Bragg angle

for the reference wavelength (�� ¼ 0), we get

qx ¼ �2�k0 tan �B sin �B; qz ¼ 2ð�k0 � �kÞ sin �B: ð13Þ

The x-dependent terms of the phase in the integral (12) can

be recollected as

Qx2

2R
� qxx ¼

Q

2R
ðx� x0Þ

2
�
Rq2x

2Q
; ð14Þ

where x0 ¼ Rqx=Q. The exponential factor in the integral

with this phase oscillates strongly everywhere except an

interval of the width �x 	 ðR=QÞ
1=2

around a point x0. This

range of x provides the main contribution to the integral. For a

monochromatic wave with an angular deviation �� from the

Bragg orientation, we get from equation (39) that the centre of

the diffracting region occurs at x0 ¼ R��. When the angular

deviation of the incident wave is so strong that x0 exceeds the

width of the incident wave, the interval of x contributing to

diffraction goes out of the illuminated part of the crystal,

which causes a decrease of the diffracted intensity and defines

the rocking-curve width of the bent crystal. For smaller

angular deviations, the interval �x is within the illuminated

area, and the width w does not restrict diffraction. In

Appendix C, we explicitly calculate the kinematical integral

(12) for a Gaussian profile of the incident wave with a width w,

as sketched in Fig. 1. The resulting expression is rather bulky.

In most cases of practical interest, the width of the incident

beam is so large that the outer parts of the beam are out of

diffraction, and the width w does not limit diffraction. We

consider this latter case further on.

The range �x 	 ðR=QÞ
1=2

of the diffracting region in the

bent crystal increases with increasing curvature radius R.

However, the applicability of the kinematical approximation

is limited by the curvature radii R � Rc. Using the

second expression for Rc in equation (1), we find that

�x � ð�=2Þðcot �BÞ
1=2
. We do not consider very small Bragg

angles and conclude that the range of x contributing to the

integral (12) is much smaller than the extinction length�. This

result provides an additional insight into the origin of the

kinematical diffraction in bent crystals: as long as the condi-

tion (1) of kinematical diffraction is satisfied, the diffraction

takes place in a narrow column of width �x � � in the

crystal. The diffracted wave leaves this column and cannot

influence the transmitted wave, even when the thickness

exceeds the extinction length.

The kinematical integral (12) splits into a product of two

integrals, one over x and the other over z. Since we consider

the region �x to be within the illuminated area, the integral

over x is calculated in infinite limits. The remaining integral is

over z,

Aðqx; qzÞ ¼ exp �i
Rq2x

2Q

� � Z

D=2

�D=2

exp �iqzzþ i
�Qz2

2R

� �

dz;

ð15Þ

where we again omit a constant prefactor. When � ¼ 0,

equation (15) reduces to equation (11) but allows for more

general expressions (40) for the components of the vector q.

Let us focus first on this limiting case � ¼ 0, which is of

special interest since it corresponds to the case of the 110-

oriented diamond plate. In this case, the scattering intensity

due to an incident monochromatic plane wave is simply

sinc2ðqzD=2Þ. The intensity distribution is the same as in the

classical problem of diffraction grating in light optics. It is

shown in Fig. 4(a) by a black line.

The dotted line in Fig. 4(a) is the Darwin rocking curve from

a non-bent semi-infinite crystal in the same symmetric Bragg

reflection C*(440). Its full width at half-maximum is close to

that of a bent 20 mm-thick crystal. A thicker bent crystal will

provide a narrower curve. We note that its width does not

depend on the bending radius.

Fig. 4(a) also presents the angular distribution of the waves

diffracted from a 20 mm-thick silicon crystal, bent to the same

radius of 10 cm, in the same reflection 440, and the Darwin

curve for this reflection. Both curves are several times broader
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than the respective curves in the C*(440) reflection, but the

reasons for their broadening are different. A broader Darwin

curve results from a larger susceptibility and a smaller Bragg

angle of the Si(440) reflection with respect to the C*(440)

reflection. The width of the angular distribution of the waves

diffracted by the bent crystal does not depend on the

susceptibility, because of the kinematical diffraction, and the

broader curve in the Si(440) reflection is due to a larger value

of the parameter �.

The possibility of resolving two waves with the same inci-

dence direction and different wavelengths is commonly

defined in light optics by the Rayleigh criterion (two wave-

lengths are resolved if the maximum of diffracted intensity

from one of them corresponds to the first minimum of the

other). In the case � ¼ 0 this criterion, applied to the sum of

intensities sinc2ðqzD=2Þ for two different wavelengths, gives

the resolution �qz ¼ 2�=D, and hence �k ¼ �=ðD sin �BÞ.

