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Abstract 

 Nanostructured nickel oxide is synthesized through a chemical route and annealed at different 

temperatures.  Contribution of crystallite size and microstrain to X-ray diffraction line 

broadening are analyzed by Williamson- Hall analysis using isotropic and anisotropic models.  

None of the models perform well in the case of samples with smaller average crystallite sizes.  

For sample with crystallite size ~3 nm all models show negative slope which is physically 

meaningless.  Analysis of shape factor shows that the line profiles are more Gaussian like.  Size-

strain plot method, which assumes a different convolution of the crystallite size and microstrain 

contributions, is found to be most suitable.  The study highlights the fact that the convolution of 

crystallite size and microstrain contributions may differ for samples and should be taken into 

account while analyzing the observed line broadening.  Microstrain values show a regular 

decrease with increase in the annealing temperature.   
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1. Introduction 

The physical and chemical properties of nanocrystalline materials are markedly different 

from those of single crystalline and coarse grained polycrystalline samples with the same 

average chemical composition [1].  Numerous studies on the structure-property correlations in 

nanostructured samples of varied types have appeared in the literature.  Large surface areas to 

volume ratio and quantum size effects are the most important factors that determine the varied 

physical and chemical properties of nanocrystalline materials [1, 2].  However, there are other 

factors such as lattice strain, compensation at the surface, non-stoichiometry, etc., which could 

also contribute to the varied properties.   

Lattice strain, which is one of the important structural parameters that could influence the 

physical properties, can be studied using X-ray diffraction (XRD) technique [3].  Two types of 

lattice strains are associated with nanocrystalline materials [4, 5].  First kind extends over the 

entire lattice and is manifested as a shift in the position of the XRD peaks while the second kind 

extends only over a few lattice spacings and is often referred to as ‘microstrain’ or ‘localized 

lattice strain’ [6].  Microstrain originates due to the presence of defects such as vacancies or 

cores of vacancies in the lattice, excess fraction of grain boundaries, etc.,  and causes broadening 

of the XRD peaks [2, 5-7].  Thus microstrain is a measure of the concentration of defects in the 

sample.  In the case of systems such as nanostructured transition metal oxides where the 

presence, concentration and distribution of cation/anion vacancies could precipitously affect the 

physical and chemical properties, microstrain could be used as an indirect measure of the 
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concentration of defects in the sample and hence could be a useful structural parameter for 

structure-property correlation [2, 6].   

From this discussion, it is clear that in the case of nanostructured samples, XRD line 

broadening could have contribution from both small crystallite size and microstrain [8].  A 

number of analytical methods are suggested for separating the crystallite size and microstrain 

contributions to the XRD line broadening, viz., Williamson-Hall method, Warren-Averbach 

method, Fourier method, Rietveld refinement, etc [8-11]. Though full pattern refinement 

techniques are more rigorous, the execution is very complex due to a large number of control 

parameters and hence techniques such as Williamson-Hall analysis and Warren-Averbach 

procedures are often employed.  Warren-Averbach method requires at least two orders of 

reflections along each crystallographic direction and when higher order reflections are weak and 

difficult to analyze Williamson-Hall method is employed [12]. Williamson-Hall method 

assuming uniform deformation (UDM) in all directions is computationally simple and can be 

implemented conveniently [8].  Also, the anisotropic nature of the elastic constants of the crystal 

can be incorporated in the Williamson-Hall analysis by using uniform deformation stress 

(UDSM) or uniform deformation energy density (UDEDM) models [8, 12, 13].  A number of 

reports on the Williamson-Hall analysis of nanostructured samples of different kinds have 

appeared in the literature in the recent past [6, 12-23].  A perusal of these reports reveals that 

models which take into account the anisotropic nature of the crystal, viz., UDSM and UDEDM 

often more correctly model the system than the one which does not take the anisotropy into 

account viz., UDM [6, 13-17,20].  Further, it was also noted that in the case of samples with 

smaller crystallite sizes, less than ~ 10 nm, the scattering of the points about the linear fit was 
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markedly more, implying low value for correlation coefficient [3, 19-20].  For samples with 

larger average crystallite sizes the correlation is usually very high [6, 12].    

