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A formalism is presented for dark-field X-ray microscopy using refractive optics.

The new technique can produce three-dimensional maps of lattice orientation

and axial strain within millimetre-sized sampling volumes and is particularly

suited to in situ studies of materials at hard X-ray energies. An objective lens in

the diffracted beam magnifies the image and acts as a very efficient filter in

reciprocal space, enabling the imaging of individual domains of interest with a

resolution of 100 nm. Analytical expressions for optical parameters such as

numerical aperture, vignetting, and the resolution in both direct and reciprocal

spaces are provided. It is shown that the resolution function in reciprocal space

can be highly anisotropic and varies as a function of position in the field of view.

Inserting a square aperture in front of the objective lens facilitates disjunct and

space-filling sampling, which is key for three-dimensional reconstruction and

analysis procedures based on the conservation of integrated intensity. A

procedure for strain scanning is presented. Finally the formalism is validated

experimentally at an X-ray energy of 17 keV.

1. Introduction

Hard X-ray microscopy is a new full-field imaging technique

for mapping bulk specimens in three dimensions. In bright-

field mode, an X-ray objective is placed in the transmitted

beam. The attenuation and refraction of the incoming beam is

monitored, leading to magnified absorption and phase

contrast reconstructions. In the dark-field mode, which is the

topic of this article, the objective is placed in the Bragg

diffracted beam instead. This enables nondestructive mapping

of the structure, orientation and strain of deeply embedded

crystalline elements (Simons et al., 2015). The magnification

and field of view can be modified by changing the focal length

of the objective lens. The objective only allows diffraction

signals to pass to the detector if the scattering vector is in the

vicinity of a nominal point in reciprocal space. Hence, it acts as

a very effective filter for stray diffraction signals, thereby

facilitating studies of individual domains by suppressing

unwanted overlap of diffraction signals.

A first implementation at beamline ID06 at the European

Synchrotron (ESRF) is based on the use of a monochromatic

beam in the 15–35 keV range. Here the technique is combined

with coarse-scale three-dimensional grain mapping techniques

such as three-dimensional X-ray diffraction (3DXRD)

(Poulsen et al., 2001; Poulsen, 2012; Hefferan et al., 2012;

Schmidt, 2014) and diffraction contrast tomography (DCT)

(King et al., 2008; Ludwig et al., 2009), as well as classical

tomography. The orientation matrices from 3DXRD or DCT

can be imported directly into the microscopy software. This
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enables swapping between fast overviews of the entire

specimen on the grain scale and detailed studies of domains

within selected grains without dismounting the sample. First

applications include work on the processing of plastically

deformed metals (Ahl et al., 2015), the distribution of strain

and orientation gradients in ferroelectrics (Simons, Jakobsen

et al., 2016) and the three-dimensional mapping of dislocations

(Jakobsen et al., 2017).

The objective is in the current implementation of the

microscope a compound refractive lens (CRL) (Snigirev et al.,

1996). Refractive X-ray optics have relatively small numerical

apertures (NA) of NA � 10�3. The diffraction limit implies

that the spatial resolution �r � �=NA. In practice manu-

facturing errors further limit the spatial resolution to �50–

100 nm. As we shall demonstrate in this paper, orientation and

strain can be mapped with a sensitivity of 0.1 mrad and 10�4,

respectively – superior to transmission electron microscopy

(Williams & Carter, 2009). Furthermore, having the ability to

change the focal length of a CRL enables zooming in and out

of both direct and reciprocal space, thereby realizing a

compromise between image acquisition time and spatial and

angular sensitivity. The coupling between direct and reciprocal

space through the numerical aperture implies that a full

description of dark-field X-ray microscopy requires a formu-

lation in six-dimensional position-reciprocal space (see also

Poulsen, 2003).

In this paper we provide analytical expressions for the key

parameters in dark-field X-ray microscopy, such as the

numerical aperture, the field of view, the depth of field, and the

resolution in direct and reciprocal space. We discuss the

implications for mapping of strain and orientation, and

present sampling procedures for three-dimensional mapping

of extended regions in both direct and reciprocal space. The

expressions presented are based on a generalization of a

recent thick-lens ray-transfer-matrix description of CRLs

established for bright-field microscopy (Simons et al., 2017).

2. Geometry of dark-field microscopy

The geometry of dark-field X-ray microscopy is illustrated in

Fig. 1. The sample goniometer has a base tilt, �, a rotation, !,

and two orthogonal sample tilts, � and �. The incident beam is

typically shaped by a condenser and characterized by angular

divergences, ��v and ��h, in the vertical and horizontal

directions, respectively, and by an energy bandwidth �E=E.

The motors �, � and � are used to orient an embedded

crystalline element of choice (e.g. a grain or domain) such that

it is in the Laue condition with its scattering vector,Q, parallel

to the rotation axis !, implying that Q remains in the

diffraction condition at all values of ! (for details see

Appendix A).

The optical axis of the diffracted beam is defined by the

centre of rotation of the sample goniometer, the centre of the

objective and the point of normal incidence of the beam on the

detector. The direction of this axis is described by the scat-

tering angle, 2�, and the azimuthal angle, � (Fig. 1). The

objective magnifies the diffracted beam by a factorMCRL and

generates an inverted two-dimensional image on the detector.

The distance from the sample plane to the front of the

objective is d1 and the distance between sample plane and

image plane is L ¼ d1 þ NT þ d2, where NT is the length of

the CRL (the product of the number of lenses N and the

distance T between the centres of adjacent lenslets).

There are two alternative strategies for obtaining three-

dimensional maps of real-space distributions. The first is by

using a one-dimensionally focusing condenser to illuminate a

slice of the material, which is then imaged at the oblique angle

of 2�B, i.e. a magnified version of classical section topography

(Medrano et al., 1997; Ohler et al., 2000). In this case, a three-

dimensional volume is obtained in a layer-wise manner by

translating the sample through the planar beam in small

increments. A second, faster, but more involved method

involves illuminating the entire grain and taking projections

from different viewing angles while rotating the sample about

Q (i.e. rotation in !) in the topo-tomography approach

(Ludwig et al., 2001). The three-dimensional maps are then

reconstructed using adapted tomographic algorithms. The

three-dimensional reconstruction algorithm itself, however, is

outside the scope of this paper.

For a given layer or a given projection, the local variation in

orientation of the scattering vector (local pole figure) can be

mapped in two ways: first, by scanning the sample through

ð�; �Þ or linear combinations of these angles, and second, by

scanning a combination of the base tilt � and a linear

combination of ð�; �Þ that is perpendicular to the beam for all

values of !. The optimal choice of method and linear combi-

nation depends on motor accuracy and speed. Maps of the

axial strain can be acquired by a combined scan of the optical

axis (i.e. the objective and detector collectively) through 2�

and of the sample by an angle �, with the rotation axis of 2�

and � being collinear.
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Figure 1
Principle of dark-field X-ray microscopy. The red line between the pivotal
point of the goniometer and the detector is the optical axis of the
diffracted beam. A laboratory coordinate system is defined with x parallel
to the incoming beam, y horizontal and z vertical. See also main text and
Fig. 7.



2.1. Coordinate systems

The instrumental setting can be related to the reciprocal

space by coordinate transforms and crystallographic rela-

tionships, similar to the work by Busing & Levy (1967) and

You (1999). A comprehensive treatment is presented in

Appendix A, with reference to the hard X-ray microscope

(HXRM) at the ESRF. For simplicity, in the main text, we will

assume that the detector is positioned in the centre of the

vertical scattering plane (� ¼ 0) and that the base tilt is fixed

at � ¼ �B, the nominal Bragg angle. In this configuration the

position in reciprocal space is given by the four motor posi-

tions: �, �, 2� and !. Note that, when ! ¼ 0, � represents the

‘rocking’ of the sample around the laboratory y axis, and � the

‘rolling’ around an axis within the scattering plane and

perpendicular to Q (cf. Fig. 1).