The resolution is limited by the crystal thickness, which can be

larger than the extinction length. Hence, kinematical diffrac-

tion on a strongly bent crystal can provide better resolution

than the dynamical diffraction on a planar crystal. The analysis

above explains this surprising result: kinematical diffraction

on a strongly bent crystal takes place in a column whose width

�x is small compared with the extinction length, but (for

� ¼ 0) the height is equal to the crystal thickness D. That

results in a kinematical scattering from a bent crystal whose

thickness is not limited by the extinction length. The energy

resolution �E is related to the momentum resolution �k

simply by �E=E ¼ �k=k, so that the Rayleigh criterion reads

�E=E ¼ d=D; ð16Þ

where d is the interplanar distance of the actual reflection and

the Bragg law 2d sin �B ¼ � is used. For our example case, we

get �E=E ¼ 3� 10�6 and �E = 0.04 eV. The latter value is

close to the width of the Darwin curve for a semi-infinite non-

bent crystal [see Fig. 4(a)].

Equation (16) is applicable, theoretically, as long as the

thickness of the crystal remains small compared with the X-ray

absorption length, since absorption is neglected in the analysis

above. Practically, however, the crystal thickness is limited by

much smaller values: thick plates do not suffer bending to

small radii.

Boesenberg et al. (2017) considered diffraction on a bent

crystal purely geometrically and arrived at a resolution

defined by the pixel size of a detector. Its contribution can be

added to the diffraction-limited resolution (16), when needed.

The energy spectrum of an XFEL pulse originates from the

spectral expansion of a short pulse, so that different wave-

lengths contribute coherently and the amplitude Eoutðk0Þ of the

electric field of the diffracted wave is related to the amplitude

E inðkÞ of the electric field incident on the bent crystal by

Eoutðk0Þ ¼
R

Aðk; k0ÞE inðkÞ dk; ð17Þ

where the diffraction amplitude Aðk; k0Þ is described by

equations (18) or (43) with the components of the wavevector

q given by equation (13).

Fig. 4(b) presents angular distributions of the waves

diffracted by a bent crystal when the incident wave is a

coherent superposition of two monochromatic waves with the

wavelength difference corresponding to the Rayleigh criterion

(16). The angular distributions are represented as corre-

sponding spectra, as described above. The two monochromatic

components are not resolved since the Rayleigh criterion is

formulated for two incoherent waves and implies the sum of

intensities, rather than the sum of amplitudes.

Fig. 4(c) shows calculated angular distributions of the

diffracted waves for the wavelength difference between two

coherent monochromatic components two times larger than

given by the Rayleigh criterion. The components are well

resolved. The resolution, defined as the ability to resolve two

monochromatic lines, in the case of the coherent superposition

of two waves is about 1.5 times worse than that given by the

Rayleigh criterion (16). Fig. 4(d) shows calculated spectra for

a larger wavelength difference of the two monochromatic

components of the incident wave. The components are well

resolved for � ¼ 0 (black line).

The resolution (16) is obtained by neglecting the second

term in the exponent in the integral (15). This is possible as

long as � is so small that �QðD=2Þ
2
=2R is much smaller than 1.

In the general case � 6¼ 0, calculation of the integral gives

Aðqx; qzÞ ¼ exp �i
Rðq2x þ 	q2z=�Þ

2Q

� �

� F
qz þ aD

ð2�aÞ
1=2

� �

� F
qz � aD

ð2�aÞ
1=2

� �� �

; ð18Þ

where a ¼ �Q=2jRj and the function FðxÞ is defined in

equation (8).
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Figure 4
Angular distributions of the waves diffracted by 20 mm-thick crystal
plates bent to a radius of 10 cm, calculated by equation (18) and
represented in the same energy spectrum as the incident waves. The
incident spectra are shown by thick grey lines and consist of (a) a single
monochromatic plane wave of energy 12 keV or (b)–(d) two coherent
monochromatic waves with small differences in wavelengths. The dotted
lines in (a) show the Darwin rocking curves for C*(440) and Si(440)
reflections.



For the C*(440) reflection, the factor �QðD=2Þ
2
=2R is

approximately equal to 1, and the calculated curves (blue

curves in Fig. 4) are close to the calculation with � ¼ 0 (black

curves). This factor calculated for the C*(333) reflection (with

� ¼ 0:047Þ is approximately equal to 2, which already results

in a notable modification of the diffraction curves (green

curves in Fig. 4). For the Si(440) reflection with � ¼ 0:18, this

factor is 5.9, which results in complicated diffraction patterns

(red curves in Fig. 4), rather than a broadening of the corre-

sponding spectral lines.

