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ABSTRACT

The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes
occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic
flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we
report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles,
we adopt a two-component flow structure of wind and clumps using two “beta” velocity laws. While individual
bow shocks tend to generate double-horned emission line profiles, a group of bow shocks can lead to line profiles
with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the
interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps.
Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the
wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in
terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence
of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their
impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and
their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump
structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.
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Online-only material: color figures

1. INTRODUCTION

The subject of X-ray production in massive star winds
continues to be an evolving field of study. The superionization
seen at UV wavelengths of OB stars were best explained by
a model that had a source of X-rays in the winds (Cassinelli
et al. 1978; Cassinelli & Olson 1979). Initial observations by
the Einstein observatory made the important discovery that
essentially all O-stars were X-ray sources (Harnden et al. 1979;
Seward et al. 1979). A key finding to emerge from these early
observations is that the observed X-ray luminosities are roughly
correlated with the bolometric luminosities as LX ≈ 10−7LBol

(e.g., Cassinelli et al. 1981). Additional more extensive studies
confirmed the relationship (e.g., Berghoefer et al. 1997; Nazé
et al. 2011), although the basis of the relationship continues to
be a point of investigation (e.g., Owocki & Cohen 1999; Owocki
et al. 2011). In addition, the majority of OB stars display soft X-
ray emissions with temperatures kT < 1 keV (e.g., Berghoefer
et al. 1996; Güdel & Nazé 2009).

Two pictures for the X-ray emission from hot stars arose: one
involving a coronal zone at the base of a cool wind (Cassinelli
& Olson 1979) and one involving shocks that form by line-
driven wind instabilities (Lucy & White 1980; Lucy 1982).
The coronal model as the sole source of the observed X-ray
emission was quickly ruled out based on analyses of the earliest
higher spectral resolution observations using the Solid State
Spectrometer (SSS) on the Einstein observatory. Cassinelli &
Swank (1983) found that the predicted large X-ray optical depths
expected for a base coronal source of X-rays were incompatible
with the observed SSS spectra. They further suggested that these
winds consist of many shock fragments to explain the lack of
significant X-ray variability.

Studies of X-ray emissions from OB stars have focused
primarily on exploring the wind-driven instabilities (or line de-
shadowing instability) as a process of producing a distribution
of wind shocks (e.g., Owocki et al. 1988). A detailed picture
of the expected X-ray production from these wind shocks was
given by Feldmeier (1995), and Feldmeier et al. (1997) showed
that a wide range of temperatures could be produced in a planar
shock front.

We are now in an era of high spectral resolution X-ray
astronomy with a few dozen massive stars having been studied
in long pointed observations (e.g., Walborn et al. 2009). Better
quality data have led to a host of new questions concerning the
physics of X-ray generation in massive star winds (e.g., Waldron
& Cassinelli 2007, hereafter WC07). Most of the X-ray line
emission is clearly formed within the winds. A triad of lines
from He-like ions (forbidden, intercombination, and resonance
or “fir” lines) provide direct information about the formation
radius of X-ray line emission (Kahn et al. 2001; Waldron &
Cassinelli 2001; Leutenegger et al. 2006). Supergiant winds
typically show that the lower energy ion stages such as O vii

tend to form near or above 10 R∗, intermediate energy ions
(e.g., Ne ix and Mg xi) form deeper at ≈3 to 8 R∗, and high
energy ions such as Si xiii and S xv form relatively close to
the star (<2R∗). Waldron & Cassinelli (2001) suggested that
these differences in depths could perhaps be explained from
considerations of wind absorption effects, since the cool wind
opacity scales as κ ∝ λ3. Thus, winds are more transparent
at shorter wavelengths (higher energies). Waldron & Cassinelli
(2001) also noticed that the location of line formation for the
He-like ions appeared to correlate with the respective radii of
optical depth unity for the X-ray photoabsorption (cf. Cassinelli
et al. 2001; Miller et al. 2002; Oskinova et al. 2006; WC07).
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The conclusion is that hot plasma is spatially distributed in the
wind flow.

One surprising result from the high-resolution X-ray spec-
troscopy data is the general symmetry of broad lines and the
frequent absence of line profiles with significantly blueshifted
peak emissions. It had been expected that the wind X-ray lines
would be generally broad yet skewed to the short wavelength
(or “blueward”) side of the line, with the skewness being a con-
sequence of the fact that for an expanding wind, the column
depth of photoabsorption to the flow on the far side of the star is
larger than on the near side, resulting in differential attenuation
between the redshifted and blueshifted hemispheres (MacFar-
lane et al. 1991; Ignace 2001; Owocki & Cohen 2001). So the
observation of frequently symmetric and unshifted lines was
unexpected for the massive winds of OB supergiants. For these
stars WC07 found that ≈60% of emission lines are broad with
a mean line width (half-width at half-maximum) of 0.3–0.5 of
the wind terminal speed (V∞), and in excess of 75% of the lines
have line shifts that lie within ±0.2V∞ of line center.

As suggested by Waldron & Cassinelli (2001), the simplest
way to account for the rather symmetric and unshifted X-ray
line profiles is that the wind is more optically thin to X-rays
than suggested by the mass-loss rates. A variety of models have
emerged to explain the line symmetry problem by studying
wind clumping and wind porosity effects. Clumping in dense
Wolf–Rayet winds has been known for many years (Moffat et al.
1988), and there is direct evidence of clumping among some O-
stars (e.g., Lepine & Moffat 2008). Clumping can be categorized
as ranging from micro-clumping (e.g., Hillier 1991; Hamann &
Koesterke 1998) to macro-clumping (e.g., Feldmeier et al. 2003;
Brown et al. 2004; Oskinova et al. 2004, 2006, 2007; Owocki
& Cohen 2006) or a mix of the two. Micro-clumping explicitly
assumes all clumps are optically thin at all wavelengths, which
need not be the case for macro-clumping.