Dark-field microscopy images the diffracted intensity in

close proximity to one scattering vector Q0, parameterized by

angles (�0, �0, 2�B). In order to describe small variations from

this nominal scattering vector, it is useful to introduce a local

coordinate system in reciprocal space, denoted the ‘reference

system’ (see Appendix A): Q ¼ �Qrockq̂qrock þ�Qrollq̂qroll þ

�Qkq̂qk, as shown in Fig. 2. Here, q̂qk is parallel toQ0 , while q̂qroll
is parallel to the laboratory y axis for ! ¼ 0. The appendix

provides the relevant coordinate transforms. It is shown that

for small angles j�� �0j and j�� �0j we can associate motor

positions ð�; �; 2�; !Þ with a position in the reciprocal space as

follows:

�Qrock

jQ0j
¼ �

2� � 2�B
2

� sinð!Þð�� �0Þ

þ cosð�Þ cosð!Þð�� �0Þ; ð1Þ

�Qroll

jQ0j
¼ cosð!Þð�� �0Þ þ cosð�Þ sinð!Þð�� �0Þ; ð2Þ

�Qk

jQ0j
¼

2� � 2�B
2 tanð�BÞ

: ð3Þ

The first term in equation (1) reflects the well known fact that

a longitudinal scan requires the rocking angle to be changed

by half the change in the scattering angle. Numerical tests

show that these equations are accurate up to angles of at

least 5�.

It is also useful to introduce an ‘imaging coordinate system’

with the direction of the optical axis as the x axis. In direct

space the plane perpendicular to this axis is the sample plane,

while in reciprocal space it is the tangential plane of the Ewald

sphere at point Q0. At ! ¼ 0 the laboratory system, the

reference system and the imaging system are related by

rotations of �B around the y axis, as illustrated in Fig. 2.

2.2. Geometrical optics formalism for the objective

In order to achieve high geometrical magnification with a

confined overall sample-to-detector distance, relatively short

focal lengths are needed for the objective. This in turn implies

that the CRL is composed of a large number of lenses, espe-

cially at hard X-ray energies. Thus, classical thin-lens formal-

isms are seldom adequate and more exact formalisms must be

used instead (Simons et al., 2017). Here we recall the essential

findings as relevant to dark-field microscopy. We shall assume

that the CRL comprises N identical paraboloid-shaped two-

dimensional lenses, each with a radius of curvature R, a

distance between lenslet centres of T and a web thickness

between apices of Tweb. Let 	 and �att be the refractive

decrement and the linear attenuation coefficient, respectively.

The focal length corresponding to one lenslet then becomes

f ¼ R=ð2	Þ. It is shown that any ray passing through the

objective will traverse a sinusoidal path. Let the ray emerge

from a point in the sample plane at a radial distance rs to the

optical axis and at an angle of 
s to the direction of the optical

axis. Then the sine curve is defined by a period of 2�f’ and an

amplitude of ½ðrs þ 
sd1Þ
2
þ ð
s f’Þ

2
�1=2. Here ’ ¼ ðT=f Þ

1=2
.

With these definitions the focal length fN is

fN ¼ f’ cotðN’Þ: ð4Þ

The following relations apply between the magnification

MCRL and the distances d1 and d2, defined in Fig. 1:

d1 ¼ fN 1þ
1

MCRL cosðN’Þ

� �

; d2 ¼ fN 1þ
MCRL

cosðN’Þ

� �

: ð5Þ

The transmission, I=I0 (through the CRL), of a ray defined

by rs and 
s is

I=I0 ¼ exp ��attNTwebð Þ exp
�ð
s þ �rsÞ

2

22
a

� �

exp
�r2s

22
v

� �

: ð6Þ

Here the three factors describe (i) attenuation in the centre

‘web’ part of the lenses, (ii) the pupil function leading to a

Gaussian angular acceptance and thus numerical aperture

with r.m.s. width a, and (iii) a Gaussian decay of intensity with

distance from the detector centre (vignetting) with r.m.s.

width v.

We have
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Figure 2
Definition of the reference (q̂qrock; q̂qroll; q̂qk) and imaging coordinate
systems (q̂qrock0 ; q̂qroll; q̂q2�) and their relation to the laboratory system
(q̂qlab;x; q̂qlab;y; q̂qlab;z) for ! ¼ 0. All vectors except Q0 are unit vectors and
all vectors except q̂qlab;y ¼ q̂qroll are in the same plane. The sample plane
normal is q̂qrock0 .



a ¼
R

N�att

� �1=2
1

d1
ð1þ S1Þ þ 2

f’

d1
S2 þ ð1� S1Þ

ðf’Þ
2

d21

� ��1=2

ð7Þ

with

S1 ¼ sincð2N’Þ; S2 ¼
1

N’
sin2ðN’Þ: ð8Þ

For large d1=f’ this expression reduces to a ¼ D=d1, where

D is the spatial acceptance function for a parallel incident

beam. To a good accuracy

a ’ 	
MCRL

MCRL þ 1

2N

�attR

� �1=2

: ð9Þ

The numerical aperture if defined by the FWHM is

NA ¼ 2:35a. The last term in equation (6) defines the

vignetting. We have

v ¼
2	

�atta
ðN’Þ

2
� sin2ðN’Þ

� ��1=2
: ð10Þ

For N ! 0 the expression diverges. Numerically we find it to

be only approximately correct for N < 5. For the characteristic

distance 1/� in equation (6) we have

�2 ¼
a

D

� �2

�
a

v

� �2

: ð11Þ

It is shown by Simons et al. (2017) that the maximum a for

a given X-ray energy and type of lens is obtained in the limit of

a maximally thick lens, where N’ ’ �=2 and the sample–

objective distance d1 approaches 0.

3. Direct-space resolution

When acquiring a three-dimensional map the spatial resolu-

tion may vary as a function of position (i.e. across the field of

view). Employing the topo-tomography principle (Ludwig et

al., 2001), the resolution related to a given region in the

sample will also vary as function of the rotation angle !. In the

absence of mechanical vibrations, small-angle scattering from

the objective lens material and aberrations due to manu-

facturing errors, the prime contributions to the spatial reso-

lution are the following:

The diffraction limit. When imaging ‘on axis’ (i.e. in the

vicinity of the point on the detector that coincides with the

optical axis), the angular acceptance function is defined by the

r.m.s. value a [equation (7)]. In classical optical systems, the

resolution is often defined by the Rayleigh criterion (Lord

Rayleigh, 1891), where two objects are considered resolved

when they are further apart than the first dark ring of the point

spread function (PSF) of the imaging system. Simons et al.

(2017) argue that this is inappropriate in the case of a Gaus-

sian or near-Gaussian PSF as is the case with CRLs. Instead, it

is proposed that the resolution be defined by the separation

distance between two PSFs corresponding to a contrast ratio

of C (where C is small when the contrast is poor). In the case

of absorption-limited (i.e. Gaussian) CRLs, this gives a func-

tion in terms of the wavelength �, a and C:

�yd ¼ 0:06905 � 0:1019 log ð1� CÞ½ �
1=2
ð�=aÞ: ð12Þ

The Rayleigh criterion corresponds to C ¼ 0:26; however, the

value of C necessary to distinguish two objects naturally

depends on sampling statistics. In the case of low-intensity

measurements, C should be greater than 0.5.

It follows from equation (6) that the width of the angular

distribution off axis is the same as it is on axis. However, the

intensities on the detector are weakened by a factor of

exp½�r2s=ð2
2
vÞ� due to the vignetting. This change in intensity

gives rise to a change in signal-to-noise ratio and hence affects

contrast.

Magnification and signal-to-noise ratio. In the case of low-

noise measurements, the combined magnification M ¼

MCRLMd of the X-rays in the CRL, MCRL, and in the

detector system, Md, implies a resolution of d ¼ dc=

ðMCRLMdÞ, where dc is the spatial resolution of the camera

itself. For simplicity, we shall set dc ¼ P, where P is the pixel

size of the camera. In the common case in which a scintillator

is used to convert the X-rays to visual light, a scintillator of

optimal thickness will provide an X-ray-to-light conversion

efficiency proportional to ðP=MdÞ
2
(Koch et al., 1998).

For an isotropically emitting source within the sample plane

and on the optical axis, the intensity, I, registered in a given

pixel of the detector is proportional to the product of the

probing area in the sample system, the efficiency of the X-ray

lens and the efficiency of the camera system:

I / d2 2
a expð�N�attTwebÞ

� �

P=Mdð Þ
2

ð13Þ

¼ d42
aM

2
CRL expð�N�attTwebÞ: ð14Þ

The signal-to-noise ratio S/N therefore becomes

S=N / d2aMCRL expð�N�attTweb=2Þ: ð15Þ

As mentioned above, a is optimal in the thick-lens limit,

where for ideal lens manufacturing a ! ð2	Þ
1=2
. For fixed

spatial resolution d, this implies S=N / MCRL. Generally

speaking, it is favourable to achieve as much of the magnifi-

cation as possible with the CRL rather than with the detector

system, and preferably even using a direct detection system

instead of an optically coupled scintillator. (In practice, very

large values of MCRL are difficult to realize because of inac-

curacies in lens manufacturing and minimum clearance

requirements about the sample that impose a lower limit on

the objective’s focal length.)