Fig. 4 shows that, due to a coherent superposition of the

monochromatic components, the worse resolution for � 6¼ 0

cannot be described as the broadening of the sharp peaks of

the incident spectrum. Rather, a complicated interference

pattern arises, and the incident spectrum can hardly be

recognized in it. The width of the interference fringes is still

given by equation (16).

5. Fresnel diffraction

In this section, we consider the finite-distance free-space

propagation of the wave diffracted by a bent crystal. This

allows us to establish the applicability limits of the Fraunhofer

approximation used in the previous section and evaluate

corrections due to a finite distance from the bent crystal to a

detector.

Let us follow the free-space propagation of the electric field

at the crystal surface Ekin
h ðxÞ given by equations (5)–(7) for the

case � ¼ 0. At a distance L from the bent crystal, the free-

space propagation is described [see e.g. Born & Wolf (1964),

Section 8.3, and Cowley (1975), Section 1.7] by multiplying the

electric field at the crystal surface Ekin
h ðxÞ with the phase factor

expði�
2=�LÞ, where 
 is the distance in the direction

perpendicular to the propagation direction of the diffracted

beam, 
 ¼ x sin �B:

EFresnelðqxÞ ¼

Z

1

�1

Ekin
h ðxÞ exp i

� x sin �Bð Þ
2

�L
� iqxx

� �

dx: ð19Þ

Substituting here equation (6) and performing integration

over x, we represent equation (19) as

EFresnelðqxÞ ¼ exp �i
~RRq2x

2Q

� � Z

D=2

�D=2

exp �i ~qqzzþ i
~��Qz2

2R

� �

dz;

ð20Þ

where we define

~RR ¼ R 1þ
R sin �B
2L

� ��1

: ð21Þ

The quantities ~qqz = ð ~RR=RÞqx cot �B and ~�� ¼ ~RR cos2 �B=

ð2L sin �BÞ are introduced here for the particular case � = 0.

Below in equation (24) they are derived for the general case

� 6¼ 0. In the limit L ! 1, the Fresnel diffraction amplitude

(20) reduces to the Fraunhofer one (11).

The distance L required to reach the Fraunhofer limit

follows from equations (20) and (21). The first requirement is

L 
 R sin �B, which gives ~RR ’ R. Since equation (20) is

written for � ¼ 0, the second requirement follows from the

possibility of neglecting the second term in the exponent in

the integral (20). This term at z ¼ D=2 is equal to

ð�=4ÞðD cos �BÞ
2
=�L. We note that the crystal thicknessD seen

from the direction of the diffracted beam isD cos �B, while the

diameter of the first Fresnel zone is ð�LÞ
1=2
. Hence, the crystal

thickness seen from the direction of the diffracted beam

should be smaller than the diameter of the first Fresnel zone,

i.e. the distances from crystal to detector should be

L> ðD cos �BÞ
2
=�. The minimum distance depends on the

Bragg angle: for our reference case of the C*(440) reflection at

12 keV and crystal thickness D = 20 mm, we get L > 1.3 m,

while, for C*(220) under the same conditions, we have L >

3.2 m. The points in Fig. 3 mark, for each reflection, the energy

given by the condition ð�LÞ
1=2

¼ D cos �B for the crystal

thickness D = 20 mm and distance to detector L = 1 m. For

energies smaller than marked, Fraunhofer approximation is

approached at 1 m distance to the detector. Larger energies

correspond to Fresnel diffraction at such a distance.

Calculation of the integral (20) gives

EFresnelðqxÞ ¼ exp �i
~RRq2x þ ~		R ~qq2z= ~��

2Q

� �

� F
~qqz þ ~aaD

ð2�~aaÞ
1=2

� �

� F
~qqz � ~aaD

ð2�~aaÞ
1=2

� �� �

: ð22Þ

Since the bending radius R can be positive (convex surface of

the bent crystal) or negative (concave crystal surface), we
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Figure 5
Transformation on the way to the detector of a monochromatic wave
diffracted from a 20 mm-thick diamond crystal bent to a radius of
10 cm, calculated by equation (22). Reflections (a) 440 and (b) 220 are
compared.



define a positive quantity ~aa ¼ j ~��jQ=2jRj and the sign term

~		 ¼ þ1 if ~�� and R are of the same sign and ~		 ¼ �1 if ~�� and R

have opposite signs. The function FðxÞ ¼ CðxÞ þ i ~		SðxÞ is

defined similarly to equation (8).

Fig. 5 shows transformation of the diffracted beam with the

distance to the detector, calculated by equation (22). Reflec-

tions 440 and 220 from diamond at the same energy 12 keVare

compared. The only essential difference between reflections is

their Bragg angles: the larger Bragg angle of the 440 reflection

gives rise to smaller distances needed to reach the Fraunhofer

diffraction range.