Reductions in the mass-loss rate Ṁ by a factor of 10 or more
appeared to be supported by Far-Ultraviolet Spectroscopic Ex-
plorer observations of P v lines from several hot stars (Fullerton
et al. 2006). Although this would certainly make the winds more
thin to X-rays, this severe reduction in Ṁ can be eliminated ei-
ther by accounting for wind “macro-clumping” (Oskinova et al.
2007) or by including the effects of X-ray and ultraviolet radi-
ation in reducing the fractional abundance of P v (Waldron &
Cassinelli 2010).

Other models that have been proposed to explain the sym-
metry of the X-ray lines include the effects of resonance line
scattering on line shapes (Ignace & Gayley 2002), and there is
support in one case where such effects are applicable (Leuteneg-
ger et al. 2007); two-component wind structures where the po-
lar wind component is impeded by surface magnetic structures
(Mullan & Waldron 2006); and models requiring magnetic fields
and collisionless shocks (Pollock 2007).

Resolved X-ray lines have served as an impetus to more
accurately understand the nature of the hot plasma component.
Encoded within these detailed X-ray emission line shapes is
the required information both about the formation process
of the line (i.e., the density and temperature which determines
the emissivity) and the vector velocity field. Although these
various approaches have certainly had successes in trying
to decode these line profiles, there remain open questions
about understanding the temperature and emission measure
distributions, and the radial location of hot plasma formation
and maintenance. In particular, previous considerations of line
profiles from clumpy/porous winds (e.g., Owocki & Cohen

2006; Oskinova et al. 2007) have focused on issues of clump
geometry (pertaining to photon escape) and clump distributions
(pertaining volume filling factors), but these have not self-
consistently included temperature distributions implied by the
structures themselves, as for example in planar shocks. Even
smooth wind considerations have been geometrical in nature
(e.g., Owocki & Cohen 2001; Ignace & Gayley 2002). The
models presented here have the benefit of self-consistently
including the detailed temperature distribution of the shocked
structures, within the context of the assumed model.

The underlying model for clump bow shock structure was
presented in Cassinelli et al. (2008, hereafter Paper I), who
considered the shape, temperature, and density of bow shocks
that form around wind clumps. In this second paper of the
series, we are explicitly interested in the line profiles that
form from these bow shock structures and how features of the
clump bow shock paradigm may contribute to understanding
the observed shapes of massive star X-ray line profiles. In
Section 2, the results of Paper I are briefly reviewed. In Section 3,
line profiles are calculated and discussed for individual clump
bow shocks, emphasizing the diversity of line shapes that can
result. Section 4 describes line profiles that from an ensemble of
clumps, including the limiting case of many clumps and the case
of a discrete ensemble of randomly placed clumps. Section 5
presents concluding remarks about these results and needed
future areas of study. The Appendix details considerations of the
temperature distribution in the wind for our model prescription.

2. MODEL DESCRIPTION

Our model calculations of X-ray emission line profiles pro-
duced by a wind distribution of clumps and their associated bow
shock structures are based on simulations discussed in Paper I.
Our results apply to the hypersonic limit, namely that the Mach
number is high (�10), which is an excellent description of the
situation in a massive star wind where the terminal speed V∞ ∼
1000 km s−1 and the gas thermal speed is ≈100 times smaller.
This means that the bow shock structure—its shape and its rela-
tive density and temperature distributions—are largely indepen-
dent of the actual Mach number (e.g., Hayes & Probstein 2004).

However, since line profile calculations require detailed
information on the actual velocity field of a large number of
wind distributed clumps, we need to establish the distribution
of the line-of-sight (LOS) velocities as seen by an observer.
The simulations of Paper I were carried out in the rest frame of
a rigid and spherically symmetric clump where a fast-moving
wind with plane-parallel symmetry and constant density sweeps
across the face of a clump. The plane-parallel approximation
applies when the radius of the clump, Rcl, is small compared
with the wind clump radial location, r. To compute synthetic
line profile shapes of the vector velocity field for the bow shock
found in Paper I (see their Figure 4), which is accomplished
through the relative velocity vector defined by

�V(r) = [VW (r) − Vcl(r)] r̂, (1)

where VW is now the pre-shock ambient (or interclump) stellar
wind speed at the site of the clump, Vcl is the clump speed,
and both are measured relative to the stellar rest frame. We are
assuming that VW and Vcl are purely radial and thus functions
only of r. Note that the magnitude ∆V is the same in both the
stellar and clump rest frames.

Our calculations apply to both cases of a clump moving faster
or slower than the ambient medium because the simulations are
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conducted in the rest frame of the clump. As long as the relative
velocity (∆V ) between the clump and the surrounding gas
medium is hypersonic, the same bow shock structure results. The
only practical difference for line profiles is in which direction
the bow shock opens with respect to the star center. If the clump
is moving radially outward faster than the wind, the stagnation
point will be ahead of the clump, and the bow shock opens
toward the star. Similar scenarios have been discussed by Guo
(2010) and Waldron & Cassinelli (2009). If the clump is slow,
then the geometry flips by 180◦, like in the application to τ Sco
for infalling clumps (Howk et al. 2000).

An evaluation of the line profile shape requires knowledge
of the LOS Doppler shifts toward an observer in a specified
direction. Evaluating the Doppler shifts requires the introduction
of several coordinate systems. We assume that the stellar wind
is structured but spherical in a time-averaged sense. With no
special direction, the stellar and observer coordinate systems
are chosen to be coincident. Cartesian coordinates (X, Y,Z)
are introduced, with associated standard spherical coordinates
(r, ϑ, ϕ), where the polar angle ϑ is measured from the +Z-axis.
The observer is located along the +Z-axis.

For each clump we adopt the cylindrical coordinate system
(̟,φ, z) used in Paper I, where the z-axis in cylindrical
coordinates coincides with the symmetry axis of the bow shock,
and ̟ is the cylindrical radius. The clump center corresponds
to ̟ = 0 and z = 0.