Recently Madhu et al., had reported the Williamson-Hall analysis of nanocrystalline 

nickel oxide (NiO) samples synthesized through a wet chemical route with crystallite size in the 

range 33 – 50 nm and had inferred that the presence of both Ni
2+

 and O
2-

 vacancies contribute to 

microstrain [6].  It was shown that the microstrain values together with conductivity 

measurements/antioxidant activity could provide information on the relative concentration of 

Ni
2+

 and O
2-

 vacancies. In general, nanostructured NiO may contain both Ni
2+

 and O
2-

 vacancies 

and their relative concentration is important in determining the optical, electrical, magnetic, 

electrochemical, catalytic, etc., properties.  Hence in the case of nanostructured NiO microstrain 

could be an important parameter in determining the structure-property correlation.  This paper 

compares the performance of the isotropic and anisotropic models of Williamson-Hall analysis in 

the case of nanocrystalline NiO samples with average crystallite sizes in the range ~ 2 – 22 nm 

synthesized through chemical method.  It may be noted that the size range is much smaller in 

comparison with previous reports [6].  A comparison of the performance of the different models 

(isotropic and anisotropic) in the case of samples with very small average crystallite size, < 10 

nm is interesting.  Size-strain plot analysis which is a modified form of the Williamson-Hall 

concept, assuming a different convolution of size and microstrain contributions to XRD line 

broadening, is also done and the performance is compared with those of the conventional 

isotropic and anisotropic models.  
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2. Experimental 

Nanostructured nickel oxide (NiO) was synthesized through a two step process.  In the 

first step, nickel carbonate precursor was synthesized through a controlled chemical precipitation 

route using  nickel chloride (NiCl2.6H2O) and ammonium carbonate (NH4CO3) as the starting 

materials and  ethylene dinitrilo tetra acetic acid disodium salt (EDTA) as the stabilizer.  All the 

chemicals used were of analytical grade and were used without further purification.  The 

carbonate precursor was washed several times with distilled water and was dried in a hot air oven 

at 80
o
C.   In the second step, the finely powdered precursor was decomposed at 250

o
C for 2 

hours in air ambience to get a loose powder of nanostructured NiO (sample code N1).  The as 

prepared sample was annealed in air at different temperatures, viz., 350 (N2), 450 (N3), 500 

(N4), 600 (N5), 700 (N6) and
 
800

o
C (N7) for 1 hour each.  The sample codes given in brackets 

will be used for convenience in the results and discussions section.   

The XRD patterns of the samples were recorded using a Philips X’pert Pro diffractometer 

with Cu kα (λ=1.54056Å) radiation in the 2θ range of 10–70
0
.  The source was operating under 

an accelerating voltage of 40 kV with a tube current of 30 mA.  Continuous scan was done with a 

scan step size of 0.08356
0
 and time per step 39.95 s.  Transmission Electron Microscopic (TEM) 

analysis of two representative samples N1 and N4 were carried out using a Philips CM-200 

Transmission Electron Microscope. 

3.  Results and Discussion 

The XRD patterns of the samples are shown in Fig. 1 which can be indexed using 

JCPDS–ICDD Pattern number 47-1049 corresponding to NiO with cubic symmetry (space 

group-Fm3m (225)).  The XRD lines are markedly broad indicating nanocrystalline nature.  
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Further, the XRD lines become notably narrower with increase in the annealing temperature 

indicating an increase in the crystallite size.  The as prepared sample (N1) is black in colour 

indicating nonstoichiometric nature with excess of uncompensated Ni
2+

 vacancies [24].  On 

annealing, the colour changes towards green and N7 is green indicating shift towards 

stoichiometry [24-28].  Thus, it is clear that on annealing together with an expected increase in 

the crystallite size there is a change in defect concentration and hence an analysis of the 

contributions of crystallite size and microstrain is interesting. 