Depth of field. According to classical optics, the depth of

field depth is defined as the sum of a contribution from wave

optics (the diffraction limit) and a contribution from

geometric optics, defined by the resolution in the X-ray

imaging plane, yd. The latter is readily evaluated using the ray-

transfer matrix (see e.g. Svelto, 2010) formalism. As a result

2:35depth ¼
�

ðNAÞ
2
þ

yd

MCRLNA
: ð16Þ
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For NA ’ 10�3, � ’ 0:1 nm, MCRL ’ 10 and yd ’ 1 mm, it

appears that the two terms are of the same order of magni-

tude, and depth ’ 100 mm, comparable to the field of view.

Chromatic aberration. Let " be defined as the relative X-ray

energy, " ¼ �E=E, of a ray impinging on the sample. Assume

a Gaussian distribution in " with an r.m.s. width of e. Then the

chromatic aberration gives rise to a point spread function that

is Laplacian with the characteristic width ch (Simons et al.

(2017).1

ch ¼ aedch=MCRL; ð17Þ

with the characteristic length

dch ¼N’
d1d2

f’
� f’

� �

cosðN’Þ

þ
d1d2

f’
þ f’þ N’ðd1 þ d2Þ

� �

sinðN’Þ: ð18Þ

Generally speaking for operation with single-crystal mono-

chromators chromatic aberration is not an issue. For operation

with pink beams see Falch et al. (2017).

4. Reciprocal-space resolution

4.1. On axis, general case

The angular resolution function has contributions from

both the incident and diffracted beams. Here, we assume that

both have a Gaussian profile with r.m.s. width ��h;v for the

incident beam and a for the objective lens’s angular accep-

tance. Furthermore, we assume a normally distributed energy

spread with r.m.s. width e. An additional contribution to the

instrument resolution in the ‘rocking’ direction arises from the

Darwin width of the sample material, which is somewhat

complex to model (Als-Nielsen &McMorrow, 2011). As it is of

the order of 0.01–0.1 mrad it is typically substantially smaller

than the vertical divergence of the incoming beam, ��v,

whenever a condenser is used. In the following we shall

neglect the Darwin width.

In Appendix A4, equations for the reciprocal-space reso-

lution are given for arbitrary motor positions. At the nominal

working point � ¼ 0, 2� ¼ 2�B, � ¼ �B the projections in the

three directions in the reference system are found to be

[equations (61)–(63)]

�Qrock ¼
Q0

�

�

�

�

2
ð��2v þ 2

aÞ
1=2
; ð19Þ

�Qroll ¼
Q0

�

�

�

�

2 sinð�BÞ
ð��2h þ 2

aÞ
1=2
; ð20Þ

�Qk ¼
Q0

�

�

�

�

2
ð2eÞ

2
þ cot2ð�BÞð��2v þ 2

aÞ
� �1=2

: ð21Þ

This result can be misleading, as the principal axes of the

resolution function are not parallel to the axes of the coor-

dinate system defined. In fact, it is often useful instead to

operate in the imaging coordinate system. A basic Monte

Carlo program has been generated to provide three-dimen-

sional plots based on statistical distributions of rays and

applying equations (19), (20) and (21). An example result for a

case with large incoming divergence is shown in Fig. 4(a)

below (x5.1).

Inspection of equations (19)–(21) reveals that the hori-

zontal divergence/acceptance affects only the ‘roll’ component

of the resolution, and the bandwidth only the longitudinal

resolution. The vertical divergence/acceptance affects both the

longitudinal and ‘rock’ components of the resolution.

Furthermore, it is evident that the relative longitudinal reso-

lution, �Qk=jQ0j, diverges for �B ! 0 (forward scattering) as

jQ0j ! 0. It continuously improves with increasing �B. At

2�B ! 180�, i.e. back scattering, the longitudinal resolution is

determined only by e.

4.2. On axis, case of large asymmetry between incoming and

diffracted beam

In the following we describe a setup where the incoming

beam is defined by a standard double-crystal monochromator

with e of order 10�4 and exhibits a small divergence of

��h;v ’ 0:1 mrad or less. In comparison the divergence of the

diffracted beam is much larger: a ’ 1 mrad. In this case the

resolution function becomes a three-dimensional Gaussian

with axes parallel to the axes of the imaging coordinate

system. As derived in Appendix A [equations (56), (70) and

(71) using �
?;k ¼ a,

�Qrock0 ’
Q0

�

�

�

�

2
cosð�BÞ��v; ð22Þ

�Qroll ’
Q0

�

�

�

�

2 sinð�BÞ
a; ð23Þ

�Q2� ’
Q0

�

�

�

�

2 tanð�BÞ
a: ð24Þ

It appears that the resolution function is very anisotropic:

�Qrock0 	 �Qroll ’ �Q2�: ð25Þ

In this case, to a good accuracy the resolution function can be

approximated by a circular disc. A Monte Carlo simulation

with the same parameters confirms this (cf. Fig. 4b below).

For very large anisotropies, as defined by equation (25),

second-order effects become important. The tangential plane

approximation for the Ewald sphere is valid for the achievable

numerical apertures, but the fact that the resolution function

lives in the imaging system while a rotation of � takes place in

the reference system has implications. For example, imagine

scanning a perfect crystal in � as an approximation to deter-

mine the resolution in the rolling direction, as defined by ��.

As derived in Appendix A, for ! ¼ 0 the angular distance

between Q and the Ewald sphere is

�� ¼ ½1� cosð�BÞ� �� �0

�

�

�

�: ð26Þ
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For large anisotropies this means that the scattering vector

‘falls off the rocking curve’ before it has traversed the full

range ��.

4.3. Off axis

When moving off axis (rs 6¼ 0) the angular distribution, as

defined by the middle term in equation (6), changes angular

position but its width is maintained. This implies that the

reciprocal-space resolution distributions in the radial and

azimuthal directions have the same shapes when moving off

the optical axis, but the centre of the distribution is shifted. For

a pixel on the two-dimensional detector corresponding to a

position ðys; zsÞ within the sample plane, we have the following

shifts:

�shift ¼
�ys

2 sinð�Þ
; �Qshift;roll ¼ �

Q0

�

�

�

��ys

2 sinð�Þ
; ð27Þ

2�shift ¼ ��zs; Qshift;k ¼ �
Q0

�

�

�

��zs

2 tanð�Þ
; �Qshift;rock ¼

Q0

�

�

�

��zs

2 tanð�Þ
:

ð28Þ

This coupling between direct- and angular-space resolution is

illustrated in Fig. 3.

5. Sampling

5.1. Optimizing the reciprocal-space resolution function

Sampling is a major concern in both direct and reciprocal

space: objects of interest may be larger than the field of view,

and reflections tend to be broader than the NA. The inherent

coupling between two direct- and two reciprocal-space coor-

dinates (illustrated in Fig. 3) combined with a complicated

resolution function complicates this issue. Sampling is also a

concern when comparing images acquired at different

magnifications, as vignetting and reciprocal-space resolution

change as functions of lens parameters. Furthermore, when

combining data from different positions of ! it will typically be

necessary to operate in the entire six-dimensional

ðx; y; z; �; �; 2�Þ space for reasons of sampling.

An additional major sampling issue is that one cannot make

a space-filling disjunct map in two dimensions by placing

circles next to each other, as shown in Fig. 3. Hence, when

scanning in � or 2�, parts of the distribution may be sampled

twice and other parts not at all. This is a particular concern in

connection with the use of tomography-type reconstruction

algorithms, as these are based on a linear relationship between

diffracting volume and integrated intensity (Kak & Slaney,

1988).

In the following, we propose a strategy for enabling

mapping which is space filling in reciprocal space. Essentially,

this involves making the reciprocal-space resolution box

shaped. Specifically, we consider the case of large anisotropy,

presented in x4.2. First, we propose to insert a square aperture

in front of the CRL. This implies that the resolution function

in the ð�; 2�Þ plane becomes a rectangular box multiplied with

the Gaussian angular acceptance function. This is illustrated in

Fig. 3(c), for comparison with Fig. 3(b), and in Fig. 4(c), for

comparison with Fig. 4(b).

Next, to change the width in the rocking direction, one may

integrate the signal while rotating with a constant speed within

a given angular range, W�. The result of such a ‘sweep’

becomes a uniform sampling in direction � and the corre-

sponding resolution function is approximately a box function.