In addition, since we envision these clumps as moving radially
from the star, the symmetry axis of the bow shock is also the
radial line from the star center to the clump center. Hence, a key
condition inherent in these two coordinate system definitions is
that ẑ · r̂ = ±1 is maintained for all wind distributed clumps,
where the sign indicates whether the bow shock opens away
from the star ( + ) or toward the star (−).

The specific points of our model are discussed in the following
sections. We first start with a brief review of the bow shock
properties found in Paper I as modified by using a relative
velocity.

2.1. Overview of the Bow Shock Properties

2.1.1. Geometry

The numerical simulations of Paper I showed that the shape
of the bow shock can be well described by the form

z − z0

Rcl

= a

(

̟

Rcl

)m

, (2)

with a = 0.35, m = 2.34, and z0 = −1.19Rcl, hence a shape
not far from a parabola. The bow shock apex forms at a distance
of 0.19Rcl above the clump surface.

In addition to the bow shock shape, it was demonstrated
that the derivative of the bow shock shape (i.e., the position-
dependent tangent) is the key parameter in determining the
velocity, temperature T, and emission measure EM distributions
along the bow shock surface. In Paper I we defined this derivative
as

dz

d̟
≡ g(̟ ) = a m (̟/Rcl)

m−1. (3)

It is convenient here to introduce an angle α that is related to
the curvature of the bow shock, with

tan α = g(̟ ). (4)

Note that in Paper I, we had defined this angle as A1 but here
prefer to use α.

2.1.2. The Velocity Field

One of the major findings from Paper I was that the EM
was dominated by the immediate post-shock gas. So an “On
The Shock” (OTSh) approximation was introduced, whereby
the density N, temperature, and velocity relevant to X-ray
observables are described by conditions along the bow shock
surface, and thus by the geometry described in the preceding
section. Hence, the velocity field in the rest frame of the clump
that is needed to synthesize line profiles is known analytically at
every point along the bow shock for the known surface geometry.

The simulation was based on the assumption that the radius
of the clump Rcl ≪ r , so that the incident interclump wind flow
was essentially plane parallel. Thus, �V = ∆V ẑ in the rest
frame of a clump itself (see Figure 4 of Paper I). We introduce

the unit vectors n̂ as the outward normal to the shock and l̂ as
a unit vector parallel to the shock in the direction away from
the apex. The jump conditions for a strong oblique shock were
applied to derive the velocity components perpendicular and
parallel to the shock front. Using primes to denote velocities in
the clump rest frame, the post-shock velocity components are
given by

V′
P,⊥ = −1

4
|∆V | cos α n̂ = −1

4

1
√

1 + g2
|∆V | n̂, (5)

V′
P,‖ = |∆V | sin α l̂ = g

√

1 + g2
|∆V | l̂, (6)

where ∆V is from Equation (1). Note that ∆V can be positive or
negative depending on whether the clump is traveling faster or
slower than the interclump wind, but the perpendicular velocity
component is always away from the bow shock symmetry axis
and the parallel component is always downwind of the apex
position.

The post-shock velocity field is a function of clump’s radial
distance from the star via ∆V and also implicitly a function of
location along the bow shock through the curvature factor g(̟ ).
The total post-shock flow speed5 anywhere along the bow shock
is

V ′
P = 1

4

√

1 + 16g2

1 + g2
∆V. (7)

As expected, the post-shock velocity takes on a value of
V ′

P = ∆V/4 for a head-on collision at the bow shock apex
where g = 0. Far downstream of the apex, the speed approaches
V ′

P = ∆V for g ≫ 1 as the shock becomes extremely oblique.
In order to determine Doppler shifts of the X-ray emitting

material, the post-shock velocity field must be evaluated in the
observer frame. To accomplish this, it is convenient to express
the vector flow in the clump system as components of ẑ and ˆ̟ ,
which can readily be transformed to the star/observer system.
This requires a standard rotation of coordinate systems from n̂

and l̂ to ˆ̟ and ẑ, which is given by

n̂ = ˆ̟ sin α ∓ ẑ cos α

l̂ = ˆ̟ cos α ± ẑ sin α.

The distinction in sign for the z-component is related to whether
the clump moves faster or slower than the interclump wind. If

5 We point out that Equation (7) corrects a typo appearing in Equation (10) of
Paper I.
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it moves slower, then the bow shock opens away from the star
and the upper sign is used; if it moves faster, then the bow shock
opens toward the star and the lower sign is used.

With these preceding expressions, the post-shock velocity in
the rest frame of the star (unprimed system) becomes

VP = V′
P + Vcl ẑ

= |∆V |
[

3

8
sin 2α ˆ̟ ± 1

4
(1 + 3 sin2 α) ẑ

]

+ Vcl ẑ, (8)

≡ V̟ ˆ̟ + [Vcl + Vz] ẑ, (9)

where V̟ � 0 is always true, but Vz � 0 for the case that the
clumps are slower than the interclump wind and Vz � 0 for
clumps that are faster.

The observed velocity shift for flow at a point in the wind is

vZ = −Ẑ · VP , using lowercase “v” to signify that the velocity
is for the observer. Carrying out the dot product yields

vZ = − [Vcl + Vz] cos ϑ + V̟ cos ϕ sin ϑ. (10)

Owing to axial symmetry of the bow shock, V̟ and Vz are
functions only of distance from the bow shock apex along its
surface. The velocity field reduces to VP ≈ V̟ near the bow
shock apex and VP ≈ Vz in the far outer wings of the bow shock.

2.1.3. Temperature and Emission Measure Distributions

With the OTSh approximation, the runs of T and EM along
the shock are monotonic functions of path length from the shock
stagnation point. The peak temperature at the bow shock apex
of an individual clump is TA with a value given by

TA = 3

16

μmH

k
∆V 2 (11)

= 14 MK
( μ

0.62

)

(

∆V

1000 km s−1

)2

, (12)

where in the latter expression we have evaluated the constants
assuming a fully ionized gas with solar abundances.