The full width at half maxima (FWHM), βobs for each diffraction peak was estimated by a 

curve fitting routine assuming a pseudo-Voigt function for the line profile.  Before analyzing the 

contributions of small crystallite size and microstrain to the XRD line broadening, the 

instrumental contribution to the line width of each peak must be estimated and subtracted [10, 

29, 30].  For this the XRD pattern of standard silicon sample was recorded under identical 

conditions and the width due to instrumental factors for each diffraction peak of NiO, βins(2θ) 

was estimated by a method already reported [29].  The XRD line broadening corrected for 

instrumental factors, βcor corresponding to each diffraction peak was estimated using the relation 

βcor = (β
2
obs – β

2
ins)

1/2 
[10].  The FWHM value corrected for instrumental contribution was used 

for further analysis and will be referred to as βhkl with hkl representing the Miller indices for each 

peak. 

3.1. Determination of crystallite size using Scherrer equation   

Scherrer equation is the simplest and most widely used method to estimate the average 

crystallite size from the XRD line broadening and is t = kλ/βhkl Cosθhkl, where, t is the average 

crystallite size along the hkl direction, λ is the wavelength of X-rays used, βhkl is the Full width 
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at half maximum (FWHM) corrected for instrumental broadening, θhkl is the diffraction angle 

and k is the shape factor lying between 0.9 and 1.15 [31].  This method has the limitation that 

microstrain contribution to line broadening is not taken into account and the entire line 

broadening is assumed to result from small crystallite size [32].  This assumption may lead to 

erroneous estimates of the crystallite size in situations where microstrain also contributes to line 

broadening [33].  The average crystallite sizes for the samples estimated using Scherrer equation 

are included in Table 1.  The crystallite size mentioned for each sample is the average of those 

estimated from the three diffraction peaks and the deviation is the standard deviation among the 

sizes estimated from the peaks.   The average crystallite size for sample N1 is 1.79 ± 0.34 nm 

and with annealing it increases and is 21.62 ± 0.23 nm for sample N7.  Gradual increase in 

crystallite size with increase in annealing temperature is clear from Table 1.  As already stated, 

there could be a contribution due to microstrain to the XRD line broadening over and above the 

small crystallite size and in the following two sections, the results of Williamson-Hall analysis 

and size-strain plot analysis for separating the crystallite size and microstrain contributions is 

presented.  

3.2. Williamson-Hall analysis 

According to Williamson-Hall method, the crystallite size and microstrain contributions 

to line broadening are respectively βt = kλ/ tcosθhkl and βε = 4<ε>tanθhkl [34].  Here the size 

dependent part is same as in the case of Scherrer equation while in the strain dependent part, <ε> 

is the r.m.s value of the microstrain in the sample which is assumed to be same in all 

crystallographic directions [8].  It is also assumed that the two contributions are independent of 

one another and are additive, i.e., βhkl = βt + βε [35].   As the r.m.s microstrain is assumed to be 
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the same in all crystallographic directions, this model does not take the anisotropic nature of the 

elastic constants of the crystal into account and is referred to as uniform deformation model 

(UDM).  Williamson-Hall equation is written as βhkl cosθhkl = kλ/ t +4<ε> sinθhkl [8].  By plotting 

β cosθhkl versus 4 sinθhkl and fitting the data with a linear relation, the r.m.s microstrain <ε> can 

be estimated from the slope of the curve and average crystallite size from the Y- intercept [8].  

As crystals are in general anisotropic, the elastic constant is bound to be direction dependent.  

Hence the assumption in UDM that the r.m.s microstrain has the same value in all 

crystallographic directions (i.e. for all peaks) is far from reality and could affect the performance.  

Hence Williamson-Hall method is to be improved by incorporating the anisotropic nature of the 

elastic constant [8].   