In the analysis above, we used the amplitude of the wave

diffracted by a bent crystal Ekin
h ðxÞ that was written for a

monochromatic incident wave, exact Bragg orientation of the

incident wave and the special case � ¼ 0. In the general case

of the kinematical scattering amplitude (12), the free-space

propagation is described by an additional phase term

expði�
2=�LÞ;where 
 ¼ x sin �B þ z cos �B is the distance in

the direction perpendicular to the beam diffracted by the

crystal. Then, the amplitude of the diffracted wave at the

detector is written as

Aðqx; qzÞ ¼

Z

1

�1

dx

Z

D=2

�D=2

dz exp �iqxx� iqzzþ i
Qðx2 þ �z2Þ

2R

� �

� exp i
�ðx sin �B þ z cos �BÞ

2

�L

� �

; ð23Þ

which replaces the respective integral (12) written for

Fraunhofer diffraction. The integral (23) can be written in the

same form as equation (20) with the same expression for ~RR

given by equation (21) but ~qqz and ~�� are generalized as follows:

~qqz ¼ qz �
~RR cos �B
2L

qx;

~�� ¼ �þ
~RR cos2 �B
2L sin �B

: ð24Þ

Calculation of the integral gives rise to equation (22). It has

the same form as the Fraunhofer amplitude (18) but with the

parameters modified according to equations (21) and (24).

We have already seen in the analysis of Fraunhofer

diffraction in Section 4, and in particular in Fig. 4, that the

value of parameter � plays an essential role in spectral reso-

lution. Finite-distance free-space propagation of the wave

diffracted from the bent crystal gives rise to a modification of

this parameter to ~��, as given by equation (24). In particular,

the concave bending (R< 0) and appropriately chosen

distance L can be used to reduce this parameter and hence

improve the resolution.

Fig. 6 shows calculated spectra of diffracted waves for an

incident wave consisting of two coherent plane waves, the

same as in Fig. 4(c). The blue line in Fig. 6 is calculated for an

infinite distance L and represents the same line in Fig. 4(c).

Black and red lines are calculated for a distance from the bent

crystal to detector of L = 1 m. Calculation by equation (24)

gives ~�� ¼ 0:039 for a convex bending with R = +10 cm and

~�� ¼ �0:00095 for a concave bending with R = �10 cm. The

increase of ~�� for the convex bending has the same effect as an

increase in � for reflection C*(333) in Fig. 4 and gives rise to a

more complicated spectrum with several fringes. The decrease

of ~�� for the concave bending has an opposite effect and leads

to a simple spectrum of two waves described by equation (11)

with the resolution given by equation (16).

6. Spectra of XFEL pulses

The spectra in the self-amplified spontaneous emission

(SASE) mode of the European XFEL have been generated

with the simulation code FAST (Saldin et al., 1999), which

provides a 2D distribution of electric field in real space at the

exit of the undulator for each moment of time for various

parameters of the electron bunch charge and the undulator.

Simulation results are stored in an in-house database (Manetti

et al., 2019). The spectra are simulated for the electron energy

14 GeV, photon energy 12.4 keV, and the active undulator

length corresponding to the saturation length, the point with

the maximum brightness, for a given electron bunch charge

(Schneidmiller & Yurkov, 2014).

Conversion from the time to the frequency domain has been

performed using theWavePropaGator package (Samoylova et

al., 2016), which provides a 2D distribution of electric field for

each frequency of the pulse. We use the spectrum at the centre

of the pulse in frequency domain, assuming this distribution to

be the same across the beam.

Fig. 7 compares spectra of the XFEL pulses incident on the

diffracting bent crystal (thick grey lines) and the spectra of the

diffracted waves (thin black or blue lines). Complex ampli-

tudes of the incident beams were used in the calculation of

diffraction by equation (17); squared moduli of the amplitudes

are shown in the figure and the respective phases are not

shown. Calculations of the diffraction amplitudeAðk; k0Þ using

equation (18) for an infinite width of the incident wave or

using equation (43) taking into account the finite width of the

incident beam give identical results for the width w = 500 mm
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Figure 6
Spectra of diffracted waves for an incident wave consisting of two
mutually coherent plane waves of different wavelengths (shown by thick
grey lines) for an infinite distance to the detector (Fraunhofer diffraction,
blue line) and the distance to detector L = 1 m (Fresnel diffraction),
calculated by equation (22). Symmetric Bragg reflection 440 from a
20 mm-thick diamond plate, bending radius 10 cm, convex (black line)
and concave (red line) bending are compared.



in Figs. 7(a), 7(c)–7(e). For the width w = 50 mm of a focused

beam in Fig. 7(b), equation (43) is used. The bending radius of

the crystal is taken as R = 10 cm and its thickness D = 20 mm.