The path length downwind of the apex can be expressed as a
function of impact parameter ̟ for known bow shock geometry
z(̟ ). The post-shock temperature, T, along the shock is found
to be

T (̟ ) =
(

1

1 + g2

)

TA. (13)

The power-law form of Equation (3) provides g(̟ ), and the
temperature distribution reduces to

T

TA

= (1 + g2)−1 =
[

1 + 0.67

(

̟

Rcl

)2.68
]−1

. (14)

The line profile calculation also requires an emission measure
distribution. A result of Paper I was that the differential emission
measure (DEM = dEM/dT ) is a monotonic power-law function
of temperature and thus location along the bow shock with
distance from the apex. One can conveniently parameterize the
distribution with

dEM

dT
= EM◦(r)

TA(r)

(

T

TA

)−7/3

. (15)

where the mapping between ̟ and T is made through the factor
g using Equation (14). The emission measure scaling parameter
EM◦ is given by6

EM◦ = 5.1 × 1051cm−3

(

Rcl

1010

)3 (

NW

1010

)2 (

∆ℓ

Rcl

)

, (16)

where we have assumed a strong shock such that the post-
shock number density is NP = 4NW , where NW is the pre-
shock interclump wind number density, and Rcl and NW have
both been scaled to the values used in the simulation. From
Paper I, we found that ∆ℓ = 0.1Rcl well approximates the
simulation results. Our model does not predict the evolution of
Rcl through the flow. To more easily compare our results with
those of previous works, we adopt a scaling of R3

cl ∝ r2. Implicit

then is that the emission measure varies as EM◦ ∝ (rVW )−2 in
form, like a smooth wind with a constant filling factor of hot
plasma (e.g., Ignace 2001).

2.1.4. The Interclump and Clump Velocity Distributions

The critical parameter of the bow shock model is the relative
velocity defined in Equation (1) since it determines the mag-
nitude of both the post-shock X-ray temperature structure and
the velocity field. Our approach is to assume a two-component
wind model where the ambient wind and clump entities follow
different velocity laws. We adopt the commonly used standard
β velocity law prescription defined as

V (r) = V∞

(

1 − b

r

)β

, (17)

with V∞ being the terminal speed and b < R∗ so that the radial
wind speed is non-zero at the wind base taken to be the stellar
radius R∗. The value of b sets the initial flow speed V0, with

V0 = V∞

(

1 − b

R∗

)β

. (18)

In all cases considered, the b parameter will be fixed at the same
value in both the interclump and clumped wind velocity laws. In
order to limit the number of free parameters for our exploratory
investigation, we also assume that both components achieve the
same terminal speed.

The smooth interclump wind component will be described by
the parameter βW . Throughout this paper, we adopt βW = 1 as
typical of OB star wind solutions. Then βcl represents possible
clump velocity distributions. Note that βcl > βW implies slow-
moving clumps relative to the interclump flow; βcl < βW

corresponds to fast-moving clumps.

2.2. Scalings from the β-law Prescription

The distributions of TA and the DEM can be derived from
the two β approach. We introduce the convenient velocity
normalization w = VW/V∞. With the terminal speeds for the
clump and interclump flows the same, the relation between

the two components’ velocity laws are w = w
βcl

cl , where
wcl = Vcl/V∞. Thus the velocity jump of Equation (1) becomes

∆V = V∞ w [1 − w(βcl−1)]. (19)

6 Equation (22) in Paper I is missing a factor of (m − 1)−1, which leads to a
slightly smaller scale factor for EM◦ as compared with the Paper I result.
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Figure 1. Plot of bow shock apex temperatures TA for clumps located at different
positions in the wind. The temperature is normalized to Tlim (see the text). The
upper panel shows location in terms of the interclump wind velocity; the lower
panel shows for the clump velocity. Curves are for different βcl values, ranging
from 2 (lowest curve) to 8 (highest curve) in integer intervals.

This relation can be used to find TA(r), which proceeds as
follows.

Equation (12) along with the preceding expression gives

TA = 3

16

μmH

k
∆V 2, (20)

= 3

16

μmH

k
V 2

∞ {w [1 − w(βcl−1)]}2, (21)

≡ Tlim {w2 [1 − w(βcl−1)]2}, (22)

where Tlim is implicitly defined as the highest possible tempera-
ture in our model of outflow that occurs for a velocity jump that
is equal to the wind terminal speed.

Now the maximum hot plasma temperature Tmax in the wind
model can be determined. In the velocity coordinate of the
interclump flow, Tmax, is achieved at a critical value wc as given
by

wc =
(

1

βcl

)1/(βcl−1)

, (23)

which in the clump velocity becomes

wcl,c =
(

1

βcl

)βcl/(βcl−1)

. (24)

The radial location of Tmax is at a corresponding critical radius
value of rc, with

rc = b

1 − wc

. (25)

The value of Tmax is determined by just two parameters: the
value of βcl and the wind terminal speed via Tlim, as given by

Tmax = Tlin (βcl − 1)2 β
−2βcl/(βcl−1)

cl . (26)

Figure 2. Inset (top center) shows the location of a clump at angle ϑ around the
star from the observer’s axis. The plot shows example emission line profiles,
all normalized to have unit area, for individual clumps located at the indicated
orientations. In each case the clump is at the same radius, and so all profiles
have the same apex temperature TA. Solid curves are for clumps on the near side
of the star; dashed are for ones on the far side.

(A color version of this figure is available in the online journal.)

Figure 1 shows the distribution of TA in terms of the maximum
possible temperature Tlim with different curves for different
values of βcl. This is plotted against the normalized velocity
of the interclump wind in the upper panel, and against the
normalized velocity of the clumps in the lower panel. The curves
range from βcl = 2 (lowest curve) to βcl = 8 (highest curve)
in integer values. As βcl increases, Tmax shifts to progressively
higher velocities of the interclump wind but lower velocities
for the clump flow. Values of TA at different velocity locations
are at the level of a tenth to a few tenths of Tlim. For typical
massive star wind speeds of 1000–3000 km s−1, Tlim has values
of 10–100 MK.