Two improved ways of doing Williamson-Hall analysis which incorporate the anisotropic 

nature of the crystal into account are uniform deformation stress model (UDSM) and uniform 

deformation energy density model (UDEDM).   In UDSM, the cause of anisotropic microstrain 

εhkl is assumed to be the uniform deformation stress (σ) which has the same value in all 

crystallographic directions allowing density of deformation energy (u) to be anisotropic due to 

the anisotropic nature of modulus of elasticity.  Microstrain along each crystallographic 

direction, <εhkl> is related to the uniform deformation stress, σ as σ = Ehkl<εhkl> where Ehkl is the 

Young’s modulus along the [hkl] direction.  Thus in UDSM, Williamson-Hall equation can be 

written as βhkl cosθhkl = (kλ/t) + (4σsinθhkl/Ehkl).  By plotting βhkl cosθhkl versus (4sin θhkl/ Ehkl ) 

the uniform deformation stress, σ is obtained as the slope of the straight line fit while the 

crystallite size can be estimated from the Y-intercept [6,12,13].   

In UDEDM, the deformation stress (σ) is assumed to be anisotropic while the density of 

deformation energy (u) is assumed to be uniform in all the crystallographic directions.   
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According to the Hooke’s law, the relation between energy density ‘u’ and the strain is given by 

u=
 
Ehkl <εhkl>

2
/2.  Therefore, Williamson-Hall equation in UDEDM model is written as βhkl cosθhkl 

= (kλ/t) + (4 (2u/Ehkl)
1/2
sinθhkl).  The plot is drawn between βhkl cosθhkl and 2

5/2 
sinθhklEhkl

-1/2
.  The 

slope of the straight line fit gives u and the Y- intercept correspond to crystallite size [6,12,13].   

For a given sample, Williamson-Hall analysis can be performed assuming the isotropic 

(UDM) and anisotropic models, viz., UDSM and UDEDM.  From the correlation coefficients, R 

of the linear fits, the most suitable model in each case can be identified [6, 12-17].  Naturally, in 

most situations, models incorporating the anisotropic nature of the crystalline material are found 

to result in a better fit [6, 12-17].  For example in the case nanocrystalline samples of AuxCu1−x 

and AuxAg1−x[13], Ag[12],  hydroxyapatite (Ca10(PO4)6(OH)2)[17], ZnO [14-16], NiO[6] etc., 

UDEDM is reported to be the most suitable model.    

There are two instances in which Williamson-Hall analysis provides physically 

meaningless results, viz. (i) negative Y-intercept corresponding to a negative value for crystallite 

size and (ii) negative slope indicating a negative value for the r.m.s value of microstrain [36-39].  

Negative value for microstrain implies a situation where microstrain causes narrowing of XRD 

lines which is physically impossible.  A perusal of literature reveals that the negative slope is 

encountered most often in the case of samples with smaller crystallite sizes.  Specific examples 

include reports on lead sulfide PbS (2 and 3 nm) [40], ruthenium oxide RuO2 (12 and 18 

nm)[20], zinc oxide ZnO (16 and 18 nm) [3], lead molybdate PbMoO4 (14 and 18 nm) [41], 

nickel ferrite NiFe2O4 (13 nm) [42] and nickel cadmium ferrite NiCdFe2O4 (17-20 nm) [43].  If 

negative Y-intercept or slope is encountered it implies that the Williamson-Hall model is not 

suitable for modeling the combined contribution of small crystallite size and microstrain to the 

XRD line broadening [39].  
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For the Williamson-Hall analysis assuming UDSM and UDEDM, the elastic constants in 

each crystallographic direction is to be estimated. For cubic symmetry, the Young’s modulus 

along the direction [hkl], Ehkl is given as  

1/ Ehkl = s11 – (2 s11 – 2s12 – s44) (h
2
k

2
+h

2
l
2
+l

2
k

2
)/(h

2
+k

2
+l

2
)
2 
 

where s11, s12, s44 are the components of elastic compliance tensor [44,45].   

The components of elastic stiffness constants of NiO are C11=316 GPa, C12=56 GPa and 

C44=115 GPa [46]. The elastic compliance components (sij) can be obtained from the stiffness 

constants (cij) using the relations s11= (c11+c12)/(c11-c12)(c11+2c12); s12 = -c12/(c11-c12)(c11+2c12); 

s44 =1/c44 [44,45].  Thus the components of elastic compliance of NiO are estimated as 

s11=3.343x10
-3 

GPa
-1

, s12=-0.503x10
-3

 GPa
-1

 and s44=8.696 x10
-3

 GPa
-1

.   