Figs. 7(a), 7(b) show by thick grey lines a spectrum of the

XFEL pulse of the duration of approximately 10 fs generated

in an undulator of active length 75 m. The pulse duration of

10 fs gives rise to a 0.35 eV characteristic width of the oscil-

lations in the spectrum. The numbers above are the full width

at half-maxima (FWHM) of the peaks in time and frequency

domains, respectively. Such a spectrum is well resolved by the

bent crystal spectrometer in the C*(440) reflection, as shown

in Figs. 7(a), 7(b). Awidth of w = 500 mm of the incident beam

is needed to resolve the whole spectrum [see Fig. 7(a)]. If the

beam is focused to a width w = 50 mm, only a small part of the

spectrum is diffracted [see Fig. 7(b)]. The characteristic width

of the oscillations in the spectrum is still reproduced, and

hence the pulse duration can be estimated.

Figs. 7(c)–7(e) show a spectrum of the X-ray pulse of

duration 42 fs at the undulator length 105 m. This pulse

duration gives rise to a 0.08 eV characteristic width of the

oscillations in the spectrum. The resolution of the bent crystal

spectrometer, estimated with the Rayleigh criterion (16), is

about 0.04 eV. The continuous spectrum of the X-ray pulse is

fully reproduced in the C*(440) reflection [see Fig. 7(c)]. The

reflection C*(220), shown in Fig. 7(d), possesses, as follows

from equation (16), two times worse resolution because of the

two times larger interplanar distance d. The initial spectrum is

not reproduced and its oscillations are not fully resolved.

However, the oscillations are of almost the same width as in

the initial spectrum. They can be used to estimate the pulse

duration in the time domain with almost the same accuracy as

the initial spectrum. In the reflection Si(440) presented in

Fig. 7(e), the depth dependence of the displacement field due

to the value of � ¼ 0:18 for silicon gives rise to a worse

resolution. The initial spectrum is not reproduced but, as in

the case of the C*(220) reflection, the oscillations can be used

to estimate the pulse duration.

Fig. 8 compares spectra calculated for a distance L = 1 m

from the bent crystal to a detector, for C*(440) and Si(440)

reflections for the same incident pulse as in Figs. 7(c)–7(e).

Bending in opposite directions, concave and convex, is

compared for each reflection. For the C*(440) reflection, the

spectrum is somewhat expanded (at R> 0) or compressed (at

R< 0) with respect to the spectrum of the incident pulse. For

the Si(440) reflection, transformation of the spectrum is more

complicated, but it does not change the structure of the

spectrum qualitatively.

In all cases presented in Figs. 7 and 8, the spectra of the

waves diffracted from a bent crystal are qualitatively similar to

the spectra of the incident beams. The widths of the fringes in

the spectra can be used to estimate duration of the incident

pulses. However, only the C*(440) reflection reproduces the

incident spectrum at the energy of 12 keV. Even in this case,

the spectrum is slightly expanded or compressed, depending

on the direction of bending, due to a finite distance from the

bent crystal to the detector.
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Figure 7
Spectra of the waves incident on (a)–(d) diamond or (e) a silicon plate of thicknessD = 20 mm bent to a radius of R = 10 cm (thick grey lines) and spectra
of the diffracted waves in the Fraunhofer diffraction case (thin black or blue lines). The incident beam width is w = 500 mm (a), (c)–(e) or 50 mm (b). The
pulse duration is 10 fs (a), (b) and the undulator length is 75 m, or the pulse duration is 42 fs (c)–(e) and the undulator length is 105 m. The spectrum of
the incident wave is convoluted, according to equation (17), with the scattering amplitude given by equations (18) for (a), (c)–(e) or (43) for (b).



For other reflections, the spectra of the waves diffracted by

the bent crystal do not coincide with the Fourier transforma-

tions of the incident pulses. However, when the conditions for

kinematical diffraction are satisfied, they can be calculated for

a given incident pulse using diffraction amplitudes derived

above and used in a fitting procedure to obtain time structure

of the incident pulse.

7. Conclusions

X-ray diffraction from a bent single crystal can be treated

kinematically when the bending radius is small compared with

the critical radius given by the ratio of the Bragg-case

extinction length for the actual reflection to the Darwin width

of this reflection. The critical radius varies, depending on the

X-ray energy, the crystal and the reflection chosen, from

centimetres to metres.