As a result the overall reciprocal-space resolution function has

become box shaped in all three directions in the imaging

coordinate system, as shown in Fig. 4(d).

The resulting FWHM widths become

�Qrock0 ¼ Q0

�

�

�

�W�; ð29Þ

�Qroll ¼ Q0

�

�

�

�

D

sinð2�Þd1
; ð30Þ

�Q2� ¼ Q0

�

�

�

�

D

2 tanð�BÞd1
; ð31Þ

where D is the size of the opening in the slit.
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Figure 3
Coupling between direct and reciprocal space. Left: the ðy; zÞ sample plane with a circle marking the cutoff by vignetting and three randomly selected
points in this plane, identified by colour. Middle: the (�; 2�) plane with circles marking the angular acceptance of the objective [cf. equation (7)]. The
length of the dashed red line is a in direction 2� and a= sinð2�Þ in direction �. The three circles are seen to be offset according to the (y; z) position
identified by the same colour. Right: a similar plot for the case of having inserted a square aperture at the entry point of the lens. The aperture size is D
and D=d1 � a=2

1=2.



Mapping of larger regions of reciprocal space can now be

obtained in a space-filling way by sampling disjunct cube-

shaped ‘voxels’ in reciprocal space. The added aperture will,

however, reduce the NA and therefore lead to deterioration of

the spatial resolution.

5.2. Sampling strategies

Three-dimensional sampling of reciprocal space is time

consuming and, in practice, two projections of reciprocal space

have proven of particular use:

Mosaicity maps. With a numerical aperture of order

a ¼ 1 mrad and scattering angles of order 2� ¼ 25�, the

intrinsic strain resolution becomes �Q=jQ0j ¼ cotð�Þ�� ’

2:2
 10�3 (r.m.s. value). For many specimens, this value is

sufficiently large that one can integrate over the entire axial

strain distribution. [For low magnifications this scheme may

not be valid at the top and bottom of the detector, owing to the

offsets, cf. equations (27) and (28).] In this case a mosaicity

map can be provided by a regular two-dimensional scan, with

the first movement being a linear combination of � and � and

the second a ‘rock’ in base tilt �. The step sizes are

�� ¼
sinð!Þ

cosð�0Þ

�Qroll

Q0

�

�

�

�

; ð32Þ

�� ¼ cosð!Þ
�Qroll

Q0

�

�

�

�

; ð33Þ

�� ¼
�Qrock0

Q0

�

�

�

�

: ð34Þ

Axial strain mapping. When

mapping the axial strain, an intrinsic

strain resolution of 10�4 or better may

be required. High-resolution mapping

of the strain distribution for each voxel

in the sample is therefore excluded,

but it is still possible to derive the

average value for the axial strain

component for each voxel. Similar to

the case of neutron strain scanning

using a monochromatic beam (Hutch-

ings et al., 2005), we can exploit the

symmetry and our a priori knowledge

of the resolution function, cf. x. With

sufficient count rates, the centre posi-

tion can be found to an accuracy that

can be as good as 1% of the width. The

neutron community has provided

algorithms for reducing the number of

scanning points required and opti-

mizing S/N. We find these results to be

applicable for dark-field microscopy as

well.

To reduce the dimension it is often

relevant to scan � and 2� (for ! = 0) in a two-dimensional grid,

while for each point integrating over the entire rocking curve

by a continuous scan in � or �. During data analysis the bins in

� are summed to provide a single axial strain value for each

voxel in the sample.

As an alternative, mapping of mosaicity and axial strain can

be performed by scanning of an aperture in the back focal

plane of the objective. Imaging and operations in the back

focal plane are outside the scope of this article and will be the

topic of an upcoming publication.

6. Experimental demonstration

To demonstrate the correspondence of the formalism with

empirical data, we report on experimental results obtained

from a diamond single crystal. Using an Si(111) Bragg–Bragg

double-crystal monochromator, the energy was fixed at

17 keV with e ’ 6
 10�5. The diamond crystal was cut with

a (1�110) surface normal and mechanically polished to 420 mm

thickness. Carrying out dark-field X-ray microscopy on a 111

reflection in symmetric Laue geometry, the scattering angle is

2�B ¼ 20:317�. An absorption test grid was placed in the

diffracted beam in close proximity to the diamond crystal. This

comprised a pattern of �1 mm thick W lines, corresponding to

an increased absorption of 15%.

The incident beam was shaped by an up-stream condenser,

leading to a near-Gaussian rocking curve with a width of

0.029 mrad (FWHM) (see Fig. 5, left). For comparison, a

Gaussian curve with a width defined by the Darwin curve for
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Figure 4
Examples of reciprocal-space resolution functions, as described in the imaging system, with shadow
plots. All simulations are performed with jQ0j ¼ 31:1 nm�1, � = 10.39�, a = 0.5 mrad and e = 6 

10�5. (a) Case of condenser with similar setting: �v ¼ �h ¼ a. (b) Case of low incoming divergence:
�v ¼ �h ¼ 10�5. (c) As in (b) but with a slit in front of the CRL with an opening of 1 mrad. (d) As in
(c) but with continuous scanning in � during exposure within a range of 1 mrad.



this reflection is also shown. The test was made with a uniform

incident beam illuminating an area larger than the field of view

of the microscope and an exposure time of 1 s. The objective

comprised N ¼ 69 identical Be lenslets with a radius of

R ¼ 50 mm and thickness of T ¼ 1:6 mm. Hence

2	 ¼ 2:359
 10�6, �att ¼ 47 m�1, f ¼ 21:195 m, ’ ¼ 0:00869

and fN ¼ 0:269 m. The focus position was experimentally

optimized at d1 ¼ 0:289� 0:002 m with a magnification of

MCRL ¼ 15:1 which, within experimental error, corresponds

to the predicted value. From this follows a prediction for

NA ðFWHMÞ ¼ 2:35a ¼ 0:63 mrad.

Fig. 5 (right) shows the intensity variation at the centre of

the detector, corresponding to the on-axis position for a �

scan. To improve S/N, the signal was averaged over a region of

interest (ROI) with 40
 40 pixels. The curve has a width of

1.05 mrad. This is compared with two theoretical predictions:

the blue line is a direct comparison with the predicted value

for �Qroll, cf. equation (23); the red line takes into consid-

eration the fact that the scattering vector falls off the rocking

curve, cf. equation (26).

The 2� resolution was measured by scanning the 2� arm

using a combined movement of the objective and the detector.
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Figure 5
Experimental tests of the angular resolution. Left: raw data (dots) and a fit to a Gaussian (full line) for a rocking curve, that is a scan in � as defined in
Fig. 1. Right: raw data (dots) for a scan along the rolling direction �. Also shown as full lines are two predictions – see main text.

Figure 6
Experimental test of 2� resolution. Left: raw data (dashed line) and a fit to a Gaussian (full line) for the on-axis case. Right: the FWHM (red dots) and the
offset in midpoint (blue dots) resulting from a set of Gaussian fits to 2� resolution curves – similar to that to the left – as a function of how far off axis the
sample position is. The blue line represents a fit of the blue dots to a straight line.



For various positions on the detector, the intensity variation

with 2� was recorded. To improve S/N, again, the signal was

averaged over an ROI with 40
 40 pixels. The result for the

centre of the detector (corresponding to the on-axis position)

is shown in Fig. 6 (left). The curve is well described by a

Gaussian with a width (FWHM) of 0.56 mrad. This should be

compared with the predicted value of NA = 0.63 mrad. The

discrepancy is attributed to errors in alignment and lens

manufacture.

The 2� intensity distribution remained Gaussian when

offsetting the centre of the ROI in the vertical direction. Fig. 6

(right) shows the resulting centre positions and FWHM values

from Gaussian fits to these profiles. As predicted by the

formalism above, the width remains constant, while there is a

linear dependence between vertical offset within the sample

and the offset in 2� [cf. equation (27)]. The slope fitted to the

experimental data, � ¼ 2:94 m�1, agrees well with the

predicted value, � ¼ 2:93 m�1.

7. Discussion

Crystalline materials are characteristically organized into

grains and domains in a hierarchical fashion. Mapping all

domains in a sample with say 1000 grains requires a Herculean

effort. Within a multiscale approach, we propose instead

initially to map the entire sample on a coarse scale using

3DXRD, DCT or similar. Having identified a grain of interest

we then zoom in on this and provide a fine map of the domains

with dark-field microscopy. Similar to the operation of a

transmission electron microscope (Williams & Carter, 2009;

Midgley & Eggemann, 2015), we find it advantageous to

combine dark- and bright-field X-ray microscopy in one setup,

for ease of alignment purposes and to combine diffraction-

based microscopy with local phase contrast mapping (e.g.