  Williamson-Hall plots for representative samples N1, N4 and N6 assuming UDM, 

UDSM and UDEDM are shown in Fig. 2 and the results of analysis for all the samples are 

summarized in Table 1.  For sample N1, all the three models show negative slopes which are 

physically meaningless.  Williamson-Hall analysis can be done using integrated breadth instead 

of FWHM [31, 35].  Williamson-Hall plots for sample N1 using integral breadth instead of 

FWHM also resulted in negative slope (Fig. S1 in Supplementary material).  Thus it is clear that 

conventional Williamson-Hall analysis is not working in the case of sample N1. For all other 

samples, the plots have positive slopes and Y-intercepts.  The correlation coefficient, R for each 

fit is included in Table 1.  Both the average crystallite sizes and microstrain values obtained 

using the three models are in agreement.   It can be seen that for samples with relatively larger 

average crystallite size, > 15 nm, the R values are large (> 0.95) while for sample N2, N3 and 

N4, the R values are comparatively small and fall in the range 0.44 - 0.78.  Further, from the R 
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values no model among the three can be considered as performing better than the rest.   This 

observation is in contrast with the reports in the case of cubic samples with metallic bonding 

such as silver [12], AuxCu1−x and AuxAg1−x [13], where the UDEDM performs markedly better 

than the other models [12,13].  In the case of NiO, which also has cubic symmetry, the bonding 

is predominantly iono-covalent nature with some degree of directionality [47].  It is rational to 

infer that the nature of bonding, i.e., directional or not, also affect the performance of the 

Williamson-Hall models.  Yogamalar et al. observed that all the three models perform equally 

well in the case of ZnO nanorods where the bonding is predominantly covalent in nature [18].  

3.3. Size-strain plot (SSP) analysis 

As already stated, a perusal of the available literature indicates that in the case of samples 

with very small crystallite sizes, the correlation coefficients of the fits are rather small for 

Williamson-Hall plots.  Further, in many reports, a negative slope is encountered when the 

crystallite sizes are small, less than 20 nm [3, 20, 40-43].  Both these difficulties are encountered 

in the present study also as clearly evident from Fig. 3 and Table1.  One possible reason for this 

could be the assumption that the crystallite size and microstrain contributions to line broadening 

are additive (i.e., βhkl = βt + βε) could be an over simplification and more complex convolution of 

the two contributions may be tried out.   

The additive convolution of βt and βε , i.e., βhkl = βt + βε is most suitable for modeling the 

combined broadening due to small crystallite size and microstrain when both size and 

microstrain broadenings are closer to Lorentzian profile.  However, this may not always be 

correct.  If the profiles are not Lorentzian and more Gaussian like, other convolutions are found 

to be more appropriate.  In order to analyze the combined XRD line profile of symmetric peaks 
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one simple method is to estimate the shape factor φ = (βFWHm / βint) where βFWHM and βint are the 

full width at half maxima and the integral line breadth of a diffraction peak respectively.  The 

Lorentzian and Gaussian limits for the shape factors are respectively 0.6366 and 0.9394 

respectively [29].  Shape factor, φ < 0.6366 and > 0.9394 can be referred to as super Lorentzian 

and super Gaussian profiles respectively.  If φ lies in between the Lorentzian and Gaussian 

limits, it implies that the line profile is a convolution of Gaussian and Lorentzian profiles 

otherwise called Voigt.  It is reported that when both the size and microstrain contributions have 

Lorentzian profile φ will be close to the Lorentzian limit or will be super Lorentzian.  In such 

cases, the simple additive combination of βt and βε will model the convolution very well [29].  As 

the shape factor moves away from Lorentzian to Gaussian limit, the simple additive combination 

may lead to less reliable or even physically meaningless results and other convolutions are to be 

tried out.  Fig. 3(a) shows a plot of the shape factors for the three diffraction peaks for all the 

samples.  The Gaussian and Lorentzian limits are also marked in Fig. 3(a) for convenience.  It 

can be seen that the shape factors lie closer to the Gaussian limit or is super Gaussian in all the 

cases.  Further, the average value of shape factors estimated using the three peaks for the samples 

are plotted in Fig. 3(b).  It is clear that the average shape factor is closer to Gaussian limit than 

the Lorentzian limit.  This explains why the performance of Williamson-Hall models assuming a 

simple additive combination of Lorentzian and Gaussian profiles was not suitable in the present 

case.  Hence other convolutions of crystallite size and microstrain are to be tried out.   