Under conditions of kinematical diffraction, each mono-

chromatic component of the pulse finds diffraction conditions

only in a column inside the crystal with the width much smaller

than the extinction length. In a cylindrically bent diamond

plate of 110 orientation, the entire column diffracts in phase,

since the Poisson effect on bending is compensated by the

elastic anisotropy, and the displacement field does not vary

over the depth. In this case, the spectral resolution is limited

by the crystal thickness, rather than the extinction length, and

can be better than the resolution of a planar dynamically

diffracting crystal. It amounts to the ratio of the lattice spacing

for the actual reflection to the crystal thickness. As an

example, the symmetric Bragg reflection 440 from diamond

provides an almost undistorted spectrum for X-ray energies of

about 12 keV with the resolution of 0.04 eV.

The spectrum of the waves diffracted by the bent

crystal generally differs from the spectrum of the incident

pulse. Hence, the spectrum is not resolved in a rigorous

spectroscopic sense. However, the diffracted spectra look

qualitatively similar to the respective incident spectra. The

widths of their fringes can still be used to estimate duration of

the incident X-ray pulse. A finite distance from the bent

crystal to a detector (Fresnel diffraction) causes additional

modifications of the measured spectrum, but still leaves it

qualitatively similar to the incident one.

APPENDIX A

Displacement field in a bent anisotropic thin plate

A1. Elastic equilibrium equations and their solution

To calculate the displacement field in a bent plate, taking

into account its elastic anisotropy, we begin with Hooke’s

law in the 6� 6 formulation �m ¼ s0mn	n, where m; n denote

pairs of indices (1 ! 11, 2 ! 22, 3 ! 33, 4 ! 23, 5 ! 13,

6 ! 12). Here, s0mn are the components of the compliance

tensor, and the prime denotes the components in the coordi-

nate system with the x; y axes in the plane of the plate and the

z axis normal to it. The notation smn without the prime is

reserved for the components of the compliance tensor in the

standard cubic reference frame. The components of the stress

tensor are denoted by 	n, and the components of the strain

tensor �n are written in the engineering notation (i.e. without

the coefficient 1/2 at the off-diagonal components):

�1 ¼
@ux

@x
; �4 ¼

@uy

@z
þ
@uz

@y
;

�2 ¼
@uy

@y
; �5 ¼

@ux

@z
þ
@uz

@x
;

�3 ¼
@uz

@z
; �6 ¼

@ux

@y
þ
@uy

@x
: ð25Þ

The absence of forces at the plate surface gives 	iz ¼ 0 (where

i ¼ 1; 2; 3) and, since the plate is thin, these components of

stress are small in comparison with the other stress compo-

nents also inside the plate, so that 	3 ¼ 	4 ¼ 	5 ¼ 0.

We consider bending of the plate by two moments, M1

about the y axis and M2 about the x axis, which give rise to

stress linearly varying across the plate [see Lekhnitskii (1981),

equation (16.1)]:

	1 ¼
12M1

D3
z; 	2 ¼

12M2

D3
z; ð26Þ

where D is the plate thickness. We do not include torsion

in the consideration and hence take 	6 ¼ 0. Thus, the

components 	1 and 	2 in equation (26) are the only nonzero

stress components, and the elastic equilibrium equations read

@ux

@x
¼ s011	1 þ s012	2;

@uy

@z
þ
@uz

@y
¼ s014	1 þ s024	2;

@uy

@y
¼ s012	1 þ s022	2;

@ux

@z
þ
@uz

@x
¼ s015	1 þ s025	2;

@uz

@z
¼ s013	1 þ s023	2;

@ux

@y
þ
@uy

@x
¼ s016	1 þ s026	2: ð27Þ
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Figure 8
The incident (thick grey lines) and diffracted (thin black and blue lines)
spectra at a distance L = 1 m from a 20 mm-thick diamond (a) or silicon
(b) plate bent to a radius R = 10 cm. The spectrum of the incident wave is
convoluted, according to equation (17), with the scattering amplitude
given by equation (22).



The solution of these equations, with the centre of the plate

fixed at zero (ux ¼ uy ¼ uz ¼ 0 at the point x ¼ y ¼ z ¼ 0) is

[see Lekhnitskii (1981), equation (16.3)]

ux ¼
6

D3
½M1ðs

0
15z

2 þ s016yzþ 2s011xzÞ

þM2ðs
0
25z

2 þ s026yzþ 2s012xzÞ�;

uy ¼
6

D3
½M1ðs

0
14z

2 þ 2s012yzþ s016xzÞ

þM2ðs
0
24z

2 þ 2s022yzþ s026xzÞ�;

uz ¼
6

D3
½M1ðs

0
13z

2 � s011x
2 � s012y

2 � s016xyÞ

þM2ðs
0
23z

2 � s012x
2 � s022y

2 � s026xyÞ�: ð28Þ

For the symmetric Bragg-case diffraction considered in the

present work, only the displacement normal to the plate plane

uz is of interest. Crystal orientations that we consider (see

the next section) give s016 = s026 = 0. Then, the displacement

for a biaxial bending can be written in the form uz =

x2=2Rx þ y2=2Ry þ Kz2. The curvature radii Rx and Ry are

easily derived from equation (28), and we do not present these

bulk expressions here. Rather, we consider the case of

cylindrical bending, when the bending moments M1 and M2

are applied to provide Ry ! 1. In this case, the displacement

field can be written as

uz ¼ ðx2 þ �z2Þ=2R; ð29Þ

where

� ¼
s012s

0
23 � s013s

0
22

s011s
0
22 � ðs012Þ

2
: ð30Þ

We omit a bulky expression of the curvature radius R through

the bending moments, since the radius, rather than the

moments, is directly measured in the experiment.