Falch et al., 2017) and with very fast three-dimensional

mapping of phases, voids, cracks etc. (Falch et al., 2017).

The six-dimensional resolution analysis presented here is

based on the geometrical optics treatment of CRLs by Simons

et al. (2017). This implies that certain aspects of diffraction and

refraction have not been taken into account – for this we refer

to more elaborate methods (e.g. Kohn, 2002; Knudsen et al.,

2013). However, we have verified by direct comparison with

wavefield simulations that the presented analytical expres-

sions, for example, for the numerical aperture are accurate

within experimental error (for typical configurations of the

CRL) and they can easily be implemented in a numerical

optimization of the experimental setup.

It has been shown that CRLs can, in principle, provide a

spatial resolution of 10 nm or below (Schroer & Lengeler,

2005). In practice, however, the resolution is limited in two

ways. Firstly, the numerical aperture for one refractive optics

element is fundamentally limited to ð2	Þ
1=2
. Secondly, and

more importantly, so far the various manufacturing routes

(Lengeler et al., 1999; Schroer & Lengeler, 2005; Krywka et al.,

2016; Simons, Stöhr et al., 2016) have all been associated with

aberrations and other optical imperfections that limit the

resolution to approximately 100 nm. Diffractive optics have

the potential to overcome both of these limitations. At ener-

gies below 15 keV, bright-field X-ray microscopes using

Fresnel zone plates exhibit a spatial resolution of the order of

tens of nanometres (Vila-Comamala et al., 2012). At higher

energies, multilayer Laue lenses have recently been demon-

strated (as condensers) with an NA of 0.006 at � ¼ 0:056 nm

(Morgan et al., 2015), with potential for further improvement.

The angular resolution of dark-field X-ray microscopy is

superior to that of a transmission electron microscope when

operated for typical materials science inspection. The high

angular resolution has two advantages:

Firstly, one fundamental limitation to any nondestructive

three-dimensional diffraction technique is the overlap of

diffraction signals. Illuminating a 1 mm thick sample

comprising domains with a volume of (1 mm)3 with a beam of

100
 100 mm implies that the beam simultaneously interacts

with 107 domains. In comparison, grain mapping methods like

3DXRD are limited to around 3000 simultaneously illumi-

nated grains (Sørensen et al., 2012). With dark-field micro-

scopy, domains diffracting in directions outside the solid angle

defined by the NA on the unit sphere are invisible. This solid

angle is 
 ¼ NA��=ð4�Þ. Let M be the multiplicity of the

relevant reflection(s) within the 2� range covered. Then the

likelihood of observing a randomly oriented domain is

p ¼ 
M. For the ID06 setup mentioned above and M ¼ 10, p

is of order 10�8. Furthermore, in this case the field of view of

the microscope will correspond to 1/10 of the thickness of the

sample and the number of pixels on the detector is 106. It

appears that, for a random distribution of orientations of the

domains, the likelihood of spot overlap is negligible. For even

smaller domains (100 nm), it appears one may be able to

isolate one domain out of a billion.

Secondly, when rotating about the scattering vector, Q, the

strongly asymmetric ð�; �) resolution function also rotates.

Given the formalism provided in this paper, one may attempt

to construct super-resolution algorithms (e.g. Richter et al.,

2016) aiming for an angular resolution close to the Darwin

width in both directions. This would provide unprecedented

data for modelling local disorder, e.g. dislocation densities.

On the other hand, for grains and domains exhibiting a

large degree of mosaic spread, the small NA of CRLs implies

that the generation of a reciprocal-space-filling map becomes

tedious. For such cases again diffractive optics are an inter-

esting alternative.

It should be emphasized that the approach outlined above

only probes reciprocal space in the vicinity of one scattering

vector. Hence, the full orientation of the domains is not

determined, and only three out of the nine components of the

displacement gradient tensor are monitored. To provide a full

description, the mapping has to be repeated for at least two

other non-collinear reflections associated with the same

domain. This is currently not possible without re-mounting the

sample, owing to the restricted travel of the � and � axes.

In outlook, we remark that the product of direct-space and

reciprocal-space resolution is proportional to � for both

refractive and diffractive optics. Very high energy X-rays may

therefore be a route forward for future six-dimensional
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microscopy approaches, combining modelling in both direct

and reciprocal space. We also remark that the concept of a

dark-field neutron microscope and its implementation in a

time-of-flight operation was proposed by Poulsen et al. (2014).

Similar to the X-ray case, dark-field neutron microscopy may

be seen as part of a multi-scale approach complementary to

neutron absorption tomography and neutron diffraction

tomography of grains (Peetermans et al., 2014; Cereser et al.,

2017).

8. Conclusion

A comprehensive formalism has been established for oper-

ating a dark-field X-ray microscope. With variation of the

wavelength, focal distance, magnification and range of

continuous scans, the microscope provides ample possibilities

for optimizing spatial, angular and time resolution, field of

view etc. For a small incoming beam divergence, the reciprocal

space resolution element is a very anisotropic platelet with a

surface normal along the optical axis of the diffracted beam. In

order to make a disjunct space-filling sampling, the resolution

function should be approximately a box function in all direc-

tions. This can be achieved by inserting a square slit in front of

the CRL and by sweeping in qrock. By a sweep of a sufficiently

large range, the anisotropy can be removed. A composite map

of a larger fraction of reciprocal space can be obtained by

scanning in ð�; �; 2�Þ while conserving integrated intensity.

For voxels away from the optical axis additional shifts apply

[cf. equations (27) and (28)], as one is probing different

regions of reciprocal space when varying positions y and z in

the sample at fixed angles �; 2�. Potentially there are also

changes in intensity due to vignetting.

APPENDIX A

Angle calculations for the HXRM instrument

The purpose of this appendix is to derive all angle and reso-

lution calculations in the most general setting. These are then

considered for the simplified case of nominal operating

conditions as discussed in the main paper.

We start with the definition of the scattering geometry,

followed by the treatment of the resolution in reciprocal space

due to the divergence and energy bandwidth of the incident

beam and the objective lens’s angular acceptance. Next, we

consider the sample rotations and the displacements in reci-

procal space that small angular movements correspond to –

these are related to the step size in scans designed to cover

reciprocal space in a disjunct and space-filling fashion.

These calculations do not take into account the imaging

geometry of the experiment. Instead, we consider only

geometrical vectors, kin and kout, through the centre of rota-

tion of the goniometer and along the optical axis of the

objective lens.

The imaging geometry, where points of interest are not

located on the optical axis but away from the instrument’s

centre of rotation, will be discussed in the following section.

The geometry of the dark-field X-ray microscope is sket-

ched in Fig. 7. The geometry has been inspired by existing

3DXRD systems (Poulsen et al., 2001; Hefferan et al., 2012;

Poulsen, 2012; Schmidt, 2014), as we aim to perform 3DXRD

for initial sample characterization on the same instrument, and

to directly import orientation matrices from 3DXRD data

analysis into the dark-field X-ray microscopy experiment.

The sample is mounted on top of four rotation stages as

shown in Fig. 7. As reference we utilize the laboratory coor-

dinate system, with the x axis along the incident beam and the

z axis vertical. From bottom, i.e. the laboratory coordinate

system, to top, the sample goniometer axes are the ‘base tilt’ �

about y (left handed), the ‘sample azimuth’ ! about z, and the

‘sample tilts’ � about x and � about y (left handed).

The detector moves in two directions such that the incident

and diffracted beams form the scattering angle 2� (see Fig. 7).

Additionally, the detector can be rotated about the incident

beam (‘detector azimuth’ �) to allow for the observation of

oblique reflections, for example when the sample orientation

is pre-defined by sample environments such as load frames for

stress–strain studies or electric fields for ferroelectrics.

The convention for � to rotate about the incident beam was

chosen for compatibility with 3DXRD (Poulsen et al., 2001;

Hefferan et al., 2012; Poulsen, 2012; Schmidt, 2014).

Compared to 3DXRD, we introduce additional sample

rotations. In 3DXRD, the base tilt � and the sample tilts � and

� are generally assumed to be zero, such that the only

remaining axis, !, is perpendicular to the incident beam.