  Another simple convolution possible for the size and microstrain contributions to line 

broadening is given by βhkl
2
 = βt

2
 + βε

2
 [48].  This convolution is based on the assumption that 

both the size and microstrain contributions respectively have Gaussian profiles [29, 48].  

Substituting for βt and βε and rearranging, we get the expression, (dhkl βhklCosθ)
2
/ λ

2
 = 
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(k/t)(dhkl
2
βhkl Cosθ/ λ)  +  (Σ/2)

2
.  Here dhkl is the lattice distance between the (hkl) planes, t is the 

apparent volume weighted average size and Σ is related to <ε> as Σ =  [2(2π)
1/2

]
 
<ε> [48].  This 

method which is referred to as the Size-Strain Plot (SSP) method has the advantage that more 

weightage is given to data from reflections at low angles, where the precision of the 

measurement is usually high [48].  By plotting (dhkl βhklCosθ)
2
/ λ

2
 vs (dhkl

2
βhkl Cosθ/ λ), the 

crystallite size and microstrain can be obtained respectively from the slope of the curve and Y- 

intercept [3,19,20,48,49].  Size-strain plots for samples N1, N4 and N6 are shown in Fig. 4 and 

the results for all the samples are included in Table 1.  It can be seen that the model works in a 

physically meaningful way for all samples including N1 as indicated by the positive slopes and 

positive Y-intercepts [48].  Further, the correlation coefficient of the fit is very high compared to 

the Williamson-Hall plots and is close to 1 for all the samples (Table 1).  Thus it can be 

concluded that in the present case, the most suitable method is the size-strain plot method.   

The study underlines the fact that the convolution of size and strain contributions to 

broadening assumed is very important in correctly interpreting the observed XRD line 

broadening of nanostructured samples.  This is especially important in the case of samples with 

very small crystallite size.  Another point to be noted is that the size-strain equation used does 

not takes into account the anisotropic nature of elastic constant. However, as the correlation 

coefficients for the fits are very close to 1, an attempt incorporate the anisotropic nature was not 

attempted.  As NiO has cubic symmetry anisotropy is relatively less while in the case of systems 

with less symmetric structures, the role of anisotropy may be more crucial.  Hence the 

comparison of the performance of size-strain plot analysis and Williamson-Hall analysis for 

samples with less symmetric (more anisotropic) structures will be interesting. 
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3.4   Empirical dependence of crystallite size and microstrain on annealing temperature 

The crystallite size and microstrain values estimated using the size-strain plot together 

with those from Williamson-Hall plots are compared in Table 1.  It can be seen that the strain 

values also show a regular decrease with increase in annealing temperature.  This is due to the 

fact that by annealing in air/oxygen, the concentration of oxygen vacancies could decrease due to 

filling up of vacancies [50].  The source of microstrain in the samples is the presence of point 

defects, viz., both Ni
2+

 and O
2-

 vacancies and a decrease in the concentration of O
2-

 vacancies 

will cause a decrease in the microstrain [6].   

The empirical dependence of average crystallite size and microstrain on annealing 

temperature is shown in Fig. 5 and are modeled using second order polynomial dependence [51].  

The dependence of crystallite size on annealing temperature for the samples can be approximated 

by a second order polynomial, t = -16.16+ 9.16x10
-2

T-5.63x10
-5

T
2 

where t is the average 

crystallite size and T is the annealing temperature in ⁰C.  Solid curve in Fig. 5 is the polynomial 

fit as per the above relation.   Further, the empirical dependence of microstrain on annealing 

temperature is given as <εrms> = 0.000463 - 9.76x10
-7

T+5.51x10
-10

T
2
.   