3. LINE PROFILES FOR AN INDIVIDUAL CLUMP

Before developing emission line profiles for clumped winds,
it is instructive first to consider the emission line shape arising
from a single clump. As an example case, we consider a clump
at a location of 2R∗ that follows a βcl = 3 velocity law. The
velocity jump is ∆V ≈ 0.4V∞. Figure 2 demonstrates the
diversity in profile shapes for this single clump when it is located
at different positions around the star, as given by the angle ϑ
illustrated by the inset. The abscissa is the LOS observer velocity
shift wZ = vZ/V∞. Note that the profiles have been normalized
to have unit area. Values of ϑ = 0◦, 30◦, 60◦, 90◦, 120◦, 150◦,
and 180◦ were considered as labeled. For this figure both stellar
occultation and absorption of X-rays by the clump itself are
ignored, and the interclump wind is taken to be completely
optically thin to X-rays.

Except for ϑ = 0◦ and 180◦, which are for clumps that lie
along the LOS to the star, the profiles tend to be double-peaked
and asymmetric. One exception is when a clump is at ϑ = 90◦;
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Figure 3. Similar to Figure 2 but now profiles are for clumps only at ϑ = 90◦ and
with different temperature intervals. The emissivity is taken to be constant within
the temperature range of Tlo up to TA, with Tlo = 0.1, 0.3, 1.0, and 3.0 MK
from the most narrow line (blue) to the broadest one (black), respectively.

(A color version of this figure is available in the online journal.)

the profile is still double-peaked but also symmetric since it lies
in the plane of the sky with the star center. Generally, the double-
horn shape is a consequence of the complex velocity field in the
bow shock. The shapes become more nearly single-peaked as
they approach the LOS to the star center. This is because the
observer views the bow shock exactly along its symmetry axis.
In conclusion, for a clump at ϑ = 0◦ and 180◦, only the Vz

component contributes to observed Doppler shifts, but for a
clump located at ϑ = 90◦, only the V̟ component contributes.

For the profiles of Figure 2, emission from the bow shock
contributes from the peak temperature TA down to an imposed
minimum of 0.5 MK, which we use as a low temperature cut-off
for hot plasma X-ray production. However, real lines form only
over a restricted temperature range with consequences for the
line shape. Consider a hypothetical line that forms between 2
and 3 MK. For a bow shock with TA = 10 MK, this line would
arise spatially from an annular band centered on the symmetry
axis of the bow shock and offset from its apex. Consequently,
realistic lines that form over different temperature ranges will
tend to have different shapes, because they sample different
portions of the post-shock velocity field.

Figure 3 illustrates this effect through the use of simple
temperature cutoffs. The different curves are for line emission
with different low temperature thresholds Tlo. Below Tlo the
emissivity is zero; above it, the emissivity is independent of T.
In this example, clumps are placed at ϑ = 90◦. The profiles
becomes progressively broader as the lower temperature cutoff
increases, with values of Tlo = 0.1 MK (blue), 0.3 MK (green),
1.0 MK (red), and 3.0 MK (black).

To understand the growing line width with increasing Tlo,
recall that the EM of a clump is dominated by the low temper-
ature gas. For a clump at ϑ = 90◦, the bow shock is viewed
perpendicular to its symmetry axis. Only V̟ components of the

post-shock velocity field contribute to observed Doppler shifts.
With the lowest temperature gas found furthest downwind of
the bow apex, where the velocity vector is more nearly tangent
to our LOS, V̟ tends to be relatively small. Lower speed flow
in the bow shock is to be found closer to the apex; however, this
flow has a relatively larger component in the ˆ̟ -direction be-
cause of the greater curvature, with higher LOS Doppler shifts
resulting at the bowhead. But the bowhead is exactly where
the hottest plasma is to be found. Thus raising Tlo means that
the bowhead region increasingly dominates the line formation,
typically leading to a broader line for the given geometry.

Two final comments. First since increasing Tlo restricts the
contributing volume, higher values of Tlo also lead to weaker
lines for a given clump. This is not apparent from Figure 3
because each profile is normalized to unit area. Second, the
stagnation point at the bowhead is where the gas is hottest and
has intrinsically very low speed flow in the clump rest frame. If
Tlo were to approach the value of TA the profiles would actually
narrow, a limit not reached in the examples of Figure 3.

4. LINE SHAPES FROM AN ENSEMBLE OF CLUMPS

Although it is important to understand the emission profile
from an individual clump bow shock, stellar winds are under-
stood to be highly structured from many lines of evidence (e.g.,
Lupie & Nordsieck 1987; Hillier 1991; Moffat & Robert 1994;
Lepine & Moffat 1999, 2008; Oskinova et al. 2004; Owocki &
Cohen 2006; Prinja & Massa 2010; Muijres et al. 2011). Within
our framework, this means there is more than one clump. Fore-
most is the basic observation that X-ray emissions from single
massive stars are not highly variable. Although there is sug-
gestive evidence of line variability (e.g., Nichols et al. 2011;
Hole & Ignace 2012), in terms of bandpass luminosities, OB
stars are typically variable at the level of 10% or less (Cassinelli
& Swank 1983; Berghoefer & Schmitt 1994; Berghoefer et al.
1996, 1997).

Since we know that the observed X-ray emission from these
stars arises from a wind distribution of X-ray sources, we
now need to consider an ensemble of clump bow shocks for
producing synthetic line profiles. We recognize that the intrinsic
time-dependent nature of the problem which, in principle,
requires a full radiation hydrodynamics approach (e.g., Dessart
& Owocki 2003, 2005). Since a goal of this paper is to present an
initial analysis of line shapes arising from bow shock structures,
such a detailed approach is beyond the scope of this paper. Our
basic premise is that observed emission lines reflect a time-
averaged wind flow. High energy resolution X-ray spectroscopy
of high signal-to-noise requires exposure times ranging from 50
to 200 ks. By contrast, the characteristic flow time in a massive
star wind is R∗/v∞ ∼ 1–10 ks. This means that a typical massive
star X-ray spectrum is formed over multiple flow times, which
tends to average over structural variations that are stochastic.