For topo-tomo-type experiments (Ludwig et al., 2001) it is

necessary to rotate the sample about the scattering vector. For

this, as we will see below, it is most convenient to operate with

a vertical scattering plane, i.e. � ¼ 0, and in bisecting

geometry, � ¼ �. We refer to this as the ‘nominal working

point’. In this case ! rotates about the scattering vector, i.e.

the diffraction condition is fulfilled independently of !.
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Figure 7
Geometry of the HXRM instrument. All rotations are shown at a positive
angle. Note that the � and � rotations are left handed, whereas all other
rotations are right handed. The origin of the laboratory coordinate system
is located at the centre of rotation of the goniometer.



The � and � stages are implemented as circle segments with

moderate travel, j�j; j�j< 10�.

The resulting configuration is thus very similar to the ‘4S +

2D’ six-circle diffractometer (sometimes referred to as ‘PSIC’

diffractometer) described by You (1999). Note, however, the

different configuration of the detector axes. At ! ¼ � ¼ 0 the

geometry is identical to the four-circle diffractometer

described by Busing & Levy (1967).

The different rotation stages of the instrument are treated

in the usual way (Busing & Levy, 1967; Vlieg, 1997; You, 1999)

as transformations between a series of coordinate systems.

Each rotation stage is represented by a rotation matrix.

A1. Laboratory coordinate system and incident beam

The laboratory coordinate system is chosen with x along the

direction of the incident X-ray beam, z vertical and y hori-

zontally to port (see Fig. 7). Vectors in the laboratory coor-

dinate system are marked with the subscript ‘lab’.

The incident beam vector is thus given by

kin ¼ kx̂xlab; ð35Þ

where k ¼ 2�=� and � is the X-ray wavelength.

The bandwidth of the beam and its divergence will be

treated below.

A2. Detector

The detector moves in two directions, 2� and �, as shown in

Fig. 7.

Let Rxð�Þ, Ryð�Þ and Rzð�Þ be right-handed rotation

matrices about the x, y and z axes, respectively:

Rxð�Þ ¼

1 0 0

0 cosð�Þ � sinð�Þ

0 sinð�Þ cosð�Þ

2

4

3

5; ð36Þ

Ryð�Þ ¼

cosð�Þ 0 sinð�Þ

0 1 0

� sinð�Þ 0 cosð�Þ

2

4

3

5; ð37Þ

Rzð�Þ ¼

cosð�Þ � sinð�Þ 0

sinð�Þ cosð�Þ 0

0 0 1

2

4

3

5: ð38Þ

In the laboratory coordinate system, the diffracted beam is

then given by

kout ¼ kRxð�ÞRyð�2�Þ x̂xlab ¼ k

cosð2�Þ

� sinð2�Þ sinð�Þ

sinð2�Þ cosð�Þ

2

4

3

5

lab

: ð39Þ

This in turn gives the scattering vector as

Q ¼ kout � kin ¼ k

cosð2�Þ � 1

� sinð2�Þ sinð�Þ

sinð2�Þ cosð�Þ

2

4

3

5

lab

; ð40Þ

with jQj ¼ 2k sinð�Þ for all values of �.

The Bragg condition, jQj ¼ 2k sinð�BÞ, thus determines

� ¼ �B. Furthermore, the instrument generally operates in the

vertical scattering plane such that � ¼ 0. These two conditions

fully determine the ‘nominal’ detector position.

A3. Reference coordinate system

In order to determine the longitudinal and transverse

components of the resolution function, we define directions

parallel and perpendicular to the vector Q0 [equation (40)]

(see Fig. 2):

q̂qrock ¼ q̂qroll 
 q̂qk ¼

cosð�Þ

� sinð�Þ sinð�Þ

cosð�Þ sinð�Þ

2

4

3

5

lab

; ð41Þ

q̂qroll ¼
q̂qk 
 k̂kin

k cosð�Þ
¼

0

cosð�Þ

sinð�Þ

2

4

3

5

lab

; ð42Þ

q̂qk ¼
Q0

Q0

�

�

�

�

¼

� sinð�Þ

� sinð�Þ cosð�Þ

cosð�Þ cosð�Þ

2

4

3

5

lab

: ð43Þ

Under nominal working conditions, � ¼ 0, the ‘roll’ direction

is along the laboratory y axis, q̂qroll ¼ q̂qlab, whereas q̂qk and q̂qrock
are within the ðxzÞlab plane, and the reference coordinate

system is inclined by �B (left-handed rotation about y) with

respect to the laboratory coordinate system.

A4. Reciprocal-space resolution

We consider the reciprocal-space resolution by adding small

perturbations to the horizontal and vertical components of the

incident (��h;v) beam vector, and to the components parallel

and perpendicular to the scattering plane (�
?;k) of the

scattered beam vector. Furthermore, the beam will have a

finite bandwidth. We treat this in the form of a longitudinal

perturbation, " ¼ �E=E ¼ �k=k, to both wavevectors.

Note that ��h;v and �
k;? are uncorrelated, whereas the

longitudinal perturbations are fully correlated for elastic

scattering as considered here. In the laboratory coordinate

system, the deviations from the nominal incident and

diffracted wavevectors are thus

�kin ¼ k

"

��h
��v

0

@

1

A

lab

; ð44Þ

�kout ¼ kRxð�ÞRyð�2�Þ

"

�
?

�
k

0

B

@

1

C

A

lab

ð45Þ

¼ k

cosð2�Þ"� sinð2�Þ�
k

cosð�Þ�
? � sinð�Þ½cosð2�Þ�
k þ sinð2�Þ"�

sinð�Þ�
? þ cosð�Þ½cosð2�Þ�
k þ sinð2�Þ"�

8

>

<

>

:

9

>

=

>

;

lab

;

ð46Þ

yielding the deviation from the nominal scattering vector
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�Q ¼ �kout ��kin ð47Þ

¼ k

½cosð2�Þ � 1�"� sinð2�Þ�
k

cosð�Þ�
? � sinð�Þ½cosð2�Þ�
k þ sinð2�Þ"� ���h

sinð�Þ�
? þ cosð�Þ½cosð2�Þ�
k þ sinð2�Þ"� ���v

8

>

<

>

:

9

>

=

>

;

lab

:

ð48Þ

Finally, we express equation (48) in terms of the reference

directions [equations (41)–(43)]:

�Qrock ¼ �Q � q̂qrock ð49Þ

¼ �
Q0

�

�

�

�

2
��k þ�
k
	 


; ð50Þ

�Qroll ¼ �Q � q̂qroll ð51Þ

¼ �
Q0

�

�

�

�

2 sinð�Þ
��? ��
?ð Þ; ð52Þ

�Qk ¼ �Q � q̂qk ð53Þ

¼
Q0

�

�

�

�

2
2"þ cotð�Þ ���k þ�
k

	 
� �

; ð54Þ

where jQ0j ¼ 2k sinð�Þ. Furthermore, ��k ¼ cosð�Þ��v�

sinð�Þ��h is the projection of the incident beam’s divergence

onto the scattering plane, and ��? ¼ sinð�Þ��v þ cosð�Þ��h
is the projection perpendicular to the scattering plane. Note

that the result depends on the detector position only and is

independent of the sample angles.

At the nominal working point, � ¼ 0, the expressions

simplify to (��?;k ¼ ��h;v)

�Qrock ¼ �
Q0

�

�

�

�

2
��v þ�
k
	 


; ð55Þ

�Qroll ¼ �
Q0

�

�

�

�

2 sinð�Þ
��h ��
?ð Þ; ð56Þ

�Qk ¼
Q0

�

�

�

�

2
2"þ cotð�Þ ��v þ�
k

	 
� �

: ð57Þ

When �
 and �� describe the width of a statistical distri-

bution, e.g. the Gaussian profile of a CRL’s acceptance, then

the corresponding terms should be added in quadrature to

estimate the width in reciprocal space:

ð�QrockÞ
2
¼

Q0

�

�

�

�

2

4
ð��vÞ

2
þ ð�
kÞ

2
� �

; ð58Þ

ð�QrollÞ
2
¼

Q0

�

�

�

�

2

4 sin2ð�Þ
ð��hÞ

2
þ ð�
?Þ

2
� �

; ð59Þ

ðQkÞ
2
¼

Q0

�

�

�

�

2

4
4"2 þ cot2ð�Þ ð��vÞ

2
þ ð�
kÞ

2
� �� �

: ð60Þ

These equations can be used for either r.m.s. or FWHMwidths

as long as one or the other is used consistently.