3.4   Estimation of lattice constant 

Rietveld refinements of the XRD patterns were done using General Structure Analysis 

System (GSAS/EXPGUI) suite program) using Fm3m (225) space group [52].  Results of the 

analysis for samples N1 and N4 are shown in Fig. 6.   The background was modeled by shifted 

Chebyshev polynomials.  Lattice parameter for single crystalline NiO is 4.177Å [JCPDS card 

No.47-1049].  The lattice constants for the samples N1 (4.184 Å), N2 (4.183 Å), N3 (4.180 Å), 

N4 (4.177 Å), N5 (4.177 Å), N6 (4.177 Å) and N7 (4.177 Å) obtained from the analysis are 
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plotted in Fig. 7 as a function of the annealing temperature and the results are tabulated in Table 

2.  

A number of reports on the lattice expansion in nanocrystalline NiO, with decrease in 

crystallite size had appeared in the literature [50, 53-56].  This is explained as due to a number of 

possible factors such as grain-surface-relaxation effect, formation of point defects, 

uncompensated Coulombic interactions, etc [2,57].  In the case of sol-gel derived nanostructured 

NiO samples, lattice constant is reported to decrease from 4.190 to 4.180 Å when the crystallite 

size increase from 16 to 54 nm [51].  Peck and Langell had reported a decrease in lattice constant 

of 0.12% and 0.16% respectively for NiO samples with crystallite sizes 25 and 5 nm [57].  In the 

present case lattice expansion by 0.16%, 0.14% and 0.07%, is observed for samples N1 (3.01 

nm) N2 (8.94 nm) and N3 (14.3 nm) respectively.  For samples N4 onwards with size greater 

than 16 nm, the lattice constant is same as that for bulk.  On comparing with previous reports it 

can be concluded that both large surface area to volume ratio and presence of defects contribute 

to the observed lattice expansion. 

3.5. Transmission Electron Microscopy (TEM) 

Fig. 8(a) and (b) shows the TEM image of samples N1 and N4 together with the selected 

area electron diffraction (SAED) patterns as insets.  The particle size distribution can be 

approximated by a lognormal profile.  The particle size estimated from the TEM analysis for 

samples N1 and N4 are respectively 2.3 ± 0.9 nm and 14.4 ± 0.2 nm. The average particle size 

estimated from the TEM analysis is in good agreement with the average crystallite size estimated 

from XRD analysis for both the samples implying that the samples are monodispersed with 

minimum agglomeration.   
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4. Conclusion 

Nanostructured NiO samples were synthesized by the decomposition of carbonate 

precursor to obtain phase pure NiO.  The as prepared sample was annealed at different 

temperatures.  Detailed analysis of the XRD line broadening reveal that size-strain analysis 

which assumes a different convolution of the size and microstrain contribution to XRD line 

broadening performs better than Williamson-Hall analysis assuming different models.  In the 

case of sample with average crystallite size ~ 3 nm, Williamson-Hall models result in negative 

slope which is physically meaningless while size-strain plot method is found to be most suitable.  

Analysis of shape factor for the samples shows that the profiles are more Gaussian like which 

explains why the size-strain plot method is more suitable and Williamson-Hall equation which 

assumes Lorentzian profiles for both size and strain contributions lead to physically meaningless 

results.  The study underlines the fact that the convolution of size and strain contributions to 

broadening is very important in correctly interpreting the observed XRD line broadening of 

nanostructured samples.  This is especially important in the case of samples with very small 

crystallite size.   An increase in crystallite size and decrease in microstrain with annealing 

temperature is also observed ad empirical relations for the dependence of crystallite size and 

microstrain on annealing temperature are obtained.  Samples with average crystallite size less 

than 16 nm show lattice expansion.  TEM analysis indicates monodispersed nature of the 

samples. 
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Table. 1.  Results of XRD analysis - Scherrer equation, Williamson-Hall analysis and the size-

strain plot analysis.  