4.1. The Limit of Many Clumps

Having considered emission profiles from an individual
clump in Section 3, here we consider the opposite extreme of
many clumps, which we refer to as the effectively “smooth”
limit. It is imagined that large numbers of clumps are uniformly
distributed in radius and orientation about the star to achieve
strict spherical symmetry. Certainly, approximate spherical
symmetry is consistent with low limits on the net continuum
polarizations in O-stars (McDavid 2000; Clarke et al. 2002).
Polarization of unresolved sources is related to deviations of a
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circumstellar envelope from spherical (e.g., Brown & McLean
1977; Brown et al. 2000).

The idealized smooth limit has value in establishing a
reference baseline of models that can be used for interpreting
line profiles from winds with different degrees of structuring
and time varying effects. (The latter will be treated in a separate
paper.) Additionally, the smooth limit allows for a derivation of
the DEM from the wind as a whole. We begin this process
by referring to Equation (15) that describes the DEM of a
single clump. The parameters EM◦ and TA are themselves
functions of clump location via Equations (12) and (16). Both
of these are functions of radius (or equivalently velocity) alone.
Consequently, every clump in a shell of radius r will have exactly
the same DEM. The global DEM for the wind will consist of
integrating contributions provided by every shell.

Working in the velocity coordinate of the interclump wind
VW , the total wind DEM is given by

(

dEM

dT

)

tot

=
∫ V2(T )

V1(T )

dEM

dT

dN

dVW

dVW , (27)

where dN/dV represents the clump distribution in terms of
radial velocity.7 In the limiting case of many clumps uniformly
distributed in velocity, dN/dV is a constant. To find the total
DEM, the integration proceeds only over shells where the
temperature T is high enough to produce X-ray emission.

As described previously, there is a maximum temperature
located in the wind at radius rc with corresponding normalized
velocity wc. The description of apex temperatures is thus double-
valued with radius. Plus, any given shell will have a range of
temperatures from TA down to a lower cutoff value. Clearly, a
particular value of T will only be found in a shell if TA(VW ) > T .
It is this condition that is used in Equation (27) for the limits of
the integrand.

Using results from the preceding section and Equations (12)
and (16), Equation (27) becomes

(

dEM

dT

)

tot

∝
(

T

Tlim

)−7/3 ∫ w1

w1

(

1 − w

w

)2

× {w2 [1 − w(βcl−1))]} Γ(w) dw, (28)

where w1 and w2 represent the velocity interval between which
T is achieved, and Γ is a correction factor for stellar occultation.
The latter is given by

Γ = 1

2

⎡

⎣1 +

√

1 −
(

1 − w

b

)2

⎤

⎦ . (29)

Note that the integral is over a fixed T, hence the temperature
dependence T −7/3 can be factored out of the integral. Thus,
the integral that remains represents a temperature-dependent
modification to the power law for a single clump. The integrand
is not overly complex, but the integration limits w1(T ) and
w2(T ) tend not to be analytic. (See the Appendix for solutions
of w1 and w2 in the special cases of βcl = 1/2, 2, and 3.)

Figure 4 displays the results of calculations for the total DEM
of the wind at even values of βcl from 2 to 12. The DEM is plotted

7 For example, Sundqvist et al. (2011) show a clump filling factor as a
function of radius, both as inferred from observations and deduced from model
simulations. Their single-peaked curve from R∗ to large r corresponds to a
bell-shaped distribution in dN/dV from V0 to V∞.

Figure 4. Logarithmic plot of the intrinsic total DEM against temperature in the
smooth wind limit. Temperature is normalized to Tmax. Curves are for βcl values
of even integers between 2 and 12, inclusive. The dotted line is for a −7/3 power
law as would apply to a single clump. The curves have been shifted to have the
same value at the lowest temperature for ease of comparison. Despite the wide
range of βcl values, similar overall DEM distributions result.

(A color version of this figure is available in the online journal.)

logarithmically against T/Tmax. The curves have been shifted
to a zero value at the lowest temperature used. The results all
lie very close to each other with departures from a −7/3 slope
occurring only at higher values of T, as emphasized by the dotted
line for a power law of −7/3 slope. Different βcl values yield
the −7/3 slope at low T because in our model the cooler X-ray
emitting plasma is to be found essentially throughout the wind.
The slight steepening toward larger T becomes a downturn as
Tmax is approached, because only the hottest components are
severely restricted in radial locale.

The range of line profiles that result in the smooth limiting
case are displayed in Figures 5 and 6. A stellar wind terminal
speed of V∞ = 2500 km s−1 is adopted, as before. For all cases
there is a minimum radius (or velocity) in which hot X-ray
emitting plasma is to be found. For the upper panels, the radius
is rmin = 1.1R∗ and for the lower panels, it is rmin = 1.5R∗.
The two left panels are profiles that result for fast clumps with
βcl = 0.5; the two right panels are for slow clumps with βcl = 3.

The line emission is assumed to be optically thin (hence no
resonance scattering effects). The model line luminosity as a
function of relative velocity shift wZ = vZ/V∞ is calculated by

Lline(wZ) =
∫

wZ

Λ(T )
dEM

dT
e−τ dT , (30)

where Λ(T ) is the temperature-dependent line cooling function,
τ is the photoabsorption optical (see below), and the integral is
carried out over the unocculted volume. For initial calculations
we assume simply that Λ(T ) is a constant. We also ignore the
variation of ion fraction with T, implicit in the DEM factor. In
effect, these illustrative model line profiles are meant to sample
the full DEM distribution. The inclusion of T-dependence for
the line cooling function and the effects of ionization balance
should result in a more diverse set of line profiles.
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Figure 5. Illustrative emission line profiles for the smooth limiting case. Hot
plasma is assumed not to exist interior to rmin, with a value of 1.1R∗ for the
upper panel and 1.5R∗ for the lower one. These models are for fast clumps
with βcl = 0.5. Different colored curves are for different levels of interclump
wind photoabsorption, with values of τ∗ = 0, 0.5, 1, 2, 4, and 8 that lead to
increasingly blueshifted lines.