In particular, when the scattered beam acceptance is given

by the Gauss aperture with r.m.s. width a [equation (7)],

�
h;v ¼ �
k;? ¼ a and

ð�QrockÞ
2
¼

Q0

�

�

�

�

2

4
ð��vÞ

2
þ 2

a

� �

; ð61Þ

ð�QrollÞ
2
¼

Q0

�

�

�

�

2

4 sin2ð�Þ
ð��hÞ

2
þ 2

a

� �

; ð62Þ

ð�QkÞ
2
¼

Q0

�

�

�

�

2

4
4"2 þ cot2ð�Þ ð��vÞ

2
þ 2

a

� �� �

: ð63Þ

Note that the equations given above describe contributions

to the resolution function in the reference coordinate system.

For highly asymmetric cases, for example a tightly collimated

incident beam and an objective with large numerical aperture,

it is more natural to describe the resolution in a coordinate

system parallel and perpendicular to the scattered beam axis

(see Fig. 8).

By inspecting Fig. 8, we see that the corresponding direc-

tions should be perpendicular (q̂q2�) and parallel (q̂qrock0) to k̂kout.

The q̂q2� direction corresponds to a change of the scattering

angle 2� and thus to a movement parallel to the surface of the

Ewald sphere. The q̂qroll direction is perpendicular to the

scattering plane shown in Fig. 8 and therefore also parallel to

the Ewald sphere. Consequently, the q̂qrock0 direction, being

perpendicular to q̂q2� and q̂qroll, is perpendicular to the surface of

the Ewald sphere:

q̂q2� ¼
1

k

@Q

@2�
¼

1

k

@Q

@
k
¼

� sinð2�Þ

� sinð�Þ cosð2�Þ

cosð�Þ cosð2�Þ

2

6

4

3

7

5

lab

ð64Þ

¼ cosð�Þq̂qk � sinð�Þq̂qrock: ð65Þ

This axis is inclined by � with respect to q̂qk. Defining the

remaining axis to be orthogonal to q̂q2�,

q̂qrock0 ¼ sinð�Þq̂qk þ cosð�Þq̂qrock ð66Þ

¼

cosð2�Þ

� sinð�Þ sinð2�Þ

cosð�Þ sinð2�Þ

2

6

4

3

7

5

lab

; ð67Þ

we find

�Qrock0 ¼ Q0

�

�

�

� � cosð�Þ��k þ sinð�Þ"
� �

; ð68Þ
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Figure 8
Contribution of the incident beam’s divergence, ��v, and objective lens’s
acceptance, �
v, to the in-plane resolution. An offset to the scattering
angle 2� as given by�
v corresponds to a movement along the surface of
the Ewald sphere, indicated by the red dashed line.



�Q2� ¼
Q0

�

�

�

�

2 sinð�Þ
� cosð2�Þ��k þ sinð2�Þ"þ�
k
� �

: ð69Þ

At the nominal working point, � ¼ 0, this simplifies to

�Qrock0 ¼ Q0

�

�

�

� � cosð�Þ��v þ sinð�Þ"
� �

; ð70Þ

�Q2� ¼
Q0

�

�

�

�

2 sinð�Þ
� cosð2�Þ��v þ sinð2�Þ"þ�
k
� �

: ð71Þ

Note that �Qrock0 does not contain contributions from �
k.

Thus, for cases with a highly collimated, monochromatic

incident beam and an objective with large numerical aperture

where��h;v ’ " 	 �
k;?, the resolution in the q̂qrock0 direction

is much sharper than that in the two other directions,

�Qrock0 	 �Qroll ’ �Q2�.

Again, in the case of statistical distributions, the different

contributions are added in quadrature:

ð�Qrock0Þ
2
¼ Q0

�

�

�

�

2
cos2ð�Þð��vÞ

2
þ sin2ð�Þ"2

� �

; ð72Þ

ð�Q2�Þ
2
¼

Q0

�

�

�

�

2

4 sin2ð�Þ
cos2ð2�Þð��vÞ

2
þ sin2ð2�Þ"2 þ ð�
kÞ

2
� �

:

ð73Þ

A5. Sample

A reciprocal space vector G� in the � coordinate system,

rigidly mounted on top of the � rotation stage, is then given by

G� ¼ UB

H

K

L

0

@

1

A; ð74Þ

where H, K and L are the usual Miller indices, B describes the

reciprocal lattice of the sample, and U describes the orienta-

tion of the sample relative to the � coordinate system (Busing

& Levy, 1967; You, 1999).

In the laboratory coordinate system, the same vector is

given by

Glab ¼ Ryð��ÞRzð!ÞRxð�ÞRyð��ÞG�; ð75Þ

and the diffraction condition is

Q ¼ G; ð76Þ

which can be calculated in any chosen coordinate system. We

choose to perform the calculation in the � coordinate system.

The goniometer settings for a given reciprocal vector G�

can be found by back-transforming the scattering vector Q

[equation (40)] into the � coordinate system:

Q� ¼ Ryð�ÞRxð��ÞRzð�!ÞRyð�ÞQlab: ð77Þ

The resulting, lengthy expression is simplified considerably by

setting angles to the nominal operating point, � ¼ � and

� ¼ 0:

Q� ¼ 2k sinð�Þ

sinð�Þ cosð�Þ

sinð�Þ

cosð�Þ cosð�Þ

2

4

3

5

�

: ð78Þ

In particular, we see that in this caseQ� does not depend on !,

i.e. ! rotates about the scattering vector, as required for topo-

tomo scans. The goniometer settings for a desired Bragg

reflection G are easily found by setting Q� ¼ UBG and

solving equation (78) for � and �:

tanð�Þ ¼
Q�;x

Q�;z

; ð79Þ

tanð�Þ ¼
Q�;y

ðQ2
�;x þQ2

�;zÞ
1=2

: ð80Þ

The atan2ðy; xÞ function can be used instead of atanðy=xÞ to

avoid division by zero and to determine the correct sectors of

� and �. Note, however, that our goniometer implementation

restricts both angles to values below 10�.

A6. Practical example: correcting for nonzero g

A case that often occurs in practice is that a reflection is

found at scattering angle 2� ¼ 2�0 but at nonzero detector

azimuth � ¼ �0 6¼ 0 and for arbitrary positions of � ¼ �0,

! ¼ !0, � ¼ �0 and � ¼ �0. In order to perform azimuthal

scans, the ! axis has to be made parallel to G, i.e. � ¼ 0 and

� ¼ �.

The desired settings of the instrument are found in three

steps:

(i) First, we determine the scattering vector, Q, from

equation (40).

(ii) Next, Q� is found by transforming this vector into the �

coordinate system using equation (77).

(ii) Finally, the instrument has to be set to 2� ¼ 2�0, � ¼ 0

and � ¼ 2�0=2. The remaining angles � and � are given by

equations (79) and (80) using the vectorQ� determined above.

Note that this procedure can be carried out without

knowing the UB matrix, and even without knowing k. It does,

however, rely on the correct zero positions of all angles.

A7. Scanning

In order to measure reciprocal-space-filling non-over-

lapping maps of intensity, the instrument angles have to be

scanned – ideally along mutually perpendicular axes.

Here we distinguish two cases:

Pole figure maps. Pole figures are obtained by scanning

along mutually perpendicular sample axes while the detector

is kept at the scattering angle 2� corresponding to the chosen

Bragg reflection. Typical choices for the sample axes are � and

�, or � and a combined movement of � and � – the step size in

the latter can be adjusted to take into account the asymmetry

of the resolution function. As the scans are performed at fixed

jQj, q̂qrock and q̂qroll can be used as basis.

Three-dimensional reciprocal-space maps. In addition to the

sample’s orientation, the scattering angle is scanned to

monitor the stress–strain state of the sample. As we have seen
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above, the resolution is highly asymmetric. Therefore q̂qrock0 ,

q̂qroll and q̂q2� form a convenient basis for three-dimensional

reciprocal-space scans.