The aim of the next sections is to calculate the coefficient �

for different crystallographic orientations of the plate and for

different materials. For that purpose, the compliances s0mn need

to be calculated for the respective crystallographic orienta-

tions.

A2. Transformation of the compliance tensor

Transformation of the components smn from the reference

coordinate system with the standard axes of the cubic crystal

to the coordinate system related to the crystallographic

orientation of the plate requires rotation of the fourth-rank

tensor sijkl to the new coordinate system by four rotation

matrices. Wortman & Evans (1965) and Lekhnitskii (1981,

Section 5) proposed two different practical methods to make

this transformation. We did not make a thorough check of the

equivalence of these methods but applied both of them to the

orientations that are of interest for us and ascertained that

they give identical results in these cases.

The elastic compliances tensor for a cubic crystal in the

standard reference frame with h100i axes is

s ¼

s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s44

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

: ð31Þ

For the 110-oriented plate, namely, the x axis along ½1�110�;

the y axis along [001] and the z axis along [110], we obtain

s0 ¼

s11 � sc=2 s12 s12 þ sc=2 0 0 0

s12 s11 s12 0 0 0

s12 þ sc=2 s12 s11 � sc=2 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 þ 2sc 0

0 0 0 0 0 s44

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

;

ð32Þ

where we define

sc ¼ s11 � s12 � s44=2: ð33Þ

For the 111-oriented plate, namely the x axis along ½1�110�, the y

axis along ½11�22� and the z axis along [111], we find

s0 ¼

s11 � sc=2 s12 þ sc=6 s12 þ sc=3 21=2sc=3 0 0

s12 þ sc=6 s11 � sc=2 s12 þ sc=3 �21=2sc=3 0 0

s12 þ sc=3 s12 þ sc=3 s11 � 2sc=3 0 0 0

21=2sc=3 �21=2sc=3 0 s44 þ 4sc=3 0 0

0 0 0 0 s44 þ 4sc=3 2ð21=2Þsc=3

0 0 0 0 2ð21=2Þsc=3 s44 þ 2sc=3

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

:

ð34Þ

A3. Bending of diamond and silicon plates

Below we use the literature values of the elastic moduli cmn

and calculate the compliances smn for the h100i reference

frame as

s11 ¼
c11 þ c12

c211 þ c11c12 � 2c212
;

s12 ¼ �
c12

c211 þ c11c12 � 2c212
;

s44 ¼
1

c44
: ð35Þ

We consider now two materials, diamond and silicon, which

are used in spectrometers for XFELs. The elastic moduli of

diamond are (McSkimin & Andreatch, 1972) c11 ¼ 10:79,

c12 ¼ 1:24, c44 ¼ 5:78 and of silicon (Wortman & Evans, 1965)

c11 ¼ 1:657, c12 ¼ 0:639, c44 ¼ 0:796 (all in units 1011 N m�2).

Using the compliances (32) for the 110-oriented plate, we

obtain the coefficient � in equation (30) equal to � ¼ 0:020 for

diamond and � ¼ 0:18 for silicon. The calculation for the 111-

oriented plate using equation (34) gives � ¼ 0:047 for

diamond and � ¼ 0:22 for silicon. Thus, the elastic properties

of diamond give rise to an exceptionally small variation of

strain over the depth z.
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To understand the origin of the small coefficient � for

the 110-oriented diamond plate, we express it through the

Poisson ratio � ¼ �s12=s11 and the Zener anisotropy ratio

A ¼ 2ðs11 � s12Þ=s44. Then, the coefficient � in equation (30)

for the 110-oriented plate can identically be written as

� ¼
�� A�1

2A

1� �� A�1
2A

: ð36Þ

In the case of an elastically isotropic crystal, one has the Lamé

coefficients � ¼ c12 and  ¼ c44 ¼ ðc11 � c12Þ=2, the Poisson

ratio being � ¼ �=2ð�þ Þ. Then, sc ¼ 0 and, calculating the

coefficient � by equation (30), we get � ¼ �=ð1� �Þ.