(A color version of this figure is available in the online journal.)

The different colored curves in Figures 5 and 6 are for
different levels of wind photoabsorption. The assumption is that
the clumps are small compared with other scales in the problem,
so that the photoabsorption optical depth τ is approximated from
a LOS integration through a smooth interclump wind. As such,
the photoabsorption optical depth to the clump position is the
same for all points along the bow shock.

The optical depth is calculated following Ignace (2001), with

τ (r, ϑ) = τ∗
r sin ϑ

∫ ϑ

0

dϑ ′

1 − [(b sin ϑ ′)/(r sin ϑ)]
, (31)

where τ∗ is the optical depth scale to the base of the wind
at R∗. Generally, this scale is related to the wind mass-loss
rate, abundances, and energy of the particular line transition in
question.

In Figures 5 and 6 profiles for values of τ∗ = 0, 0.5, 1, 2, 4,
and 8 are calculated. The effect of increasing τ∗ is to make
the profiles increasingly asymmetric with emission peaks of
progressively higher blueshifts. The black profile is for a line
with τ∗ = 0; magneta corresponds to the case of τ∗ = 8. Note
that with no photoabsorption, the black curve displays a central
“flat-top” indicative of Vmin = V (rmin), modulo the effect of
stellar occultation.

For the range of photoabsorptive optical depths used, the
blueshifted peaks all lie below about half of terminal speed.
The line widths actually decrease slightly for low τ∗, but then
increase with larger values of τ∗. Ultimately, at large optical
depths, the blueshift of the peak emission, and the line width
are not sensitive to the value of rmin.

Figure 6. Same as Figure 5, but now for slower moving clumps with βcl = 3.

(A color version of this figure is available in the online journal.)

4.2. The Case of Discrete Clumps

Relaxing the assumption of a smooth distribution of clumps,
a discretely structured flow is now considered. Models are based
on a random number generator to place clumps throughout the
wind from which the X-ray emission line profiles are computed.
Let s be a random number in the range of 0–1. Individual clumps
are sprinkled in a uniformly random way about the star. The ith
clump will have angular coordinates given by ϕi = 2πs and
μi = −1 + 2s, where μi = cos ϑi, and of course two distinct
random numbers s are used to set the two separate coordinates
for a given clump.

Radial placement requires a different approach. In our model
clumps exist exterior to the photospheric level, R∗, out to
infinite distance, in principle. The one-dimensional radiative
hydrodynamic simulations indicate that the formation of strong
shocks occurs primarily at low and intermediate radii in the
flow (e.g., Feldmeier et al. 1997), basically where the velocity
gradient is reasonably strong. Structure can persist and evolve
out to fairly large radius. As a way of capturing the flavor
of this scenario, we choose to space clumps such that they
are statistically uniformly distributed in radial velocity VW . In
relation to the preceding section, this means that dN/dV now
becomes a uniform probability distribution to be sampled in the
range of V0 to V∞.

The relationship between a random number s and the corre-
sponding velocity for that value is given by

s = VW − V0

V∞ − V0

. (32)

Naturally, this distribution is highly non-uniform in radius. On
average, half of the clumps lie at VW > 0.5V∞ and the other
half lie below that speed. For βW = 1, this means that half
the clumps lie beyond r = 2R∗ and half lie interior. One can
easily incorporate different distributions dN/dV , either as an
exploration of parameter space or to match known clumping
properties of a particular source. The manner in which X-ray
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Figure 7. Line profile shapes for an ensemble of clumps with τ∗ = 0.1. Panels
are distinguished by the number of clumps Ncl used in the model, with (a) 4,
(b) 8, (c) 16, (d) 32, (e) 64, and (f) 128 clumps. Model line profiles are shown
in black; overplotted are red curves that include the effects of instrumental
smearing are included. Finite spectral resolution is approximated by convolving
model lines with a Gaussian that has σ = 0.05V∞.

(A color version of this figure is available in the online journal.)

producing structures are placed in velocity space influences the
line profile shape. Our choice of dN/dV as uniform is merely
a convenience for purposes of illustration.

Figure 7 shows examples of emission lines for different clump
ensembles. The wind photoabsorption optical depth is set to a
low value of τ∗ = 0.1. All profiles have been normalized to
unit area and so no vertical scale of flux is provided. The six
panels labeled (a)–(f) correspond to different numbers of clumps
Ncl with 4 in (a), 8 in (b), 16 in (c), 32 in (d), 64 in (e), and
128 in (f). The black curves are the intrinsic profiles of the
model calculation, whereas the red curves are convolved by a
Gaussian to simulate the effect of instrumental smearing from
finite spectral resolution.

It is important to note that the number of clumps contributing
to a given profile is generally less than the value of Ncl. This
occurs for a couple of reasons. First, we adopt a threshold
temperature of 0.5 MK for gas to contribute to the line. If the
apex value TA is less than the threshold, then all the gas in the bow
shock of that clump is also less than the threshold. The threshold
eliminates those clumps that are very near the photosphere and
very far away, where ∆V is too small to generate the requisite
temperatures for X-ray emission. The second reason is that some
clumps are occulted.

WithNcl on the order of several tens and higher, the convolved
profiles are reasonably symmetric (but not exactly so). Of course
the extent of blueshifted peak emission and line width is a
function of photoabsorption optical depth.

We have not properly dealt with the fact that there is generally
a broad range of temperatures across the bow shock. The
emission lines of Figure 7 still adopt a temperature-independent
line emissivity as was used for the effectively smooth wind case

of Section 4.1. A temperature-dependent emissivity should be
included when fitting observed line profiles for specific sources.