Sampl

e Code 

 

Size from 

Scherrer  eqn  

(nm)  

Williamson – Hall analysis 
SSP 

UDM UDSM UDEDM 

size 

(nm) 

strain size 

(nm) 

strain size 

(nm) 

strain size 

(nm) 

strain 

N1 1.79±0.34 - - - - - - 3.01 2.44 x10-4 

*(0.99) 

N2 8.55 ±0.15 9.19 7 x10-4  

*(0.86) 

9.91 3.69 x10-4  

*(0.86) 

10.1 3.59 x10-4  

*(0.87) 

8.94 2.01x10-4  

*(0.99) 

N3 13.71 ±0.30 14.5 1.77 x10-4  

*(0.75) 

14.5 3.06 x10-4  

*(0.63) 

15.1 9.11x10-4  

*(0.69) 

14.3 1.38x10-4 

*(1) 

N4 15.50 ±0.29 17.1 3.13 x10-4  

*(0.98) 

17.1 3.71 x10-4  

*(0.98) 

18.3 3.85 x10-4  

*(0.98) 

16.0 9.69x10-5 

*(0.99) 

N5 18.94 ±0.09 21.9 7.36 x10-4  

*(0.98) 

21.9 1.63 x10-4  

*(0.98) 

21.5 1.81 x10-4   

*(0.98) 

17.4 8.35x10-5 

*(0.99) 

N6 21.62 ±0.23 23.9 4.54 x10-4  

*(0.99) 

23.9 1.40 x10-4  

*(0.99) 

22.3 1.48 x10-4  

*(0.99) 

20.4 4.42x10-5 

*(0.99) 

N7 21.70 ±0.72 24.8 3.83x10-4   

*(0.99) 

24.8 2.39 x10-4  

*(0.99) 

24 1.80 x10-4   

*(0.99) 

21.3 3.872x10-5   

*(1) 

* R values of linear fit are shown in bracket.  
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Table. 2.  Results of Rietveld analysis of XRD pattern for annealed samples 

Sample code Rp Rwp χ2 Lattice constant (Å) 

N1 6.59 8.49 1.02 4.184 

N2 5.55 7.23 1.70 4.183 

N3 4.81 6.39 1.83 4.180 

N4 5.11 6.77 1.08 4.177 

N5 5.21 6.97 1.08 4.177 

N6 6.44 8.34 1.26 4.177 

N7 7.82 10.34 1.82 4.177 
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FIGURE CAPTIONS 

Fig. 1.  X-ray diffraction patterns of nanostructured NiO samples. 

Fig. 2.  Williamson-Hall plots for samples N1, N4 and N6 sample using (a) uniform deformation 

model (b) uniform deformation stress model (c) and uniform deformation energy density 

model. 

Fig. 3.  (a). Variation of shape factor (φ) with 2θ for the three diffraction peaks. The lines 

indicate Lorentzian  and  Gaussian limits (b). The average value of shape factor for the 

samples. 

Fig. 4.  Size - strain plots for samples N1, N4 and N6 samples. 

Fig. 5.  Variation of crystallite size and microstrain with annealing temperature.   

Fig. 6.  Result of Rietveld refinement of XRD patterns for samples N1 and N4 

Fig. 7.  Variation of lattice constant with annealing temperature.  

Fig. 8.  TEM images of samples N1 and N4.  Insets show the SAED pattern and particle size 

distribution. 
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Fig.1. X-ray diffraction patterns of nanostructured NiO samples. 
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Fig. 2.Williamson-Hall plots for samples N1, N4 and N6 sample using (a) uniform 

deformation model (b) uniform deformation stress model (c) and uniform deformation energy 

density model. 
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Fig. 3.  (a). Variation of shape factor (φ) with 2θ for the three diffraction peaks. The lines 

indicate Lorentzian and Gaussian limits (b). The average value of shape factor for the samples. 
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Fig.4.Size – Strain Plots for samples N1, N4 and N6 samples. 
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Fig.5. Variation of crystallite size and microstrain with annealing temperature. 
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Fig.6.Result of Rietveld refinement of XRD patterns for samples (a) N1 and (b)N4. 
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Fig.7.Variation of lattice constant with annealing temperature. 
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Fig .8. TEM image of nanostructured NiO samples (a) N1 and (b) N4.  Insets show the 

SAED pattern and particle size distribution. 
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