The elastic constants of diamond give � ¼ 0:103 and

ðA� 1Þ=2A ¼ 0:087. Both quantities are small, but not

exceptionally small. However, the coefficient � is given by the

difference between the Poisson and the anisotropy parameters

and occurs numerically exceptionally small. For a comparison,

the elastic constants of silicon give � ¼ 0:278 and

ðA� 1Þ=2A ¼ 0:180, so that the Poisson and the anisotropy

effects only partially compensate each other.

APPENDIX B

Components of the scattering vector

The aim of this Appendix is to derive explicit expressions for

the components of the deviation q of the scattering vector

from the reciprocal-lattice vector Q, taking into account both

an angular deviation of the incident beam �� from Bragg

orientation and a wavevector deviation �k from the reference

wavevector k0. We introduce the wavevectors Kin
0 and Kout

0 ,

satisfying the Bragg law for the reference wavelength,

Kout
0 � Kin

0 ¼ Q and jKout
0 j ¼ jKin

0 j ¼ k0. The wavevector of

the incident wave Kin ¼ kðcos �in; sin �inÞ differs from the

reference wavevector Kin
0 ¼ k0ðcos �B; sin �BÞ due to both an

incidence angle deviation �in ¼ �B þ �� and a deviation of the

wavevector length k ¼ k0 þ �k. Hence, the difference

qin ¼ Kin � Kin
0 is equal to

qin ¼ �k cos �B � k0�� sin �B; �k sin �B þ k0�� cos �Bð Þ: ð37Þ

Similarly, for the wavevector of the scattered wave in the

symmetric Bragg case Kout ¼ kðcos �out;� sin �outÞ with its

angular deviation from the reference beam direction

�out ¼ �B þ ��0 and the same wavevector as the incident beam

k ¼ k0 þ �k, the difference qout ¼ Kout � Kout
0 is

qout ¼ �k cos �B � k0��
0 sin �B;��k sin �B � k0��

0 cos �Bð Þ:

ð38Þ

The components of the wavevector q ¼ Kout � Kin �Q =

qout � qin are

qx ¼ k0ð�� � ��0Þ sin �B;

qz ¼ �2�k sin �B � k0ð�� þ ��0Þ cos �B: ð39Þ

It is convenient to represent the scattered intensity in

an energy spectrum, considering the scattering angle

2�B þ �� þ ��0 as twice the Bragg angle for the respective

wavelength, i.e. as �k0=k0 ¼ �ð�� þ ��0Þ=ð2 tan �BÞ. Then, the

components of the wavevector q are

qx ¼ 2ðk0�� � �k0 tan �BÞ sin �B;

qz ¼ 2ð�k0 � �kÞ sin �B: ð40Þ

APPENDIX C

Kinematical scattering amplitude for a finite width of
the incident beam

Consider a Gaussian spatial distribution of the amplitude of

the wave incident on the bent crystal,

A0ðx; zÞ ¼ exp �4
2=w2
� �

; ð41Þ

where 
 ¼ x sin �B � z cos �B is the distance in the direction

normal to the incidence beam. This term has to be included in

the integrand of equation (12), so that the amplitude of the

diffracted wave for a spatially limited incidence beam can be

written as

Aðqx; qzÞ ¼
R

1

�1

dx
R

D=2

�D=2

dz exp½�iðqxxþ qzzÞ�

� exp½�4ðx sin �B � z cos �BÞ
2
=w2�

� exp½iQðx2 þ �z2Þ=2R�: ð42Þ

This integral can be expressed through the Faddeeva function

of complex argument WðzÞ ¼ expð�z2Þ erfcð�izÞ, where

erfcðzÞ is the complementary error function. Free codes to

evaluate WðzÞ are available (Poppe & Wijers, 1990;

Weideman, 1994). Calculation of the integral gives

Aðqx; qzÞ ¼ f exp iq2xR
2w2=2l2

� �

� exp �i
pD

2l2

� �

W �
2p� ig2D

2ð21=2Þgl

� ��

� exp i
pD

2l2

� �

W �
2pþ ig2D

2ð21=2Þgl

� ��

; ð43Þ

where two complex parameters which have dimensions of

length

l ¼ ð�QRw2 � 8iR2 sin2 �BÞ
1=2
;

p ¼ qzl
2 � 4iqxR

2 sin 2�B; ð44Þ

and two complex dimensionless parameters

g ¼ ½�8QR cos2 �B þ � sin2 �B
� �

þ i�ðQwÞ
2
�1=2;

f ¼
ð1� iÞ�Rw

21=2g

� exp
QRD2

l2
� i

QD2½Qw2 þ ð1� �Þl2R�

8l2

� �

; ð45Þ

are introduced.
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