5. SUMMARY AND CONCLUSIONS

Paper I of this series presented results of a hydrodynamic
simulation for purely adiabatic cooling with a plane-parallel
hypersonic flow impinging upon a rigid spherical obstacle in
the rest frame of that obstacle. The simulation was conducted
under the assumption that individual clump structures are much
smaller than the radius at which they are located. In that paper
the flow and temperature structure were described, and two quite
interesting simplifications were emphasized. First, it was found
that the DEM followed a power-law form. Second, the emission
measure was to be found primarily in a thin “sheath” of post-
shock volume. Thus Cassinelli et al. (2008) introduced the on-
the-shock approximation, or “OTSh,” whereby the bow shock
geometry determines the T and DEM distributions necessary for
computing observables.

In this second paper, we adopt the OTSh to model X-ray
emission lines that would arise from an individual bow shock
and from an ensemble of bow shocks. This follows on a long
string of papers to explain the unexpected observed X-ray line
profile shapes from a number of massive stars in terms of
structured flows, based on fragments of planar shocks (Oskinova
et al. 2004) or porosity arguments (Owocki & Cohen 2006).

An individual clump tends to produce an asymmetric double-
horned emission profile that is offset from line center, depend-
ing on its radial and lateral location around the star from the
observer. Evidence indicates that massive star winds are charac-
terized by large numbers of clump structures. To model the line
shapes from an ensemble of clumps, we adopted a parametric
two-component flow approach using two wind β-laws: one for
the interclump wind flow and one for the clump flow. The dis-
tinction in β-laws leads to radius-dependent velocity jumps that
govern the temperature range of the bow shocks. Of particular
interest is that this approach yields a number of semi-analytic
relationships for the T and DEM distributions throughout the
flow, which in principle are properties that can be tested against
observations (e.g., Waldron & Cassinelli 2009; Guo 2010).

Using this construction, emission line profiles were calculated
in the “smooth” limit of many uniformly distributed clumps
and for the case of a discretely structured flow. As expected,
peak emission of the lines are a function of the degree of
photoabsorption. The bow shock paradigm yields line shapes
that are somewhat symmetric at modest photoabsorption optical
depths of a few, where the influence of rmin on the line shape can
no longer be perceived. In contrast to a uniform distribution of
clumps, the discrete case leads to profiles with spikey features;
however, these are much too narrow to actually resolve with
current instrumentation. Using a simple temperature cutoff
approach, we also find that profile widths can depend on the
temperature interval of line formation.

All of these results represent a promising starting point for
tailored analyses of individual objects, for calculating spectral
energy distributions, and for investigating X-ray variability. Pre-
vious efforts have focused primarily on geometrical considera-
tions for explaining X-ray line profiles shapes observed from OB
stars, in the form of discrete clumps, clump distributions, and/
or filling factor considerations. Our results explicitly include
temperature distributions throughout the wind flow, which is a
forward step in X-ray line profile synthesis modeling.

In closing we remind the reader that our approach has
relied on simulations that adopt purely adiabatic cooling for
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the bow shocks. We have begun new simulations of clump
bow shocks that include radiative cooling. The advantage
of adiabatic cooling and hypersonic flow is that the flow
geometry is independent of the Mach number. In situations
where radiative cooling is needed, the results will depend on
the density and the apex temperature achieved. Consequently,
the bow shock structure will no longer have a “universal”
form; thus, greater complexity is the cost of greater realism.
Preliminary results with radiative cooling suggest that the
power-law DEM in temperature derived in Paper I persists at
the hottest temperatures, but shows a flattening toward cooler
temperature gas where radiative cooling dominates. In the
future, we will include the results of these new simulations
along with realistic temperature-dependent line emissivities to
fit the line profiles of high-resolution X-ray lines from massive
star winds and to study time variable effects of X-ray emissions.
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partment of Defense (DoD) ASSURE (Awards to Stimulate and
Support Undergraduate Research Experiences) programs.

APPENDIX

APPENDIX: TEMPERATURE INTERVALS
FOR βcl = 1/2, 2, AND 3

To calculate the total DEM from a uniform distribution of
many clumps in a wind, it is necessary to find the integration
limits w1(T ) and w2(T ) in Equation (29). Based on the preceding
section, this amounts to a root finding exercise involving the
following relation (see Equation (22)):

wβcl − w +
√

t = 0, (A1)

where t = T/Tlim and βW = 1 is assumed. The function is
double-valued for all βcl �= 1. Note that the clump βcl can
be larger or smaller than the interclump value. Here solutions
are given for three cases where the roots are analytic or semi-
analytic.

A.1. Case of βcl = 2

The equation to be solved is

w2 − w +
√

t = 0. (A2)

The roots have with values of

w1,2 = 1

2
∓ 1

2

√

1 − 4
√

t . (A3)

The maximum temperature occurs at tmax = 1/16 for which
w1 = w2 = 0.5.

A.2. Case of βcl = 1/2

The equation to be solved is

w −
√

w +
√

t = 0. (A4)

With the change of variable x2 = w, the condition can be recast
as

x2 − x +
√

t = 0, (A5)

which is the same quadratic expression for βcl = 2. The
roots w1,2 for the case βcl = 1/2 are simply the square
roots of the solutions from the βcl = 2 case. The maximum
temperature still occurs at tmax = 1/16, which in velocity is
now w1 = w2 = 0.25.

A.3. Case of βcl = 3

The expression to be solved is

w3 − w +
√

t = 0. (A6)

This cubic has three real roots; however, one of those is negative
and not physical. There are standard forms for the roots; here
we use the trigonometric version. An angle γ is introduced as
defined by

cos γ = −
√

t/tmax, (A7)

where tmax = 4/27. Then the roots become

w2 = 2√
3

cos(γ /3) (A8)

and

w1 =
√

1 − 3

4
w2

2 − 1

2
w2. (A9)
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