We start by projecting the scan directions of the individual

instrument axes onto the two reference coordinate systems

mentioned above. To leading order, these are given by the

partial derivatives of Glab with respect to the sample angles, �,

!, � and �:

1

Q0

�

�

�

�

@G

@2�
¼

1

2
cotð�Þq̂qk � q̂qrock
� �

ð81Þ

¼
1

2 sinð�Þ
q̂q2�; ð82Þ

1

Q0

�

�

�

�

@G

@�
¼ � cosð�Þq̂qroll; ð83Þ

1

Q0

�

�

�

�

@Q

@�
¼ cosð�Þq̂qrock þ sinð�Þ sinð�Þq̂qroll; ð84Þ

1

Q0

�

�

�

�

@Q

@!
¼ � sinð�Þ cosð�Þq̂qrock

þ cosð�Þ cosð�Þ sinð�Þ � sinð�Þ cosð�Þ½ �q̂qroll; ð85Þ

1

Q0

�

�

�

�

@Q

@�
¼ � cosð!Þ sinð�Þ sinð�Þ � cosð�Þ sinð!Þ½ �q̂qrock

þ
�

cosð�Þ cosð�Þ cosð!Þ

þ sinð�Þ cosð�Þ cosð!Þ sinð�Þ � sinð�Þ sinð!Þ½ �
�

q̂qroll;

ð86Þ

1

Q0

�

�

�

�

@Q

@�
¼
�

cosð�Þ cosð�Þ cosð!Þ þ sinð�Þ½cosð�Þ sinð�Þ

� cosð�Þ sinð�Þ sinð!Þ�
�

q̂qrock

þ
�

sinð�Þ
	

� cosð�Þ cosð�Þ þ cotð�Þ sinð�Þ½ � sinð�Þ

þ cosð!Þ sinð�Þ þ sinð!Þ½cosð�Þ cotð�Þ

þ cosð�Þ sinð�Þ�
�

cosð�Þ



q̂qroll; ð87Þ

which simplify at the nominal working point (� ¼ � and

� ¼ 0) to

1

Q0

�

�

�

�

@Q

@2�
¼

1

2
cotð�Þq̂qk � q̂qrock
� �

ð88Þ

¼
1

2 sinð�Þ
q̂q2�; ð89Þ

1

Q0

�

�

�

�

@Q

@�
¼ � cosð�Þq̂qroll; ð90Þ

1

Q0

�

�

�

�

@Q

@�
¼ q̂qrock; ð91Þ

1

Q0

�

�

�

�

@Q

@!
¼ 0; ð92Þ

1

Q0

�

�

�

�

@Q

@�
¼ � sinð!Þq̂qrock þ cosð!Þq̂qroll; ð93Þ

1

Q0

�

�

�

�

@Q

@�
¼ cosð�Þ cosð!Þq̂qrock þ sinð!Þq̂qroll

� �

: ð94Þ

We see in particular that ð@G=@!Þ vanishes for � ¼ � and

� ¼ 0 as expected, as under nominal working conditions !

does not change the scattering vector.

Regrouping these contributions by reference direction,

the variation of the scattering vector due to small angular

changes is then (�Q ¼ �Qrockq̂qrock þ�Qrollq̂qroll þ�Qkq̂qk ¼

�Qrock0 q̂qrock0 þ�Qrollq̂qroll þ�Q2�q̂q2�),

�Qrock

Q0

�

�

�

�

¼ �
1

2
ð2� � 2�0Þ þ ð�� �0Þ

� sinð!0Þð�� �0Þ þ cosð�0Þ cosð!0Þð�� �0Þ; ð95Þ

�Qroll

Q0

�

�

�

�

¼ � cosð�0Þð�� �0Þ þ cosð!0Þð�� �0Þ

þ cosð�0Þ sinð!0Þð�� �0Þ; ð96Þ

�Qk

Q0

�

�

�

�

¼
1

2
cotð�0Þð2� � 2�0Þ; ð97Þ

�Qrock0

Q0

�

�

�

�

¼ cosð�0Þ ð�� �0Þ � sinð!0Þð�� �0Þ
�

þ cosð�0Þ cosð!0Þð�� �0Þ
�

; ð98Þ

�Q2�

Q0

�

�

�

�

¼
1

2 sinð�0Þ
ð2� � 2�0Þ: ð99Þ

We noted above that under certain experimental conditions

the resolution along q̂qrock is much sharper than that along q̂qroll.

In this case, it is best to perform scans along these directions,

i.e. to scan � along q̂qrock, and a linear combination of � and �

along q̂qroll. This can be achieved by a two-motor scan with

(using � ¼ � and � ¼ 0)

�� ¼ cosð!Þ
�Qroll

Q0

�

�

�

�

; ð100Þ

�� ¼
sinð!Þ

cosð�Þ

�Qroll

Q0

�

�

�

�

: ð101Þ

A8. Relation between angles v and g

As shown in Fig. 9, the scattering vector Q will move away

from the Ewald sphere (green) when rotating in �. Let the

nearest point on the Ewald sphere beH. With these definitions

H ¼

� sinð�BÞ

� cosð�BÞ sinð�Þ

cosð�BÞ cosð�Þ

2

4

3

5; ð102Þ
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Q ¼

cosð�BÞ 0 sinð�BÞ

0 1 0

� sinð�BÞ 0 cosð�BÞ

2

6

4

3

7

5

0

sinð�Þ

cosð�Þ

2

6

4

3

7

5
ð103Þ

¼

sinð�BÞ cosð�Þ

� sinð�Þ

cosð�BÞ cosð�Þ

2

6

4

3

7

5
: ð104Þ

Hence,

cosð�Þ ¼ H �Q ð105Þ

¼ sin2ð�BÞ cosð�Þ þ cosð�BÞ sin
2ð�Þ þ cos2ð�BÞ cos

2ð�Þ:

ð106Þ

Expansion to second order gives

� ¼ 1� cosð�BÞ
� �

�j j: ð107Þ

A9. Imaging geometry

Following the discussion of beams through the centre of

rotation of the instrument and along the optical axis of the

objective lens, we now turn to the mathematical treatment of

the imaging geometry.

We consider a new coordinate systems for volume elements

within the sample and pixels on the detector. This coordinate

system originates at the centre of rotation of the goniometer.

The x axis is taken to be along the diffracted beam direction

kout [equation (39)], and y is perpendicular to the scattering

plane, as q̂qroll of equation (42) (see Fig. 10).

x̂xs ¼
1

k
kout ¼

cosð2�Þ

� sinð�Þ sinð2�Þ

cosð�Þ sinð2�Þ

2

4

3

5

lab

; ð108Þ

ŷys ¼ q̂qroll ¼

0

cosð�Þ

sinð�Þ

2

4

3

5

lab

; ð109Þ

ẑzs ¼ x̂xs 
 ŷys ¼

� sinð2�Þ

� sinð�Þ cosð2�Þ

cosð�Þ cosð2�Þ

2

4

3

5

lab

: ð110Þ

Voxels within the sample plane at rs ¼ ð0; ys; zsÞ are

projected onto detector pixels at rd ¼ ðL;�M ys;�M zsÞ,

where L is the distance from the origin to the detector plane

and M ¼ MCRL Md is the overall magnification of the

system. Alternatively, the positions yd and zd can be measured

on the scintillator screen of the detector, without taking into

account the visual magnificationMd. In this caseM ¼ MCRL.

For small xs 	 d1 and sufficient depth of field (see main

text), this can also be assumed for voxels outside of the sample

plane xs 6¼ 0. Note, however, that this may not be the case for

objective lenses with very short working distance d1 and large

numerical aperture.

Following Simons et al. (2017), we note that rays connecting

these two points pass through the objective lens at an angular

offset,

�
? ¼ ��ys ¼ �
�

M
yd; ð111Þ

�
k ¼ ��zs ¼ �
�

M
zd; ð112Þ

leading to an offset in the scattering vector as a function of

detector pixel,

Qshift ¼
k�

M

sinð2�Þzd

� cosð�Þyd þ cosð2�Þ sinð�Þzd

� sinð�Þyd � cosð2�Þ cosð�Þzd

2

6

4

3

7

5

lab

ð113Þ

¼
� Q0

�

�

�

�

2M
cotð�Þzd q̂qrock � q̂qk

	 


�
1

sinð�Þ
ydq̂qroll

� �

: ð114Þ

In other words
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Figure 10
Sample and detector coordinates. x is along the diffracted beam axis, and
y is perpendicular to the scattering plane. A voxel at position
rs ¼ ðxs ’ 0; ys; zsÞ is projected onto the detector pixel at
rd ¼ Lx̂x�Mrs ¼ ðL; yd; zdÞ, where L is the distance from the centre
of rotation to the detector plane.

Figure 9
Relation between scattering vector Q and closest vector on the Ewald
sphere H, when scanning in �. See text.



�Qshift;rock

Q0

�

�

�

�

¼
�

2M
cotð�Þzd; ð115Þ

�Qshift;roll

Q0

�

�

�

�

¼ �
�

2M

1

sinð�Þ
yd; ð116Þ

�Qshift;k

Q0

�

�

�

�

¼ �
�

2M
cotð�Þzd: ð117Þ
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